URN: A New Way To Think About Usenet
Robert Brewer

Collaborative Software Development Laboratory
Department of Information and Computer Sciences
University of Hawaii
Honolulu, HI 96822
(808) 956-3489

rbrewerQuhics.ics.hawaii.edu
CSDL-TR-93-06

Last Revised: May 1, 1993

Support for this research was provided in part by the National Science Foundation Research
Initiation Award CCR-9110861 and the University of Hawaii Research Council Seed Money Awards
R-91-867-F-728-B-270 and F-92-868-F-728-B-430.

1

Contents

1 Introduction 3
2 Background 3
3 Motivation 4
3.1 Three Problems with Usenet 4
3.1.1 Too Much Information 4

3.1.2 Too Ephemeral 0. 5

3.1.3 Representation Too Limited 6

3.2 Three Solutions e 7
3.2.1 Agents Search Usenet on Users” Behalft 7

3.2.2 Knowledge Condensation 9

3.2.3 Explicit Author Perspective 9

4 Approach 10
4.1 Performance Evaluation 11

5 Current Status 12
5.1 Research Methodology, 12
5.2 Research Tool 12

6 Future Directions 12

1 Introduction

This document presents an overview of the URN project. It is intended to show the

motivation behind the project as well as describing the current status of the research.

The URN project is an Egret application that implements a new paradigm for
utilizing the massive, ever-changing data stream that is Usenet (for background infor-
mation about Usenet, see Section 2). The acronym URN stands for Ultimate Read
News, but it can also be thought of more symbolically as a repository for knowledge.
Egret is an environment for the implementation of exploratory collaborative hypertext
applications which is described elsewhere [Johnson, 1991; Johnson, 1992]. The goal of
URN is to make the information available through Usenet more useful by using dif-
ferent perspectives on Usenet and new ways to extract useful data from Usenet. We
claim that these ideas constitute a paradigm shift in the way we view Usenet. This
new paradigm has three components: agents that scan Usenet for useful information
on a user’s behalf, knowledge condensation techniques that allow Usenet to be reorga-
nized and annotated, and knowledge communities that provide explicit representation
of authors and readers. This new paradigm grew out of solutions to the three major
problems with Usenet: there is too much information, it is too ephemeral, and its

current representations are too limited.

The next section will briefly describe Usenet to those unfamiliar with it. Discus-
sion of the three problems with Usenet and our three proposed solutions will follow.
The next section lays out the research methodology and the evaluation process. We
then describe the current status of the research methodology and the research tool

implementation. The final section discusses the future direction of the project.

2 Background

Usenet (standing for Users Net) is a massive but loosely connected network of comput-
ers that exchange ‘netnews’ which can be thought of as a kind of ‘public’ email. Any
user on a Usenet node can post an article to Usenet by simply typing in some text and
submitting it to a program on the local computer. This local computer then forwards
the article to a few close-by Usenet nodes, who in turn forward it in turn to other
nodes. In this manner news is propagated around the world, yet the original posting
machine need only send it to a few near-by machines. Although Usenet started with

only a few nodes, its growth has been incredible.

As of March 1993, an estimated 76,000 Usenet sites exist with over 2.4 million

3

Usenet readers!. The traffic on Usenet is enormous: in the week of April 5, 1993,
for example, Usenet generated approximately 400 megabytes of data, consisting of

approximately 176,000 separate articles. This is typical of Usenet traffic.

Usenet articles are categorized into hundreds of ‘newsgroups’. These newsgroups are
the primary way in which articles are broken down in to different subject areas. News-
groups are hierarchically named with the levels of the hierarchy separated by ‘.. For
example, the newsgroup about Macintosh hardware is called ‘comp.sys.mac.hardware’
and the newsgroup for IBM compatible hardware is called ‘comp.sys.ibm.pc.hardware’
while the newsgroup about Star Trek information is called ‘rec.arts.startrek.info’. The
content of these newsgroups is highly varied, ranging from groups about software en-
gineering (‘comp.software-eng’) to groups about dogs (‘rec.pets.dogs’) to groups about

abortion (‘talk.abortion’).

Just as in all communications media, articles can be statements, questions, com-
ments, replies to questions, poems, or any other textual object. After an article is
posted, other users may choose to ‘followup’ that article in such a way that the fol-
lowup article is linked to the original article. This process is recursive, as other users
can create followups to followups. A set of articles linked together in this way on a
common topic is called a ‘newsthread’ or simply thread. Sophisticated newsreading
software (such as trn or GNUS) is capable of recognizing these threads and allows
the user to explore Usenet at this level. Follow up articles often include quotes from
the original article. This quoting is usually done in an automated fashion so that
readers can distinguish between quoted and original text. However, this makes for a
great deal of repeated information, especially in long threads. In fact in March 1993,
quotes appeared as more than 9% of Usenet’s volume. As an aside, not all articles
posted to Usenet are human-readable text; some are encoded versions of binary files:

applications, pictures, and sounds.

