
An Instrumented Approach to Improving Software Quality

through Formal Technical Review

Research Paper

Philip M. Johnson
Department of Information and Computer Sciences

University of Hawaii
Honolulu, HI 96822

Abstract

Formal technical review (FTR) is an essential compo-
nent of all software quality assessment, assurance, and
improvement techniques. However, current FTR practice
leads to significant expense, clerical overhead, group pro-
cess obstacles, and research methodology problems.

CSRS is an instrumented, computer-supported cooper-
ative work environment for formal technical review. CSRS
addresses problems in the practice of FTR by providing
computer support for both the process and products of FTR.
CSRS also addresses problems in research on FTR through
instrumentation supporting fine-grained, high quality data
collection and analysis. This paper describes CSRS, a
computer-mediated review method called FTArm, and se-
lected findings from their use to explore issues in formal
technical review.

1 Introduction

Assessment and improvement of software quality is in-
creasingly recognized as a fundamental problem, if notthe
fundamental problem confronting software engineering in
the 1990’s. Low quality has always figured prominently
in explanations for software mishaps, from the Mariner I
probe destruction in 1962, to AT&T’s 4EES switching cir-
cuit failure in 1992. More recently, however, low software
quality has also been implicated in competitive failure on
a corporate scale [2], as well as in loss of life on a human
scale [18].

Research on tools and techniques to improve software
quality shows that formal technical review (FTR) provides
unique and important benefits. Some studies provide evi-
dence that FTR can be more effective at discovering errors
than testing, while others indicate that it can discover dif-
ferent classes of errors than testing [20, 4]. In concert with

other process improvements, Fujitsu found FTR to be so ef-
fective at discovering errors that they dropped system test-
ing from their software development procedure [2]. FTR
forms an essential part of methods and models for very high
quality software, such as Cleanroom Software Engineering
and the SEI Capability Maturity Model. Finally, FTR dis-
plays a uniqueability to improve the quality of the producer
as well as the quality of the product.

FTR always involves the bringing together of a group
of technical personnel to analyze an artifact of the software
development process, typically with the goal of discover-
ing errors or anomolies, and always results in a structured
document specifying the outcome of review. Beyond this
general similarity, specific approaches to FTR exhibit wide
variations in process and products, from Fagan Code In-
spection [9], to Active Design Reviews [22], to Phased In-
spections [17].

Despite its importance and potential, the state of both
FTR practice and research suffers from problems that hin-
der its adoption and effective use within organizations.
First, most FTR methods are manual, prone to breakdown,
and highly labor-intensive, consuming a great deal of ex-
pensive human technical resources. For example, a re-
cent study documents that a single code inspection of a 20
KLOC software system consumes one person-year of effort
by skilled technical staff [24]. Second, high-quality empir-
ical data about the process and products of FTR is difficult
to obtain and comparatively evaluate. Only Fagan code in-
spection enjoys a relatively broad range of published data
about its use and effectiveness. The lack of such research
data makes it difficult to compare different methods, im-
prove the process, or match a method to a particular orga-
nizational culture and application domain.

For the past two years, we have been experimenting
with a computer-supported cooperative work environment
called CSRS (for Collaborative Software Review System),
coupled with a method called FTArm (for Formal, Tech-



nical, Asynchronous review method). This system and
method are designed to address problems in both the prac-
tice of and research on FTR. Laboratory studies demon-
strate that a highly instrumented, collaborative environ-
ment that puts most processes and products of FTR on-line
can lead to increased user satisfaction, enhanced capture of
significant knowledge about software, useful new measures
of FTR processes and products, and finally, higher quality
software.

The primary goal of this paper is to inform the software
engineering research and development community on how
computer-mediated FTR can not only address certain prob-
lems associated with manual approaches, but can also pro-
vide high quality and low cost data useful for improving
the process and products of FTR. We believe our experi-
ences with CSRS and FTArm provide useful insights to the
designers of current and future formal technical review sys-
tems.

1.1 Issues in FTR research

Research on FTR has led to a wide variety of review
methods. However, the current state of FTR research fails
to provide clear guidance to an organization in choosing a
well-suited review method.

