
AUTOMATED SUPPORT FOR TECHNICAL SKILL ACQUISITION AND
IMPROVEMENT: AN EVALUATION OF THE LEAP TOOLKIT

A DISSERTATION PROPOSAL SUBMITTED TO THE GRADUATE DIVISION
OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMMUNICATION AND INFORMATION SCIENCES

By
Carleton A. Moore

Dissertation Committee:

Philip Johnson, Chairperson
James Corbett

Elizabeth Davidson
Marie Iding

Larry Osborne

November 30, 1999
Version 2.0.3

Abstract

Software developers work too hard and yet do not get enough done. Developing high

quality software efficiently and consistently is a very difficult problem. Developers and managers

have tried many different solutions to address this problem. Recently their focus has shifted from

the software organization to the individual software developer. The Personal Software Process

incorporates many of the previous solutions while focusing on the individual software developer.

I combined ideas from prior research on the Personal Software Process, Formal Technical

Review and my experiences building automated support for software engineering activities to pro-

duce the Leap toolkit. The Leap toolkit is intended to help individuals in their efforts to improve

their development capabilities. Since it is a light-weight, flexible, powerful, and private tool, it al-

lows individual developers to gain valuable insight into their own development process. The Leap

toolkit also addresses many measurement and data issues involved with recording any software

development process.

The main thesis of this work is the Leap toolkit provides a more accurate and effective

way for developers to collect and analyze their software engineering data than manual methods.

To evaluate this thesis I will investigate three claims: (1) the Leap toolkit prevents many important

errors in data collection and analysis; (2) the Leap toolkit supports data collection and analyses that

are not amenable to manual enactment; and (3) the Leap toolkit reduces the level of “collection

stage” errors. To evaluate the first claim, I will show how the design of the Leap toolkit effectively

prevents important classes of errors shown to occur in prior related research. To evaluate the second

claim, I will conduct an experiment investigating 14 different quantitative time estimation tech-

niques based upon historical size data to show that the Leap toolkit is capable of complex analyses

not possible in manual methods. To evaluate the third claim, I will analyze software developers data

and conduct surveys to investigate the level of data collection errors.

ii

Table of Contents

Abstract . ii
List of Tables . vi
List of Figures . vii
1 Introduction . 1

1.1 Why is Quality Software Development Important?. 1
1.2 Traditional Solutions . 2
1.3 LEAP: Giving developers more control and insight 3
1.4 Thesis Statement . 6
1.5 Evaluation of the Leap toolkit . 6
1.6 Anticipated Contributions . .. 8
1.7 Organization of the Proposal . 8

2 Related Work . 9
2.1 Personal Software Process .. 9

2.1.1 Goals . 9
2.1.2 Learning the PSP . 10

2.1.2.1 PSP0: The Baseline Process 10
2.1.2.2 PSP1: The Personal Planning Process 11
2.1.2.3 PSP2: Personal Quality Management 12
2.1.2.4 PSP3: Cyclic Personal Process. 12

2.1.3 Using the PSP . 13
2.1.4 Evaluations of the PSP . 13
2.1.5 Disney Thesis on Data Quality in the PSP. 14

2.2 Automated PSP Tools . 15
2.2.1 Full automation . 16

2.2.1.1 psptool . 16
2.2.1.2 PSP Studio . 16
2.2.1.3 PSP Tool . 16

2.2.2 Partial PSP automation. 16
2.2.2.1 pplog-mode, PPLog Control, Timmie and makelog 16
2.2.2.2 titrax 17
2.2.2.3 timelog . 17
2.2.2.4 PC LOC Accounting Tools . 17
2.2.2.5 locdelta . 17
2.2.2.6 LOCC . 17

iii

2.3 Formal Technical Review . 18
2.4 Measurement Dysfunction .. 21

2.4.1 Measurement Dysfunction in the PSP 22
2.4.2 Measurement Dysfunction in Review 22
2.4.3 Measurement Dysfunction in the Leap toolkit. 22

3 Supporting Software Developer Improvement with LEAP. 23
3.1 Background. 23
3.2 Design criteria 24

3.2.1 Criteria #1: Light-Weight 24
3.2.2 Criteria #2: Empirical . 25
3.2.3 Criteria #3: Anti-measurement Dysfunction. 25
3.2.4 Criteria #4: Portable. 25

3.3 Leap toolkit: a reference implementation of the LEAP philosophy 25
3.3.1 Support for personal process improvement. 25
3.3.2 Support for Review .. 26
3.3.3 Reducing Measurement Dysfunction 26
3.3.4 Providing Light Weight Support. 27
3.3.5 Supporting Empirical Data Analysis 27
3.3.6 Reducing Measurement Dysfunction 27
3.3.7 Providing a Portable Tool . 28

3.4 Intended Benefits of Leap toolkit’s design . 28
3.4.1 The Leap toolkit prevents many important classes of errors found in the PSP 28
3.4.2 The Leap toolkit improves estimation and planning 29
3.4.3 The Leap toolkit reduces collection stage errors 29

4 Evaluation . 30
4.1 Claim #1: Preventing important classes of errors 30
4.2 Claim #2: Sophisticated approaches to data analysis. 31

4.2.1 Experimental environment . 31
4.2.2 Experimental variables . 31

4.2.2.1 Independent and Dependent variables 31
4.2.2.2 Blocking variable . 32

4.2.3 The Design . 32
4.2.4 Analysis . 33
4.2.5 Example Data . 34

4.3 Claim #3: Reduces collection stage errors . 36
4.3.1 Case Study Method . 36

4.3.1.1 Ensuring Anonymity . 36
4.3.2 Data Collection . 36

4.3.2.1 Student’s raw data . 37
4.3.2.1.1 Indirect Collection Error Evidence 37
4.3.2.1.2 Direct Collection Error Evidence 37

4.3.2.2 Surveys . 37
4.3.2.3 Leap Survey #1 . 38

4.3.2.3.1 Topics . 38
4.3.2.3.2 Summary of Questions for Survey #1 38

iv

4.3.2.4 Leap Survey #2 . 38
4.3.2.4.1 Topics . 38
4.3.2.4.2 Summary of Questions for Survey #2 39

4.3.2.5 Leap Survey #3 . 39
4.3.2.5.1 Topics . 39
4.3.2.5.2 Summary of Questions for Survey #3 39

4.3.2.6 Leap Survey #4 . 39
4.3.2.6.1 Topics . 39
4.3.2.6.2 Summary of Questions for Survey #4 39

4.3.3 Possible Interviews with students . 40
5 Time line . 41
A Leap Evaluation Surveys . 42
Bibliography . 53

v

List of Tables

4.1 Example Project Data. 34
4.2 Example Predicted Error. 35
4.3 Example ANOVA for Predicted Error. 35
4.4 Proposed Study Schedule. 38

5.1 Proposed Research Time line.. 41

vi

List of Figures

1.1 Eras of Software Development Improvement . 2
1.2 Leap Toolkit Controller. This is the main controller for the Leap toolkit. The devel-

oper may start data recording tools or start tools to modify their definitions. 5
1.3 Hee Project Viewer. This tool allows the developer to define, plan and analyze a

single project. Cam has filled out the name, description and start date for the Multi-
User Calendar project. He has also decided to use his Development process for this
project. 5

1.4 Io time recording tool. Io allows the developer to easily record the amount of time
they spend working on a task. They may also account for any interruptions by
recording interrupt time. In this Figure Cam has worked for 40 minutes on the
design of the Multi-User Calendar. 7

1.5 Time Estimation Tool. The time estimation tool shows Cam’s historical data. Cam
has chosen Linear Regression for the trend lines and Lines of code as the size mea-
sures for time estimation. The planned size 3022 is taken from Hee. Based upon
this data the project should take from 1699 to 2321 minutes.. 7

2.1 PSP levels . 11
2.2 PSP0.1 phases 12
2.3 PSP2.0 phases 12
2.4 PSP3.0 phases 13
2.5 Generic Review Process . .. 18
2.6 Spectrum of Formal Technical Reviews . 20

A.1 Leap survey #1 page 1 . 43
A.2 Leap survey #1 page 2 . 44
A.3 Leap survey #2 page 1 . 45
A.4 Leap survey #2 page 2 . 46
A.5 Leap survey #2 page 3 . 47
A.6 Leap survey #3 page 1 . 48
A.7 Leap survey #3 page 2 . 49
A.8 Leap survey #4 page 1 . 50
A.9 Leap survey #4 page 2 . 51
A.10 Leap survey #4 page 3 . 52

vii

Chapter 1

Introduction

At the start, when we know much about the problem and nothing about the solution, the
solution is very abstract.– Robert H. Dunn

Every software developer wishes they got home from work sooner and spent less of their

weekend at work. Software developers work very hard and very long, yet software is often delivered

late, over budget, and full of defects. Over forty years of software development experience has not

helped us solve this problem. How can software developers gain more control over their software

development and produce high quality software efficiently? Project LEAP and the Leap toolkit in

particular attempts to give developers the control and skills they need. Before I discuss Leap I will

give a short background of the software development problem.

1.1 Why is Quality Software Development Important?

Software is controlling more safety critical tasks and important functions[1]. Yet soft-

ware errors occur sometimes with horrible costs. Between 1985 and 1987 the Therac-25 radiation

therapy machine killed two people and seriously injured four others by delivering massive radiation

overdoses. Investigations found that many issues were to blame including faulty software[24].

In March 1995, the Denver International Airport opened over 16 months late and over 100

million dollars over budget. One of the primary reasons for the delay and overrun was the presence

of major bugs in the baggage handling control software[11].

Another problem with current software development is productivity. The insatiable de-

mand for more software has out-paced our ability to produce software. Software productivity has

not kept pace with hardware cost/performance ratios. The most optimistic rate at which program-

mer productivity is increasing is 5% per year, while there is greater than a ten fold increase in the

1

demand for software each decade.[6] The government of the United States of America faces this

problem. In 1996 Computerworld reported that delays in overhauling the federal tax computer sys-

tems cost the U.S. Treasury as much as $50 billion per year.[11] The problem of overhauling of the

tax computers is not purely a software issue but the software system is a large part of the problem.

1.2 Traditional Solutions

Software developers and managers have addressed software quality and development is-

sues since the beginning of the computer age. Developer and managers have continuously aug-

mented the development methods they use. We can divide these methods into four eras: hope-based,

product-based, organization-based, and individual-based. Figure 1.1 shows a time line of software

development improvement and the different eras.

-

Time
z

1960s
z

1970s
z

1980s
z

1990s
z

Hope-based

(Try harder)

�
��

@
@@

Product-based

(Testing, FTR)

@
@@

�
��

Organizational-based

(CMM, ISO 9000)

�
��

@
@@

Individual-based

(PSP)

@
@@

�
��

Figure 1.1: Eras of Software Development Improvement

In the 1960’s much of the software development improvement efforts were just focused

on doing better. The problems of software development tended to be small since computers were

very small as compared to today’s computers. Trying harder seemed like a reasonable solution.