3 Motivation

3.1 Three Problems with Usenet
3.1.1 Too Much Information

With some understanding of what Usenet is, we can now describe some of the problems

of Usenet that prevent it from being utilized to its full potential. From the description

!Data from Brian Reid’s <reid@decwrl.dec.com> postings in the news.lists newsgroup with
message-1D <1ptjO0d$2hiQusenet.pa.dec.com>.

4

above the first problem with Usenet is clear: too much information. With as much as
1.8 gigabytes of new articles each month, it is impossible for any human to actually
read a sizable fraction of Usenet, let alone all of it. In one sense, this isn’t important
because presumably no one is interested in every issue or topic. However, the primary
way that people filter out information is through subscription to newsgroups. Sub-
scribed newsgroups are those that one’s newsreader checks when looking for unread
articles to display?. Newsgroups that one is not subscribed to are therefore out of
one’s way, so by carefully choosing which newsgroups to subscribe to one can control

the volume of information one reads.

Unfortunately, filtering via newsgroup subscription is not a solution to the problem
for many users. If these newsgroups have high traffic then one is confronted with
possibly hundreds of new articles each day, too much for the average person to read.
The problem is further complicated by the expiration of articles: unlike most printed
material, Usenet articles are expired on a regular basis. If one does not read news
regularly, articles are deleted before one even sees them (see Section 3.1.2). The high
traffic in newsgroups is often caused by the ease of posting an article. For many end
users there is no cost to post an article to Usenet and its 2.4 million readers. Since
they perceive no cost, they sometimes post recklessly, apparently without thinking.
These reckless posts are often: poorly written, uncourteous, repeated information, and
incorrect information. Due to these reasons there is a lot of ‘noise’ on Usenet. The
information explosion will only get worse as more sites and more people are connected

to Usenet at lower and lower cost.

3.1.2 Too Ephemeral

Another problem with Usenet is its lack of persistence. As previously described, the
amount of information available in Usenet is staggering and continually changing. Ev-
ery day each Usenet node receives megabytes of new articles. Since disk space is finite,
eventually old articles must be removed from disk to accommodate new articles. It is
almost universally the case that old articles are removed by deletion. Since there is
very little in the way of archival of Usenet, once old articles are ‘expired’ they go away
forever, unless some user of Usenet decided to save that particular article for future

reference. While it is possible to archive Usenet (in fact there is a company that sells

ZSubscription is therefore somewhat of a misnomer as each user has their own list of subscribed
newsgroups, but their Usenet node only has one copy of the articles. In other words, a newsgroup
subscription is completely unlike a magazine subscription where each subscriber receives a separate
copy of each issue.

subscriptions [in the magazine sense] to Usenet via CD-ROM?), such an archive would
not be very useful as a reference tool because any search query would return many

false matches due to the massive amount of noise present in Usenet.

Usenet also lacks the kind of condensation that occurs in other media. For example,
if one wants to know what happened yesterday one might read a daily newspaper. If
one wants to know what happened last year, one might read a magazine or journal. If
one wants to know what happened 50 years ago one would probably refer to a history
book. In this fashion information is condensed from the voluminous and noisy level
of a newspaper to the concise version found in history books. Condensation is made
difficult in Usenet because of the expiration of old news. Of course the readers of
Usenet may remember what has occurred and might be able to respond to a question
concerning old information, but this is an unreliable system at best. One exception to
the lack of condensation in Usenet are FAQ (Frequently Asked Question) files. These
files are created by hand in an ad hoc fashion with the goal of answering all of the most
commonly asked questions in a newsgroup. Then the FAQ file is frequently posted
to the group in the hope that new subscribers will read the file and find an answer
to any basic question they might have instead of posting the question to the group.
While this facility is quite useful and does reduce noise, it is completely driven by the
philanthropy of the FAQ creator and the type of questions addressed are usually basic

and factual.

3.1.3 Representation Too Limited

The final problem of Usenet that we will discuss is the document representation used
by all current newsreading software. At its most basic level, Usenet consists of a stream
of different articles. Originally these articles were only broken up by which newsgroups
they were posted to. In recent times, articles contain information that indicates which
other articles it is referring to. With this information we can build tree structures
where the first article is the root of the tree and the followups are connected to the
root by various numbers of links. These trees are called threads. This thread is a
very valuable entity because it gives us a level of abstraction between the article (too
specific) and the newsgroup (too vague). Because threads consist of multiple articles,
it follows that there are fewer threads than there are articles. So if we can just find

the threads we are interested in, we can get at the information we want to see.