One deficiency in the literature is the lack of high qual-
ity, empirical studies comparing different review methods
to each other. Past studies compare review to testing [3, 20]
or compare different factors within a single review method
(usually Fagan’s inspection), such as the effect of the num-
ber of participants or group composition on review effec-
tiveness [5, 19]. In addition, although these latter compar-
ative studies claim to use the same approach (Fagan code
inspection), ambiguities and inconsistencies in the descrip-
tion of the review method indicate that this key factor was
not controlled sufficiently to allow cross-study comparison.

Another problem with the current state of research on
review is conflicting and/or anecdotal explanations of the
causal factors underlying review outcomes. For example,
researchers have variously attributed an FTR method’s ef-
fectiveness to general group interaction [8, 23], producer–
reviewer interaction [20, 22], lack of producer–reviewer
interaction [1, 24], individual effort [15], paraphrasing
[9], selective test cases [1], stepwise abstraction [25], and
checklists [17]. While these claims are not all mutually ex-
clusive, they clearly reveal confusion within the commu-
nity about review factors and their effectiveness.

These issues in the state of review research are not
raised with the intent of denigrating the research or the re-
searchers. Instead, they are raised to highlight the difficulty
and cost of obtaining empirically-founded understanding
of a highly manual, knowledge-intensive, and collabora-
tive activity. One contribution of this research is to demon-

strate how an instrumented, computer-mediated environ-
ment can resolve some of the methodological difficulties
confronting current review researchers. The next section,
however, presents some of the practical problems in obtain-
ing good review outcomes with traditional manual review
methods.

1.2 Issues in FTR practice

Despite the methodological issues and credit assignment
variations noted above, most research tends to agree that
manual review, when properly carried out, is effective. Re-
search also tends to agree that manual review is expensive.
For example, one person-year of technical staff time is re-
quired per 20 KLOC for FTR at Bell-Northern Research,
and this cost adds 15-20% new overhead onto development
[24]. Boeing Computer Services found reviews to be “ex-
tremely expensive” [14]. Such admissions are usually fol-
lowed by analyses demonstrating that this upstream invest-
ment is more than recouped through decreases in down-
stream rework costs.

Although manual FTR, when properly carried out, is
typically cost-effective in the long run, this is a significant
qualification, since manual FTR is very difficult to prop-
erly carry out. The primary obstacles to successful practice
have been documented [7, 11, 12] and include:

� Insufficient preparation.A ubiquitous cause of low qual-
ity review is when one or more inadequately prepared re-
viewers attempt to “bluff” their way through the review
process. This problem is serious enough that fairly de-
vious remedies are presented in the literature. One such
approach is to deliberately leave out one page of the re-
view materials when distributing them to participants:
those who prepare will notice the absence and contact
the review leader.

� Moderator domination.In a group meeting, it is easy for
the moderator to inadvertantly or premeditatedly abuse
this role by inhibiting or intimidating the other partici-
pants. This results in reduced participation and reduced
review quality.

� Incorrect review rate.Each minute of a review meeting
is intrinsically expensive, since it requires the simulta-
neous attendance and involvement of at least three and
frequently six to eight technical staff personnel. Thus,
the rate of review is critical to its cost-effectiveness: too
slow and the time (and salaries) of several technical per-
sonnel is wasted; too fast and the quality of review de-
creases.

� Ego-involvement and personality conflict.The fact that
one of the review member’s work artifacts is under re-
view can lead to significant interpersonnel problems.



Review always requires substantial diplomacy and care
on the part of each member.

� Issue resolution and meeting digression.The expense of
review meetings and the complexity of software dictates
that review sessions not evolve into problem-solving ses-
sions. All instructional materials we have seen cite this
issue as crucial to review success, stating that reviewers
must “raise issues, but don’t resolve them.” They also
note that it requires significant reviewer effort and con-
tinual moderator vigilence to prevent such resolution-
oriented discussion.

� Recording difficulties and clerical overhead.Manual
review requires a scribe to record the outcome of the
process. Capturing the information generated during a
review meeting completely and accurately is extremely
difficult, as noted in the literature, and as anyone who
has ever attempted the role of scribe will attest. Meth-
ods involving audio-visual aids and a “telegram style” of
note-taking have been proposed to support this process.

Substantial additional clerical overhead is induced if the
data collection adequate for the purposes of research on
review or review process improvement is required. Pub-
lished review data has only come from very large orga-
nizations able to allocate resources to this activity.