In the 1970’s people realized while the “try-harder” method did help improve software

development it was not enough. Computers and software programs were getting more complex and

2

new methods were needed. Developers and researchers started looking at the work products. Many

Developers and Computer Scientists advocated testing to help improve the quality of software. In

1976 Fagan reported on Software Inspection’s[8] success as a method to efficiently improve the

quality of the work product.

In the late 1980’s the focus shifted from the work products to the organizations that pro-

duced the work products. The SEI introduced the Capability Maturity Model[26] and ISO 9000[17]

became wide spread. These organizational processes helped improve software quality and the de-

velopment processes but didn’t completely solve the problem.

In the late 1990’s some Computer Scientists and Developers changed their focus again

from the organization to the individual software developer. In 1995 Humphrey introduced the Per-

sonal Software Process[15], a software development process and improvement process for individ-

ual software developers. The PSP is a manual process where the developer collects data about the

amount of time they spend, the size of the work product and the defects they make while developing

software. By analyzing the data at the end of the project, the developer gains insights into their

development process. These insights help the developer increase productivity and work product

quality.

Many studies have shown the PSP helps improve software development[9, 13, 23, 30],

but is not the complete solution to the software development issue.

After using the PSP for two years in our research group, the Collaborative Software De-

velopment Laboratory (CSDL), we decided to try to build upon the PSP’s strong foundation and

incorporate features of formal technical review to produce a more effective software developer im-

provement tool.

1.3 LEAP: Giving developers more control and insight

LEAP is a design philosophy intended to produce effective tools that allow developers to

gain valuable insight into their own software development. Using the LEAP design philosophy I

developed the Leap toolkit, a Java application that supports technical skill acquisition.

Using the Leap toolkit example

I will introduce the Leap toolkit by using a hypothetical software developer, Cam, and his

manager, Philip. Cam and Philip work for a small world class Java software development company.

3

Cam has been using the Leap toolkit for about a year to keep track of his Java programming projects.

He has a small database of over 30 Java projects.

Starting a new project

Philip calls Cam into his office to discuss Cam’s next project. The next project is an

extension to their single user calendar tool that allows multiple users to use the same calendar while

keeping some events private. Philip gives Cam the requirements for the new extension and ask him

how long the project will take. Cam tells Philip that he needs to do some design work before he can

give an accurate estimate. Cam goes back to his cubicle and starts the Leap toolkit shown in Figure

1.2.

Defining the new project

To start the new project Cam opens the Projects (Ilio) tool. To create a new project Cam

starts the project editing tool Hee on the first blank line. He types in the name of the new project

“Multi-User Calendar” and a brief description of the project. Then he selects the start date for

the project and chooses the PhaseSet that he plans on using. The PhaseSet is a set of phases that

describe his development process. Cam evolved his current PhaseSet after experimenting with

different development processes. Figure 1.3 shows the Hee project viewer.

Developing an initial design

Cam then starts the Io timer tool to record the time he spends designing the new project.

Figure 1.4 shows the Io timer after he started recording time for the design phase.

Cam works on the design for the new project and when he finishes his design he clicks

the stop button on Io and then records his time in the Leap toolkit.

Project Planning

With the initial design of 30 classes and 168 methods.

Size Planning Cam then opens the Project Comparisons tool to find out his average lines of code

per method. His average is 17.99 lines of code per method so he calculates that the whole project

will be 3022 lines of code. He reopens the Hee project viewer for the Multi-User calendar project

and enters in his planned sizes.

4

Figure 1.2: Leap Toolkit Controller. This is the main controller for the Leap toolkit. The developer
may start data recording tools or start tools to modify their definitions.

Figure 1.3: Hee Project Viewer. This tool allows the developer to define, plan and analyze a single
project. Cam has filled out the name, description and start date for the Multi-User Calendar project.
He has also decided to use his Development process for this project.

5

Estimating effort He then goes to the time tab in Hee and starts the time estimation tool. Cam

choose to use his historical average rates for the trend lines and lines of code for the size grain size

then presses the estimate button. Figure 1.5 shows the time estimation tool with the estimate. Based

upon his historical data this project will take about 2010 minutes. Cam tries some of the other

combinations like methods and linear regression model to give him a range of estimates. Based

upon all these estimates, Cam estimates that it will take him anywhere from 28 1/3 hours to 38 2/3

hours of direct work to complete the project. Cam enters in his time estimate into Hee and then sets

up a meeting with Philip.

Negotiation

At the meeting with Philip, Cam tells Philip that the project will take him between two

and three weeks. From Cam’s historical data he knows that he only gets in an average of 3 direct

hours per project per work day so the 28 1/3 direct hours will take 9 1/2 days to complete. Philip

wants the project done in one week. Cam says that this is only possible if he can stop working on

his other projects and focus solely on the Multi-User Calendar project. Philip agrees that Cam may

drop his other projects until the calendar is finished.

1.4 Thesis Statement

LEAP provides a more accurate and effective way for developers to collect and analyze

their software engineering data than methods designed for manual enactment.

1.5 Evaluation of the Leap toolkit

I will evaluate the main thesis of this work by breaking the thesis down into three claims.

First, the Leap toolkit prevents many important errors. To evaluate this claim I will discuss

the design and automation features in the Leap toolkit that prevent these errors from occurring.

Second, the Leap toolkit provides data analysis that is not practical with a manual method.

To evaluate this claim I will conduct an empirical experiment to determine if any particular time

estimation technique is more accurate. Using the Leap toolkit I will compare 13 different time

estimation techniques and determine if any of them are more accurate in predicting the effort for a

new project. In a manual method, such as the PSP, only one time estimation method can be provided.

6

Figure 1.4: Io time recording tool. Io allows the developer to easily record the amount of time they
spend working on a task. They may also account for any interruptions by recording interrupt time.
In this Figure Cam has worked for 40 minutes on the design of the Multi-User Calendar.

Figure 1.5: Time Estimation Tool. The time estimation tool shows Cam’s historical data. Cam
has chosen Linear Regression for the trend lines and Lines of code as the size measures for time
estimation. The planned size 3022 is taken from Hee. Based upon this data the project should take
from 1699 to 2321 minutes.

7

Third, The Leap toolkit reduces the level of collection stage errors. To evaluate this claim I

will conduct four surveys and analyze the software development data collected by graduate students

in an advanced software engineering course at the University of Hawaii.

1.6 Anticipated Contributions

This research is designed to produce several valuable contributions to the software en-

gineering community. One major contribution is the Leap toolkit. I have made the Leap toolkit

freely available on the Internet. Software developers may down-load the Leap toolkit and use it in

their own work. The Leap toolkit has been available for over one year and many developers have

down-loaded it. The Leap toolkit also provides a novel tool for software developer education, as is

being demonstrated in a graduate level class in software engineering this semester. Instructors can

gain insight into how the students are actually spending their time and provide more detailed help.

Another anticipated contribution is the results of the time estimation experiment. The

results may indicate that one estimation technique is more accurate, or that different techniques

are more accurate for different people, or that no technique is significantly better than any other.

If it turns out that there is no more accurate estimation technique then developers can use simple

averages which are easy to calculate instead of complex formulas. If there is a best estimation

technique then developers can adopt it and gain more accurate time estimations.

1.7 Organization of the Proposal

This proposal is organized as following: Chapter 2 relates the current research to the

broader context of existing work. Chapter 3 depicts the main design features and planned benefits

of LEAP. Chapter 4 outlines the evaluation methods I plan to use to evaluate the effectiveness of

LEAP. Finally, Chapter 5 presents the current research plan.

8

Chapter 2

Related Work

If you don’t know what you are doing, it is hard to improve it.– Watts Humphrey

LEAP is a result of our experience using the Personal Software Process (PSP) for over

three years, our experience with Formal Technical Review (FTR) and our attempts to improve the

quality of software development. This chapter briefly discusses the PSP, some of the different tools

developed to support the PSP, and the software quality assurance process called Formal Technical

Review. The chapter concludes with a discussion of measurement dysfunction and some of the data

quality issues found in the PSP and FTR.

2.1 Personal Software Process

The Personal Software Process[15] is a self-improvement process for software developers.

In his book “A Discipline for Software Engineering” Watts Humphrey teaches software developers

how to become their own software development coaches. Sports coaches observe the performance

of their players, evaluate their performance, then make suggestions for improvement. This is the

classicobserve, evaluate, modifycycle for improvement. Software developers using the PSP can

become their own coaches. The developer records how they develop software and after each project

they self-evaluate how they performed. These evaluations should lead to improvements on future

projects. In other words, The software developer conducts a longitudinal case study of their own

development process. They can initiate changes and observe the effects of those changes.

2.1.1 Goals

Two main goals of the PSP are

9

� to produce high-quality software as efficiently as possible and

� to improve the developers ability to estimate the amount of effort required to produce the

software.

These two goals drive the whole PSP. The data collection and analyses are focused on improving

the developer’s software development and estimation skills.

2.1.2 Learning the PSP

To teach developers how to use the PSP, Humphrey defines seven PSP processes (0, 0.1,

1.0, 1.1, 2.0, 2.1, 3.0). Each process has detailed scripts telling the user exactly how to perform the

process. Figure 2.1 shows the seven levels. Exercises at the end of each chapter in “A Discipline

for Software Engineering” ask the reader to use the knowledge from the chapter to improve their

development skills. The chapters introduce powerful development techniques: design and code re-

views, size and time estimation methods, and design templates. These techniques help the developer

produce high quality products efficiently. As developers go through the book they develop 10 small

software projects using the different PSP levels.

2.1.2.1 PSP0: The Baseline Process

The baseline processes PSP0 and PSP0.1 introduce the concepts of data collection and

size measurement to the developer. The purpose of these processes is to give the developer a basis

for their improvement. The developer learns exactly how they develop software. They learn to use

the Time Recording Log, Defect Recording Log and Postmortem forms to record and analyze time,

size and defect data. In these two processes the developer uses the planning, design, code, compile,

test and postmortem phases. Figure 2.2 shows the order of the phases.

In the planning stage they make their “best guess” as to how long the project will take. In the

postmortem phase they fill out the Project Summary form. PSP0 uses four scripts, six phases and

three forms.

10

Baseline

Personal

Process

PSP0 Time

& Defect

recording

PSP0.1 Coding

Standard, Size

Measurement

'-

Personal

Planning

Process

PSP1 Size &

Time estimation

PSP1.1Task &

Schedule Plan-

ning

'-
Personal

Quality

Management

PSP2 Code &

Design Reviews

PSP2.1 Design

Templates

'-

Cyclic

Personal

Process

PSP3 Cyclic

Development

Figure 2.1: PSP levels

2.1.2.2 PSP1: The Personal Planning Process

In PSP1 the developer adds a detailed Planning phase to their development. In the plan-

ning phase they make explicit, documented plans for their work. During the postmortem phase they

compare their plan to their actual performance. PSP 1.1 adds the concepts of task and schedule plan-

ning. This allows the developer to better estimate and schedule their projects. One of the purposes

of these PSP levels is to show that developers can control and predict their development process.

