
1

Presented at the Pacific Northwest Software Quality Conference, Portland, Oregon. October 1993.
Introductory material in this paper appeared previously in "Improving Software Quality through Computer
Supported Collaborative Review", in the Proceedings of the Third European Conference on Computer
Supported Cooperative Work, Milan, Italy, 1993.

Experiences with CSRS:
An Instrumented Software Review Environment

Philip M. Johnson
Danu Tjahjono
Dadong Wan
Robert S. Brewer

Department of Information and Computer Sciences
University of Hawaii
2565 The Mall
Honolulu, HI 96822 U.S.A.

Abstract
Formal technical review (FTR) is a cornerstone of software quality assurance. However, the labor-intensive

and manual nature of review, along with basic unresolved questions about its process and products, means

that review is typically under-utilized or inefficiently applied within the software development process. This

paper discusses our initial experiments using CSRS, an instrumented, computer-supported cooperative work

environment for software review that reduces the manual, labor-intensive nature of review activities and

supports quantitative study of the process and products of review. Our results indicate that CSRS increases

both the breadth and depth of information captured per person-hour of review time, and that its design

captures interesting measures of review process, products, and effort.

Biographical Information
Philip Johnson is an Assistant Professor of Computer and Information Sciences at the University of

Hawaii. Dr. Johnson is Director of the Collaborative Software Development Laboratory (CSDL), which

performs research on tools and techniques for group-based software engineering, software quality assurance,

and other collaborative activities. Danu Tjahjono and Dadong Wan are members of CSDL and doctoral

candidates in the Communication and Information Sciences program at the University of Hawaii. Robert

Brewer is a member of CSDL and a graduate student in the Computer and Information Sciences Department

at the University of Hawaii. Address e-mail correspondence to Johnson@Hawaii.Edu.

2

1. Introduction

Formal technical review (FTR) is a cornerstone of software quality assurance. While other
techniques, such as software testing can help assess or improve quality, they cannot
supplant the benefits achievable from well-executed FTR. One reason why review is
essentially irreplacable is because it can be carried out early in the development process,
well before formal artifacts such as source code are available for complexity analysis or
testing. A more important reason is because no automated process can yet provide the two-
way quality improvement in both product and producers possible through review.

However, the full potential of review is rarely realized in its current forms. Three
significant roadblocks to fully effective review are the following:

Review is extremely labor-intensive. Typical procedures for FTR involve individual
study of hard-copy designs or source listings and the creation of hand-generated
annotations, followed by a group meeting where the documents are paraphrased line by
line, issues are individually raised, discussed, and recorded by hand, leading eventually to
rework assignments and resulting changes. For one approach to FTR called code
inspection (Fagan, 1976), published data indicates that an entire person-year of effort is
needed to review a 20 KLOC program by a team of four reviewers (Russel, 1991).
Unfortunately, little automated support for the process and products of review is available.
What support is available typically involves only a single facet of review (such as the
review meeting), or is not integrated with the overall development environment.

 Review is not compatible with incremental development methods. Because of their
labor-intensive nature, most organizations cannot afford to review most or even many of
the artifacts produced during development. Instead, review is deployed as a "hurdle" to be
jumped a small number of times at strategic points during development. While this may be
a reasonable tactic for development in accordance with a strict waterfall lifecycle model,
more modern incremental and maintenance-intensive development methods prove
problematic: there is no effective way to optimally position a small number of review
hurdles in the development process.

No methods or tools exist to support the design of prescriptive review methods adapted
to an organization's own culture, application area, and quality requirements. Research on
review tends to fall into two categories, which we will term "descriptive" and
"prescriptive". The descriptive literature describes the process and products of review
abstractly, advocates that organizations must create their own individualized form of
review, but provides little prescriptive support for this process (Schulmeyer, 1987; Dunn,
1990; Freedman, 1990). Such work leaves ill-defined many central questions concerning
review, such as: How much should be reviewed at one time? What issues should be raised
during review, and are standard issue lists effective? What is the relationship between time
spent in various review activities and its productivity? How many people should be

3

involved in a review? What artifacts should be produced and consumed during a review?
The prescriptive literature, on the other hand, takes a relatively hard line stance on both the
process and products of review (Fagan, 1976; Fagan, 1986; Russel, 1991). Such literature
makes clear statements about the process (Meetings must last a maximum of 2 hours; each
line of code must be paraphrased; lines of code must be read at rate of 150 lines per hour;
etc). The data presented in this literature certainly supports the claim that this method, if
followed precisely, can discover errors. However, the strict prescriptions appear to
suggest that organizations must adapt to the review method, rather than that the review
method adapt to the needs and characteristics of the organization.