These problems are not specific to FTR, but appear in
virtually all types of meeting-based group work. The same
list of group process problems appears in research to moti-
vate the design of an electronic meeting room system [21].

The previous two sections provideevidence for a central
claim in our research: the current manual nature of FTR
makes it difficult to effectively carry out review, and makes
it difficult to measure the process and products of review
in such a manner as to understand review, compare review
experiences across organizations, and improve the process
based upon empirical findings. The remainder of this paper
presents how we are addressing these issues in our research
on CSRS.

2 CSRS

CSRS is implemented using Egret [16], an environ-
ment for exploratory collaborative group work. Egret pro-
vides a multi-user, hypertext environment for Unix and X
windows. Egret has a client-server architecture, where a
database back-end server process written in C++ commu-
nicates over TCP/IP to client processes implemented via a
customized version of Lucid Emacs.

Just as Egret is a generic framework for collaborative
group work, CSRS is a generic framework for computer-
mediated FTR. The current version of CSRS provides a

set of language constructs for instantiation of a computer-
mediated FTR method in terms of an interconnected data
model and process model. This paper focusses on FTArm,
the method with which we have the most experimental ex-
perience.

2.1 The FTArm Method

FTArm is a computer-mediated FTR method designed
to leverage off the strengths of an on-line environment to
address the problems of manual review raised in Section
1.2. The FTArm process consists of seven well-defined
phases, as illustrated by the diagram in Figure 1. The
FTArm method is not specific to a review artifact type or
development phase.

Setup. In this phase, the moderator and/or the producer
decide upon the composition of the review team and the ar-
tifacts to be reviewed. The moderator or producer then re-
structures the review artifact into a multi-node, interlinked
hypertext document stored within theCSRS database. Reg-
ular expression-based parsing tools available in CSRS can
partially or fully automate this database entry and restruc-
turing process.

Orientation. This phase prepares the participants for the
private review phase through an overview of the review ar-
tifacts. The exact nature of this overview depends upon
the complexity of the review artifact and the familiarity of
the reviewers with it, and can range from a simple e-mail
message to a formal, face-to-face meeting.

Private review. In this phase, reviewers analyze the re-
view artifact nodes (termed “source” nodes) privately and
create issue, action and/or comment nodes. Issue and ac-
tion nodes are not publicly available to other reviewers,
though comment nodes are publicly available. Comment
nodes allow reviewers to request clarification about the
logic/algorithm of source nodes, or about the review pro-
cess, and may also contain answers to these questions by
other participants.

Figure 2 contains a snapshot of one reviewer’s
screen during the private review phase. The function
t*node-schema!combine-field-IDs is the review arti-
fact under analysis, as displayed in the left hand window. A
checklist of defect classifications appears in the upper right
window, while a defect concerning this function is being
documented in the lower right window.

In FTArm, reviewers must explicitly mark each source
node as reviewed when finished. While reviewers do not
have access to each other’s state during private review, the
moderator does. This allows the moderator to monitor the



Setup

Orientation

Private
review

Public
review

Consolidation

Group
review

meeting

External
development Unreviewed

source
nodes

 Source
nodes to
review

Unresolved
issues

All
nodes
approved

All
nodes
reviewed

Consolidated
review

Unreviewed
source
material

 All
nodes
approved

All
nodes
approved

Rework
specified

Figure 1:The seven phases in the FTArm method, along with the primary entry condition for each phase.

progress of private review. Private review normally termi-
nates when all reviewers have marked all source nodes as
reviewed. In the event that no reviewer has created any
issues, review would terminate at this point. Otherwise,
public review begins.

Public review. In this phase, all nodes are now access-
able to reviewers, and all participants (including the pro-
ducer) react to the issues and actions by voting (a modified
Delphi process). Participants can also create new issue, ac-
tion or comment nodes based upon the votes or nodes of
others. Voting is used to determine the degree of agree-
ment within the group about the validity and implications
of issues and actions. Public review normally concludes
when all nodes have been read by all reviewers, and when
voting has stabilized on all issues.