PSP1 uses four scripts, six phases and six forms.

11

Planning - Design - Code - Compile - Test -Postmortem

Figure 2.2: PSP0.1 phases

2.1.2.3 PSP2: Personal Quality Management

PSP2 introduces quality control measures by adding two reviews to the process that the

developer uses. The developer reviews their own design before they start coding and they review

their code before they start compiling. These reviews should catch defects earlier and reduce the

cost of fixing defects. PSP2.1 addresses the design process by introducing design templates, logic

and state diagrams these tools should help the developer produce more correct programs with less

overall effort. The purpose of PSP2 is to provide the developer with tools to efficiently improve the

quality of their work products. PSP2 uses four scripts, eight phases and twelve forms.

Planning- Design -
Design

Rev.
- Code -Code Rev.- Compile- Test -Postmortem

Figure 2.3: PSP2.0 phases

2.1.2.4 PSP3: Cyclic Personal Process

PSP3 changes the overall development process from a strict linear waterfall model to a

cyclic spiral model. PSP3 allows the developer to subdivide a larger program into smaller pieces

that are developed using PSP2. Figure 2.4 shows the new development process. The whole program

is built up of enhancements on the previously completed increments. This builds up a high quality

final product as long as each increment is of high quality. The purpose of PSP3 is to expand the PSP

to larger projects. PSP3 uses six scripts, ten phases and twenty forms.

12

High-level

Design
-

High-level

Design Rev.

- Planning- Design -
Design

Rev.
- Code

�Code Rev.�Compile�Test�Postmortem

-

Figure 2.4: PSP3.0 phases

2.1.3 Using the PSP

There is a distinction between the PSP and the way the PSP is taught. Humphrey says

that the PSP should be modified by the user to support their own goals and situation. However, the

developer should not modify the process of learning the PSP — they must go through all the stages

to learn how to properly use the PSP before they modify the process.

Instead of trying to modify the PSP, most PSP users just choose one of the PSP levels.

One reason that it is so difficult to modify the PSP is that the two goals of the PSP are so intertwined

into the forms and scripts of the PSP that changing the goals would require a major overhaul of the

forms and scripts.

One of the motivations behind Leap is the user should be able to easily modify their

process and not be forced to use a process they do not like. If the user wants to use PSP3, they may.

If they want to drop the high-level design review phase, then they may without requiring a dramatic

redesign of the method.

2.1.4 Evaluations of the PSP

In a 1996 article, Watts Humphrey reported the results of 104 engineers taking the PSP

course[16]. He states that the two goals of PSP were met. First, reported defects fell from an average

of 116.4 defects per thousand lines of code (KLOC) for assignment 1 to 48.9 defects per KLOC for

13

assignment 10. Second, the estimation accuracy of the students increased. For assignment 1 32.7%

of the engineers’ estimates were within 20% of their actual times. By assignment 10 49.0% of the

engineer’s estimates were within 20actual times.

In 1996, Sherdil and Madhavji studied human-oriented improvement in the Software

Process[31]. They used PSP as a basis for their studies. They found that subjects reduced their

defect by 13% after project 6, when code reviews are introduced. They also found that their sub-

jects reduced their size estimation error by more than 7% than expected.

Hayes and Over conducted an extensive study, with 298 engineers, of the PSP[13]. The

results of the study were impressive. Over the projects completed, the median improvement in size

estimation was a factor of 2.5. This means that 50% of the engineers reduced their size estima-

tion error by a factor of 2.5. The median improvement in time estimation was 1.75. The median

reduction in overall defect density was by a factor of 1.5. The engineers substantially reduced the

percentage of defects surviving to later stages of development.

Pat Ferguson and others report excellent results with PSP adoption at Advanced Informa-

tion Services, Motorola and Union Switch and Signal[9]. However, Barry Shostak and others report

poor adoption of PSP in industry[32, 7].

Andrew Worsley reports on his own impressions of the PSP after completing all 10

assignments[36]. He found an improvement in his defect density, but at the cost of productivity.

All of the above studies assumed that the data recorded by the subjects using the PSP was

accurate and correct. Anne Disney conducted a study to see if this assumption was correct.

2.1.5 Disney Thesis on Data Quality in the PSP

Anne Disney did her masters thesis on data quality issues in the PSP. She found that in

her sample of students who learned the PSP, the errors in their data were significant. These errors

lead to incorrect insights into the students development practices. For example, in several cases the

students’ incorrect data indicated that they were over estimating their yield when in fact they were

underestimating their yield.

In her thesis, Disney classified the data errors found in the PSP data into seven categories:

� Calculation Error: This error type applied to data fields whose values were derived using

any sort of calculation and the calculation is done incorrectly. In her study 46% of all the

errors were calculation errors.

14

� Blank Fields: This error type applies to data fields that are required but not filled in. 18% of

all the errors in the study were blank fields.

� Inter-Project Transfer Error: This error type applies to data fields whose values involved

data from a prior project and the value is not the same as the prior project’s value. Inter-project

transfer errors accounted for 14% of the errors in Disney’s study.

� Entry Error: This error type applies to fields where the user clearly does not understand the

purpose of the field or used an incorrect method in selecting data. 9% of the errors were entry

errors.

� Intra-Project Transfer Error: This error type applies to data fields whose values involve

other data fields in the same project, but are incorrectly filled in. 6% of the errors were

intra-project transfer errors.

� Impossible Values:This error type indicates that two values were mutually exclusive. 6% of

the errors were impossible values.

� Sequence Error: This error type is used to indicate when the user moved back and forth

between phases. Only 1% of the errors were sequence errors.

She found that 34% of the errors made affected multiple forms and multiple projects. This

means that an error in an earlier project rippled through the future projects affecting the student’s

PSP data. One possible solution is automated tool support to reduce data errors. Human beings

will make mistakes in any process. Automating much of the data entry and transfer will reduce the

opportunity to make mistakes.

2.2 Automated PSP Tools

Soon after the PSP was introduced many developers answered the challenge of automating

the PSP. Some developers automated the entire PSP while others just automated different aspects of

the PSP.

15

2.2.1 Full automation

2.2.1.1 psptool

psptool by Andrew M. Worsley[29] is a tool that runs under X/Unix or on Win32S plat-

forms. It allows the user to collect size, time and defect data. It also produces a PSP2.1 like plan

summary and supports time estimation based upon historical data and an initial size estimate.

2.2.1.2 PSP Studio

PSP Studio from Eastern Tennessee State University’s Design Studio 1997[14] automates

all the PSP levels. It runs on Win32 platforms and supports all the PSP levels from 0 through 3.0. It

produces all the postmortem reports after the projects are complete.

2.2.1.3 PSP Tool

PSP Tool[4] from Anne Disney, is written in Progress 4GL/RDBMS and runs on SCO

Unix. It implements the PSP0, PSP0.1, and PSP1 completely while the higher levels are not fully

implemented. The PSP Tool allows the user to define their ownDefect models. Defect modelsrefer

to specific defects with in a defect type. The user may enter a defect model in the defect recording

tool and it will fill in the fields. This reduces the mental overhead of the user and speeds up defect

recording.

2.2.2 Partial PSP automation

Developers using the PSP record three types of primary data: time, size and defects.

Many tool developers have developed tools to automate the collection of one or more of these

primary metrics. The following tools focus on collecting the raw data and not enforcing the entire

PSP process.

2.2.2.1 pplog-mode, PPLog Control, Timmie and makelog

Researchers at the University of Karlsruhe developed several tools that help automate the

collection of time and defect information[28]. Their data collection tool, pplog-mode.el is an exten-

sion for GNU Emacs[12]/XEmacs[37], powerful text editors used by programmers. The developer

using these tools can record their time and defects that they find while using Emacs. Users defines

a logging key. When thelogging keyis pressed Emacs automatically switches to thelogging buffer

16

where the user may type in a description of the event that just occurred. Emacs automatically in-

serts the time-stamp of the event. The data is saved in a database file. To analyze the data files the

researches wrote a PERL script called evalpsp.

The researchers wrote additional tools for recording data in formats that evalpsp could

analyze. They are PPLog Control, a full-featured GUI application for win32 machines, Timmie, a

multi-day, multi-project Java application for recording time and defect data, makelog, a command

line program for PC users similar to pplog-mode.el.

2.2.2.2 titrax

titrax[34] is a time tracker by Harald T. Alvestrand. It is written in C and runs under X. It

allows the user to record their times and includes some simple time analysis tools.

2.2.2.3 timelog

timelog[33] by Christoph Clemens Lahme is a Java program that allows the user to record

time.

2.2.2.4 PC LOC Accounting Tools

PC LOC Accounting Tools[28] by Christian Segor are three tools one that inserts tags into

source code, one to count the lines of code LOC, and one to remove the tags from the source code.

The counter is able to count base LOC, modified LOC, added LOC and deleted LOC.

2.2.2.5 locdelta

locdelta[28] is a perl script that calls a user supplied program to format the source code

then calls the Unix diff program to count the base, modifies, added and deleted LOC.

2.2.2.6 LOCC

LOCC[25] written by Joe Dane is an extensible system for producing hierarchical, incre-

mental measurements of work product size. LOCC can produce output files that the Leap toolkit

can use.

The Leap toolkit builds upon the ideas of the PSP. It can record all of the data needed in

the PSP and yet, it does not require the user to record all three types of data for interesting analyses.

The Leap toolkit is more flexible than the fully automated PSP support tools, but it does not enforce

17

the PSP processes like they do. The Leap toolkit currently does not support all of the reports that

the PSP processes require. I can easily add these reports to the Leap toolkit if users want them. The

next section discusses the second source of inspiration for LEAP, Formal Technical Review.

2.3 Formal Technical Review

Formal Technical Review is defined as

a method involving a structured encounter in which a group of technical personnel
analyzes an artifact according to a well-defined process. The outcome is a structured
artifact that assess or improves the quality of the artifact as well as the quality of the
method.[10]

The technical personnel that analyze the work product may fulfill many different roles.

The generic roles in any FTR are author, moderator, reviewer, scribe, and leader. The author is the

person who created the artifact under review. The moderator moderates the group meetings that

may be held during the review process. The reviewers are the technical people who analyze the

work product. The scribe records all the issues found by the reviewers. The leader organizes the

entire process. During any review an individual may perform many of these roles.

All formal technical reviews follow the same generic process. Figure 2.5 shows the

generic FTR process. Many organizations modify the generic process, but it is the basis for FTR.

