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ABSTRACT
Current collaborative learning systems focus on maximizing
shared information. However, “meaningful learning” is not
simply information sharing but, more importantly, knowl-
edge construction. CLARE is a computer-supported learn-
ing environment that facilitates meaningful learning through
collaborative knowledge construction. CLARE provides a
semi-formal representation language called RESRA and an
explicit process model called SECAI. Experimental evalu-
ation through 300 hours of classroom usage indicates that
CLARE does support meaningful learning, and that a major
bottleneck to computer-mediated knowledge construction is
summarization. Lessons learned through the design and eval-
uation ofCLAREprovide new insights into bothcollaborative
learning systems and collaborative learning theories.

KEYWORDS: Computer supported collaborative learning;
collaborative work; knowledge representation; knowledge
construction; meaningful learning.

INTRODUCTION

Current computer-supported collaborative learning systems
focus on improving shared access to information, people,
and media. One example is virtual classroom systems, which
range fromplain e-mail, computer conferencing, andbulletin-
board systems, to more specialized systems such as EIES

[10]. Virtual classrooms allow learners to interact with their
peers and instructors, as well as access online information
in a manner independent of time and geographic location.
They augment traditional classroom learning by removing
the requirement for physical co-presence and by improving
access to information and people.

A second example is hypermedia systems, such as Intermedia
[25] and Mosaic [2]. These systems typically provide dis-
tributedmechanisms for structuring large informationspaces.
They also provide mechanisms for presentation and integra-
tion of variousmedia formats, including text, graphics, voice,
and video. Hypermedia systems improve access by removing
the constraint of text-based interaction, broadening the scope
of sharable information, and reducing the effort required to
make information sharable.

Although virtual classrooms andhypermedia systems are suc-
cessful in improving information access, they do not typically
offer explicit mechanisms to help learners better interpret
and assimilate the information, the context surrounding its
creation and use, and the perspectives on it of the author
or other learners. Simply improving information access
without supporting learning leads directly to the problems
of “information overload” and “lost-in-hyperspace”. In the
coming age of the Information Superhighway, it will be
essential to explicitly support learning as well as access.
Software systems must provide users with structural and
process-level support on how to comprehend new informa-
tion, how to relate new information to what they already
know, and how to identify, compare, and integrate different
interpretations of the same information. In other words, how
to meaningfully learn in an environment of vastly improved
information access.

This paper presents our approach to providing computational

1



support for meaningful learning through a process of collab-
orative knowledge construction. The next section presents
three major components of our approach: a representation
language for meaningful learning called RESRA, a process
model to guide the use of RESRA called SECAI, and a
computational environment designed to support this language
and process called CLARE. The following section describes
our evaluation of this approach through about 300 hours of
classroom usage. Analysis of the results indicates that the
approach is effective in facilitating meaningful learning. It
also reveals the strategies of knowledge construction used
by learners, and several significant obstacles to meaningful
learning within this paradigm. The following section briefly
connects this research to related work in learning theory,
cognitive psychology, and computer-supported cooperative
work. The final section revisits the essential contributions
of this research and outlines promising future research direc-
tions.

OVERVIEW OF CLARE

RESRA

RESRA, which stands for “REpresentational Schema of Re-
search Artifacts,” is a semi-structured knowledge representa-
tion language designed specifically to facilitate collaborative
learning from scientific text, such as research papers. It has
the following design goals:

An organizational tool that allows incremental, fine-
grained representation and integration of scientific ar-
tifacts;

A mapping tool that highlights essential thematic fea-
tures and relationships within and across scientific text,
and that helps expose gaps and ambiguities in existing
knowledge;

A communication tool and a shared frame of refer-
ence that highlights similarities and differences between
learners’ points of view; and

A tool for learning about the norms and conventions
governing formal communication of scientific knowl-
edge.

To achieve these goals, RESRAdefines three types of concep-
tual constructs: node primitives, link primitives, and canon-
ical forms. Node primitives represent discrete thematic fea-
tures of the artifact, for example, claim, concepts, and theory.
They also explicitly represent the learner’s points of view in
terms of critiques, questions and suggestions.