Consolidation. In this phase, the moderator analyzes the
results of public and private review, and produces a con-
densed written report of the review thus far. These consol-
idated reports are more comprehensive, detailed, and ac-
curate than typical review reports from traditional review
methods. Rather than simply a checklist of characteristics
with brief comments about the general qualityof thesource,
consolidation reports contain a re-organized and condensed
presentation of the analyses provided by reviewers in is-
sue, action, and comment nodes, thus providing contrast-
ing opinions, the degree of consensus, and proposals for

changes.
CSRS provides the moderator with various tools to sup-

port the generation of a nicely formatted LaTeX document
containing the consolidated report. If the group reached
consensus about all of the issues and actions during public
review, then this report presents the review outcome with
respect to artifact assessment. A second review outcome is
the measurements of review process and products, as dis-
cussed in Section 2.2 below.

Group review meeting. If the consolidated report iden-
tifies issues or actions that were not successfully resolved
via public and private review, the FTArm method requires
a face-to-face, group meeting as the final phase. Here the
moderator presents only the unresolved issues or actions
and summarizes the differences of opinion. After discus-
sion, the group may vote to decide them, or the moderator
may unilaterally make the decision. The moderator then
updates the CSRS database, noting the decisions reached
during the group meeting and then generating a final con-
solidated report representing the product of review.

2.2 Instrumenting FTR in CSRS

Since the initial design of CSRS in 1991, research on
effective instrumentation for software review has been a
primary research focus. Our goal for this instrumentation
is to provide a basis for empirically-based process experi-



Figure 2:A CSRS screen illustrating the generation of an issue.

mentation and improvement.
Such instrumentation is a major feature distinguishing

CSRS from other automated review environments such as
ICICLE [6], Scrutiny [13], or INSPEQ [17]. CSRS sup-
ports bothoutcomeandprocessinstrumentation.

Outcome instrumentation. These mechanisms allow re-
view analysts to query the CSRS database during or after
review for such information as the number of nodes gener-
ated of a given type, the set of nodes containing a particular
value in a particular field, or the set of nodes partaking in a
specific relationship to other nodes.

Outcome measures are very useful. First, the number
and severity of identified defects provides a first-order es-
timate of the quality of the software under review.

Second, outcome measures may suffice to reveal certain
problems with the review team or review process. For ex-
ample, marginally productive members of the review team
might be identified (after a sufficient number of review in-

stances) as those who contribute little, or who contribute
non-productively (by simply affirming comments made by
others), or who use review for political purposes. Such
a method is less expensive and more objective than tech-
niques where behavioral data (such as “Shows solidarity”,
“Shows Tension”, and so forth) is collected by a passive
observer of the review in order to provide feedback on the
quality of reviewer participation [11].

Third, outcome measures can contribute to empirically-
guided process improvement. For example, an organiza-
tion may be able to bound certain review factors (such as
the number of participants or the size of artifact to review)
by measuring these factors across a large number of other-
wise similar review instances, and then correlating them to
review effectiveness.

Process instrumentation. These mechanisms provide
insight into thesequenceanddurationof review activities.
Analysis and application of this process instrumentation is



an exciting and intensive focus of our current research.

Process instrumentation is implemented by a general
purpose timestamp subsystem in Egret, the collabora-
tive infrastructure for CSRS. This facility enables calls at
strategic points within CSRS to record the occurrence of
application-specific events of interest. For example, CSRS
timestamps when the user reads a node, writes a node,
closes a node, traverses a link, marks a node as reviewed,
and so forth. Egret provides mechanisms to cache times-
tamp data at the local client during a review session, and
write the cache contents out to the server database at dis-
connect time.

One simple use of timestamp data is to calculate elapsed-
time information. For example, subtracting the timestamp
recorded when a user reads a particular source node from
the timestamp recorded when the user closes that node
yields the elapsed time during which the source node was
displayed to the user.

However, this elapsed display time is not a useful mea-
sure of theeffort spent reviewing a node, as we found out
after experimental evaluation of this mechanism. In a mul-
tiple window, multi-tasking workstation environment, re-
view using CSRS is typically interrupted by phone calls,
impromptu meetings with colleagues, reading and answer-
ing e-mail, and so forth. Thus, the elapsed display time
has two components: the time during which the user was
actually reviewing, and the during which the node was dis-
played but the user’s focus of attention was elsewhere.

Our process instrumentation currently detects this latter
“idle time” via a bottom-up, timer-initiated timestamp pro-
cess that runs in parallel with the top-down, user-triggered
timestamps. Once per minute, the timer process wakes up,
determines whether or not there has been any recent low-
level mouse or keystroke activity within the CSRS applica-
tion, and if so generates a “busy” timestamp. In our experi-
ences thus far, this combination of top-down and bottom-up
timestamping provides high quality measures of effort with
a precision of plus or minus one minute.

