
SUPPORTING TECHNOLOGY TRANSFER OF FORMAL TECHNICAL REVIEW
THROUGH A COMPUTER SUPPORTED COLLABORATIVE REVIEW SYSTEM

Philip M. Johnson
Department of Information and Computer Sciences

University of Hawaii
Honolulu, HI 96822
(808) 956-3489

johnson@hawaii.edu

Abstract

Formal technical review (FTR) is an essential compo-
nent of allmodern software quality assessment,assurance,
and improvement techniques, and is acknowledged to be
the most cost-effective form of quality improvement when
practiced effectively. However, traditional FTR methods
such as inspection are very difficult to adopt in organi-
zations: they introduce substantial new up-front costs,
training, overhead, and group process obstacles. Sus-
tained commitment from high-level management along
with substantial resources is often necessary for successful
technology transfer of FTR.
Since 1991, we have been designing and evaluating

a series of versions of a system called CSRS: an instru-
mented, computer-supported cooperative work environ-
ment for formal technical review. The current version of
CSRS includes an FTR method definition language, which
allows organizations to design their own FTR method,
and to evolve it over time. This paper describes how our
approach to computer supported FTR can address some
of the issues in technology transfer of FTR.

1 Introduction

Among all the software quality improvement methods
currently known, formal technical review (FTR ) enjoys
unique advantages. Some studies provide evidence that
FTR can be more effective at discovering errors than test-
ing, while others indicate that it can discover different
classes of errors than testing [16, 3]. In concert with
other process improvements, Fujitsu found FTR to be so
effective at discovering errors that they dropped system
testing from their software development procedure [1].
FTR forms an essential part of methods and models for
very high quality software, such as Cleanroom Software
Engineering [15] and the SEI Capability Maturity Model
[18]. Finally, FTR displays a unique ability to improve
the quality of the producer as well as the quality of the
product by dispersing knowledge about applications and

We define formal technical review as “a structured encounterwhere
a group of technical personnel analyzes an artifact to improve quality.
The analysis produces a structured artifact that assesses or improves the
quality of the artifact as well as the quality of the method.” This defi-
nition includes methods such as Fagan’s code inspection [6, 7], Phased
Inspections [14], and FTArm (discussed here), but excludes methods
such as informal peer reviews and walkthroughs.

development skills across the organization.
Given the range of advantages ascribed to FTR, and the

substantial improvements in quality and cost-reductions
attributed to it by some organizations, it is curious that
formal technical review is not ubiquitous in modern soft-
ware development. Although rigorous data on industrial
use of FTR is not publically available, responses by 70
participants to an informal survey we conducted on FTR
via USENET revealed that FTR is practiced irregularly or
not at all in over 80%of the surveyed organizations. Simi-
lar non-rigorous evidence for a low level of FTR adoption
in industry is discussed in [4].
Since 1991, we have been designing and experimen-

tally evaluating a computer-supported cooperative work
environment for FTR called CSRS [11, 12, 13]. One
product of this research was the creation of a new, highly
instrumented, asynchronous reviewmethod called FTArm
that addresses a multiplicity of problems arising in the re-
search on and practice of traditional FTR. As we began
discussing technology transfer of CSRS and FTArm with
industrial organizations, we became aware of a spectrum
of organizational issues surrounding the technology trans-
fer of FTR in general and CSRS in particular that must
also be addressed.
These issues and others motivated a recent redesign of

CSRS toprovide a specialized processmodelling language
for FTR. The language is intended to allow organizations
to design their own FTR method for use with CSRS, and
to support incremental evolution in the method as the
organization’s needs for and use of FTR changes.
In the next section, we present some of the problems

involved in successful technology transfer and adoption of
FTR. The following section briefly overviews the CSRS
system and the FTArm method. Following this we dis-
cuss how the process modelling facilities of FTArm can
be applied to address some of the problems that arise in
technology transfer and adoption of FTR.