Link primitives describe relationships between thematic fea-
tures represented by node primitives. For example, in a

research paper, a claim is typically made with respect to
a particular problem and must be supported by some evi-
dence. In RESRA, these relationships are expressed as “claim

problem” and “evidence claim,” where
responds-to and supports are link primitives.

The canonical form characterizes typical artifact-level the-
matic structures as a directed graph of RESRA node and link
primitives. Research artifacts are classified into various types,
such as concept, empirical, and survey papers. For each of
these artifact types, a stereotypical RESRA structural graph
can be identified. For example, in software engineering,
one important type of research artifact is an “experience pa-
per”. Such artifacts report the experience of an organization
with a software package or strategy, including the problem
it attempted to solve or alleviate, the initial justification
for adopting that software or strategy, and how the actual
outcome compared to the expected result. In RESRA, a
canonical form for experience reports could be expressed as
shown in Figure 1.

Evidence

ClaimProblem

Method

Claim
responds-to presupposes

supports/
counters

generates

1 2

Figure 1: A RESRA canonical form for ‘‘experience
paper’’

Learners in software engineering may use the above struc-
tural model as a “template” to guide their interpretation and
evaluation of all experience papers in that domain, and their
efforts in constructing their own experience papers so that
they may also conform to the same structure. In a group
setting, such structural knowledge can be used as a shared
framework for learners to engage in discussions about the
content of related artifacts.

RESRA is based upon three premises: (1) Human knowledge
can be represented in term of a small number of node and
link primitives; (2) The use of these primitives to charac-
terize scientific artifacts and subsequent group activities are
a meaningful learning process; and (3) Different learners
are likely to generate different representations of the same
artifact; by comparing these representations, one can discern
the similarities and differences in points of view held by
individual learners.

Figure 2 provides a synopsis of all RESRA node primitives,
while Figure 3 graphically depicts relationships between rep-
resentative RESRA node and link primitives.



Node Type Description Example
Problem A phenomenon, event, or process whose

understanding requires further inquiry.
Meta-learning is not adequately supported by
existing tools.

Claim A position or proposition about a given
problem situation.

Cleanroom engineering provides a viable
solution in producing zero defect software.

Evidence Data gathered for the purpose of supporting
or refuting a given claim.

The use of cleanroom techniques led to a 5-
fold reduction of defects in project Alpha.

Theory A systemic formulation about a particular
problem domain, derivable through deductive
or inductive procedures.

Ausubel’s theory of meaningful learning.

Method Procedures or techniques used to generate
evidence for a particular claim.

Delphi study; nominal grouping technique;
waterfall software development model.

Concept A primitive construct used in formulating
theory, claim, or method.

Meta-learning; Knowledge representation.

Thing A natural or man-made object that is under
study.

Rock; Intermedia.

Source An identifiable written artifact, either artifact
itself or a reference to it.

An article by Ashton; the notes from Kyle’s
talk.

Critique Critical remarks or comments about a
particular claim, evidence, method, source,
et al., or relationships between them.

Applications of cleanroom engineering ap-
pear limited to domains with well-defined
requirements.

Question Aspects of a claim, theory, concept, etc., about
which the learner is still in doubt.

How does box-structured design differ from
object-oriented design?

Suggestion Ideas, recommendations, or feedback on how
to improve an existing problem statement,
claim, method, et al.

I would like to see cleanroom engineering
used in some non-conventional domains, such
as groupware.

Figure 2: A synopsis of RESRA node primitives.

Figure 4 shows an example use of RESRA that summarizes
a seminal paper on software code inspection [8]. The source
node in the upper left corner provides a reference to the
artifact under study. The paper addresses one problem,
againstwhich three claims are made. To support these claims,
the author introduces three concepts and two methods. The
latter are used to generate evidence, which in turn supports
two out of the three claims.