Process instrumentation can provide substantial new in-
sight into review. First, these process measures can com-
bine with outcome measures to indicate the effort expended
on review by each participant onindividualsource nodes,
as well as the cumulative effort expended by all participants
across the entire review artifact. It is well known that pre-
cise and accurate measurement of cumulative review effort
(including preparation) is notoriously difficult to obtainin
typical industrial settings [11]. Moreover, no other man-
ual or automated review method provides effort data at the
grain size of individual components of a review artifact.
Such fine-grained, high quality data makes possible inter-
esting new forms of experimentation, as discussed below.

3 Current results

Our results fall into two categories: design results, in-
volving the impact of previous research on software re-
view and collaborative work on the design of CSRS and
FTArm, and empirical results, involving the measurements
produced thus far by our use of the system and method.

3.1 Design results

One insight from our research with CSRS and FTArm is
that introducing substantial computer support into the fun-
damentally manual process of traditional review creates a
fundamentally different process. As a result, we take issue
with research claiming to “automate” Fagan code inspec-
tion, such as the research on ICICLE [6]. While this system
appears to provide a useful form of computer-supported
review, the introduction of substantial computer support
results in a method fundamentally different from Fagan’s
code inspection.

The design of CSRS and FTArm, therefore, has not been
motivated by thegoal of transliteratinga manual “best prac-
tice” into a computer-supported form. Instead, our design
attempts to implement an environment and method that ex-
ploits the known strengths of computer-supported cooper-
ative work environments to address known problems in
FTR. To illustrate, the next paragraphs discuss how the
FTArm method addresses the pitfalls in manual review pre-
sented earlier in Section 1.2.

� Insufficient preparation.FTArm eliminates the problem
of detecting insufficient preparation, since the prepara-
tion phase in traditional review corresponds to private
review in FTArm, and since the activities of each re-
viewer during private review is precisely instrumented
and known to the moderator. Of course, the method
cannot force an intransigent participant to bring up the
system and look at the materials, but it does eliminate
the most important problem of reviewers “exaggerating”
their degree of preparedness to the review leader.

� Moderator domination.FTArm is designed to prevent
the moderator from most forms of domination that are
possible in manual review. During private review, of
course, all moderator influence is eliminated. During
public review, the moderator can potentially influence
outcome by “flaming”, but cannot physically prevent
contributions of other members by monopolizing air
time as is possible in synchronous review. Even the
group meeting phase of FTArm is less vulnerable to mod-
erator domination, since the set of issues has already
been established and documented.

� Incorrect review rate.Since most review in FTArm oc-
curs asynchronously, the cost of review is much less sen-



sitive to its rate. The desire of one participant to re-
view slowly makes no impact on the rate (or cost) of re-
view for any other participant. Asynchronous interaction
also eliminates “air-time fragmentation”—thecostly idle
time spent by participants in face-to-face reviews while
waiting for a turn to speak.

� Ego-involvement and personality conflict.On-line and
asynchronous review allows reviewers time to consider
their choice of words carefully. During private review, in
fact, it is possible to use CSRS the “day after” to mod-
ify comments that appear inappropriate, after a night’s
reflection, before any other reviewers see them. In gen-
eral, diplomacy is much easier in a non-real time envi-
ronment.

� Issue resolution and meeting digression.As noted pre-
viously, the constraints of a synchronous meeting con-
text require participants to raise issues, but not to re-
solve them. In FTArm, the problems of cost and digres-
sion arising from issue resolution are vastly minimized
or eliminated.

More importantly, analysis of node content data from our
review experiences reveals that issues are frequently dif-
ficult to articulateexcept in the context of proposing an
action to resolve it, and that a natural tendency of most
reviewers, immediately upon the identification of an is-
sue, is to suggest a solution. As a result, FTArm ex-
plicitly encouragesthe interleaving of action proposal
and discussion with issue proposal and dicussion during
review. Our experiences suggest that capturing action
proposals when the reviewer first thinks of them, rather
than artificially delaying their discussion until some fu-
ture meeting time, is certainly a more natural and possi-
bly a more efficient method of review.