2 Issues in FTR Technology Transfer

2.1 The transfer process

Our model of technology transfer follows research
which does not view it as a “transfer” at all, but rather
as a reconstruction by one organization of knowledge, ex-
pertise, and technology generated by another [5]. This
contrasts with the conventional view of technology trans-



fer, in which the technology is viewed as a relatively static
object whose successful transfer induces a change in the
receiving organization without impacting upon the tech-
nology itself. When participants in the transfer process
interpret the technology differently, the conventional view
holds that they are either misperceiving the technology or
the technology has been somehow distorted.
The conventional view appears occasionally in the lit-

erature on industrial use of FTR methods, such as Fagan’s
code inspection. Adoption failures are here interpreted as
either a misperception of the meaning of the method or a
failure to implement all parts of the method. Successful
technology transfer, from the perspective of this literature,
is simply a matter of total adherence and commitment to
a single approach to formal technical review.
Other FTR literature describes a more context-sensitive

and reconstructionist view of the adoption process. For
example, a study of FTR technology transfer at Hewlett-
Packard reveals that FTR adoption goes through a series
of stages and that blind adherence to a single standardized
process is a recipe for failure, not success [8]. The four
stages observed at Hewlett-Packard are described in this
study in the following way:
Experimental. This stage is characterized by trial adop-
tion of a not well understood technique by a few groups
within the organizationwith relatively little institutional
support. Surviving the experimental stage of technol-
ogy adoption appears to depend upon: (a) visionary
people who can look at tools and process from an-
other context and see how they can be applied locally;
(b) management support for visionary attempts without
penalty for failure; and (c) a supportive infrastructure,
since mistakes and failures will occur and early success
is very fragile from an organizational standpoint.

Initial Guidelines. Progression out of the experimental
phase is marked by the appearance of training classes
and educational materials on the technique, and the
creation of small-scale infrastructure within the or-
ganization to promote the technology. However, the
Hewlett-Packard researchers caution that readily avail-
able training is a necessary but not sufficient condi-
tion for technology dispersion. For the technology to
become further incorporated into the organization, ef-
fort must be made to communicate success with the
method throughout the organization, through activities
such as newsletters, conferences, and so forth. In ad-
dition, high-level management must be educated in the
evolving “best practice” of the method and they must
continue to display commitment and allocate resources
to the technology

Widespread Belief and Adoption. This stage is char-
acterized by widespread acceptance within the orga-
nization that the technology is useful and important to
the organization’s success. However, such “widespread
belief” does not translate automatically into optimal or
even effective use of the technology, and may even sow
the seeds of the technology transfer’s destruction.
One potential problem at this stage is that management

may become convinced that there is “one best way”
and begin pushing for its total and exclusive adoption.
Hewlett-Packard found that their internal divisions re-
sisted this, prefering a consulting approach whereby
corporate resources were applied to understanding the
specific context and problems of a division, and then
developing an individualized strategy to help the group
improve their current practice.
A second potential problem is that as the use of the
technology spreads across the organization, the aggre-
gate cost of the technology to the organization becomes
increasingly substantial and significant. An effective
business case must be created to ensure that the tech-
nology continues to be used beyond a trial period. Oth-
erwise management may decide that the technology,
though promising, is not cost-effective when scaled to
the organizational level.

Standardization. While Hewlett-Packard has not yet
progressed beyond the previous stage, their researchers
suggest that there is a phase beyond it. This phase
appears to be characterized by total integration of the
technology into the organization, such that questions of
appropriateness are no longer asked—the technology
has become part of what makes the organization what it
is. The HP researchers explicitly note that terming this
stage “standardization” does not imply adherence by
the entire company to a single process, but rather that
every project would use some form of FTR technology
in an efficient, cost-effective manner.

2.2 Obstacles to FTR adoption

Many studies assert that an FTR such as Fagan’s in-
spection is cost-effective and improves software quality,
once successfully adopted and when practiced effectively.
However, it is also clear from studies that FTR is difficult
to adopt and practice effectively. The following obstacles
to effective FTR adoption and use is drawn from [2, 4, 19]:

LowTechnology. FTR typically involves a lot of “metic-
ulous, pain-staking, manual work”. Software develop-
ers, used to e-mail and on-line discussions, may resist
returning to hand-written notes and extensive meetings
with high clerical and administrative overhead.