Unfortunately, threads have a big problem. Often one thread actually contains

3Sterling Software, email: cdnews@Sterling.COM, information files: ftp.uu.net: /vendor
/sterling

multiple different and only vaguely related topics. Since the news posting programs
have no natural language understanding capabilities, they cannot tell whether an article
to be posted is on the same topic or not. Current newsreaders also restrict threads to
a single group so a thread that jumps into another group will seem to disappear from
the original group even though the thread has merely shifted to another group. This is
typical of the current Usenet paradigm in that newsgroups tend to be rigidly separated

despite different newsgroups being quite often related.

The current Usenet paradigm is a hierarchy of articles; threads are groups of ar-
ticles and newsgroups are groups of threads. This view fails to capture important

information, namely the representation of authors.

3.2 Three Solutions
3.2.1 Agents Search Usenet on Users’ Behalf

The solution to the problem of information explosion (for the people reading Usenet
at least) is to figure out what kinds of things the user wants to see and display them
(a ‘Do What I Mean’ interface). It should be the goal of any newsreader to show the
user only articles that the user is interested in. Current newsreaders already attempt
to provide this with the use of ‘kill files’. A kill file is a file that contains a list of
patterns and associated actions. Any article that matches one of the patterns in the
file has the associated action applied to it. While in principle it is possible to use these
files to perform any action, typically the action is to mark the article as read (‘kill’ it).
This allows a user to exclude from view articles on a certain subject, or articles from
a certain person, etc. While this facility is quite powerful, it is sorely underutilized by
readers of Usenet. The primary reason for the lack of use is that it takes a substantial
amount of effort, intellectual and otherwise, to come up with a list of patterns for

articles that one doesn’t like.

There is another problem with kill files: they can only exclude articles, they cannot
bring articles to the users attention. Since Usenet is very large, it is much more logical
to think about patterns that match things that one does like than to come up with
patterns that exclude everything that one doesn’t like. In addition, kill files also run
the risk of killing off articles that the user does in fact want to read. For example, a
hypothetical user might dislike IBM, and therefore create a kill file entry that kills all
articles related to the subject of IBM. However, this hypothetical user might also love
Apple Computer, and really like to see articles about Apple. In this case, if an article
was posted that was about a partnership between Apple and IBM the kill file would

kill it, even though it is likely that the user would want to see the article.

Given the disadvantages of kill files we have decided to use weighting functions. A
weighting function takes an article as input, and returns an integer value representing
the ‘weight’” it assigns to that article. The weighting function consists of a field to be
searched, a regular expression, and a weight to be assigned to articles matching the
regular expression. The weight can be positive or negative depending on what the
goal of the particular function is. Returning to our hypothetical Apple lover, he or she
might have a weighting function that assigns a moderately negative weight to articles
related to IBM, and a weighting function that assigns a high positive value to articles

related to Apple.
Field: Subject, Reg Expression: ".*[Aalpple.*", Weight: +50
Field: Subject, Reg Expression: ".*IBM.*", Weight: -35

All the weighting functions are run over all the available articles, and the weights
for each article are added up. Articles are then sorted in decreasing order by weight,
hopefully leaving ‘good’ articles at the top and ‘bad’ articles at the bottom®*. Given the
weights described above, the Apple/IBM partnership article would get a low positive
rating from our Apple lover which is presumably what he or she desires. By assigning
the absolute value of the weight of the IBM function to be less than the weight of the
Apple function we are using the rule “innocent until proven guilty”, i.e. the Apple

lover would rather see an article about IBM than miss seeing one about Apple.

While such a weighting function overcomes one disadvantage of kill files, it shares
the other: the intellectual effort required to create them. We will solve this second
problem by monitoring user actions and automatically generating a weighting function
from them. The metrics we will employ are: how long was spent reading the article,
was the article read completely, and was the article archived (see Section 3.2.2 for more
information on archival). When the system thinks it has inferred a useful weighting
function it will present its finding to the user and ask the user if it should be used in the
future or how it should be modified. With the powerful tool of automated weighting
functions it should be possible to scan much larger portions of Usenet than the user

would otherwise read.

There is also no reason for the weighting process to be interactive. It can be done
in the dead of night when computer resources are more available and presented to the
user the next time he or she uses URN. By searching all of Usenet with these weighting

functions users can get more information than they would normally be able to (because

4Perhaps ‘weight’ is somewhat of a misnomer considering that articles with high weight rise to the
top. Such is life.

of the high volume) and spend less time reading noise.