This paper describes our initial experiences using CSRS1, a computer-supported
cooperative work system that is designed to address aspects of each of these three
roadblocks to effective formal technical review.

First, CSRS is implemented on top of EGRET, a multi-user, distributed, hypertext-based
collaborative environment (Johnson, 1992) that provides computational support for the
process and products of review and inspection. EGRET runs in a Unix/X window
environment, providing a client-server architecture with a custom hypertext database server
back-end (Wiil, 1990) connected over an ethernet network to front-end EMACS-based
clients. This platform allows an essentially "paperless" approach to review, supports
important computational services, and facilitates integration with existing development
environments. Our initial experiments indicate that CSRS effectively eliminates many of
the manual, clerical tasks associated with traditional review. In addition, our experiments
show that CSRS captures significantly more information during review than traditional,
manual approaches.

Second, CSRS is designed to interoperate with an incremental model of software
development. While simply lowering the cost helps integrate review into incremental
models, CSRS additionally provides an intrinsically cyclical process model that parallels
the iterative nature of incremental development. Our initial experiments also indicate that
CSRS supports interoperation by capturing significant amounts of information relevent to
other development phases, such as design rationale information.

Third, CSRS exploits the use of an on-line, collaborative environment for review with
instrumentation designed to collect a wide range of metrics on the process and products of
review. Such metrics provide historical data about review process and products for a given
organization, application, and review group that can provide quantitative answers to many
of the questions concerning the basic parameters for review raised above. Our initial
experiments indicate that CSRS can provide novel data to organizations at a far smaller
grain-size than traditional measurement approaches.

CSRS represents two major paradigm shifts with respect to traditional review methods.
First, CSRS changes review from an essentially "off-line" process to an essentially "on-

1An acronym for Collaborative Software Review System.

4

line" process2. Second, CSRS instrumentation collects measurements at a very small
grain-size. (For example, CSRS automatically collects data such as the minutes spent per
reviewer on individual functions, as opposed to traditional approaches where reviewers
manually record the total elapsed time spent doing preparation, participating in the meeting,
and so forth.) Systems involving paradigm shifts are inherently exploratory in nature,
requiring an iterative process of design and evaluation to expose and resolve the issues that
arise when making paradigmatic change. This paper describes the successes and failures of
our experiences with CSRS to date, with the goal of facilitating other research in the design
of review support systems.

To orient the reader to on-line review, the next section provides a brief introduction to
CSRS from a user-level perspective. The following sections discuss the design evolution
of CSRS over the past year, detailing our experimental usage of CSRS, the implications of
these experiences, and the current status of the system.

2. A review scenario using CSRS

To get the flavor of FTR using CSRS, this section presents excerpts from a recent review.
This review cycle involved an object-oriented class implementation called "Nbuff" (short
for node-buffer) in the generic-interface subsystem of EGRET. Nbuff defines an
abstraction that bridges and combines the hypertext "node" abstraction provided by lower-
level subsystems in EGRET and the textual "buffer" abstraction provided by EMACS and
higher, application-specific subystems such as those comprising CSRS.

In CSRS, each program object, such as a function, procedure, macro, variable or data
type declaration is retrieved from a source code control system and placed into its own node
in a hypertext-style database. After an orientation session to familiarize each review
participant with the system under study, a private review phase begins. During private
review, each member individually reviews the source code without access to the review
commentary of others, although non-evaluative questions and answers about requirements
and so forth are publically accessable. CSRS provides facilities to summarize the state of
review for the reviewer, such as the window displayed in Figure 1. At this point, the
reviewer has partially completed private review, as indicated by the fact that some of the
source-nodes are reviewed, some have been read but have not been completely reviewed,
and some have not yet even been seen.

2Other researchers currently investigating this paradigm shift are (Brothers, 1990), and (Gintell, 1993).

5

Figure 1. A summary window illustrating the state of review for one reviewer.

By mouse-clicking on a line or through menu operations, the reviewer can traverse the
hypertext network from this screen to a node containing a source object under review, as
illustrated in Figure 2. In this case, the object under review is the operation
gi*nbuff*make. Both pull-down and pop-up menus facilitate execution of the most
common operations during this phase, such as creating an issue concerning the current
source node under review (as illustrated in Figure 3), or proposing a specific action to
address an issue. Once the reviewer is finished with a source object, he explicitly marks
the node as "reviewed". Since this is the private review phase, only the issues created by
this reviewer are accessable.