Ambiguity in Data/Process Model. Without proper
training, manual FTR methods are easy to misinter-
pret or misapply in practice. Successful introduction
of a method requires training to impart a precise under-
standing of the process to be followed, since different
approaches may have widely varying benefits.
Ambiguity in the FTR method may also lead manage-
ment to block introductionof a newmethod based upon
the mistaken notion that “we’ve tried this before and it
didn’t work.”

Absolute Expense. The cost of developing manual FTR
infrastructure (planning, training, developing forms)



and the cost of performing FTR (preparation, meet-
ings, filling out forms, data analysis) is substantial.
At Bell-Northern Research, one person-year of effort
was expended for each 20 KLOC under FTR, and this
introduced 15-25% new overhead to the development
process. (These upstream costs were recovered down-
stream during testing and maintenance.)

Relative Expense. An organization which already has
an informal review method in place may not feel that
the additional benefits will justify the additional cost.

Demand for proof. Introduction of FTR requires ap-
proval frommanagement who willwant to see evidence
that the process is worth the investment. However, man-
agement may frequently reject evidence from published
reports as not relevent to their organization, and collect-
ing statistically meaningful in-house data is impossible
until inspections have actually been adopted.

Developer inertia. Adopting FTR requires convincing
management that the organization will benefit. How-
ever, adoptingFTR also requires convincing developers
that their professional quality of life will improve. FTR
is often resisted by developers, who see it as yet one
more hurdle placed between them and successful dis-
charge of their responsibilities.

Training. Successful adoption of FTR typically re-
quires extensive training. For example, Bell-Northern
Research developed a self-study video course involving
examples of both effective and ineffective inspection
meetings, the meeting process, team roles, error report-
ing, planning guidelines, and paraphrasing, along with
an example program for practice. Hewlett-Packard pro-
vided both initial training and a “continuing education”
program to keep participants abreast of changes and
improvements to their FTR program.

Fire fighting. If a project is already having process
problems, then the group may be resistant to the intro-
duction of any new process hurdles. Moreover, if the
project is having extensive process problems, then FTR
may not the most important way for the team to ex-
pend their time and resources. The CapabilityMaturity
Model, for example, only mentions peer reviews start-
ing at Level 3, after more basic project management
mechanisms have been put into practice.

Improved quality not beneficial to bottom line. Qual-
ity in a certain product may be desired but is traded
off against other goals (such as profit, schedule, etc.)
Adoption of FTR may be resisted because it is viewed
as improving quality at the expense of other goals more
important to management.

Perceived long-term inefficiency during maintenance.
The cost of FTR during maintenance becomes particu-
larly high, since a change to a unit requires a complete
re-inspection with almost no savings from previous in-
spections. In contrast, re-testing a changed unit is vir-
tually free since it simply requires re-running tests. In

maintenance-heavy contexts, management may view
development of regression test suites as more cost-
effective than FTR.

Possible ineffectiveness during maintenance. During
maintenance, change to one part of the system may
have a ripple effect that causes a fault in a different
part of the system. This kind of fault is extremely
difficult to detect using FTR, unless the organization is
willing to allow a single change to the system to trigger
a massive re-inspection of all potentially affected parts.
Again, testing may be viewed as more cost-effective,
since testing is potentially capable of detecting such
interactions.

Having now identified some of themajor issues in tech-
nology transfer of FTR, we now overview CSRS, our
computer supported environment for FTR. Following this
introduction, we will describe how the process modelling
language for FTR in CSRS can be used to facilitate the
technology transfer process.

3 CSRS: Computer Supported FTR Defini-
tion and Enactment

CSRS is a multi-user, interactive hypertext environ-
ment for performing FTR, implemented using the Egret
collaborative work environment [10]. Egret has a client-
server architecture, where a database back-end server
Unix process written in C++ communicates over TCP/IP
to X window client processes implemented using a cus-
tomized version of Lucid Emacs.
Egret is designed to support collaborative systems con-

taining a mixture of interactive “user” processes directly
controlled by people and autonomous “agent” processes
that provide computational services. For example, many
CSRS methods include a mailer agent that wakes up once
or twice a day, inspects the state of review, and sends an
e-mail message to participants notifying them of any new
activities for them to perform.
Just as Egret is a generic framework for collaborative

group work, CSRS is a generic framework for computer-
supported FTR. The implementation of this generic frame-
work involves a set of language constructs for defining a
computer-mediated FTR method. To illustrate the capa-
bilities of CSRS, the next section overviews FTArm, one
of the FTR methods that can be defined using CSRS.