Planning -Kickoff Mtg. -Preparation -Review Mtg. - Rework -Postmortem

Figure 2.5: Generic Review Process

In the planning phase the review leader plans the review. They gather the review materials: work

product, guidelines, checklists, standards, etc. They choose the review members and schedule the

meetings and deadlines. Another important part of the planning phase is to determine the goals of

the review. The goals of the review help determine the level of formality and the process to use.

18

Once the planning is done a Kickoff meeting is often held to orient all the review members

to the goals of the review and distribute the review materials. The Kickoff meeting is often not used

if the review members are familiar with the work product and review process.

In the preparation phase the reviewers familiarize themselves with the work product. In

some review methods like Inspection[8], the reviewers do not record any issues, but just become

familiar with the work product. In other methods like FTArm[21, 22, 18, 19, 20, 35] the reviewers

record their issues.

In the Review Meeting phase the reviewers gather to discuss the work product. Often the

moderator proceeds through the work product and the reviewers raise any issues they have with the

work product. The output of the Review Meeting phase is a consolidated list of all the issues found

by the reviewers.

During the Rework phase the author of the work product takes the consolidated list of

issues and addresses each issue. Some issues may require rework, others may not be defects. The

author fixes all the defect that they can.

In the last phase, Postmortem, the review team evaluates the entire review process includ-

ing the reworked work product. Often the review team approves the work product or decides that

it should be re-reviewed. The review process is also analyzed to generate suggestions for improve-

ment.

This generic review process covers a wide spectrum of different review styles. Figure 2.6

summarizes the range of the different review methods.

The most informal reviews are called Walkthroughs[38]. In walkthroughs there is very

little preparation. The members in the walkthrough gather together and the author walk the group

through the artifact explaining what the artifact does. As the author walks through the artifact the

reviewers are looking for problems in the artifact. When a problem is discovered, it is often fixed

right there in the walkthrough. Walkthroughs often combine the Kickoff meeting, Review meeting,

Rework phase, and Postmortem phase all into one meeting. The author is often the moderator,

leader and scribe.

More formal reviews are known as Technical Reviews. Technical Reviews are more for-

mal and normally follow all six phases of the review process. The goals of technical reviews may not

focus purely on evaluating the work product and can include team building and developer education.

The most formal reviews are Inspections[8]. Inspections have one primary goal, to detect

and remove defects from the work product effectively and efficiently. To accomplish this goal the

process is very formal and discussion during the Review Meeting is solely focused on reporting de-

19

Method Family Typical Goals Typical Attributes

Walkthroughs Developer training
Quick turnaround

Little/no preparation
Informal process
No measurement

Technical Reviews Requirements elicitation
Ambiguity resolution
Team building

Formal process
Author presentation
Wide range of
discussion

Inspections Detect and remove
defects efficiently and
effectively

Formal process
Checklists
Measurements
Verify phase

Figure 2.6: Spectrum of Formal Technical Reviews

fects not solutions to defects. The moderator must control the meeting to ensure that the discussion

does not wander.

In the PSP Watts Humphrey introduced the concept of a single person review. The de-

veloper conducts a technical review of their work product to detect defects and improve the quality

of the work product. The PSP reviews are formal and similar to Inspections since the developer

uses checklists to help guide their focus. Combining the PSP’s personal reviews and group reviews

should help improve the work product and help improve the developer. The defects that the group

detects can be analyzed to provide additional insights for the developer.

The Leap toolkit supports group review of work products by allowing reviewers to send

the defects they find to each other over the Internet. The author of the work product can collect

all the reviewers’ defects to fix them and also combine those defects with the defects the author

found during development. By combining the ideas of PSP and FTR the Leap toolkit provides

the developer with more insight. The reviewers will find defects that the developer misses. The

developer can use this data to learn more about their development process.

Whenever data is collected about a process, as in the PSP and FTR, the question of what

do you do with this data arises. The use of measurement data raises the issue of Measurement

Dysfunction.

20

2.4 Measurement Dysfunction

Robert Austin introduces the term “Measurement Dysfunction” in his book “Measuring

and Managing Performance in Organizations”[2]. He defines dysfunction as “the actions leading to

it fulfill the letter but not the spirit of stated intentions.” In measurement dysfunction, people try,

consciously or unconsciously, to change a measure used for evaluation, without trying to change

the actual underlying behavior or result that is being measured. The fundamental problem with

measurement is that it is impossible to fully measure a behavior or activity. So when people focus

on the letter of the measurement they may ignore an important part of the behavior, thus reducing

their overall effectiveness.

Austin cites an apocryphal example of measurement dysfunction, a Soviet boot factory.

The boot factory was evaluated by the number of boots produced. To meet their quota of boots the

factory managers produced only left boots, size 7, since by producing only left boots in one size

they could maximize the total output of the factory. Austin uses a study of an employment office

by Peter Blau in 1963[3] to provide more insight into measurement dysfunction. The goal of the

employment office was to find jobs for their unemployed clients. The employment office employees

were evaluated primarily by the number of interviews conducted. The employees responded by

focusing as much time as possible on doing interviews, and very little time in finding jobs for

their clients. This behavior resulted in client receiving fewer job referrals. When the management

changed the evaluation measure to include eight different indicators the employees changed their

behavior to improve their standing against various indicators. Some employees destroyed records

of interviews that did not result in job referrals and made referrals for clients that did not match the

job. In both these situations the true performance of the organizations declined while the measured

performance increased.

Austin divides measurements into two categoriesmotivational measurements, which are

used to affect the people who are being measured, andinformational measurements, which are used

for their logistical, status, and research information they convey. Motivational measurements may

lead to measurement dysfunction since the people affected will focus on those measures and change

their behavior. A problem with individual measures is they may be used for both motivation and

information. Once a measure is taken and recorded managers can use it for status purposes or for

evaluation.

21

2.4.1 Measurement Dysfunction in the PSP

The data collected in the PSP provides valuable insight into the developer’s development

process. The developer learns their development rate, the types of defects they make most often,

their average direct hours of work per day, and many other statistics that management could used to

evaluate their performance. If management uses this data to evaluate their employees the employees

may start to change their behavior to improve their measures. For example if management says

developers should produce 50 lines of code per hour and the developer is only producing 40 lines

of code per hour, they might stop optimizing their code since it takes time and reduces the number

of lines of code.

2.4.2 Measurement Dysfunction in Review

Measurement Dysfunction can also occur with review data is used to evaluate the review-

ers. If management want more important defects to be discovered during the review they might

want to raise the average severity of defects found during review. This might lead to reviewers

categorizing all the defects they find as critical.

There are many different possible types of measurement dysfunction in review data. Some

of the typical ones are defect severity inflation, preparation time inflation, and defect severity re-

duction. In defect severity reduction the work product is nearing a milestone and cannot pass the

milestone with any sever defects. The reviewers feel pressure to keep the project on time so they

reduce the severity of defect so that the project can stay on track. Defect become enhancements that

will be corrected before the product is released.

2.4.3 Measurement Dysfunction in the Leap toolkit

The Leap toolkit does not eliminate any of the above sources of measurement dysfunction.

However, the design of the Leap toolkit addresses measurement dysfunction by allowing the user

full control over the data collected and shared by the Leap toolkit.

The next chapter discusses how LEAP support software developer improvement by incor-

porating ideas from the PSP, FTR and addresses the Measurement Dysfunction issue.

22

Chapter 3

Supporting Software Developer

Improvement with LEAP

Measures of productivity do not lead to improvement in productivity.- W. Edwards
Deming

This chapter discusses Project LEAP and the Leap toolkit. It starts with a brief summary

of why I started work on Project LEAP. Then it discusses the design criteria for LEAP compliant

tools. It next discusses the Leap toolkit a reference implementation of the LEAP design philosophy.

Finally, it introduces three intended benefits of the Leap toolkit.

3.1 Background

After using the PSP for over two years, I noticed three general problems with the PSP.

First, I started to question the quality of the data recorded. I noticed that I did not record all of our

defects, in part because the overhead of recording each defect is too expensive. Anne Disney and

Philip Johnson conducted a study to look at the data quality of PSP data. They found that there are

significant data quality issues with manual PSP.[4, 5]

Second, my experiences with industrial partners, management practices and Robert Austin’s

book “Measuring and Managing Performance in Organizations”[2] made me think about the issues

of measurement dysfunction in PSP and review data. An organization may pressure their members

to produce “good” results. There are many ways that the members can manipulate the personal data

collected in the PSP to get the “right” results.

Third, after four years, the results with adoption of PSP are mixed. Pat Ferguson and

others report excellent results with PSP adoption at Advanced Information Services, Motorola and

23

Union Switch and Signal[9]. However, Barry Shostak and others report poor adoption of PSP in

industry[32, 7]. No research has been published that studies the “long term” adoption of the PSP —

i.e., whether or not users trained in the PSP are continuing to use it six months, a year, or more after

the training.

These issues motivated me to begin designing an automated, empirically based, personal

process improvement tool. My goal is to reduce the collection and analysis overhead for the engi-

neer, and the measurement dysfunction of the collection process. This should improve the benefits

to the engineer and the long term adoption of empirically based process improvement. To pursue

this work, I initiated Project LEAP,<http://csdl.ics.hawaii.edu/Research/LEAP/

LEAP.html> , and began developing the Leap Toolkit,<http://csdl.ics.hawaii.edu/

Tools/LEAP/LEAP.html> .

3.2 Design criteria

As part of my initial research, I hypothesized that improved support for software developer

improvement would be obtained by attempting to satisfy four major design criteria: light-weight,

empirical, anti-measurement dysfunction, and portable.

3.2.1 Criteria #1: Light-Weight

The first principle is that any tool or process used in software developer improvement

should be light weight. This means that the tool or process should not impose overhead on the

developer. Data collection should be easy to perform and should not add significant effort to the

process. The processes that are used, should not impose a burden on the developer. We do not

want the developer to worry about the improvement effort while they are doing the development.

They should be worrying about the development. Analyses and other work should also require as

little effort by the developer as possible. The benefit of using the improvement processes should

outweigh the cost of to the developer.

This principle implies that any improvement process must be automated as much as pos-

sible. A manual process requires too much overhead by the developer. The overhead of recording

information by hand and manually doing the analyses will out weigh the benefits of the process.

The PSP suffers from this.

24

3.2.2 Criteria #2: Empirical

We believe in empirical data collection the improvements should be based upon the de-

veloper’s experiences. We want the developer to use the observe, evaluate, modify method for

improvement. Each modification is then tested by further observation to see if the change is ac-

tually an improvement or just a false start. By using looking at their development empirically the

developer is able to judge for themselves what is best.

3.2.3 Criteria #3: Anti-measurement Dysfunction

Based upon my experiences as a summer intern and Richard Austin’s bookMeasuring

and Managing Performance in Organizations[2], I believe that any process improvement method

should deal with the issue of measurement dysfunction. The empirical data collected could be

misused. This issue is important since the development process is very interesting to people other

than the developer. If there is measurement dysfunction then the data collected and analyses will

not reflect reality. Any insights gained from this data and analyses will be faulty and may cause

more problems than they solve.