Several interesting observations can be made about Figure 4.
First, the representation captures what is important in the re-
search paper: it is not simply an outline of the paper but rather
a map of its knowledge structure that reflects the learner’s
mental model about the author’s intent. Second, as discussed
later in this paper, different learners will derive quite different
representations of this same artifact. Figure 4 is merely
one of many possible representations. By comparing and
contrasting these distinct representations, one can gain a
better understanding of not only what this artifact is really
about but perhaps more interestingly, how different learners
interpret the same content. Third, also as described later,
constructing these representations is non-trivial and requires
significant learner effort, since RESRA node primitives, such
as the problem node in Figure 4, may be only implied rather
than explicitly stated by the author. Thus, the learner must

infer these objects from the context of the paper, and relate
them to otherRESRAobjects. Deriving such a representation
is ameaningful learning experience because learnersmust ask
themselves many deep-level questions: what is the claim(s)
being made? With respect to what problem? Is a given theme
a claim or theory? How are those themes related? Are there
any “orphan” or unconnected themes? Answers to these and
other related questions reveal what the artifact really means
to individual learners.

SECAI

SECAI, which stands for “Summarization, Evaluation, Com-
parison, Argumentation, and Integration,” defines an explicit
process model for collaborative learning from scientific text.
Figure 5 shows how these activities are related together to
support collaborative knowledge construction. The world
outside the concentric circles consists of various types of
scientific artifacts, which constitute the raw material of learn-
ing. Metaphorically, collaborative learningwith SECAI pulls
learners from an external, isolated, and individual position
inward toward an internal, integrated, and collaborative per-
spective on the artifact.
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Figure 3: A graphical illustration of RESRA summarative node and link primitives and the relationships between them.

The first phase of SECAI is called exploration, which consists
of two activities: summarization and evaluation. During this
phase, learners derive a personal representation of the artifact
and an evaluation of its content, both expressed in terms of
RESRA. This phase is performed privately – learners are not
allowed to see what other learners are doing or have done.
This policy prevents learners from being distracted by each
other’s work or from free-riding off the work of others. The
result of exploration is a set of representations similar to
that shown in Figure 4 (except for the addition of evaluation
nodes).

The second phase of SECAI is called consolidation, which
consists of three activities: comparison, argumentation, and
integration. During comparison, learners evaluate the simi-
larities and differences between their representation and those
of other learners. Comparison is done at three levels: the arti-
fact level, the link primitive level, and the nodeprimitive level.
At the artifact level, learners compare their classifications of
the artifact type, such as whether the artifact appears to be a
concept paper or an experience report. In addition, they also
compare their representations with respect to the canonical
form selected for the artifact to see how their representations
deviate from the standard one. At the link primitive level,
learners compare their derived relationships, such as each
learner’s interpretationof the supportingevidence for a claim.
Finally, at the node primitive level, learners compare their
instantiations of nodes and the artifact content referenced by

them.

Comparison activities provide a basis for argumentation. For
example, suppose that John compares his representation to
Jane’s, and determines that his representation contains a
problem node that is apparently missing from Jane’s rep-
resentation. He might then generate a critique node con-
cerning Jane’s representation, noting that it is missing an
important problem raised in the artifact. Jane might respond
by agreeing that her representation omitted an important
problem. Alternatively, Jane might respond that one of her
problem nodes in fact subsumes the problem noted by John.
Another potential response might be to disagree with John’s
interpretation of the artifact content as a problem: that it
was actually a method or claim of the research, as described
in Jane’s representation. This process of comparison and
argumentation leads to an improved understanding of the
meaning of the artifact. Perhaps as importantly, it reveals
other learners’ perspectives on the artifact.

The final step in the consolidation phase is integration, where
learners create explicit links between their individual repre-
sentations to improve their collective coherence and con-
sistency. Going back to our hypothetical learners, if Jane
realized that John had correctly identified a problem missing
from her representation, she could integrate her representa-
tion by linking John’s problem node into her representation
in the appropriate places. Alternatively, if Jane believed that
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Figure 4: An expert’s RESRA representation of Fagan’s paper on code inspection.

one of her problem nodes subsumed the problem identified
by John, she could integrate his representation by creating an
is-part-of link between his and her nodes.