3.1 The FTArm Method

FTArm is a computer-mediated FTR method designed
to leverage off the strengths of an on-line environment to
address certain problems ofmanual FTR. The FTArm pro-
cess consists of seven phases where participants interact
within the roles of moderator, producer, reviewer, or ad-
ministrator. The FTArm method is not specific to a review



artifact type or development phase.

Setup. In this phase, the moderator and/or the producer
decide upon the composition of the review team and the
artifacts to be reviewed. The moderator or producer
then restructures the review artifact into a multi-node,
interlinked hypertext document stored within the CSRS
database. Regular expression-based parsing tools avail-
able in CSRS can partially or fully automate this database
entry and restructuring process.

Orientation. This phase prepares the participants for the
private review phase through an overview of the review
artifacts. The exact nature of this overview depends upon
the complexity of the review artifact and the familiarity of
the reviewers with it, and can range from a simple e-mail
message to a formal, face-to-face meeting.

Private review. In this phase, reviewers analyze the re-
view artifact nodes (termed “source” nodes) privately and
create issue, action and/or comment nodes. Issue and ac-
tion nodes are not publicly available to other reviewers,
though comment nodes are publicly available. Comment
nodes allow reviewers to request clarification about the
logic/algorithm of source nodes, or about the review pro-
cess, and may also contain answers to these questions by
other participants.
Figure 1 contains a snapshot of one reviewer’s screen

during the private review phase. The function t*node-
schema!combine-field-IDs is the review artifact under
analysis, as displayed in the left hand window. A check-
list of defect classifications appears in the upper right
window, while a defect concerning this function is being
documented in the lower right window.
In FTArm, reviewers must explicitly mark each source

node as reviewed when finished. While reviewers do not
have access to each other’s state during private review, the
moderator does. This allows the moderator to monitor the
progress of private review. Private review normally ter-
minates when all reviewers have marked all source nodes
as reviewed. In the event that no reviewer has created any
issues, review would terminate at this point. Otherwise,
public review begins.

Public review. In this phase, all nodes are now access-
able to reviewers, and all participants (including the pro-
ducer) react to the issues and actions by voting (amodified
Delphi process). Participants can also create new issue,
action or comment nodes based upon the votes or nodes
of others. Voting is used to determine the degree of agree-
ment within the group about the validity and implications
of issues and actions. Public review normally concludes
when all nodes have been read by all reviewers, and when
voting has stabilized on all issues.

Consolidation. In this phase, the moderator analyzes
the results of public and private review, and produces a
condensed written report of the review thus far. These

consolidated reports are more comprehensive, detailed,
and accurate than typical review reports from traditional
review methods. Rather than simply a checklist of char-
acteristics with brief comments about the general quality
of the source, consolidation reports contain a re-organized
and condensed presentation of the analyses provided by
reviewers in issue, action, and comment nodes, thus pro-
viding contrasting opinions, the degree of consensus, and
proposals for changes.
CSRSprovides themoderator withvarious tools to sup-

port the generation of a nicely formatted LaTeX document
containing the consolidated report. If the group reached
consensus about all of the issues and actions duringpublic
review, then this report presents the review outcome with
respect to artifact assessment. A second review outcome
is detailed and accurate measurements of review outcome
and process.

Group review meeting. If the consolidated report iden-
tifies issues or actions that were not successfully resolved
via public and private review, the FTArm method requires
a face-to-face, group meeting as the final phase. Here the
moderator presents only the unresolved issues or actions
and summarizes the differences of opinion. After discus-
sion, the groupmay vote to decide them, or the moderator
may unilaterally make the decision. The moderator then
updates the CSRS database, noting the decisions reached
during the group meeting and then generating a final con-
solidated report representing the product of review.