3.2.4 Criteria #4: Portable

Software developers often change jobs and the tool support for their development im-

provement should be portable. They should be able to take their data and the tool support with them

when they change organizations or jobs. A tool that supports developer improvement that cannot

follow the developer as they move is not going to help those developers very much.

3.3 Leap toolkit: a reference implementation of the LEAP philosophy

The Leap toolkit incorporates three main threads of research, PSP, FTR, and measurement

dysfunction.

3.3.1 Support for personal process improvement

The Leap toolkit is based strongly upon the PSP. The Leap toolkit uses the three primary

data types, defects, size, and time, from the PSP. However, unlike the PSP, developers are able to

choose what types of data to collect to help them meet their process improvement goals. If the

developer is just interested in improving their estimation ability, they can record the size of their

25

projects and the amount of time it takes them to complete them. The Leap toolkit will provide the

developer with different time estimation tools.

If the developer wants to prevent defects then they could just record their defects and not

worry about size or time. The Leap toolkit will analyze their defect data and provide them insight

into which defects occur most often and the developer can generate checklists that help them find

those defects.

3.3.2 Support for Review

From FTR, I took the idea of supporting multiple developers reviewing a work product

and sharing the defects they find. The defects that others find in your work product may be more

important than any of the defects you find in your own work product. By incorporating support

for sharing defect data, the Leap toolkit can support reviews. In the Planning phase, review leaders

can define the work product, project, defect types and checklists for the reviewers. During the

preparation phase, the reviewers can use the Leap toolkit to record the defects they find in the work

product. They can send their defects to the review leader who can use the Leap toolkit to combine

the defects into a single list. During the review meeting the review leader can display the combined

defects and each may be discussed. The author of the work product can take the combined list of

defects and add it to any defects that they found. This provides the author with more data about

their development process.

The Leap toolkit’s flexibility allows the review leader to define their own process, defect

types, and decide what review metrics they are interested in recording. The Leap toolkit will allow

each reviewer to record their effort and the defects they find. The Leap toolkit can analyze the defect,

time, and size data to produce reports on the defect density, defect detection rate and effectiveness

of the review process.

3.3.3 Reducing Measurement Dysfunction

No tool can stop measurement dysfunction. My philosophy is to acknowledge that mea-

surement dysfunction can occur in both personal software process improvement and review. To

address these issues I allow the developer full control over the data shared. The developer can de-

cide exactly what data is shared and edit the data. This raises the measurement issues from the

background to the foreground.

26

Even though no tool can stop measurement dysfunction, an improperly designed tool can

create measurement dysfunction. If the user feels they have no control over their data, they may

feel pressure to provide the “right” data and modify their behavior accordingly. This lack of control

may encourage measurement dysfunction.

In combining the above three threads of research I kept the four LEAP design criteria in

mind. The Leap toolkit satisfies the four design criteria. The following section describes how the

Leap toolkit satisfies the design criteria.

3.3.4 Providing Light Weight Support

The Leap toolkit tries to reduce the overhead of software developer improvement by au-

tomating many of the data collection process and reducing the analysis overhead by doing the diffi-

cult calculations and conversions.

The Leap toolkit, unlike the PSP or PSP Studio, does not impose any development process

on the developer. If the developer wants to use the same process as PSP2.1 they may. If user does

not want to have a design phase, Leap will also support that process. The user can define their own

processes and Leap will support data collection and analyses based upon their processes.

The Leap toolkit also allows the user to define their own size types. This allows the user

to choose a size measure that is more effective and/or convenient than lines of code used in the PSP.

3.3.5 Supporting Empirical Data Analysis

The Leap toolkit allows the developer to record their effort, work product size and the

defects they make while developing software. Based upon historical projects the Leap toolkit helps

the developer to produce an estimate for the total amount of effort the next project will take.

3.3.6 Reducing Measurement Dysfunction

The Leap toolkit stores all its data in ASCII files. This allows the developer to control the

access to the data. Also, the Leap toolkit gives developers complete control over the data that they

share. Developers have full control of where they save their Leap data. When users use the Leap

toolkit’s email capability to share their data, the Leap toolkit asks the user what data to send. No

data is shared without the user’s knowledge.

When ever the Leap toolkit is sending data over the Internet it asks what data does the

developer want to send.

27

The toolkit also makes it very easy to edit the data before it is sent or saved. We did this

for two reasons. First, if there is a data collection error then the user can edit the data to correct the

error. Second, the user can edit their data before they provide it to another person. This allows the

user to decide what data the other persons sees.

3.3.7 Providing a Portable Tool

Since the Leap toolkit is written in Java, it can run on many different computer platforms.

By using ASCII files for data storage users can easily put the files on a disk or transfer them. Both

of these features allows the user to take their data and the Leap toolkit with them when they move.

3.4 Intended Benefits of Leap toolkit’s design

We designed the Leap toolkit to be flexible and easy to use, while supporting developer

improvement. Three important benefits of the Leap toolkit’s design are: (1) it prevents errors, (2) it

improves time estimation, and (3) it reduces collection errors.

3.4.1 The Leap toolkit prevents many important classes of errors found in the PSP

The Leap toolkit tries to address each category of data error in Disney’s study. Disney’s

research classified the data errors into seven categories

� Calculation Error: The Leap toolkit does all the calculation. The user does not have to

perform these calculations.

� Blank Fields and Sequence Error:One principle behind the Leap toolkit’s design is that it

should support minimal definitions. If the user does not fill in a field the Leap toolkit will do

as much analysis as possible.

� Inter- and Intra-Project Transfer Error: The Leap toolkit handles all data transfer so the

user does not have to copy data from one form to another.

� Entry Error: The Leap toolkit provides default values or pop-up menus for many of the

important fields. This allows the user to choose from defined values reducing the chance that

they will incorrectly fill in a field.

� Impossible Values:The Leap toolkit has a rudimentary consistency checker for some types

of data. This checker indicates to the user when data values are “impossible”.

28

3.4.2 The Leap toolkit improves estimation and planning

The Leap toolkit is designed to improve the developer’s estimation and planning skills.

For estimating size, the Leap toolkit supports multiple size representations. The user may choose

a size representation that best fits their development process. They can experiment with their size

estimation abilities by using different sizes and seeing which is best for them. For example a de-

veloper can estimate the number of function points and methods that a project will be. When they

complete the project they can see which estimate was more accurate.

For time estimation based upon size estimate, the Leap toolkit supports multiple esti-

mation models. The user can choose between averages, linear regression, exponential regression,

power regression and logarithmic regression. The Leap toolkit allows the user to use their planned

size values or their actual size values when making an time estimate. This flexibility allows the

developer to find their best method of time estimation.

The Leap toolkit also allows the user to filter their data. This allows the user to match

their historical data to the current project. By matching similar projects the user’s estimates should

be more accurate.

3.4.3 The Leap toolkit reduces collection stage errors

Automated support for entry removes simple data entry error. For example the user does

not have to write down the time that they start working. This reduces the chance that they make a

mistake. Also the Leap toolkit displays the current elapsed time. This feedback allows the user to

check and see if the Leap toolkit is accurately recording what is happening.

Since the Leap toolkit lowers the user’s overhead, it should reduce collection stage errors.

The user is more likely to collect accurate data if it is easy to collect. High overhead will cause the

user to not bother collecting data. Also the ease of analysis shows the user the benefit of accurate

collection of data. This should motivate them to collect good data.

The next chapter discusses how I plan to evaluate these three benefits of the Leap toolkit.

29

Chapter 4

Evaluation

There’s a large journey to be taken, of many trials.- Joseph Campbell

The main thesis of this work is LEAP provides a more accurate and effective way for

developers to collect and analyze their software engineering data than methods designed for man-

ual enactment. To evaluate this thesis I will deconstruct it into three claims based upon the three

intended benefits of the Leap toolkit.

� The Leap toolkit is able to prevent many important errors in individual software engineering

data collection and analysis form occurring.

� The Leap toolkit implements an approach to individual software engineering data collection

and analysis that requires automated support and is not amenable to manual enactment. As a

result, it enables more sophisticated approaches to data collection and analysis than is possible

in a manual setting.

� The Leap Toolkit reduces the level of collection stage errors by reducing the overhead asso-

ciated with collection and by mechanisms that support privacy.

The next section detail each of these claims.

4.1 Claim #1: Preventing important classes of errors

To evaluate this claim I will discuss how the design and implementation of the Leap toolkit

addresses each of Disney’s error categories: calculation error, blank fields, inter-project transfer

error, entry error, intra-project transfer error, impossible values, and sequence errors. Providing

30

suitable automated support should reduce these errors. Relaxing some of the constraints on the user

will also remove some of these errors. Section 3.4.1 is a brief example of how I intend to address

each error category.

4.2 Claim #2: Sophisticated approaches to data analysis

To evaluate this claim I will use the Leap toolkit to conduct an experiment to evaluate 14

different quantitative estimation processes and the developer’s estimation process and determine if

there is any significant difference between the estimation methods. This experiment requires the

Leap toolkit’s automation to make the data collection and analysis possible.

4.2.1 Experimental environment

The experiment will be performed in a student environment in the Introduction to Reflec-

tive Software Engineering course at the University of Hawaii Manoa. The students in the class will

be developing 10 (software) projects and recording their software processes in the Leap toolkit. By

reflecting on their experiences and the data they collect about their software development processes

they should learn how to improve their development processes. During the development process

they will be asked to estimate the size and amount of effort each of each software project. The Leap

toolkit provides an automated tool for looking at historical development data and deriving effort

estimations based upon historical size and effort data. The Leap Time estimation tool provides stu-

dents with many different effort estimates based upon the students’ historical data. The student can

use these estimates to make their own estimate of how long the project will be.

4.2.2 Experimental variables

4.2.2.1 Independent and Dependent variables

Since the objective is to evaluate the different quantitative time estimation methods, the

independent variable will be the estimation technique. This means that there is one independent

variable that can take on 14 different values: the 12 method values, the PSP value and the student’s

own estimate. The accuracy of a estimation method applies to the actual estimate itself, the mean

value of all the estimates, and to the standard deviation of all the estimates. Therefore, there are

three dependent variables in this experiment. The first two dependent variables are for the class

as a whole. The third dependent variable is for each individual student’s estimate. The relative

31

prediction error will be calculated for both the mean and the standard deviation for the entire class.

The following two dependent variables will be calculated for each of the 14 different estimation

methods for the entire class:

Mean prediction error= jestimation mean - actual meanj=actual mean

Standard deviation prediction error= j estimation std - actual stdj=actual std

For each individual student the following dependent variable will be calculated for each

of the 14 different estimation methods.

Relative Predicted Error= jestimated time - actual timej=actual time

These measures cannot be measured until after the task has been completed. The different

estimates must be calculated and chosen for each project before the project is started. The Leap

toolkit will provide me 13 of the 14 estimates automatically. The students will record their estimate

and the method(s) they use to obtain their estimate.