CSRS assumes that typical programming environment tools are available to the
reviewer, such as static cross-referencing and dynamic behavior information, and thus does
not attempt to duplicate that functionality. Part of the benefit of an EMACS-based platform
is ease of integration with external programming environment tools (for example, EMACS

interfaces are provided in the C/C++ environments XOBJECTCENTER and ENERGIZE, as
well as in Common Lisp environments by Lucid and Franz.)

Once the source nodes have been privately reviewed, the public review phase begins,
where reviewers now read and react to the issues and actions raised by others. Each

6

Figure 2. A source node illustrating one of the functions under review.

reviewer responds to the issues and actions raised by others through the creation of new
issues or actions, creation of confirming or disconfirming evidence nodes to extant issues
or actions, and by voting for one or more actions to be taken during the rework phase.

Following public review, the moderator uses CSRS to consolidate the review state.
Consolidation involves the restructuring of information captured during review into a
written report that delineates the proposed actions, agreements, and unresolved issues
resulting from the private and public review phases. CSRS provides automated support to
the moderator in traversing the hypertext database and generating a LaTeX document
containing the consolidated report.

If all issues arising from the on-line phases have been satisfactorily resolved, then this
consolidation report is also the final review report that both specifies the issues raised and
the rework required. Consolidation reports are far more comprehensive and detailed than
typical review reports from traditional review methods, such as those described in

7

Figure 3. An issue node containing an objection to an aspect of gi*nbuff*make.

(Pressman, 1992; Freedman and Weinberg, 1990; Humphrey, 1989). If the consolidation
report reveals issues unresolved during public review, then the moderator schedules a face-
to-face meeting to resolve these issues, or else decides them unilaterally. (CSRS is not
currently used in face-to-face review meetings. Lack of automated support for this phase of
CSRS-style review has not been a problem in practice, since such meetings are typically
very short or avoided altogether.)

(Johnson and Tjahjono, 1993) provides a detailed description of the data and process
model used in CSRS. The next section reports on our experiences in the use of CSRS, and
provides rationales and results from our design decisions.

3. Initial experiences with CSRS

Our research project on computer-supported FTR will be two years old at the time of
publication, and we will have been performing review experiments with running versions
of CSRS for over one year of that period. CSRS has evolved and matured significantly
during this time. To most clearly present the successes and failures of CSRS to date, we
will present the major releases of CSRS, interesting facets of their design rationale, and our

8

experimental data in chronological order. As the next sections will reveal, we first
focussed on the design of a data and process model appropriate for on-line review, then
incrementally explored the design space for automated review instrumentation.

3.1 CSRS I: Process/data model design

In the first release of CSRS, we concentrated upon the impact that specializing our
computer-supported cooperative work environment, EGRET (Johnson, 1992), to FTR
would have upon the process and products of review. It became clear that the "classic"
FTR method–Fagan-style code inspection (Fagan, 1976; Fagan, 1986)–cannot be
straightforwardly applied to a collaborative work environment.

First, the manual nature of Fagan-style inspection means that certain concepts, such as
the role of scribe, do not make sense in an automated environment where each participant's
actions are captured automatically.

Second, since EGRET is oriented toward asynchronous communication, our support for
review is similarly biased. However, the primary focus of Fagan-style inspection is on the
nature of the synchronous, face-to-face meeting and its attendent issues. A change in
process orientation from synchronous to asynchronous has profound implications. First, it
leads to extensive change in the role of moderator. While the primary responsibilities of a
Fagan-style moderator is to ensure reviewer preparedness and maintain order and
effectiveness during a face-to-face meeting, a CSRS moderator's task involves two
completely different issues: creating a well-structured hypertext database of source artifacts,
and maintaining order and effectiveness while participants asynchronously read source
code and other postings and reply to them on-line.

The change from synchronous to asynchronous interaction also allows change in the
scope and content of review. One of the fundamental guidelines for effective synchronous
review is "raise issues, don't resolve them.'' In other words, in a face-to-face meeting, it
is important to keep focussed directly on the generation and recording of issues, and to
avoid discussion of resolutions. Such a focus is needed because review meetings may cost
4-6 person-hours of skilled technical staff per hour of elapsed time, and resolution
conversations are frequently not only time consuming, but may involve only a small subset
of those attending.