3.2.2 Knowledge Condensation

The process of knowledge condensation requires two elements: persistent archival, and
information reorganization. The solution to the lack of persistence is sophisticated
archival support. When people read Usenet, they often find articles that they would
like to save for future reference. Unfortunately, newsreaders don’t supply any way to
do this in a reasonable fashion. Some people save the articles into one large file per
newsgroup, some save each file with a different (and hopefully descriptive) filename,
and some people forward the article to themselves via email and then file it as they
would email message. The main problem with all of these methods is that there is no
good way to refer to this information at some future date. These archived messages will
represent a more concise version of Usenet because people presumably don’t archive
pure noise, so some signal is archived. URN will provide a built-in mechanism for
personal Usenet archives thus standardizing the archives, and we will also allow queries
to this personal archive making it much more useful than a directory full of files. Since
the archives will be in a uniform format, it will be possible to combine all the personal
archives at one site into one super archive that contains all the articles that users felt
were worth saving. In this way Usenet can be condensed into a much smaller and lower

noise format making it a more useful reference source.

Information reorganization will be facilitated by the dissection of articles into their
semantic components. These components can then be reorganized by changing which
components are linked together and users will be able to annotate components. For
example, threads often consist of an initial post which is then quoted and responded
to point by point in reply articles. This provides a natural division of articles into
components: each point in the original article is a unit and each response to each
original point is a unit. Users of URN may then choose to make a new series of
links through these sub-article units, creating a completely new way of viewing the
same information which is more concise than the original thread of articles. Together
persistent archival and information reorganization will allow the condensation of Usenet

into an archive of useful knowledge.

3.2.3 Explicit Author Perspective

Viewing articles as threads and newsgroups is useful but these views are only simple

aggregations of articles. One view that is not used but follows easily from the data of

Usenet is the author view. By collecting data on who posts where and what they post,
we can get an idea about what a person’s interests are, allowing us to see Usenet in a
completely different way: as communities of users. When reading a paper document
we often want to know the background of the author. With the author view we are
able to see the background of an author when reading her or his article. By creating
a list of authors who appear to be experts on a subject, users can send email to these
experts asking for help or advice instead of posting an article to a newsgroup which

might be seen by tens of thousands of users.

Knowledge about an author can also be collected from a more delicate source: the
author’s Usenet archive. The set of articles a person chooses to archive is probably
even more representative of their interests than the articles they post (primarily because
archiving is easier than posting, so people archive more often than they post). However
it is important to insure that users’ privacy is not violated by describing what they
choose to archive, which might be quite personal. One way to avoid any breach of
privacy would be for the system to attempt to infer from a user’s archive what their
interests are and then present the user with the system’s hypothesis and allow the user
to edit it before it is broadcast to others. While the ‘public’ persona of an author
can be reverse engineered from the postings they make, the ‘private’ persona can only
be determined by the newsreader of the author. This means that the private persona
must be transmitted to other users if they are to make use of it. One simple way is
to only share personae among other users in a particular geographical location or site
(for example only sharing personae within the University of Hawaii or only within the
Collaborative Software Development Group). Another more complex alternative is to

set up a centralized site that collects and disseminates private personae.

4 Approach

The URN project will proceed in the following way: the system will be implemented,
the system will be used to generate data on its effectiveness, and this data will be

evaluated to determine if the system achieved its goals.

The implementation of the system will satisfy the requirements mentioned above
in the solutions to the 3 problems of Usenet. URN is implemented on top of Egret
which is in turn based on Lucid Emacs and a HyperBase server. Egret is an excellent
system for implementing URN because of its support for hypertextual information
and tight integration with Lucid Emacs. While Egret does provide a flexible research

environment, it does so at the expense of speedy execution. Since URN will be initially

10

unable to provide the speed and volume of a conventional unsophisticated newsreader
it will not attempt to provide all the low-level services such newsreaders supply (such
as automatic binary extraction or macros). Instead, it will provide only the essentials
of reading and responding to articles and following threads (as a framework for the

more advanced ideas described earlier).

4.1 Performance Evaluation

The proper evaluation of a system like URN is somewhat difficult in that its goals are
exploratory. One obvious evaluation technique would be to see if people spend more
time reading news with URN or if they read more articles with URN. Actually these
evaluations would not be very useful because they do not accurately test what URN is
designed to do. It may be that a user of URN ends up reading more articles than they
would otherwise because URN only shows them articles they are interested in. With

these ideas in mind, we propose two ways to evaluate the URN project.