The large shaded arrows in Figure 5 indicate the direction in
which SECAI “pushes” the group process: as learners pro-
ceed through the various activities, the level of collaboration
among learners increases and, concurrently, a group knowl-
edge base emerges. This dynamic knowledge base articulates
both areas of consensus and areas of disagreements among
a group of learners as they summarize, evaluate, compare,
deliberate, and integrate their individual perspectives on the
learning artifact.

CLARE

CLARE, which stands for “Collaborative Learning And Re-
search Environment,” is a distributed learning environment
that supports SECAI and RESRA. It is a client-server system,
running in a Unix/X-windows environment, and is built on
top of the EGRET framework for exploratory collaboration
[11, 12].

Use of CLARE begins by converting the scientific text to be
studied into CLARE’s internal hypertext format. Typically,
the full text of the document is split up into smaller chunks
called source nodes, each one corresponding to a physical
section or subsection of the document. The current imple-
mentation of CLARE does not provide support for graphical
images, so tables and figures are shown in the hypertext

network as logical references and supplied to the learners
as hardcopy documents.

Figure 6 shows a snapshot of the CLARE user interface
during the exploration phase. The left window shows a source
node corresponding to one section of the artifact under study.
The node is connected to other source nodes via the Up,
Next, and Prev links displayed on the first line of that node.
Learners navigate through the scientific artifact under study
by following these links.

To summarize a paragraph or any arbitrary block of text, the
learner first highlights the text by dragging the mouse over
it, and then selects the corresponding node type from the
Summarizemenu. CLARE creates a new node of the chosen
type (e.g., problem, evidence) with default field template,
and displays it in the lower right window. An explicit link
is also automatically added between the selected text in the
left window and the newly created node. The learner then
provides annotative comments about the summarization in
the Description field.

The above process is repeated until the learners believe they
have fully summarized the document. (Summary nodes
may also be created without reference to any text in the
artifact.) Evaluation nodes are created analogously, although
both source nodes and summary nodes may serve as targets
of evaluation. The learner adds RESRA link primitives
between two eligible nodes by choosing Link Mode from
the Summarize menu. The upper right window in Figure
6 shows what the current learner has created so far for the
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Figure 5: The SECAI process model for collaborative learning from scientific text.

current artifact.

Figure 7 shows a snapshot of the CLARE user interface
during the consolidation phase. The upper left window
displays a comparative view of the problem instances created
by three learners (Peter, Cam, and Rose) during exploration.
It highlights the differences and similarities between these
learners with respect to their views on the problem the original
authors attempt to address. Similar comparisons can also be
made for the other RESRA primitives, for example, claim,
evidence. To see the actual node instance corresponding to
a given entry, the learner mouse clicks on the bold italicized
text. If a learner then wants to know the precise place in the
artifact from which the summarization node was derived, he
can follow the link in the Summarization field.

To raise a question or make a critique on the problem node,
one selects the corresponding RESRA node type from the
Argument menu in the lower right window. This creates a
new node instance of that type and links it to the problem
node. When the creator of the problem node sees this new
link, he can explain or defend his position using a similar
procedure. He might also declare his problem as similar-to
another node using the Integratemenu.

The upper-right window in Figure 7 summarizes the state of
all learner’s work. For example, Peter has created ten claim
nodes, while Cam has seven, and Rose has six. Clicking
on an entry generates a detailed listing for the corresponding
user, from which individual node instances for any learner
can be retrieved.

In addition to these computational services, CLARE also
includes an instrumentation mechanism that unobtrusively
gathers fine-grained process data. Each time the user per-
forms a semantically interesting action, such as creating a
new node or link, a timestamp representing this event and the
time at which it occurred is recorded. The instrumentation
also detects periods of idle-time for correcting elapsed-time
calculations. This instrumentation provides vital data for an-
swering such process-level questions as: what is the sequence
inwhich learners visit nodes, anddoes this navigation strategy
differ among learners? How much time do learners spend on
each portion of the document? How much time do learners
spend on each activity of SECAI? How are node creation
and the link creation related procedurally? Answering these
and other questions was the goal of a set of experiments we
performed using CLARE, discussed next.