� Recording difficulties and clerical overhead.FTArm
eliminates the role of scribe altogether, except for the
group meeting phase where the role is considerably sim-
plified. The CSRS system trivially resolves the problems
of capturing review commentary completely and accu-
rately. CSRS also provides the moderator with tools to
support restructuring and reformatting of the data from
its on-line, hypertext format into a form suitable for a lin-
ear, hardcopy presentation. Such features substantially
reduce the clerical overhead normally associated with re-
view.

Most important from a research perspective, CSRS col-
lects data and process measures automatically and un-
obtrusively. This means that research on review can be
performed in any size organization with any amount of
resources allocated to review.

Taken as a whole, the FTArm method implements an in-
crementally increasing level of both collaborative involve-

ment and review cost. During private review, collaboration
is actively prevented, and the cost of review to each partic-
ipant is restricted to the expense of their personal review
efforts. During public review, partial collaboration is sup-
ported by allowingeach reviewer on-lineaccess to the com-
ments made by others, which incurs some additional cost.
Finally, the review group meeting provides the highest cost
collaboration, but is restricted in scope to only those issues
that cannot be resolved by the previous, lower-cost forms
of collaboration.

3.2 Empirical results

The second category of results involves the empirical
data derived from the laboratory use of CSRS.

Review Experiments 7
Artifact Size 450–750 lines
Review Rate 200–500 lines/hr
Group Size 4–6 people
Duration 10–35 days
CSRS Sessions 2–28 logins/reviewer
Issues Generated 50–104 nodes
Issue Generation Rate 3–12 issues/hr

Figure 3:Ranges of key review statistics.

Figure 3 summarizes some key data concerning our re-
view experiences during the development of CSRS and
FTArm. The primary goal of these reviews were to vali-
date the essential design characteristics of the system and
to support our own quality assurance activities. However,
some general observations can be made.

First, the asynchronous nature of FTArm review appears
to extend the upper bound on the size of the review arti-
fact. For larger artifacts, reviewers tend to partition there-
view into a larger number of sessions without loss of qual-
ity. Most manual methods require the entire artifact to be
reviewed within a single meeting, which restricts the max-
imum size of the artifact.

Second, the on-line nature of CSRS also appears to ex-
tend the upper bound on the number of review partici-
pants. Unless all participants generate a very large number
of nodes during private review, FTArm should scale un-
changed to review group sizes of 10-12. Much greater in-
creases in review group size may be possible by modifying
the method instantiated in CSRS to prevent a “combinato-
rial node explosion.” Most manual methods, in contrast,
strictly limit the group size to between three and six partic-
ipants.

Third, the asynchronous style of public review in
FTArm can potentially lead to longer review durations than



those normally occurring in manual methods. We did not
limit the duration of public review phase in our reviews,
though this is a very reasonable approach to meeting a
scheduled review duration.

Finally, these reviews exhibit wide variation in such
measures as the total number of issues generated, the is-
sue generation rate, and review rate. Discovering the un-
derlying causal factors for these values and their variations
motivate several on-going studies, discussed next.

3.2.1 Predictive measures of review effort

The goal of one research project is to discover predictive
measures for review effort. This has been identified as a
key open problem in formal technical review [10]. We
are currently investigating whether or not various mea-
sures of complexity can serve as a predictive measure of re-
view effort for source code artifacts. Three measures have
been chosen for analysis: Halstead’s volumetric complex-
ity, McCabe’s cyclometric complexity, and simple lines of
code. Intuitively, it seems reasonable that the more compli-
cated a program entity, the more difficult it is to understand
and review, and the greater the number of issues and errors
it will contain.

A sufficiently precise correlation would allow accurate
estimation of time and resources required for review of
source code based upon its computed complexity or con-
versely, accurate sizing of the artifacts to the time and
resources available for review. CSRS is uniquely able
to support this research, since no other review method is
able to measure effort at the grain size required to assess
complexity-related relationships.

So far, however, no statistically significant correlation
has been observed for any of the three measures of com-
plexity and review effort, either within or across reviewers.
Values ofr2 tend to vary between 0.15 and 0.30. Interest-
ingly, the lines of code measure of complexity is highly cor-
related with Halstead’s volumetric complexity (r

2
� 0:95),

while McCabe’s cyclometric complexity was uncorrelated
with any other measure of complexity or review effort.