Avoiding resolution-oriented discussion significantly improves the group process by
preventing conversational digression and by improving the usage of human resources.

In an asynchronous environment, however, this rationale for restricting the scope of
review no longer applies. Since participants are working asynchronously, time spent by
one participant generating a potential resolution to an issue does not incur cost to others.
During public review, only those participants qualified to evaluate an issue or action
proposal need perform detailed analysis—others can simply indicate their neutrality.

9

Setup

Orientation

Private
review

Public
review

Consolidation

Group
review

meeting

External
development Unreviewed

source
nodes

 Source
nodes to
review

Unresolved
issues

All
nodes
approved

All
nodes
reviewed

Consolidated
review

Unreviewed
source
material

 All
nodes
approved

All
nodes
approved

Rework
specified

Figure 4. The CSRS process model. During the Setup phase, the Moderator and Producer use tools to
build a hypertext database of source material. During Orientation, the producer provides the Reviewers with
a high-level overview of the review materials. During Private Review, reviewers analyze source material
and generate issue and action proposals. During Public Review, reviewers analyze the issues and actions
generated by other reviewers, and attempt to build consensus. During Consolidation, the Moderator
analyzes the current state of review. If all issues have been resolved in a consensual manner, then the
review session terminates and a final report is generated. If controversies remain, a Group Review Meeting
is called to resolve the issues in a face-to-face manner, followed by termination of review and generation of
the final report.

Moreover, allowing review activities to include resolution discussion has significant
advantages. In many cases, exploring resolutions provides useful additional insight into
the nature of the issue and its interdependencies with other issues. Resolution discussion is
also a "natural'' part of review: as any attendee to a code inspection meeting knows, it takes
conscious effort not to propose solutions to problems. Finally, resolution discussion
during review can be more efficient: those people most qualified to review a resolution
action are frequently part of the review, and incorporating resolution reduces or eliminates
the additional meetings and scheduling typically required after a Fagan-style inspection.

For these reasons, we decided in the design of the asynchronous review environment to
explicitly encourage the generation of resolutions to raised issues from participants,
viewing this as an opportunity to exploit the power of group work that is unfortunately but
necessarily lost from traditional synchronous meetings.

As a result of this research, we designed a data and process model for review that we
have continued to use, with only minor changes, in all subsequent versions of CSRS to

10

date. The process model consists of seven basic phases, as illustrated in Figure 4 and
outlined in Section 2. The process model is coupled with a data model that describes the
set of node and link types that can be defined and the legal relationships between them. A
detailed description of this representation appears in (Johnson and Tjahjono, 1993).

3.2 CSRS I: Data-oriented instrumentation

From the start, we viewed measurement and instrumentation as a fundamental part of the
design of CSRS. In the first version, we designed measurement from a "data-oriented''
perspective: the measures were generated by querying the hypertext database at the
conclusion of review for the number of nodes of a given type, or for those containing a
specific value for a given field, or for those partaking in a specific relationship to other
nodes.

Data-oriented measures are very useful: at a minimum, the number and severity of
identified defects provides a first-order estimate of the quality of the software under review.
Data-oriented measures can also reveal important characteristics of the review team and
review process. For example, unproductive members of the review team might be
identified (after a sufficient number of review instances) as those who contribute little, who
contribute non-productively (by simply affirming comments made by others), or who use
review for political purposes.

Finally, data-oriented measures can form the basis for controlled experimentation: given
sufficient time and resources, an organization can fine-tune certain characteristics of
review, such as the number of participants or the number of lines of code under review, by
collecting data across a range of review instances and correlating these factors to, for
example, the number of productive issues raised.

We experimented on the initial version of CSRS in the summer of 1992 by performing a
review of a module called "Gtable" from the EGRET implementation. Gtable allows its
clients to define a high-level abstraction for associating keys and values in a distributed
environment, without concerning themselves with the details of replicating the tables to
local hosts, maintaining consistency as updates are made by clients, and providing recovery
procedures. The top-level of the Gtable implementation under review consisted of
approximately 500 lines of Lisp macros and functions.

In the Gtable review, which lasted approximately three weeks, over 90 nodes were
created by five reviewers during the private and public review phases. Following these
phases, the moderator assessed the state of review to determine if a group meeting was
necessary. It was found that a group meeting was required to resolve approximately only
half of the 25 primary issues raised about the Gtable implementation.