EXPERIMENTS AND FINDINGS

Experiments

Two sets of experiments were conducted to evaluate the
effectiveness of CLARE as an environment for meaningful
learning through collaborative knowledge construction. For
this evaluation, three types of data were collected:

Assessment: Gathered through a questionnaire admin-
istered after each experiment session;

Outcome: Online CLARE database created during each



Figure 6: A user view of CLARE during the exploration phase. The left handwindow contains a portion of the artifact under
study. The lower right window contains an evidence node created by the learner. The upper right window summarizes
what the learner has created during exploration thus far.

session; and

Process: Gathered automatically through the built-in
instrumentation mechanism.

The subjects were 24 computer science students whowere en-
rolled in two software engineering courses in the Department
of Information and Computer Science at the University of
Hawaii in Fall, 1993. The task was collaborative analysis and
deliberation of research papers in software engineering using
CLARE. The first experiment involved 16 upper-level under-
graduate students, who were evenly divided into four groups.
The experiment was repeated three times with three different
research papers. The second experiment involved 8 graduate
students, who were evenly divided into two groups. This
experiment was repeated twice with two different research
papers. All experimental sessions lasted approximately one
week. A few sessions lasted two to three days longer due to
interruptions from other class activities.

The experiments were conducted between September and
October, 1993. The subjects collectively accumulated about
300 hours of usage time, and created about 1,800 nodeswith a

total text size of nearly 400 kilobytes. A total of over 80,000
timestamps were gathered during these sessions. Figure 8
provides a short summary of the experimental data.

Exp. Logins Time (hrs) Nodes Size (Kb)
1a. 120 82.85 472 90.02
1b. 115 67.90 513 107.97
1c. 84 53.68 440 105.16
2a. 85 54.42 162 39.42
2b. 53 37.55 207 49.67
Total 457 296.40 1794 392.24

Figure 8: Selected CLARE statistics.

Results

Viability/usability of CLARE

The post-session survey responses from the subjects show
that CLARE is a novel and useful collaborative learning tool:
approximately 70% of learners indicated CLARE helped
them understand the content of research papers in a way



Figure 7: A user view of CLARE during the consolidation phase. The upper left window contains a comparative summary
of the problems identified by each learner in the scientific artifact. One of the actual problem node instances is displayed
in the lower right hand window. The lower left window displays the portion of the scientific text from which this problem
was derived. The upper right window contains a summary of the activities of each learner.

not possible before, and nearly 80% of learners indicated that
CLAREhelped them understand their peers’ perspectives in a
way not possible before. Approximately 84% of the learners
found that RESRAprovides a usefulmeans for characterizing
the important content of research papers, and 90% of the
learners agreed that RESRA helped expose different points
of view on the same artifact.

Responses from the post-session survey also assessed the
usefulness of individual components of our approach. The
RESRA node primitives and the SECAI learning model were
ranked the highest, assessed by 82% and 70% of the users,
respectively, as “very” or “extremely” useful. The least
useful features were the online examples, assessed by 25%
of the users as “not” useful. RESRA canonical forms, the
comparison mode, and link primitives were received mixed
reactions from the user.

In addition to the empirical data, subjective responses to the
approach were revealing. The following response from a
subject shows that, in at least one instance, CLAREsucceeded
in fostering meaningful learning:

“... I don’t quite know how to use it [CLARE] very
well yet, but it really helped me get more out of
the artifact we read. Without CLARE I would have
just read the artifact and not really studied it or
learned about the subject. CLARE made me look
at the artifact from another point of view. That
point of view was what is the author trying to tell
me and how is the author trying to tell me that
information ... Before I used CLARE I just read the
artifacts. Now usingCLARE I look for themeaning
of the artifact and learn more about the subject...”