Our initial experiences lead us to believe that either lines
of code or Halstead’s complexity measure can serve as a
partial, complexity-based predictor of review effort, but
that a high quality predictor must take more than just a sin-
gle factor into account. For example, review of code pro-
duced by inexperienced developers leads to a wide spec-
trum of issue types, ranging from comments about the ap-
propriate use of the programming language, to the applica-
tion platform, to design aesthetics, and so forth. Review of
code by experienced developers has a much narrower range
of comments. We have observed that very simple functions
written by inexperienced developers may engender a great
deal of review activity involving these types of issues. As

we accumulate more data using CSRS, we will continue to
explore correlations between review effort and these and
other factors.

3.2.2 Behavioral strategies during review

A second empirical investigation involves analysis of par-
ticipant behavior during review as captured by the times-
tamp mechanism. Timestamps record the sequence and du-
ration of reviewer actions, and provide a means to recon-
struct the fine-grained strategies employed by reviewers.
As a simple example, one private review strategy is to visit
each source node, generate all issues relevent to that node,
then move on to the next. Another strategy is to visit all
source nodes first to provide an overview of the entire arti-
fact, then selectively choose nodes for issue generation.

Identification of behavioral strategies used in CSRS will
help us to improve the system by identifying bottlenecks
and opportunities for additional support. It can also lead to
improved understanding of what makes a system easily re-
viewed. Finally, it provides a means to determine when and
if common review strategies are used, which is extremely
useful in comparative analysis of review factors and meth-
ods.

To facilitate behavioral strategy analysis, we developed
a simple visualization system called Timeplot. This sys-
tem processes the thousands of timestamps generated dur-
ing a review and generates a graphical representation of the
contents of the reviewer screen during each minute of re-
view, along with any idle periods for each CSRS session.
Timeplot graphs allow identification of potential strategic
behaviors by manually “walking through” a reviewer’s be-
havior. These graphs also facilitate a number of advanced
analytical techniques, such as phase analysis, that can be
used detect and classify low-level sequences of activity as
higher-level patterns.

3.2.3 Review commentary classification

Another empirical investigation concerns analysis of the
types of information captured by CSRS. In one represen-
tative review, we found that approximately 80% of issues
detail traditional FTR concerns such as defects. The re-
maining 20% provided either: (a) significant new design
rationale information; (b) new clarification of the specifica-
tions or behavior of the application under development; or
(c) new clarification of the specifications or behavior of the
underlying infrastructure (such as the source language or
operating system). These forms of knowledge are not typi-
cally captured in manual FTR—indeed, they might well be
viewed as a “digression”.



4 Conclusions and future directions

CSRS and FTArm demonstrate that an appropriately in-
strumented collaborative support environment for formal
technical review can be designed to ameliorate or overcome
significant obstacles to the success and efficiency of current
manual FTR practice. Perhaps more importantly, however,
this paper has described how such an environment can pro-
vide instrumentation that provides a wealth of high quality,
useful data on the process and products of FTR. With man-
ual methods, capturing this data is always time-consuming,
expensive, and error-prone, if it can be captured at all. In
CSRS, this data is captured forfree. We hope that this paper
will inspire more research and development on automated
formal technical review environments, and that useful in-
strumentation support will form an essential part of such
efforts.

One upcoming empirical study is a controlled labora-
tory experiment to assess the relative contributions of three
examination techniques to review effectiveness and effi-
ciency. This research, conducted as part of an upcoming
doctoral dissertation, will help to clarify some of the con-
fusion in current FTR research about the causal factors un-
derlying review outcomes.

A second upcoming project is external validation
through a select number of technology transfer experiments
with industry sites. This will provide useful experience and
data on the process of CSRS adoption within a variety of
industrial software development organizations. We hope
that future research on CSRS will be motivated through its
use to improve the quality of the industry software.

Acknowledgments

The author gratefully acknowledges the other members
of Collaborative Software Development Laboratory: Danu
Tjahjono, Rosemary Andrada, Carleton Moore, Dadong
Wan, and Robert Brewer for their contributions to the de-
velopment of CSRS. Support for this research was partially
provided by the National Science Foundation Research Ini-
tiation Award CCR-9110861.