This usage of the initial CSRS system convinced us that a computer-supported,
asynchronous approach to review was legitimate and useful, and that the EGRET

environment was an effective platform for this application. This usage also revealed certain
engineering issues that required immediate attention. During the fall of 1992, we devoted

11

considerable effort to improving the user interface, the efficiency of both CSRS and
EGRET, and the set of services provided (for example, facilities to automatically generate
LaTeX hard-copy reports)

3.3 CSRS II: Elapsed-time instrumentation

A significant result from the first experiment was the insight that CSRS could be further
instrumented to capture time-related data. By recording the time that a node is retrieved
from the database by the client and the time that the node is closed, we expected to
determine how long the participants spent reviewing each function, generating each issue,
and so forth.

Capturing such time-related data could greatly enhance the analysis potential of CSRS.
With this data, it would be possible to perform "fine-grained" analysis of review. For
example, one could study the relationship between code size and time required for review
at the grain-size of individual functions.

To explore this functionality, we enhanced CSRS with a counter for each node that
accumulated the elapsed time that the node was retrieved. We then performed a review
experiment on the "Nbuff" module mentioned above. The review involved 18 source code
nodes, totalling 435 lines of code. Like the Gtable review, this experimental usage
involved five participants over approximately three weeks. It generated 104 nodes that
were eventually consolidated down to 19 actions. Six of these were controversial, requiring
only a 35 minute meeting to resolve before beginning rework.

After review, we examined the timing data, and discovered to our surprise that it did not
in all cases reflect the time spent in review. The essential problem is that recording the
elapsed time that a node is retrieved by a client is only an indirect measure of the time spent
reviewing.

Recall that CSRS is implemented using Unix and X windows, and consider, for
example, the following scenarios:
• The participant takes a phone call while reviewing a node, or a colleague walks into the

office and begins a lengthy discussion.
• The participant receives e-mail while reviewing a node, and switches to a simultaneously

running mailer process to read and reply to it.
• The participant goes home for the weekend, leaving in the middle of reviewing a node

with the intent to finish the review first thing on Monday. Since the participant has a
dedicated workstation in his office, he leaves CSRS up and running.

In fact, the incorrect elapsed time values in Figure 5 for reviewer 1 on nodes gi*nbuff*read
and gi*nbuff*make are due to the first and second scenarios.

These results led us back to the proverbial drawing board. We proposed and
immediately discarded the idea of telling reviewers that they could not read their mail or

12

Source code name S i z e Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4
Time I s s Time I s s Time I s s Time I s s

gi*nbuff*read 25 2:28:47 3 0:49:08 2 0:28:39 0 0:40:43 1
gi*nbuff!pack-buffer 57 0:08:59 0 0:41:33 2 0 0:08:35 1
gi*nbuff!copy-and-pack 51 0:24:18 1 0:29:07 3 0 0:02:37 0
gi*nbuff!init-local-variables 19 0:09:06 1 0:16:57 1 0:02:49 0 0:24:00 0
gi*nbuff!unpack-field 46 0:10:19 1 0:32:28 0 0 0:08:22 0
gi*nbuff*make 20 2:04:44 5 0:36:18 2 0:14:50 0 0:13:38 1
gi*nbuff!make-link-label 34 0:01:39 0 0:40:45 1 0:00:22 0 0:04:15 0
gi*nbuff!unpack-buffer 26 1:46:29 3 0:03:42 0 0:04:22 0 0:17:22 2
gi*nbuff!make-field-label 18 0:00:42 0 0:25:39 0 0 0:03:06 0
gi*nbuff*write 33 0:06:50 1 0:09:54 2 0:07:48 0 0:14:38 0
gi*nbuff!delete-field-label 18 0:00:34 0 0:25:56 1 0:03:44 1 0:02:38 0
gi*nbuff!unpack-link 12 0:20:09 1 0:00:40 0 0:01:48 0 0:06:09 1
gi*nbuff*nbuff-p 12 0:05:11 0 0:01:08 0 0:04:16 0 0:04:15 0
gi*nbuff*node-ID 12 0:00:23 0 0:02:20 0 0:04:40 0 0:08:12 0
gi*nbuff!delete-link-label 31 0:02:08 1 0:02:08 0 0 0:02:38 0
gi*nbuff*read-hooks 5 0:00:11 0 0:07:53 1 0:00:32 0 0:00:35 0
position 12 0:00:50 0 0:00:12 0 0:03:12 1
gi*nbuff!node-ID 4 0:00:20 0 0:00:08 0 0:00:49 1 0:00:13 0
Tota l 4 3 5 7 : 5 1 : 3 9 1 7 5 : 2 5 : 5 6 1 5 1 : 1 7 : 5 1 3 2 : 4 1 : 5 6 6

Figure 5. Elapsed time data generated from the Nbuff review.

otherwise interrupt a CSRS review session; such a restriction would be impossible to
enforce and the resulting data would be no less suspect.

