DSB: The Next Generation Tool for Software Engineers
Kavoori Kiran Ram

Collaborative Software Development Laboratory
Department of Information and Computer Sciences
University of Hawaii
Honolulu, HI 96822
(808) 956-6920

kavoori@uhics.ics.hawaii.edu
CSDL-TR-93-05

Last Revised: May 4, 1993

Contents

1

Introduction i
1.1 Overview o . e e e e e e e ii
1.2 Motivation e e e e e e e ii
Approach i
2.1 Problem Definition e ii
2.2 Proposed Solution oL L il
Current Status iii
3.1 Operational Status L Lo il
3.2 Object Orientation Conventions iv
3.2.1 Classes o e e e e e e iv
3.2.2 Objects e iv
3.2.3 Attributes L e e iv
3.2.4 Operations0 L e e e v
3.2.5 Collections e e e v
3.2.6 Administrator. e v
3.3 Notational Conventions v
3.3.1 Identifier Syntax e v
3.3.2 Common Name Components vi
3.4 Parsing Process L vi
3.5 Software Quality Assurance Process vi
Future Directions vii
4.1 Short comings of DSBo vii
4.2 Future additions e e e viii

1 Introduction

1.1 Overview

During the development of software projects, there always exists the problem of design specifi-
cation maintenance. As the project team surges ahead with the development process, there is
a strong need to maintain an up-to-date documentation of the current system. This requires
an additional effort on each team member to maintain a consistent report of the modifications
and additions they make on the system.

This Designbase project attempts to reduce the overhead involved in the maintenance
of ever changing design specifications, by generating automatically, a design documentation
from the source code and the overview files that are maintained along with the system.

1.2 Motivation

The Designbase (DSB) system satisfies two primary goals: First, it provides automated ex-
traction of design-level documentation about the public interface to any Emacs-Lisp system
under development or use within CSDL. Automated extraction of this information signifi-
cantly decreases the overhead to developers of publicizing how to use or modify a recently
developed system. Rather than requiring developers to create and maintain a parallel design
or user-level description of their systems, the Designbase simply extracts it from the source
code. Moreover, eliminating this redundant description enormously decreases the overhead
of maintaining the documentation as the underlying system evolves. The Designbase also has
a simple critique section, where a series of checks are run on all the public functions to point
out omission of certain standard programming conventions used in software development. In
an exploratory yet collaborative development environment, automated design documentation
generation and critique will facilitates shared use of evolving systems.

Of course, the Designbase can’t reverse engineer this information from just any old source
code. Rather, the Designbase can only fulfill its purpose effectively on code that has been
designed and implemented according to CSDL object oriented Emacs Lisp standards. This
leads to the second major purpose of the Designbase: to enforce and facilitate the use of
object oriented design techniques within the group by providing a significant incentive to
those who use them.

2 Approach

2.1 Problem Definition

No software system is permanent or immune from change. Often the need to change the
software begins as soon as it is accepted as operational. This occurs for a number of reasons
including requirements and design omissions, or a better understanding by the user as to
what is needed vs what is produced. Regardless of how well the software is designed, the
need to make changes (enhancements, extensions and corrections) will arise. Therefore, it is
essential to anticipate future use and maintainability of the software during the requirements
and design phase.[Wilma, 1984]

So there should a software framework to address the maintainability of software during
it’s life cycle. Such a framework would take into consideration some important requirements

ii

as:

o the ease of understanding the software. A significant portion of the cost of software
maintenance can be attributed to an inadequate understanding of the software, its
intended purpose, and how best to make the changes. Normally, software is maintained
by someone other than the developer. The work of the maintainer is drastically reduced
if the developer provides an accurate documentation for the code he is developing.

o the ease of making software changes. Maintainability is improved if the system is
designed in an Object-Oriented style with hierarchical, modular units that perform one
principal function with minimal interaction between the modules.

2.2 Proposed Solution

This project focuses attention on “the ease of understanding the software” through proper
documentation. Software projects are outcome of combined efforts of programmers, software
engineers and managers. Coordinating individual member of the team and the final integra-
tion of work plays an important role in producing good software systems. Thus the work
done by each member of the team should be easy to understand, reuse and modify if required,
not only by other members within the group, but also by people reusing code for further ex-
tensions. In order to attain this higher level of understandability of code, development teams
adopt certain norms and conventions to be followed by each member of the team. These
norms concern to issues in programming techniques, like standards in naming conventions,
documentation for each function, public and private functions and so on.

Given such standardized conventions, an automatic system can be developed to parse
the source code files, and extract a design level description of the system that encompasses
the module level structure only, and abstracts away the underlying implementation. As an
additional feature, the designbase can check for the deviations of these standard conventions
and can report to the developer, who then can make the required corrections, before a public
release. Such a system would not only be able to improve the understandability of the
software system simultaneously reducing the burden on the developer, but also help him /her
in defining his/her functions precisely thereby reducing the error percentage from the system.