Process Improvement Meta-Phase. The preceding
phases provide a framework for the FTR process, but also
allow for evolution in response to various measurements
automatically provided by CSRS. The system automati-
cally generates a timestamped log of the sequence of nodes
visited and links traversed by participants during review.
CSRS analysis tools use this data to provide useful pro-
cess measurements, such as the number of minutes spent
by each reviewer on each source artifact, the number of
issues raised per minute of review time, the review strat-
egy employed by participants, the level of consensus in
the review, and so forth. This data can be used to improve
such method variables as: artifact size and complexity,
review team size and composition, private review analysis
technique, review checklist composition (if checklists are
used), public review scope and duration, individual and
team effort, and scope and duration of group review.

3.2 Process modelling in CSRS

As the preceeding description illustrates, FTR inCSRS
consists of structured interactions between a group of peo-
plewithwell-defined roles. These interactions are divided
into a sequence of phases, during which they analyze
source artifacts using various analysis tools and artifacts,
resulting in the production of review artifacts. The pro-
cess is measured and the measurement data is analyzed in
various ways to provide insight into the process and prod-
ucts of review. Each of these fundamental characteristics



Figure 1: A CSRS screen illustrating the generation of an issue.

of an FTR method can be customized in CSRS using its
process modelling language:

Method definition. CSRS provides two language con-
structs called define-method and define-phase that al-
low method designers to implement a new method as
a sequence of phases. CSRS does not currently sup-
port iteration or conditionals in phase sequencing, in
keepingwith manual FTR techniques. (However, itera-
tive or conditional activities may occur within a phase).
Phases can have entry and exit conditions associated
with them to determine when it is possible to transition
from one phase to the next.
Each phase also has a distinct set of operations asso-
ciated with it, as specified using the define-operation
construct. Each operation can be made highly context-
sensitive to the current state of review and the current
role of the participant.

User definition. CSRS allows specification of review
method roles through the define-role construct, and the
actual people involved in a particular review through
the define-participant construct. A given participant
can play multiple roles during review. There is one
hard-wired role called Administrator that is present by

default in all review methods, and which is used to
bootstrap the system. Roles found in other methods
can be defined in CSRS, such as moderator, producer,
reviewer, and reader.

Artifact definition. CSRS provides constructs such as
define-node-schema, define-field-schema, and define-
link-schema to allow construction of the type-level
characteristics of the artifacts manipulated during re-
view. For example, a requirements review method
might provide nodes orfields of type overview, product-
functions, functional-requirements, external-interface,
performance-constraints, hardware-limitations, and so
forth. A C++ code review method might provide nodes
or fields of type class-declaration, member-function,
member-variable, private-part, public-part, protected-
part, template, and so forth.
The define-checklist and define-checkitemconstructs al-
low specification of materials used during analysis and
their properties, such as whether the reviewers are re-
quired to explicitly mark an item as satisfied by the
artifact or not.

Measurement definition. In the current version of
CSRS, method designers have only binary control over



the generation of the timestamped log file containing
fine-grained raw data on the activities of reviewers: ei-
ther fine-grained raw data is collected or it is not. How-
ever, designers have a great deal of controlover how this
data is analyzed, and whether the identities of review-
ers are revealed in the analysis, whether only aggre-
gate group statistics are generated, and so forth. CSRS
provides several predefined analysis tools for use by
designers which generate spreadsheet-compatible data
files on the review process and outcomes.

This description covers approximately half of the lan-
guage constructs, and leaves out entirely those constructs
concerned with user interface features of the method, such
as the layout of screens and menus.
While the language provides substantial support for

definition of FTR methods, it does not trivialize it. For
example, the definition of FTArm in the process modelling
language requires over 100 construct invocations and over
1000 lines of code. The language contains a mixture of
declarative and procedural specifications of behavior, and
certain behaviors (such as the agents) must be specified
in terms of underlying Egret primitives. However, this
definition of FTArm represents less than 3% of the total
size of the Egret/CSRS system, so substantial reuse of
code and development effort is achieved.