3.4 CSRS III: Improved elapsed-time instrumentation

In the next version of CSRS, we redesigned the time-based instrumentation to address this
issue. Instead of simply maintaining a counter with each node that would accumulate a
single elapsed time value, we implemented a more sophisticated and general purpose event-
based timestamp facility within EGRET. This facility allows EGRET-based applications
such as CSRS to insert timestamp calls at strategic points within their code to record the
occurrence of arbitrary events of interest. (For example, when the user opens a node,
writes a node, traverses a link, and so forth.) EGRET provides the underlying mechanisms
to fast-cache the sequence of timestamped events at the local client during the session, and
write the cache out to the server database at disconnect time. Timestamping inevitably
incurs some overhead, and it is possible that over-zealous insertion of timestamp calls by
an application can visibly degrade the responsiveness of the system. (We have not,
however, observed degradation in performance due to timestamping in CSRS or two other
applications developed using EGRET.)

Using this redesigned instrumentation, we performed a review experiment on a
prototype newsreader system called URN. The review involved 53 source code nodes,
totalling 478 lines of code. This review lasted 10 days, generated 75 reviewer-based
nodes, and 35 issues. We timestamped database connection and disconnection, node

13

ID Operation Node Name Date Time Event Interval Screen Misc
60 connect csrs 20-May-93 10:09:48 Private
60 summarize-sources Summary-sources 20-May-93 10:10:13 0:00:25 Summary
60 read-node 350 uin*key!close-article 20-May-93 10:10:20 0:00:07 Source
60 close-node 350 uin*key!close-article 20-May-93 10:30:49 0:20:29 Source
60 close-node 362 overview 20-May-93 10:30:50 0:00:01
60 disconnect csrs 20-May-93 10:30:50 0:00:00 Private
60 summarize-sources Summary-sources 20-May-93 10:36:21 Summary
60 connect csrs 20-May-93 10:36:21 0:00:00 Private
60 read-node 350 uin*key!close-article 20-May-93 10:36:30 0:00:09 Source
60 close-node 350 uin*key!close-article 20-May-93 10:38:59 0:02:29 Source
60 summarize-sources Summary-sources 20-May-93 10:39:02 0:00:03 Summary
60 read-node 260 uts*article*make 20-May-93 10:39:19 0:00:17 Source
60 summarize-sources Summary-sources 20-May-93 10:39:39 0:00:20 Summary

Figure 6. A portion of the event log generated during the URN review. Over 1000 events were logged
during the URN review.

reading, writing, creation, deletion, and setting the status field in source code nodes (the
status field is used by reviewers to explicitly signal when finished reviewing a node).

Figure 6 illustrates a portion of the time-stamped event log for the URN review
experiment. Participants did not report any noticable degradation in the responsiveness of
the system from the timestamping mechanism.

The timestamp mechanism significantly improves the CSRS instrumentation. First,
timestamps can recreate the elapsed time data we obtained through the previous mechanism.

More importantly, timestamps allow us to assess the accuracy of the elapsed-time
information, by helping detect the occurrence of review interruptions due to scenarios like
those noted above. This is accomplished by calculating the inter-event intervals. The
reasoning goes as follows. If CSRS is instrumented "correctly", then, under typical usage
patterns, events should be generated relatively frequently and consistently. A significant
interruption in review, due to answering the phone, leaving the office, and so forth can be
detected by an abnormally large value for an inter-event interval. However, if CSRS is
instrumented "incorrectly" (i.e. the timestamp calls are too sparsely distributed in the
application code), then not enough timestamps will be generated to distinguish such
interruptions from normal patterns of timestamp generation during review.

Figure 7 shows a histogram of inter-event intervals collected during one phase of the
URN review. This data shows that timestamps were generated less than 30 seconds apart
over 80% of the time, less than a minute apart over 90% of the time, and less than three
minutes apart over 98% of the time.