4.2.2.2 Blocking variable

Since the purpose of the experiment is to determine the effect of the estimation method

on the prediction error and different projects may have an effect on the prediction error I will use a

blocking variable to account for this effect. The reason that the different projects may have an effect

on the prediction error is that it may be easier to estimate the size of some projects than others. To

distinguish between the effects of the different projects and the effects of the estimation methods I

have added a blocking variable associated with the project number.

4.2.3 The Design

The design for this experiment has two parts, the class as a whole and each individual

student. At the beginning of every project the student will develop a planned size and planned

effort for the project. After the third project, Leap will estimate the effort according to the different

alternatives (treatment, alt 1 - alt 13). The student will produce the 14th estimate. During the project

the students will record the amount of effort in Leap. After the project is finished, the student will

measure the actual size of the project and total the actual amount of effort in Leap. After all the

projects are finished, I will calculate the relative prediction error for the mean and standard deviation

for each of the fourteen estimation methods. I will calculate these values for the entire class and for

each individual student. We cannot use the data from the first three projects since the quantitative

32

estimation methods require at least three data points. With ten projects we will still have enough data

points to evaluate the different estimation methods. Since the estimates are independently generated

except for the students’ estimate there is no problem with the order of the alternatives.

4.2.4 Analysis

I am using the following relationship to model the experimentyij = � + ti + �j + eij

where:

� yij = the relative prediction error for alternative i

� � = the overall mean

� ti =the effect of the ith treatment (estimation method)

� �j = the effect of the jth block (project)

� eij =residual for the ith and jth treatment.

This model can be analyzed with standard analysis of variance (ANOVA) procedures with

the null hypothesis:

H0 : �1 = �2 = �3 = : : : = �14 where �i = �+ ti; i = f1; 2; 3; : : : ; 14g:

The null hypothesis states that there is no effect of estimation methods on the prediction

error. For the general comparison of the 14 methods the entire class’ data will be compared. The

mean prediction error and standard deviation prediction error will be calculated for each method

using the entire class’ data.

Mean prediction error= j Class’ estimation mean - Class’ actual meanj= Class’ actual
mean

Standard deviation prediction error= j Class’ estimation std. dev. - Class’ actual std.
dev. j= Class’ actual std. dev.

The null hypothesis can be tested for the entire class. Rejecting the null hypothesis only

means that there is a difference between the accuracy of the estimation methods it does not indicate

which estimation technique is more accurate. If the null hypothesis is rejected I will use the Least

Significant Method to distinguish between the different alternative estimation methods. For each

student I will consider the relative predicted error only. The equation for relative predicted error is

33

Relative Predicted error= j estimated time - actual timej= actual time

I will perform similar calculations and ANOVA to determine if there is an individual

difference in estimation methods.

4.2.5 Example Data

Table 4.1 shows some example data from my own Java development experience. This

data is from a pilot study that I conducted this spring and summer. I have recorded the planned size

and effort for over 20 projects beginning in December 1997. This data reflects the ten most recent

projects that I have data for. I treated these ten projects just like the projects the students in the class

will. Leap generated the 13 quantitative estimates and I provided the student’s estimate. Since it is

a single subject’s data I can only calculate the relative predicted error for this data.

Table 4.1: Example Project Data.

Project Project Project Project Project Project Project
Method 4 5 6 7 8 9 10 Mean Std. Dev.
APL 263 1150 386 63 48 60 151 303.00 393.84
AAL 191 763 217 38 30 37 160 205.14 258.35
LPL 315 717 509 0* 0* 0* 109 235.71 287.33
LAL 186 268 183 0* 0* 9 72 102.57 109.82
EPL 394 6634 234 118 116 99 102 1099.57 2242.82
EAL 176 321 157 139 136 112 99 162.86 74.35
APM 319 1346 405 65 101 70 174 354.29 456.16
AAM 329 1336 343 55 72 50 126 330.14 460.87
LPM 0* 179 484 0* 0* 0* 145 115.43 179.84
LAM 136 387 318 18 42 14 111 146.57 149.23
EPM 42 237 227 123 132 103 109 139.00 69.83
EAM 124 747 186 144 143 114 105 223.29 232.45
PSP 191 763 509 38 30 37** 109 239.57 286.23
Student 240 837 265 93 56 37 141 238.42 227.94
Actual 198 3047 380 139 42 26 248 582.86 1093.39

Based upon the above data I calculated the relative predicted error for all 14 estimation

methods and all 7 projects. Table 4.2 shows the values for the relative predicted error.

The analysis of variance for the relative predictive error data is shown in Table 4.3.

Table 4.3 shows that the estimation method does not play a significant role in the relative

prediction error. I cannot reject the null hypothesis. The data does suggest that the blocking factor,

the project, does play a significant role in the prediction error. This implies that the ability to

34

Table 4.2: Example Predicted Error.

Project Project Project Project Project Project Project
Method 4 5 6 7 8 9 10
APL 0.3282 0.6226 0.0158 0.5468 0.1429 1.3077 0.3911
AAL 0.0354 0.7496 0.4289 0.7266 0.2857 0.4231 0.3548
LPL 0.5909 0.7647 0.3395 1.0000 1.0000 1.0000 0.5605
LAL 0.0606 0.9120 0.5184 1.0000 1.0000 0.6538 0.7097
EPL 0.9899 1.1772 0.3842 0.1511 1.7619 2.8077 0.5887
EAL 0.1111 0.8947 0.5868 0.0000 2.2381 3.3077 0.6008
APM 0.6111 0.5583 0.0658 0.5324 1.4048 1.6923 0.2984
AAM 0.6616 0.5615 0.0974 0.6043 0.7143 0.9231 0.4919
LPM 1.0000 0.9413 0.2737 1.0000 1.0000 1.0000 0.4153
LAM 0.3131 0.8730 0.1632 0.8705 0.0000 0.4615 0.5524
EPM 0.7879 0.9222 0.4026 0.1151 2.1429 2.9615 0.5605
EAM 0.3737 0.7548 0.5105 0.0360 2.4048 3.3846 0.5766
PSP 0.0354 0.7496 0.3395 0.7266 0.2857 0.4231 0.5605
Student 0.2121 0.7253 0.3026 0.3309 0.3333 0.4231 0.4315

Table 4.3: Example ANOVA for Predicted Error.

Source of SS Df MS F0 p-value
variance
Treatment 7.54237769 13 0.58018289 2.03137219 0.07729167
(estimation
method)
Block (project) 14.2348694 6 2.37247824 8.30666732 0.00634850
Error 22.2776831 78 0.28561132
Total 44.05493933918 98

35

estimate the size of the project is very important. This result supports the results from a study on the

effects of PSP training[27]. Prechelt found engineers trained in the PSP could accurately estimate

their productivity rate, but not the total size of the project or the amount of time it would take them.

4.3 Claim #3: Reduces collection stage errors

To investigate this claim I will conduct a case study of the students in ICS 613. This is

the most difficult part of my evaluation. Getting at the collection stage errors is very difficult since

direct observation of all the students is impossible. The purpose of this case study is to determine

the level of data collection errors for the students in the experiment. I will look for indications of

collection errors.

4.3.1 Case Study Method

To find indications of collection errors I will conduct four surveys and analyze the stu-

dents’ raw data. The answers to the surveys and the analysis of the students’ data will allow me

to tease out suspicious data. All the students in the class will be asked to fill out the four surveys

and provide me with access to their raw data. Only students that consent will be asked to fill out

the surveys. If any of the students drop the course or want to quit the study their surveys will be

ignored.

4.3.1.1 Ensuring Anonymity

To ensure anonymity of the surveys we will have each student place their survey in an

envelope, seal and sign the envelope. This will ensure to the students that we cannot look at the

surveys before the end of the class. After the grades have been turned in I will open the envelopes

and randomly give the students code numbers. These numbers will be used to match up the survey

results and the student’s raw data. No where in the raw data or the surveys do we ask for any

identifying data. Before any results are published I will ensure that any identifying material is

removed.

4.3.2 Data Collection

There are two main data collection methods of this case study: the student’s raw data

analysis and the student surveys.

36

4.3.2.1 Student’s raw data

As a part of ICS613 each student will turn in their Leap data for each of the class’ 10

projects. I have gotten consent from each of the students to have access to their raw data. I will use

the Leap toolkit to help analyze the data.

4.3.2.1.1 Indirect Collection Error Evidence I will look for patterns in the data that are suspi-

cious. Some suspicious trends are having time data that is in increments of five or ten minutes or

having times that start or end on the hour. The Leap toolkit records times in increments of seconds

so it is extremely unlikely that anyone could work in exact increments of five or ten minutes. Such

patterns indicates that the user is editing their data. This is just an indirect indication that the data

does not accurately reflect their actual development.

4.3.2.1.2 Direct Collection Error Evidence A more direct indication of collection errors is

discrepancies between the time and defect data. If the student records large amounts of test time

with very few defects, this indicates that they are not recording all the defects that they had to fix

during the test phase. The students are supposed to record the amount of time it takes them to fix

each error. If the total fix time for all the recorded defects is substantially less than or greater than

the total time spent during test then this indicates that they did not collect accurate data.

4.3.2.2 Surveys

Portions of the surveys have been used and validated at other institutions. However, we

were unable to find validated surveys that ask all the questions that we want answered so portions

of the surveys have not been validated externally. If these surveys reveal interesting data, we may

then start another research project to validate these instruments for use in other organizations.

Each student that is in the class will be asked to fill out the surveys as they turn in their

assignments. In the class the students have an interview with Dr. Johnson when they turn in each

programming assignment. During the interview the student turns in their completed project and

their Leap data. The focus of these interviews is on the student’s performance of the assignment. I

will not be collecting data about the interview, but I will get a copy of all the student’s Leap data.

After their interview with Dr. Johnson each student will be asked to fill out the appropriate survey.

The proposed survey schedule is

37

Table 4.4: Proposed Study Schedule.

Task Milestone
Conduct 1st Survey of students 04 Oct 99
Conduct 2nd Survey of students01 Nov 99
Conduct 3rd Survey of students22 Nov 99
Conduct 4th Survey of students06 Dec 99
Conduct student interviews 06 - 17 Dec 99

4.3.2.3 Leap Survey #1

This survey is intended to be a baseline survey to gather information about the students

and gather initial use of the time recording tools of the Leap toolkit.

4.3.2.3.1 Topics This survey focuses on the student’s programming experience, their experi-

ences with time collection and any issues they have with the Leap toolkit. I will compare the

student’s programming experience to their feelings of pressure and detected data collection error

rate.