3 Current Status

3.1 Operational Status

The Designbase application has been conceived and implemented about four months back
and has been in operation since then. This is a masters level project started in Feb '93. Over
this period of four months, dsb has been fine tuned to incorporate a lot of functionality and
bug fixtures. From the initial version of parsing source files to generate a LaTeX file of the
public interface of an application, dsb has been extended to generate LaTeX report/article
style formats. Dsb has been structured using Object-Oriented concepts making it an easily
extendible system.

Dsb has been in regular use in the CSDL research environment. The following statistics
of each application within CSDL illustrates the extent of usage of dsb.

iii

¢ EGRET
2.0MB code, 4 subsystem modules, 32 classes and 300 public operations. [Johnson,
1993]

¢ CLARE
1.7MB code, 4 subsystem modules, 33 classes and 174 public operations. [Dadong,
1993]

¢ CSRS
1.0MB code, 2 subsystem modules, 18 classes and 100 public operations. [Tjahjono,
1993]

¢ URN
0.14MB code, 3 subsytems, 5 classes and 31 public operations. [Brewer, 1993]

¢ DSB
0.5MB code, 2 subsystem modules, 9 classes and 48 public operations. [Kavoori, 1993]

3.2 Object Orientation Conventions

The applications in CSDL environment are designed in Object-Oriented fashion. The major
entities in Object Oriented design are classes, objects, attributes, operations, and collections.
Attributes, operations and collections can be private or public. Public nature is indicated
notationally by the use of * as the visibility token; ! as the visibility token indicates a private.
If an attribute is private, then functions outside the implementation of the class should not
access or set the attribute’s value. This, of course, is not enforced in Emacs Lisp, but is rather
a way of helping programmers to understand what parts of a subsystem are internal details
and can thus be safely ignored. Designing and programming in an object oriented fashion
will greatly ease understanding of the system architecture, as well as supporting migration
to other languages providing direct support for these concepts.

3.2.1 Classes

A class is a collection of objects with related structure and behavior. Each class has associated
with it a set of superclasses, a set of subclasses, a set of attributes, and a set of operations.

Classes frequently have constructor and destructor operations for the objects associated
with them. These operations are always called make and delete. Classes are, in some sense,
purely a design-level representation. No explicit Emacs Lisp support for defining classes
exists.

3.2.2 Objects

Classes are an organizational entity—what actually exists during execution are particular
instances of classes, or objects. Each object has a unique identifier associated with it, and this
unique identifier (or the object itself) is virtually always the first argument to the operations
associated with a class.

v

3.2.3 Attributes

Each class instance has a set of characteristics, or attributes associated with it. For example,
each screen has a geometry, color, name, and so forth. These are attributes of the class.
Some attributes are set-able. This means that an operation corresponding to the attribute
is defined to change its value. This operation is named by prefixing the attribute name with
set-.

3.2.4 Operations

While attributes refer to characteristics of classes, operations refer to the behaviors of the
instances of the class. Operations may take any number of arguments, but the first argument
is, by convention, an object representing the class instance. Operations must always document
what form their first (as well as the other) argument must take. The operation may take
additional required or optional arguments depending upon the nature of the behavior.

3.2.5 Collections

Operations, as defined above, operate on individual instances of the class. There is another
kind of operation, however, that operates on the set of all objects that exist in the class.
These are called collection operations. For example, an operation that returns a list of all
nodes of a specified type is a collection operation. These operations, taken together, represent
many of the classical database query and retrieval operations supported in Egret .

Collection operations are always defined relative to a class, and are named by wrapping
{ and } around the class name.

3.2.6 Administrator

These are special operations that are defined for a few classes. They typically provide system
initializing operations and recovery operations. These administrator functions are used by
the system administrator while bring up the application and in times of system crash.

3.3 Notational Conventions

3.3.1 Identifier Syntax

Function and variable names in CSDL have a standard format.[Johnson, 1993] Each name
must adhere to the following template:

<sys—name><sys-vis><class-name><class-vis><name>

where:

e <sys-name> is a set of characters that identifies the subsystem membership of the
object.

e <sys-vis> and <class-vis> are single characters indicating the external visibility of
the object. The character * indicates that the object is public, the character ! indicates
that the object is private, and the character @ indicates that the object is a system

v

administration function to be manipulated only by distinguished users at special times
(such as database initialization, recovery, and so forth).

e <class-name> is typically the full class name, but may sometimes be an abbreviation.
e <name> is the actual name of the operation or attribute.