It is important to be precise about what can and cannot be inferred from inter-event
interval data. While a sequence of small inter-event interval values (say, less than or equal
to 10 seconds) does effectively indicate essentially uninterrupted use of CSRS, the

14

0

100

200

300

400

500

600

7:
00

-7
:5

9

6:
00

-6
:5

9

5:
00

-5
:5

9

4:
00

-4
:5

9

3:
00

-3
:5

9

2:
00

-2
:5

9

1:
00

-1
:5

9

0:
30

-0
:5

9

0:
10

-0
:2

9

0:
01

-0
:0

9

0:
00

1 2 3 3 8 18
59

91

172

591

84

Figure 7. A histogram illustrating the frequency of inter-event intervals in the URN private review phase.
For presentation purposes, a single interval with value 20:29 has been omitted from this figure.

converse is not true: a high inter-event interval value does not necessarily indicate the
occurrence of interruption.

It is possible, for example, that a reviewer could simply stare at a section of source code
for many minutes without performing any CSRS-related action that would trigger an event,
although this seems somewhat improbable. A more likely scenario is one in which a
reviewer spends a lengthy period of time carefully composing an issue in a CSRS editor
buffer without retrieving, saving, traversing, or otherwise interacting with CSRS. With
the timestamp calls used in this experiment, the event interval data would be identical to an
alternative scenario in which the reviewer spends a couple of minutes composing the issue,
leaves for lunch, and then returns and saves the issue to the database.

While the event interval data might be identical in these two cases, one would hope that
the two issues would differ qualitatively. Thus, an appropriate way of regarding event
interval data is as a means to pinpoint areas of ambiguity in the timestamp data: places
where further study is needed to assess the accuracy of the information.

As a concrete example, in the URN review, the highest recorded interval was one of 20
minutes and 29 seconds. Figure 6 illustrates a portion of the event interval log containing
this value, which occurred between 10:10am and 10:30am on May 20, 1993. Notice the
context in which this event interval occurred: the reviewer connected to the system at 10:09
a.m., retrieved the node containing the source code uin*key!close-article at 10:10 a.m., and

15

then closed the node and immediately disconnected at 10:30 a.m. Given that this particular
function is only five lines long and reasonably straightforward, and that no other activity
occurred during this entire session except to retrieve and close this node, the interval value
is suspect. An interview with the reviewer confirmed that this particular elapsed-time value
for uin*key!close-article could be thrown out, since the reviewer was indeed interrupted
during this time period.

In a very recent version of the system, we incorporated a timer-based mechanism that
wakes up once-per-minute and checks to see if any low-level editor activity (such as a
keystroke or mouse click) has occurred in CSRS during the preceeding two minutes. If
such activity occurred, it writes out a generic "busy" timestamp event. This mechanism
may have substantially solved the problem of detecting idle time, since we believe it to be
extremely unlikely that a reviewer will simply stare at a CSRS screen for over two minutes
without so much as scrolling a window.

3.5 CSRS III: Process-oriented instrumentation

Moving to an event log-based instrumentation mechanism has an even more profound
impact than improving the accuracy of the elapsed-time data: it instruments the process of
review at a fine-grained level. By analysis of the event log, it is possible to reconstruct the
sequence by which a reviewer traversed the hypertext database, even reconstructing the set
of nodes displayed concurrently in different windows at any point in time.

Such forms of analysis carry with them new and significant quality assessment issues.
For example, to reconstruct this process-level information accurately, users much not
change the default screen orientation manually during review.

However, we believe this process-level analysis of CSRS review has significant
potential to aid in process maturation of FTR, as developed in the SEI Capability Maturity
Model (Humphrey, 1989). By analyzing the sequence of actions taken by reviewers as
they perform FTR, we expect to improve the user interface to CSRS and the set of services
provided. More fundamentally, we believe that high-quality, fine-grained, process-
oriented measures, when combined with high-quality, fine-grained data-oriented measures,
will provide new and efficient support to organizations in designing and improving FTR
methods custom-suited to their organizational and application-level needs. This will bring
our research full-circle, as we use the instrumentation data to return to the initial focus of
our design: a data and process model more efficiently suited to on-line, collaborative
review.

4. Current status

We are currently using CSRS in-house on a nearly continuous basis, not simply to further
refine the paradigm, but because we are firmly convinced that it provides the most cost-

16

effective way of improving the software quality of CSRS itself and the other applications
under development in our research group.

While we have not yet collected enough quantitative data under controlled conditions to
present statistically significant conclusions concerning the process and products of FTR
using CSRS, our data collected to date does support some general observations.