4 Technology transfer using CSRS

As mentioned previously, when we began discussing
technology transfer of a previous version of CSRS (that
did not include a process modelling language, but which
did include FTArm), we ran into a variety of adoption
problems.
First, managers were concerned that FTArm, while in-

teresting, was either too complicated a method to im-
plement initially or too different from their current FTR
practice, and would cause significant organizational per-
turbations.
Second, developers were concerned about the detailed

data to be gathered: the idea that their activities were being
so precisely monitored caused repeated reference to the
“Big Brother” [17] nature of the system, with its attendant
possibility of management abuse.
Finally, there was a class of problems raised by

both managers and developers concerning the use of a
computer-supported cooperative work system to replace
a manual process. Such “groupware technology transfer”
problems are significant. The challenges of successful
groupware adoption in comparison to single-user, off-the-
shelf applications has been described as follows:

A word processor that is immediately liked
by one in five prospective customers and dis-
liked by the rest could be a big success. A
groupware application to support teams of five
nurses that initially appeals to only one nurse in
five is a big disaster. [9]

Interestingly, there is a great deal of overlap between the

technology transfer problems of groupware and that of
FTR. An FTR method that initially appeals to only one
developer in five is also a big disaster.
From our discussions, we concluded that both man-

agers and developers felt that computer supported FTR
can significantly improve their software quality improve-
ment practice, but that they require more control over the
FTR method enacted by the environment. To provide this
control, we redesigned CSRS to provide the process mod-
elling language described above. We now illustrate how a
transfer process based upon incremental evolution in the
FTR method can help support adoption of FTR in general
and CSRS in particular within an organization.

4.1 Experimental Phase

The initial, experimental phase of technology transfer
is particularly fragile and prone to failure. During this
phase, the process model enacted by CSRS must be sim-
ple, training should be minimal, and the user interface
should be simple and intuitive. In addition, the use of
a computer-supported tool should provide both managers
and developers with significant benefits. An immediate
advantage that CSRS has over traditional FTR methods is
that it is a “high-tech”, on-line system, which eliminates
the vast majority of clerical, manual activities formerly
associated with review.
The most appropriate initial review method to enact

within CSRS during the experimental phase always de-
pends upon specific organizational factors, but perhaps
the most important one is the organization’s prior experi-
ence with review.

4.1.1 No Prior FTR Experience

A common situation is one in which the organization rec-
ognizes a need to perform FTR, but has very little expe-
rience with it. In this situation, two technology transfers
must occur: transfer of FTR into the organizational pro-
cess, and transfer of CSRS as a technology for enactment
of FTR.
Some of the obstacles toFTR adoption in organizations

new to review are fears that FTR will take too much time
away from coding, that it will be too expensive, and that
developers will have difficulties adjusting to the increased
visibility of their intermediate work products.
To explore how CSRS can support FTR adoption in

this situation, we designed an FTR method called “Hello-
World” (HW). The HWmethod consists of a single review
phase inwhich all participants scan the review artifact and
generate anonymous comments to raise and react to issues.
Once all reviewers have scanned the artifact, they attend
a meeting to decide upon the validity of the issues.
The HW method provides only three automated ser-

vices:

1. HW provides a mailer agent that runs once a night



during review. It sends a daily “CSRS News” e-mail
message to each reviewer as long as work remains
to be done by the reviewer—either remaining review
artifacts or new comment nodes that the reviewer has
not yet seen.

2. HW provides a hard-copy mechanism to provide a
nicely formatted version of the review artifact and all
the comments generated about it. This artifact also
provides checkboxes for each issue to log the deci-
sion of the participants at the groupmeeting about its
validity.

3. HW provides coarse, anonymous statistics: the total
number of minutes users were on-line in the system,
and the total number of issues raised.