4.3.2.3.2 Summary of Questions for Survey #1The first section of the survey asks about the

student’s programming experience. The second section asks about their knowledge of software

engineering principles. Many of these principles will be briefly covered during the class. The third

section asks the students about their time data collection experience. I’m trying to find out which

data collection tool they use more often. The fourth section asks the students to list three negative

aspects about the toolkit and three positive aspects of the toolkit. See A for the actual survey that

was given to the students.

4.3.2.4 Leap Survey #2

The second survey focuses on usability issues of the Leap toolkit, the student’s use of the

time recording tools and time estimation. At this point in the course they will have been taught how

to use the time estimation and will have used it for a few projects.

4.3.2.4.1 Topics The usability portion of the survey looks at the Human Computer Interface

issue in the Leap toolkit. I will compare their reported easy of use with indications of collection

errors. The second time survey will allow me to see if their perception or use of the time recording

tools is changing over time.

38

4.3.2.4.2 Summary of Questions for Survey #2 The first section of the survey asks about the

Leap toolkit’s usability. The second section asks the students about their time data collection expe-

rience. I’m trying to find out which data collection tool they use more often. The third section asks

them about their time estimation experience. I’m trying to find out if making a plan affected their

perception of the project. The fourth section asks the students to list three negative aspects about

the toolkit and three positive aspects of the toolkit. See A for the actual survey that will be given to

the students.

4.3.2.5 Leap Survey #3

Survey #3 repeats the time collection, and time estimation surveys from #1 and #2. In

addition it asks about their defect collection experience.

4.3.2.5.1 Topics This survey focuses on data collection and analysis. It looks at time and defect

data collection and time estimation.

4.3.2.5.2 Summary of Questions for Survey #3 The first section of the survey asks the students

about their time data collection experience. The second section asks them about their time estima-

tion experience. The third section asks the students about their defect collection experiences. See A

for the actual survey that will be given to the students.

4.3.2.6 Leap Survey #4

In the last survey I again ask the students to fill out a usability survey. I want to learn how

there perceptions have changed over the semester.

4.3.2.6.1 Topics This survey focuses on the students’ perception of the Leap toolkit.

4.3.2.6.2 Summary of Questions for Survey #4 The first section of the survey asks about the

Leap toolkit’s usability. The second section asks them about their perceptions of the Leap toolkit.

The third section asks the students about any lessons they may have learned from using the Leap

toolkit. See A for the actual survey that will be given to the students.

39

4.3.3 Possible Interviews with students

In addition to the surveys and raw data, I will conduct interviews with any students who

are willing at the end of the course. During this interview I will ask the students about data collection

issues and the overhead of using the Leap toolkit for improvement. I will also ask them about what

they learned about their own development process. These interviews will support the data collected

in the surveys and the raw Leap data.

40

Chapter 5

Time line

Table 5.1: Proposed Research Time line.

Task Milestone
Develop Survey and interview questions25 Sep 99
Form Committee 30 Sept 99
Conduct 1st Survey of students 04 Oct 99
Conduct 2nd Survey of students 01 Nov 99
Proposal to committee 29 Oct 99
Meetings with committee 08 - 12 Nov 99
Defend Proposal 19 Nov 99
Conduct 3rd Survey of students 22 Nov 99
Conduct 4th Survey of students 06 Dec 99
Conduct student interviews 06 - 17 Dec 99
Introduction, Related Work, Leap 31 Dec 99
and Experimental Design Chapters done
Estimation Data analysis complete 31 Jan 00
Survey Data Analysis complete 31 Jan 00
Interview Data Analysis complete 14 Feb 00
Results Chapter Done 24 Feb 00
Dissertation to Committee 24 Feb 00
Dissertation Defense 16 Mar 00
Dissertation to Grad. Division 7 April 00

41

Appendix A

Leap Evaluation Surveys

42

Leap User Survey #1

Instructions
Please answer all the questions to the best of your ability. No not put your name on this survey. When you
are finished filling out the survey place it in the envelope provided. Seal the envelope and sign your name
across the seal. This will ensure that no one tampers with your survey. The envelopes will not be opened
until after the grades for this class are turned in.

Personal Programming Experience
Please answer the following questions about your programming experience. Give your best answer. Your
answers do not have to be exact.

1. Roughly how many years of programming experience do you have? ________ (years)

2. Roughly how many years of Java programming experience do you have? ________ (years)

3. Roughly how many total thousands of lines of code (KLOC) have you written in any language?
______(KLOC)

4. Roughly how many KLOC of Java have you written? _______(KLOC)

5. Roughly how many different programming languages have you used? ______(languages)

6. Roughly how big (in KLOC) is the biggest program (or your part of a program) that you have written?
______(KLOC)

7. Roughly how big (in KLOC) is the biggest Java program (or your part of a program) that you have
written? ______(KLOC)

8. Roughly how many graduate level ICS classes have you taken?________(classes)

9. Roughly how many years of paid professional programming experience do you have? _____(years)

10. Roughly how many different paid professional programming jobs have you had? ______(jobs)

Software Engineering Experience and Attitudes
Please circle the number that most closely matches your feelings about the following statements. If the
statement does not apply to you circle NA.

Strongly
Disagree

Strongly
Agree

I am familiar with many different software
development processes.

1 2 3 4 5 NA

I have used many different software development
processes.

1 2 3 4 5 NA

I understand Object Oriented Programming. 1 2 3 4 5 NA

I can explain the benefits of Object Oriented
Programming to other programmers.

1 2 3 4 5 NA

I know what the Personal Software Process is. 1 2 3 4 5 NA

I have used the Personal Software Process. 1 2 3 4 5 NA

I am aware of my own software development process. 1 2 3 4 5 NA

I am a good software developer. 1 2 3 4 5 NA

I want to be a better software developer. 1 2 3 4 5 NA

I can explain what it means to be a good software
developer.

1 2 3 4 5 NA

Figure A.1: Leap survey #1 page 1

43

Leap Usage – Time Collection
Please circle the answer that most closely matches your use of the features in Leap. Choose NA if the
question does not apply to you.

Questions Answers
Which time entry tool do
you use most often?

Io (single line entry tool) Naia (time table)

How often do you use Io
(single line) to record your
time?

Never

(0%)

Less than
half the time
(1 – 39%)

About half
the time
(40 - 60%)

More than half
the time
(61 – 99%)

All the
time
(100%)

NA

How often do you use Naia
(table) to record your time?

Never

(0%)

Less than
half the time
(1 – 39%)

About half
the time
(40 - 60%)

More than half
the time
(61 – 99%)

All the
time
(100%)

NA

I use Naia to edit my time
data.

Never

(0%)

Less than
half the time
(1 – 39%)

About half
the time
(40 - 60%)

More than half
the time
(61 – 99%)

All the
time
(100%)

NA

I prefer to use Io for time
recording.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I prefer to use Naia for
time recording.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My Leap data accurately
reflects what really
happened

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Please list the most negative aspect(s) of the Leap toolkit, in your opinion.

1.

2.

3.

Please list the most positive aspect(s) of the Leap toolkit, in your opinion.

1.

2.

3.

If you would like to provide any additional comments about the Leap toolkit, please note them on the rest
of this page and the back of this page. Thank you for taking the time to fill out this survey. Please place it
in the envelope, seal and sign the envelope.

Figure A.2: Leap survey #1 page 2

44

Leap User Survey #2

Leap Usability survey
Please circle the number that most closely matches your feelings about the following statements. If the
statement does not apply to you circle NA.

Strongly
Disagree

Strongly
Agree

Overall, I am satisfied with how easy it is to use
Leap.

1 2 3 4 5 NA

It is simple to use Leap. 1 2 3 4 5 NA

I can effectively complete the Leap portions of my
assignments.

1 2 3 4 5 NA

I can efficiently complete the Leap portions of my
assignments

1 2 3 4 5 NA

It is easy to learn to use Leap. 1 2 3 4 5 NA

I believe I became productive quickly using Leap. 1 2 3 4 5 NA

Leap gives error messages that clearly tell me how to
fix problems.

1 2 3 4 5 NA

Whenever I make a mistake using Leap, I recover
easily and quickly.

1 2 3 4 5 NA

The information (such as on-screen messages, and
other documentation) provided with Leap are clear.

1 2 3 4 5 NA

It is easy to find the information I need. 1 2 3 4 5 NA

The information provided with Leap is easy to
understand.

1 2 3 4 5 NA

The information is effective in helping me complete
the tasks and assignments.

1 2 3 4 5 NA

The organization of information on Leap screens is
clear.

1 2 3 4 5 NA

The interface of Leap is pleasant. 1 2 3 4 5 NA

I like using the interface of Leap. 1 2 3 4 5 NA

Leap has all the functions and capabilities I expect it
to have.

1 2 3 4 5 NA

Overall, I am satisfied with Leap. 1 2 3 4 5 NA

Figure A.3: Leap survey #2 page 1

45

Leap Usage – Time Collection
Please circle the answer that most closely matches your use of the features in Leap. Choose NA if the
question does not apply to you.

Questions Answers
Which time entry tool do
you use most often?

Io (single line entry tool) Naia (time table)

How often do you use Io
(single line) to record your
time?

Never

(0%)

Less than
half the time
(1 – 39%)

About half
the time
(40 - 60%)

More than half
the time
(61 – 99%)

All the
time
(100%)

NA

How often do you use Naia
(table) to record your time?

Never

(0%)

Less than
half the time
(1 – 39%)

About half
the time
(40 - 60%)

More than half
the time
(61 – 99%)

All the
time
(100%)

NA

I use Naia to edit my time
data.

Never

(0%)

Less than
half the time
(1 – 39%)

About half
the time
(40 - 60%)

More than half
the time
(61 – 99%)

All the
time
(100%)

NA

I prefer to use Io for time
recording.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I prefer to use Naia for
time recording.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My time data gives me
valuable insights into my
strengths as a programmer

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My Leap data accurately
reflects what really
happened

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My time data gives me
valuable insights into my
weaknesses as a
programmer

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Leap Usage – Time Estimation
Please circle the answer that most closely matches your use of the features in Leap. Choose NA if the
question does not apply to you.

Questions Answers
I am aware of my time
estimate while I do my
assignment.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel comfortable with my
time estimates.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel comfortable with my
ability to estimate project
size.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel pressure to make my
actual effort match my
estimated effort.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel pressure to make my
actual project size match
my estimated project size.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel pressure to turn in
data where my actual size
and time data matches my
estimates.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Time pressure reduces the
quality of the data I collect
in Leap.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Figure A.4: Leap survey #2 page 2

46

Please list the most negative aspect(s) of the Leap toolkit, in your opinion.

1.

2.

3.

Please list the most positive aspect(s) of the Leap toolkit, in your opinion.

1.

2.

3.

What have you learned about your own software development process?

If you would like to provide any additional comments about the Leap toolkit, please note them on the rest
of this page and the back of this page. Thank you for taking the time to fill out this survey.

Figure A.5: Leap survey #2 page 3

47

Leap User Survey #3

Leap Usage – Time Collection
Please circle the answer that most closely matches your use of the features in Leap. Choose NA if the
question does not apply to you.