First, the data indicates that CSRS review appears to proceed at approximately the same
rate (100-250 lines of code/person-hour) as that reported for Fagan-style code inspection.
However, as alluded to above, CSRS review captures the review "discussion" much more
completely than can a scribe manually writing notes during a meeting, and also includes
discussion of resolutions that are typically excluded from manual review methods. Thus,
more information in greater detail is produced in the same amount of time using CSRS.

To provide some perspective of the range of artifacts captured during review, we
manually categorized the types of issues and commentatary raised during the URN review,
and found that approximately 20% were either: design rationale related; clarified the
specifications or behavior of the application under development; or clarified the
specifications or behavior of EGRET or some other underlying infrastructure (such as the
source language). The presence of such captured artifacts (which would not typically be
recorded in a conventional review–indeed, they would be viewed as a "digression") have
helped us to improve the specifications and documentation of EGRET and other systems,
and provided significant aid to the developers.

The current users of CSRS completed a questionnaire asking subjective questions about
their satisfaction with the system. Aside from the generic eternal user plea for faster
response times, high satisfaction was indicated. (These responses, however, are from a
small and biased population.) Better subjective data will soon be forthcoming, however, as
CSRS is scheduled for use in an external software development group during the summer
of 1993.

In conclusion, to summarize our lessons learned:
• CSRS formal technical review requires a different data and process model than those

designed for manual FTR methods.
• User satisfaction with CSRS appears high.
• CSRS does not appear to appreciably change the rate of review as compared to

traditional FTR. However, this rate comparison is misleading, since CSRS review
encourages resolution activities that typically take place downstream from traditional
FTR.

• CSRS review captures a much broader range of information than application-level
defects, the focus of traditional FTR.

• The EGRET timestamp mechanism used in CSRS provides both fine-grained data on
the process and products of review, and supports quality assurance activities on
elapsed time data. However, this quality assurance currently requires manual post-
processing, analysis, and interpretation.

17

5. Acknowledgments

Support for this research was provided in part by the National Science Foundation Research Initiation
Award CCR-9110861 and the University of Hawaii Research Council Seed Money Award R-91-867-F-728-
B-270. We thank the anonymous reviewers for many helpful comments that improved the quality of this
paper.

6. References

L. Brothers, V. Sembugamoorthy, and M. Muller (1990): ICICLE: Groupware for code inspection. In
Proceedings of the Conference on Computer-Supported Cooperative Work 1990, pp. 169-181. ACM
Press.

Lionel E. Deimel (1990): Scenes of Software Inspections: Video Dramatizations for the Classroom.
Software Engineering Institute, Carnegie Mellon University.

Robert Dunn (1990): Software Quality: Concepts and Plans. Prentice Hall.

Michael E. Fagan (1976): Design and code inspections to reduce errors in program development. IBM
System Journal, 15(3):182--211.

Michael E. Fagan (1986): Advances in software inspections. IEEE Transactions on Software Engineering,
SE-12(7), pp. 744-751.

D. P. Freedman and G. M. Weinberg (1990): Handbook of Walkthroughs, Inspections and Technical
Reviews. Little, Brown.

John Gintell, John Arnold, Michael Houde, Jacek Kruszelnicki, Roland McKenney, and Gerard Memmi
(1993): Scrutiny: A Collaborative Inspection and Review System. In Fourth European Software
Engineering Conference, Garwisch-Partenkirchen, Germany, September 1993.

Watts S. Humphrey (1989): Managing the Software Process. Addison-Wesley.

Philip M. Johnson (1992): Supporting exploratory CSCW with the EGRET framework. In Proceedings
of the Conference on Computer-Supported Cooperative Work 1992, ACM Press.

Philip M. Johnson and Danu Tjahjono (1993): Improving Software Quality through Computer Supported
Collaborative Review. In the Third European Conference on Computer Supported Cooperative Work,
Milan, Italy, September, 1993.

Roger S. Pressman (1992): Software Engineering: A Practitioner's Approach. McGraw-Hill, Inc.

Glen W. Russel (1991): Experience with inspection in ultralarge-scale developments. IEEE Software,
(9)1.

G. Gordon Schulmeyer and James I. McManus (1987): Handbook of Software Quality Assurance. Van
Nostrand Reinhold.

U. Wiil and K. Osterbye (1990): Experiences with hyperbase-a multi-user back-end for hypertext
applications with emphasis on collaboration support. Technical Report 90-38, Department of
Mathematics and Computer Science, University of Aalborg, Denmark.

Edward Yourdon (1989): Structured Walkthrough. Prentice-Hall, Fourth Edition.