The goal of the HWmethod is to demonstrate to an or-
ganization new to review that FTR can be cost-effective,
that review need not be excessively time-consuming or
tedious, and that making work products visible in this
manner can be positive for both the producer and the re-
viewers. By making all reviews public immediately, it
stimulates activity in the system since there will be fre-
quently a new comment to look at. Allowing reviewers
to see comments in advance can reduce the chances of
long or unproductive meetings, and automatic hard-copy
generation and statistics keeps clerical overhead to a min-
imum. For management, HW provides simple statistics
which can show some initial data on the ability of FTR to
detect faults and the effort required to do so.
The HW method, while technically a formal technical

review method, is still relatively unstructured, and does
not allow much of the sophisticated process control and
analysis supported in a method like FTArm. However,
it appears to be much better suited than a method like
FTArm for the initial buy-in phase of FTR adoption for
organizations with no prior FTR experience.

4.1.2 Prior FTR Experience

The strategy for organizations with prior experience in
FTR is quite different. In this case, it is important to
assess the current state of FTR within the organization
and tailor a CSRS method in response.
For example, an organizationmay have adopted a tradi-

tional inspection-basedprocess andmay have experienced
some success with it, but is still in the “experimental”
stage. This could be result from inconsistent application
of the method resulting in inconsistent outcomes. It could
also result from a lack of resources to collect data with
which to publicize the successes of the method.
In this case, it might be appropriate to design a CSRS-

based method that closely parallels the current method in
place. Several advantages result from this strategy. First,
it reduces training, since developers can be told that the
CSRS FTR method is “just like” the one they are now
using, except for a small set of differences. Second, the
CSRS method can reduce variation in the practice of the
review method, which may lead to more consistent out-
comes. Finally, a CSRS-based system can automatically

collect and analyze process and outcome measurements,
allowing groups with limited resources to publicize de-
tailed and accurate data about their experiences. Such
data can help obtain management commitment to FTR.
CSRS can also apply to organizations that have tried

but failed to adopt traditional FTR methods. For exam-
ple, one organization we work with requires review of
change-request documents by at least a dozen personnel
from different departments, and sometimes as many as
twenty or thirty. All traditional formal technical review
methods of which we are aware simply view this as an
“error”: it is simply not possible to perform FTR with
more than 6-8 people. Unfortunately for traditional FTR
methods, the reality in this organization is that the change-
request document must be reviewed by large numbers of
people. Although an ingenious, email-based approach
was developed in this organization to support FTR, we
believe that many organizations in this situation would
simply abandon FTR as inappropriate.
In such situations, CSRS may provide a means to ex-

pand the boundaries of FTR application. An on-line sys-
tem such as CSRS can easily support reviews involving
40 or 50 reviewers who may be geographically dispersed
and unable to attend face-to-face meetings. Unlike email,
CSRS can provide a more structured process as well as ac-
curate and precise measurements of process and outcome.

4.2 Later phases

Weexpect that technology transfer ofCSRS-basedFTR
to an organization will progress in much the same way as
the four stage model used to characterize the Hewlett-
Packard adoption process. Progression beyond experi-
mental usage involves the creation of small-scale infras-
tructure within the organization to further spread the tech-
nology through training. With sufficient time, the technol-
ogy could become widely adopted and eventually become
a standard part of the organization’s quality improvement
practice.
A significant difference between CSRS-based FTR

technology transfer and traditional practice is the focus
upon explicit evolution in FTR method as an active part of
the technology transfer process. This contrasts to a “big
bang” approach, in which a single, full-blown method is
taught to groups and instituted in its total, mature format.
From our prior experiences discussing technology transfer
with organizations, we believe that successful adoption
of CSRS must be performed incrementally. The initial
method must be modest in scope, but still cost-effective.
As the organization becomes more used to a computer-
supported method, ideas for more sophisticated services
and process details will arise naturally as the organization
assesses its practice. This evolutionary process of method
refinement and improvement reifies the reconstructive na-
ture of technology transfer using CSRS.