References

[1] A. Frank Ackerman, Lynne S. Buchwald, and
Frank H. Lewski. Software inspections: An effec-
tive verification process.IEEE Software, pages 31–
36, May 1989.

[2] Lowell Jay Arthur.Improving Software Quality. Wi-
ley Professional Computing, 1993.

[3] V.R. Basili and R.W. Selby. Comparing the effective-
ness of software testing strategies. Technical Report
TR-1501, University of Maryland at College Park,
Department of Computer Science, 1985.

[4] V.R. Basili, R.W. Selby, and D.H. Hutchins. Ex-
perimentation in software engineering.IEEE Trans-
actions on Software Engineering, SE-12(7):733–743,
July 1986.

[5] David B. Bisant and James R. Lyle. A two-person
inspection method to improve programming produc-
tivity. IEEE Transactions on Software Engineering,
15(10):1294–1304, October 1989.

[6] L. Brothers, V. Sembugamoorthy, and M. Muller. ICI-
CLE: Groupware for code inspection. InProceedings
of the 1990 Conference on Computer Supported Co-
operative Work, pages 169–181, October 1990.

[7] Lionel E. Deimel. Scenes of Software Inspections.
Video Dramatizations for the Classroom. Software
Engineering Institute, Carnegie Mellon University,
May 1991.

[8] Robert Dunn.Software Quality: Concepts and Plans.
Prentice Hall, 1990.

[9] Michael E. Fagan. Design and code inspections to
reduce errors in program development.IBM System
Journal, 15(3):182–211, 1976.

[10] Michael E. Fagan. Advances in software inspec-
tions. IEEE Transactions on Software Engineering,
SE-12(7):744–751, July 1986.

[11] D. P. Freedman and G. M. Weinberg.Handbook
of Walkthroughs, Inspections and Technical Reviews.
Little, Brown, 1990.

[12] Tom Gilb and Dorothy Graham.Software Inspection.
Addison-Wesley, 1993.

[13] John Gintell, John Arnold,
Michael Houde, Jacek Kruszelnicki, Roland McKen-
ney, and Gerard Memmi. Scrutiny: A collaborative
inspection and review system. InProceedings of the
Fourth European Software Engineering Conference,
Garwisch-Partenkirchen, Germany, September 1993.

[14] Robert L. Glass. Modern Programming Practices:
A Report from Industry. Prentice-Hall, Englewood
Cliffs, N.J., 1982.

[15] Watts S. Humphrey.Managing the Software Process.
Addison Wesley Publishing Company Inc., 1990.



[16] Philip M. Johnson. Supporting exploratory CSCW
with the EGRET framework. InProceedings of the
1992 Conference on Computer Supported Coopera-
tive Work, November 1992.

[17] John C. Knight and E. Ann Myers. Phased inspec-
tions and their implementation.Software Engineering
Notes, 16(3):29–35, July 1991.

[18] Nancy G. Leveson and Clark S. Turner. An investi-
gation of the Therac-25 accidents.IEEE Computer,
1993.

[19] Johnny Martin and W. T. Tsai. N-fold inspection: A
requirement analysis technique.Communications of
the ACM, 33(2):225–232, February 1990.

[20] G. Myers. A controlled experiment in program testing
and code walkthrough/ inspection.Communications
of the ACM, 21(9):760–768, September 1978.

[21] J. F. Nunamaker, Alan R. Dennis, Joseph S. Valacich,
Douglas R. Vogel, and Joey F. George. Electronic
meeting systems to support group work.Communi-
cation of the ACM, 34(7):42–61, July 1991.

[22] D.W. Parnas and D.M. Weiss. Active design reviews:
Principles and practices.Proceedings of Eighth Inter-
national Conference on Software Engineering, Lon-
don, England, pages 132–136, August 1985.

[23] Ronald Peele. Code inspections at first union corpo-
ration. InProceedings of COMPSAC’82: The IEEE
Computer Society’s Eighth International Computer
Software and Applications Conference, pages 445–
446, Silver Springs, MD., November 1982. IEEE
Computer Society Press.

[24] Glen W. Russell. Experience with inspection in
ultralarge-scale developments.IEEE Software, Jan-
uary 1991.

[25] R.W. Selby. Evaluations of software technologies:
Testing, CLEANROOM, and metrics. PhD thesis,
University of Maryland at College Park, Department
of Computer Science, 1985.