Issues in CLARE-based collaborative learning

Detailed analysis of the outcome and process data revealed a
number of interesting issues regarding collaborative learning
using CLARE. These issues are discussed fully in [24], here
we present four of the most significant: mis-interpretations
of RESRA, failures in summarization, summarization strate-
gies, and collaboration in CLARE.

First, RESRA was interpreted in a wide variety of ways



among the learners. Despite the presence of hands-on train-
ing, detailed user documentation, and online examples, many
subjects still seemed to fail to grasp the semantics of RESRA
primitives, as evidenced by a substantial number of times in
which RESRA nodes and links were used incorrectly. For
example, though theory is defined as “a systematic formula-
tion about a particular problem domain...”, the following use
of the primitive clearly does not satisfy this definition:

TYPE: theory
SUBJ: No single development improves

the situation
DESC: No single development aids in

improving the software problem,
at least not with respect to
productivity, reliability or
simplicity.

Other typical errors in using RESRA include evidence nodes
containing no evidence, suggestions containing no proposals
from the learner, claims that are “neutral,” evidence stated
as claims, explanations or predictions identified as theories,
problems treated as learner’s disagreements with the author’s
claims instead of what the author attempts to address, and so
forth.

Second, although subjects spent about 66% of their time on
summarization, they frequently failed to adequately summa-
rize the artifact by correctly identifying major themes and
relationships and filtering out the minor ones. For example,
Figure 4 provides an expert summary of [8] using 11 nodes.
The 16 subjects analyzing this artifact generated an average
of 19 nodes. Given this relatively large number, one would
expect that all major themes would be covered, as well as
a few minor ones. However, analysis of representations
reveals that: (a) none of the 16 learners correctly identified
the problem; (b) only seven learners correctly identified one
or two of the three major claims; (c) only ten learners had the
evidence right; and (d) only six learners had one of the two
methods right. On the other hand, many minor themes of the
paper were found in the learners’ representations.

Third, the process data also reveals a set of stereotypical
strategies used by learners in summarizing the content of an
artifact. The strategies are characterized by the sequencing
of summarative node and link instance creation:

Nodes only: Create summarative nodes only. No at-
tempt is made to connect them together using RESRA
link primitives.

Nodes for an entire document, then links: First create
summarative nodes for the entire artifact, and then link
them together.

Nodes, then links, but one section at a time: Create

summarative nodes for a single source node and/or its
adjacent source nodes, and then create links between
them; repeat the same process until all source node are
summarized.

(2) first, then (3): A combination of the first and second
strategy. First create summarative nodes for the entire
artifact, followed by awave of link creation. Next, selec-
tively create additional summarative nodes, immediately
followed by the link creation.

Excluding the 36% of learners/sessions who adopted the first
strategy, i.e., creating no summarative links, there was no
noticeable correlation found between the strategy used and
the quality of summarization.

Finally, in the SECAI model, explicit collaboration among
learners takes place in the form of comparing their rep-
resentations, deliberating reasonings behind them, and ul-
timately, integrating them into a coherent whole. Figure
9 shows an example collaborative representation network
generated by four first-time CLARE users. Of a total of
92 nodes in the network, 34 were created during the ar-
gumentation phase. Most of these nodes (32 of 34) are
evaluative in nature, which in turn can be categorized into
two groups: pointing out the correct use of RESRAprimitives
and identifying ambiguities/inaccuracies in other learners’
representations. In “critique642,” for instance, Mary points
out that, in “claim528,” Scott has totally mis-interpreted
the original authors’ meaning. To assess the accuracy of
Scott’s representation, the process data shows that Mary in
fact verifies the node content with the source from which
Scott’s node was derived.

Figure 9 also shows the presence of constructive (as opposed
to evaluative) argumentation, inwhich learners do notmerely
critique or question each other’s positionsbut engage in active
knowledge-buildingby formulating new problems, proposing
alternative claims, supplying additional evidence, and so on.
In “evidence662,” for example, Chris counters Mary’s claim
(“claim522”) with new evidence.