5 Conclusions
This paper presents an approach to technology transfer

of formal technical review that is based upon an on-line,



interactive environment and evolution in themethod as the
nature of FTR within the organization matures over time.
The approach can address several of the obstacles iden-

tified above. It overcomes the “low technology” obstacle
with a computer-supported approach to eliminate much
of the clerical overhead involved in traditional FTR. It re-
duces ambiguity in method application, leading to clearer
relationships between method and outcome. It reduces
several cost factors for FTR. In particular, it automates
collection and analysis of several common reviewmetrics,
allowing groups to quickly generate in-house data at with
little additional overhead. By appropriate method defini-
tion, it can help overcome developer inertia by providing
them with a tool to quickly and efficiently communicate
skills and knowledge within the group.
However, the approach is not a panacea. It still requires

training, resources, and a commitment to the process by
management. As with other forms of FTR, it may not be
appropriate for groups without basic project management
mechanisms in place, and it does not resolve important
maintenance-related issues.

6 Acknowledgements
The author gratefully acknowledges current and past mem-

bers of the Collaborative Software Development Laboratory:
Danu Tjahjono, Rosemary Andrada, Carleton Moore, Dadong
Wan, and Robert Brewer for their contributions to the develop-
ment of CSRS. Support for this research was partially provided
by the National Science Foundation Research Initiation Award
CCR-9110861.

References
[1] Lowell Jay Arthur. Improving SoftwareQuality. Wi-

ley Professional Computing, 1993.

[2] Victor Basili, Michael Daskalantonakis, and Robert
Yacobellis. Technology transfer at Motorola. IEEE
Software, 11(4), March 1994.

[3] V.R. Basili, R.W. Selby, and D.H. Hutchins. Exper-
imentation in software engineering. IEEE Transac-
tions on Software Engineering, SE-12(7):733–743,
July 1986.

[4] Bill Brykczynski, Reginald Meeson, and David A.
Wheeler. Software inspection: Eliminating software
defects. In Proceedings of the Sixth Annual Soft-
ware Technology Conference, Alexandria, VA., May
1994.

[5] StephenDoheny-Farina. Rhetoric, Innovation, Tech-
nology: Case Studies of Technical Communication
in Technology Transfers. MIT Press, 1992.

[6] Michael E. Fagan. Design and code inspections to
reduce errors in program development. IBM System
Journal, 15(3):182–211, 1976.

[7] Michael E. Fagan. Advances in software inspections.
IEEE Transactions on Software Engineering, SE-
12(7):744–751, July 1986.

[8] Robert Grady and Tom Van Slack. Key lessons in
achieving widespread inspection use. IEEE Soft-
ware, 11(4), July 1994.

[9] Jonathan Grudin. Groupware and social dynamics:
Eight challenges for developers. Communications of
the ACM, 37(1):92–105, January 1994.

[10] Philip M. Johnson. Supporting exploratory CSCW
with the EGRET framework. In Proceedings of the
1992 Conference on Computer Supported Coopera-
tive Work, November 1992.

[11] Philip M. Johnson. An instrumented approach to
improving software quality through formal technical
review. In Proceedings of the 16th International
Conference on Software Engineering, May 1994.

[12] Philip M. Johnson and Danu Tjahjono. Improving
software quality through computer supported col-
laborative review. In Proceedings of the Third Euro-
pean Conference on Computer Supported Coopera-
tive Work, September 1993.

[13] Philip M. Johnson, Danu Tjahjono, Dadong Wan,
and Robert Brewer. Experiences with CSRS: An
instrumented software review environment. In Pro-
ceedings of the Pacific Northwest Software Quality
Conference, 1993.

[14] John C. Knight and E. Ann Myers. An improved
inspection technique. Communications of The ACM,
11(11):51–61, November 1993.

[15] Richard C. Linger. Cleanroom software engineering
for zero-defect software. In Proceedings of the 15th
International Conference on Software Engineering,
1993.

[16] G. Myers. A controlled experiment in program test-
ing and code walkthrough/ inspection. Communica-
tions of the ACM, 21(9):760–768, September 1978.

[17] George Orwell. Nineteen eighty-four. Clarendon
Press, New York, 1984.

[18] Mark C. Paulk, Bill Curtis, and Mary Beth Chris-
sis. Capability maturity model, Version 1.1. IEEE
Software, 10(4), July 1993.

[19] Glen W. Russell. Experience with inspection in
ultralarge-scale developments. IEEE Software, Jan-
uary 1991.