We have claimed that URN will reduce the amount of noise that users will read
and increase the number of useful articles they will read. To test this hypothesis we
need a way to determine if people like what they are reading; if they like most of what
they are reading then URN is succeeding. This kind of relevance feedback is crucial
to the evaluation of the system, but it is important that the evaluation be as painless
as possible for the user. If the user is forced to go out of her or his way to provide
feedback, then she or he is less likely to do so. We need to give the users an incentive
to provide this relevance feedback. The device we will use is the user’s choice of which
articles to archive. If users are reading mostly noise, then they will obviously not
archive very much information, but if they are archiving a large percentage of what he
or she sees, then the system is working as planned. The easiest way to evaluate this
archival percentage will be to see if it increases over time spent using the URN system.
If the system is generating appropriate weighting functions then the archival percentage
should increase as the user spends more time using the system. Another possibility
is to compare the percentage archived during the use of a conventional newsreader to
the percentage archived while using URN, but this would be more difficult as archival

procedures are not standardized in conventional newsreaders.

We can also evaluate URN through analysis of the super archive discussed previ-
ously. As we said before, the super archive is a conglomeration of many users’ personal
archives. We have hypothesized that this super archive represents a condensed form of
Usenet that removes much, if not all, of the noise. Stated more concretely, we claim

that this super archive (given a large enough sample of users) is equivalent to the entire

11

signal of Usenet. We can test its effectiveness by maintaining two archives of (a subset
of) Usenet: one unabridged, and one condensed (obtained from the super archive).
We will then allow users to make queries to both the unabridged and the condensed
archives. If our claim is correct, then the condensed archive should generate all the
same results, but without all the ‘false positives’ generated by the unabridged version.
We can compare the number of ‘true positive’ results from both archives and thereby

evaluate the hypothesis.

5 Current Status

5.1 Research Methodology

At the time of this writing, the research is in its initial phase. The actual system is
in the initial stages of implementation (see Section 5.2). Since the system is not yet
functional, there are no users and therefore no data has been taken and no evaluation

has been performed.

5.2 Research Tool

The URN system is in what we call a ‘proto-prototype’ stage. The author is still learn-
ing about and adjusting to the Egret/Emacs toolset, so the initial release will have
almost none of the requirements implemented. This initial release only performs the
very basic requirements for needed by any application claiming to be a newsreader:
inputting of articles into the Egret HyperBase, reading of articles in the database,
following links between articles. A design level description of the current implemen-
tation, automatically generated by the Designbase system [Kavoori, 1993], is available

as a separate document.

6 Future Directions

The URN system has been designed to enhance the collaborative utility of Usenet,
but once it has been shown effective in the realm of Usenet there is no reason why it
could not be applied to other areas of electronic information. For example electronic
mail could be incorporated into the system quite easily, especially because the format
of Usenet articles [RFC-1036] is a superset of the format of Internet electronic mail

[RFC-822]. To keep email from getting lost in Usenet, a weighting function could be

12

created that gives mail a high weight, causing it to rise above most Usenet articles,
vet still allow an email message to be prioritized among other email messages. Other
information servers such as the WAIS project® use weighting functions (though user
generated) to determine which information entities to display, so integration with WAIS

could be possible.

For the most part this project has concentrated on reverse-engineering techniques
to impose more structure on Usenet. We focused on this because the number of Usenet
readers and posters is very large making any attempt at imposing structure at the
source of postings difficult. The Usenet system is changing and standards groups such
as the Internet Engineering Task Force come up with new standards for the format of
Usenet. If the ideas in the URN project are shown to be useful, it might be possible
to impose more structure at the source by incorporating ideas from URN into the next

generation of Usenet posting software.

References

[Johnson, 1991] Philip Johnson. The EGRET project: Exploring open, evolutionary,
and emergent collaborative systems. In Proceedings of the 1991 EFCSCW Devel-
oper’s Workshop, September 1991. Also published as Technical Report CSDL-91-03,

University of Hawaii Department of Information and Computer Sciences.

[Johnson, 1992] Philip Johnson. Supporting exploratory CSCW with the EGRET
framework. 1In Proceedings of the 1992 Conference on Computer Supported Co-
operative Work, November 1992. Also published as Technical Report CSDL-92-01,

University of Hawaii Department of Information and Computer Sciences.

[Kavoori, 1993] Kiran Kavoori. Designbase project status. Technical Report CSDL-

TR-93-05, University of Hawaii, Department of Information and Computer Sciences,

May 1993.

Information available via ftp at quake.think.com:/pub/wais/doc

13