Another noticeable feature about Figure 9 is the absence of
integration activities, which turns out to be quite typical
across CLARE sessions. A few learners elected to add
explicit integrative links between their representations or vote
for best representations. As a result, the group knowledge
base consists of substantial amount of redundancy and incon-
sistency.

Discussion

The results provide a strong indication that RESRA, SECAI,
and CLARE together provide a useful means for meaning-
ful learning through collaborative knowledge construction.
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Figure 9: An example collaborative representation network by four CLARE users

Users indicated that the RESRA representation and the SE-
CAI process model provided effective and novel support for
representing the meaning of an artifact and comparing their
interpretation to others. The results also indicated that users
were not quite satisfied with the user interface of the CLARE
prototype. Analysis of the experimental data provided new
insight into the strategies used by subjects as they constructed
their representations.

However, the results also yielded a surprising paradox: though
users rated RESRA quite highly, they also made a substantial
number of errors in its application. This raises the following
question: is RESRA still useful for its intended purpose, de-
spite individual variations in its interpretation and deviations
from its intended usage?

The answer to this question appears to be a qualified yes,
at least in the current context of use. It is possible, par-
ticularly at the node primitive level, for a learner to use
a primitive incorrectly but usefully, simply because node
and link primitives force the learner to analyze the artifact
in terms of high level conceptual abstractions. Analyzing
the artifact in this way provides a useful means to discover
structural and content issues that might not be perceived
otherwise. In addition, incorrect use of primitives also cre-
ate collaborative opportunities, since the mistake might be
identified by another learner. In many cases, the creation,
identification, discussion, and correction of representation
errors can facilitate meaningful learning both at the content

level (by constructing an awareness of the true nature of the
artifact under study) and at a meta-level (by constructing an
awareness of the true nature of the representational language.)

However, incorrect use of RESRA node primitives can also
raise a major barrier to effective use of the representation,
since it can prevent effective use of RESRA link primitives.
For example, an evidence either supports or counters a claim.
At the node primitive level, it may not be of great consequence
to misrepresent a claim as a theory. However, this mistake
has significant consequences at the link primitive level, since
the link primitives for claims will not be available. Thus,
incorrect node primitive choices can inhibit the creation of
links between nodes, a characteristic found in several sub-
jects’ representations.

During the design of RESRA, SECAI, and CLARE, we
expected that the summarization activity would be rather
straightforward and thatmost collaborative interactionwould
occur during argumentation and integration. The results
surprised us: most of the subjects’ effort and collaborative
activity centered on summarization, and the summarization
activitywas not at all straightforward: subjectsmade substan-
tial errors both in choice of RESRA primitives and in choice
of the artifact content to summarize. We now realize that this
seemingly straightforward process of reconstructing a scien-
tific paper within a simple representation language poses an
awesome challenge for many learners. The ultimate success
of a collaborative learning environment has everything to do



with how well it meets this initial challenge. We expect this
problem will arise no matter what the nature of the repre-
sentational language. Rather than hope for a “silver bullet”
knowledge representation language, collaborative learning
system designers should instead ensure that process-level
mechanisms exist to overcome these breakdowns when they
inevitably occur.

Finally, we want to point out the exploratory nature of the
evaluation results discussed thus far: our primary goal was to
assess the the viability and usability of the CLARE approach
and to provide evidence and insights about what learners
might do when confronted with such a novel learning en-
vironment. Through this study, we hope to provide a rich
ground on which more rigorous experimentation and field
studies on computer-supported collaborative learning can be
formulated and performed.