For example, the function i*emd*find-node is the interface subsystem public operation
find-node from the class command, which is abbreviated as emd. By prefixing operations
with their class name, the operations class membership is automatically documented, as

well as allowing the same operation name to be defined for different classes (for example,
node*find-node.)

3.3.2 Common Name Components

Beyond naming syntax, Fgret also has conventions for naming certain kinds of semantically
related operations. These conventions are

e Constructor and instantiation operations are prefixed by make-.
e Deletion operations are prefixed by delete-.
e Operations that set the value of an attribute are prefixed by set-.
e Recovery operation names are by convention prefixed with reset-, and whenever possi-
ble suffixed with the name of the attribute or operation whose functioning they repair.
3.4 Parsing Process

The parsing process of dsb relies heavily on the conventions followed in the CSDL environ-
ment. DSB is designed to carry out the following procedure:

e Read in each lisp source file.

e Process each lisp form in each file selecting only public functions and macros. Macros
are expanded and then processed. Generate an entity for each operation. Classify them
into attributes, operations, collections, variables, and administrator functions.

e Sort the entities into operations under each class, and then the classes under each
subsystem. Critique each operation and class for dis-conforming standards.

e Generate table of operations for each class and for each subsystem. Format the output
in an appealing way to the user, presenting the public interface of the system.

3.5 Software Quality Assurance Process

The Designbase has a set of critique instances that can be applied on each class. The list of
current critique instances are

vi

¢ Missing Constructor
Every class that is defined should have an operation that creates an object of that class,
typically called the constructor function. Absence of this operation shows a serious flaw
in the design.

¢ Missing attributes
Each class has an associated set of attributes, which need to be documented in an
appropriate manner, understandable by dsb. The lack of attributes for a class would
indicate that some operations might have been wrongly classified or the system design
does not provide much functionality to that class. This would draw attention of the
designer to think better ways of providing functionality.

¢ Missing Operations
A class exists when it has a defined functionality which is exhibited by the set of
operations available for that class. Absence of at least a single operation for a class
indicates that the existence of the class is not well justified.

¢ Missing Documentation
Undocumented functions are the worst nightmare any software engineer trying to de-
code and reuse existing systems. Missing documentation needs immediate attention.

¢ Missing Overview files
Overview files for each class and subsystem provide necessary information to understand
the modules from the developer’s perspective.

¢ Undocumented Parameters
When ever a function gets reused, it is obvious that it should take the same type of
arguments every time. Unless each argument is documented properly, it would be
difficult to use the function.

¢ Undocumented Return Value
It is important to know what to expect as a return value when a function is called, so
that the calling function can handle the return value properly.

The critique operations returns a list of failed instances which form a part of the documen-
tation. These glaring shortcomings in the system implementation would initiate appropriate
action from the developer. Elimination of these defects would make the system more easy
to understand by the other members of the group and by the people involved in maintaining
and extending the system.

4 Future Directions

4.1 Short comings of DSB
e The designbase parses only Lisp code.
¢ Emacs Lisp does not have Object-Oriented constructs and the concepts of Object Ori-

entation is incorporated only by convention followed in the CSDL environment.

vii

4.2

o Information that is extracted from the source code is pretty much existing within the

source files and not much information is derivable from the designbase hardcopy.

Future additions

The parsing technique can be modified to recognize constructs of different Object-
Oriented languages like C++ and Common Lisp. Once the basic dsb entities are cre-
ated, then it can do similar processing.

A higher level of information can be derived from the current dsb system by means of
different representations. For example, an Egret system can be used to represent dsb
entities in the form of nodes and links. This network can be manipulated from a higher
level to record changes made to a system over a time period, in a sense the evolution
of a software system itself. In Software Engineering circles, this kind of representation
has a great potential in the research of software life cycles.

References

[Wilma, 1984] Wilma M. Osborne. A Framework for improving Software maintenance
throughtout the Software Lifecycle IEEE 1984 3rd Software Fngineering Standards Ap-
plication Workshop.

[Johnson, 1993] Philip Johnson. EGRET Requirements Specification Also published as Tech-
nical Report CSDL-93-02, University of Hawaii Department of Information and Computer
Sciences.

[Dadong, 1993] Dadong Wan. CLARE-1.2d Design Document CSDL, University of Hawaii,
Department of Information and Computer Sciences, May 1993.

[Tjahjono, 1993] Danu Tjahjono. CSRS-1.2.1 Design Document CSDL, University of Hawaii,
Department of Information and Computer Sciences, May 1993.

[Brewer, 1993] Robert Brewer. URN-1.0.2 Design Document CSDL, University of Hawaii,
Department of Information and Computer Sciences, May 1993.

[Kavoori, 1993] Kiran Kavoori. Designbase-1.3.5 Design Document CSDL, University of
Hawaii, Department of Information and Computer Sciences, May 1993.

viii