Questions Answers
Which time entry tool do
you use most often?

Io (single line entry tool) Naia (time table)

I prefer to use Io for time
recording.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I prefer to use Naia for
time recording.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I use Naia to edit my time
data.

Never

(0%)

Less than half the
time
(1 – 39%)

About half
the time
(40 - 60%)

More than
half the time
(61 – 99%)

All the
time
(100%)

NA

My Leap data accurately
reflects what really
happened

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My time data gives me
valuable insights into my
strengths as a programmer.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My time data gives me
valuable insights into my
weaknesses as a
programmer

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Leap Usage – Time Estimation
Please circle the answer that most closely matches your use of the features in Leap. Choose NA if the
question does not apply to you.

Questions Answers
I am aware of my time
estimate while I do my
assignment.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel comfortable with my
time estimates.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel comfortable with my
ability to estimate project
size.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel pressure to make my
actual effort match my
estimated effort.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel pressure to make my
actual project size match
my estimated project size.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I feel pressure to turn in
data where my actual size
and time data matches my
estimates.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Figure A.6: Leap survey #3 page 1

48

My time estimation skills
are improving.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My size estimation skills
are improving.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Leap Usage – Defect Collection
Please circle the answer that most closely matches your feelings. Choose NA if the question does not apply
to you.

Questions Answers
Being aware of my defects
helps me avoid making
them in the future.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My defect data gives me
valuable insights into my
strengths as a programmer.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My defect data gives me
valuable insights into my
weaknesses as a
programmer

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Collecting my defect data
is a waste of my time.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My Leap data accurately
reflects what really
happened

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Time pressure reduces the
quality of the data I collect
in Leap.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

What have you learned about your project estimation abilities?

If you would like to provide any additional comments about the Leap toolkit, please note them on the back
of this page. Thank you for taking the time to fill out this survey.

Figure A.7: Leap survey #3 page 2

49

Leap User Survey #4

Leap Usability survey
Please circle the number that most closely matches your feelings about the following statements. If the
statement does not apply to you circle NA.

Strongly
Disagree

Strongly
Agree

Overall, I am satisfied with how easy it is to use
Leap.

1 2 3 4 5 NA

It is simple to use Leap. 1 2 3 4 5 NA

I can effectively complete the Leap portions of my
assignments.

1 2 3 4 5 NA

I can efficiently complete the Leap portions of my
assignments

1 2 3 4 5 NA

It is easy to learn to use Leap. 1 2 3 4 5 NA

I believe I became productive quickly using Leap. 1 2 3 4 5 NA

Leap gives error messages that clearly tell me how to
fix problems.

1 2 3 4 5 NA

Whenever I make a mistake using Leap, I recover
easily and quickly.

1 2 3 4 5 NA

The information (such as on-screen messages, and
other documentation) provided with Leap are clear.

1 2 3 4 5 NA

It is easy to find the information I need. 1 2 3 4 5 NA

The information provided with Leap is easy to
understand.

1 2 3 4 5 NA

The information is effective in helping me complete
the tasks and assignments.

1 2 3 4 5 NA

The organization of information on Leap screens is
clear.

1 2 3 4 5 NA

The interface of Leap is pleasant. 1 2 3 4 5 NA

I like using the interface of Leap. 1 2 3 4 5 NA

Leap has all the functions and capabilities I expect it
to have.

1 2 3 4 5 NA

Overall, I am satisfied with Leap. 1 2 3 4 5 NA

Figure A.8: Leap survey #4 page 1

50

Perceptions of Leap
Please circle the answer that most closely matches your feelings. Choose NA if the question does not apply
to you.

Questions Answers
Using Leap enables me to
develop software more
quickly.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap improves the
quality of my software.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap makes it easier
for me to develop software.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap improves my
software development
performance.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Overall, I find using Leap
to be advantageous in my
software development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap enhances my
effectiveness in software
development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap gives me
greater control over my
work.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap increases my
productivity.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap is compatible
with all aspects of my
software development
process.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I think using Leap fits well
with the way I develop
software.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap fits into my
work style.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I believe that Leap is
cumbersome to use.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My using Leap requires a
lot of mental effort.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap is often
frustrating.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I believe that it is easy to
get Leap to do what I want
it to do.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Overall, I believe that Leap
is easy to use.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I would have no difficulty
telling others about the
results of using Leap.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I believe I could
communicate to others the
consequences of using
Leap.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Figure A.9: Leap survey #4 page 2

51

The results of using Leap
are apparent to me.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I would have difficulty
explaining why using Leap
may or may not be
beneficial.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Lessons Learned
Please circle the answer that most closely matches your feelings. Choose NA if the question does not apply
to you.

Questions Answers
Leap has shown me
valuable insights into my
software development
process.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My programming skills
have improved since the
beginning of this class.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I will continue to use Leap
as a part of my software
development.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Collecting data about my
software development
process has been a waste of
my time.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

My Leap data accurately
reflects what really
happened

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Using Leap has made me a
better software developer.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

I can describe my own
software development
process.

Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

NA

Please describe the most valuable insights you have learned about your software development process.

Thank you for taking the time to fill out this survey.

Figure A.10: Leap survey #4 page 3

52

Bibliography

[1] Jody Armour and Watts S. Humphrey. Software product liability. Technical Report CMU/SEI-

93-TR-13, Software Engineering Institute, Carnegie Mellon University, August 1993.

[2] Robert D. Austin. Measuring and managing performance in organizations. Dorset House,

1996.

[3] Peter M. Blau. The Dynamics of Bureaucracy: A Study of Interpersonal Relations in Two

Government Agencies. The University of Chicago Press, 2nd edition, 1963.

[4] Anne M. Disney. Data quality problems in the Personal Software Process. M.S. thesis, Uni-

versity of Hawaii, August 1998.

[5] Anne M. Disney and Philip M. Johnson. Investigating data quality problems in the PSP.

In Proceedings of the ACM SIGSOFT Sixth International Symposium on the Foundations of

Software Engineering, pages 143–152, Lake Buena Vista, FL, November 1998.

[6] Robert H. Dunn.Software Quality: Concepts and Plans. Prentice Hall, 1990.

[7] Khaled El Emam, Barry Shostak, and Nazim Madhavji. Implementing concepts from the

Personal Software Process in an industrial setting. InProceedings of the Fourth International

Conference on the Software Process, Brighton, England, December 1996.

[8] Michael E. Fagan. Design and code inspections to reduce errors in program development.IBM

Systems Journal, 15(3):182–211, 1976.

[9] Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Susan Macke, and Annette Matvya.

Introducing the Personal Software Process: Three industry cases.IEEE Computer, 30(5):24–

31, May 1997.

[10] The WWW formal technical review archive. http://www.ics.hawaii.edu/ johnson/FTR/.

53

[11] Robert L. Glass.Software Runaways: Lessons Learned from Massive Software Project Fail-

ures. Prentice Hall, 1998.

[12] GNU emacs - GNU project - free software foundation(FSF).

http://www.gnu.org/software/emacs/emacs.html.

[13] Will Hayes and James W. Over. The Personal Software Process (PSP): An empirical study of

the impact of PSP on individual engineers. Technical Report CMU/SEI-97-TR-001, Software

Engineering Institute, Pittsburgh, PA., 1997.

[14] Joel Henry. Personal Software Process studio. http://www-cs.etsu.edu/softeng/psp/, 1997.

[15] Watts S. Humphrey.A Discipline for Software Engineering. Addison-Wesley, January 1995.

[16] Watts S. Humphrey. Using a defined and measured Personal Software Process.IEEE Software,

13(3):77–88, May 1996.

[17] International Organization for Standardization.ISO Standards Compendium - ISO 9000 Qual-

ity Management, 7th edition, 1998.

[18] Philip M. Johnson. An instrumented approach to improving software quality through formal

technical review. InProceedings of the 16th International Conference on Software Engineer-

ing, pages 113–122, Sorrento, Italy, May 1994.

[19] Philip M. Johnson. Supporting technology transfer of formal technical review through a com-

puter supported collaborative review system. InProceedings of the Fourth International Con-

ference on Software Quality, Reston, VA., October 1994.

[20] Philip M. Johnson. Design for instrumentation: High quality measurement of formal technical

review. Software Quality Journal, 1995.

[21] Philip M. Johnson and Danu Tjahjono. Improving software quality through computer sup-

ported collaborative review. InProceedings of the Third European Conference on Computer

Supported Cooperative Work, September 1993.

[22] Philip M. Johnson, Danu Tjahjono, Dadong Wan, and Robert Brewer. Experiences with CSRS:

An instrumented software review environment. InProceedings of the Pacific Northwest Soft-

ware Quality Conference, Portland, OR., 1993.

54

[23] S. Khajenoori and I. Hirmanpour. An experiential report on the implications of the Personal

Software Process for software quality improvement. InProceedings of the Fifth International

Conference on Software Quality, pages 303–312, October 1995.

[24] Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents.IEEE

Computer, 1993.

[25] The locc system. http://csdl.ics.hawaii.edu/Tools/LOCC/LOCC.html.

[26] Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis.The Capability Maturity

Model: Guidelines for Improving the Software Process. Addison-Wesley, 1995.

[27] Lutz Prechelt and Barbara Ungber. A controlled experiment on the effects of psp training: De-

tailed description and evaluation. Technical Report 1/1999, Fakult¨at für Informatik Universität

Karlsruhe, April 1999.

[28] PSP resources page at the University of Karlsruhe. http://wwwipd.ira.uka.de/�gramberg/PSP/.

[29] PSPtool version 0.6. http://www.virtual.net.au/simtqc/description.html.

[30] M. Ramsey. Experiences teaching the Personal Software Process in academia and industry. In

Proceedings of the 1996 SEPG Conference, 1996.

[31] Khalid Sherdil and Nazim H. Madhavji. Human-oriented improvement in the software process.

In Proceedings of the 5th European Workshop on Software Process Technology, October 1996.

[32] Barry Shostak. Adapting the Personal Software Process to industry.Software Process Newslet-

ter #5, Winter 1996.

[33] Timelog. http://www.kclee.com/clemens/java/timelog/.

[34] Timetracker - an x-windows timekeeper. http://www.alvestrand.no/domen/titrax/TimeTraker.html.

[35] Danu Tjahjono. Evaluating the cost-effectiveness of formal technical review factors. Ph.D.

Dissertation Proposal. CSDL-TR-94-07, University of Hawaii, Department of Information and

Computer Sciences, 1994.

[36] Andrew Worsley. What are the benefits of the PSP software process?

http://www3.cm.deakin.edu.au/�peter/PSPdata/talk.html, 1996.

[37] XEmacs: The next generation of emacs. http://www.xemacs.org/.

55

[38] Edward Yourdon.Structured Walkthroughs. Prentice-Hall, 1979.

56