RELATED WORK

CLARE is grounded in two theoretical tenets: social con-
structionism [4, 13] and the assimilation theory of cognitive
learning [3, 17]. The former affirms the social nature of learn-
ing and the imperative of engaging learners in collaborative
knowledge construction, as opposed to merely information
sharing. It provides a philosophical foundation for the learn-
ing activities that CLARE supports. The latter is centered on
the concept of meaningful learning, which defines learning
as an ongoing process of relating new knowledge to what
the learner already knows. Meaningful learning emphasizes
explicit use of meta-knowledge to enhance human learning.
Toward this end, two meta-cognitive strategies have been
proposed: concept mapping and Vee diagramming [9, 17].
While the effectiveness of concept mapping is well supported
empirically [6, 16, 18], its inadequacy as a collaborative learn-
ing tool and its lack of computerized support have directly
prompted the current research.

RESRA is related to schema theory in cognitive psychol-
ogy, which contends that human minds store and retrieve
knowledge about the external world in terms of abstract
chunks called schemas [21] and that the schema plays in an
essential role in the selection, abstraction, interpretation, and
integration of information [1]. RESRA is similar to some
knowledge representation research in AI, particularly RA
[22], which proposes an episodic representation for research
literature.

Anumber of semi-structured representation schemes are found
in the literature, for example, IBIS [14, 7], DRL[15], Toul-
min’s rhetorical model [23, 5]. RESRA differs from those
schemes in that, among other things, it is fully integratedwith
an explicit process model (i.e., SECAI) that defines how the
scheme is to be used.

CLARE falls into a special type of computer-based learning
environments called collaborative knowledge construction
tools, as contrasted with information sharing tools, such as
EIES [10], Intermedia [25], and Mosaic [2]. CLARE is
similar to CSILE (Computer-Supported Intentional Learning
Environment) [20, 19] in that both systems reify a social
constructionist paradigm and provide an environment con-
ducive to collaborative knowledge construction. However,
CLARE’s representation scheme provides a meta-cognitive
framework for collaborative learning, while CSILE’s four
thinking types (“I know,” “high-level questions,” “plan,” and
“problem”) only allow learners to categorize their intentions.
In addition, CLARE provides an explicit process model to
control the application of the representation and the process
of collaboration.

CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents findings on a computer-based approach
for supporting learning as a process of collaborative knowledge-
building. The system, CLARE, differs from other learning
systems in three important ways. First, it provides a semi-
structured knowledge representation language that serves as
a shared meta-cognitive framework to facilitate communica-
tion and collaboration among learners. Second, it defines
an explicit process model of collaborative learning. Third,
it implements fine-grained instrumentation mechanisms to
gather detailed process data concerning the behavior of its
users.

Analysis of experimental data confirms thatCLARE is a novel
environment that fosters meaningful learning. It shows that
RESRA and SECAI provide useful structural and process-
level guidance on how to collaboratively construct knowl-
edge. In addition, analysis also reveals a number of issues
for further research.

First, computer-supported collaborative learning is still a
quite recent phenomenon for which no coherent theoretical
frameworks yet exist. Many current learning theories, such
as the ones on which CLARE is based, do not explicitly
address such essential issues as how people develop shared
mental models of the same artifact or problem situation, how
to deal with differing terminologies for the same construct,
and so on. As evidenced from the CLARE experimental
result, these problems are intrinsic and also essential to col-
laborative knowledge-building, and cannot be answered by
simply extrapolating proposals from individual-based learn-
ing theories. Hence, new and better theoretical explanations
and guidance are called for.

Second, collaborative learning is not confined to classroom
settings or scientific artifacts. Rather, it is part of every
work situation in which artifact-based collaboration is re-
quired, such as software development, business proposal



development, and so forth. Our long-term goal is to develop
computer-supported environments that foster collaborative
learning across task domains through tailorable structural and
process-level support. RESRA and SECAI represent the first
step in this direction.

Finally, we intend to apply CLARE’s approach to collabo-
rative learning as a means to assess the quality of the re-
search/learning artifact and to help authors improve the qual-
ity of the artifacts they create. We hypothesize that a good
scientific artifact contains a clearly-articulated knowledge
structure and thus is easier to summarize using CLARE than
a bad artifact. As a simple test of this hypothesis, we invite
you—our readers—to contemplate a RESRA representation
of this paper, and send us your assessments and discoveries.
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