
Investigating Data Quality Problems in the PSP
(Experience Paper)

Anne M. Disney
Philip M. Johnson

Dept. of Information and Computer Sciences
University of Hawaii

Honolulu, HI 96822 USA
anne@ics.hawaii.edu
johnson@hawaii.edu

Abstract

The Personal Software Process (PSP) is used by software engineers
to gather and analyze data about their work. Published studies typ-
ically use data collected using the PSP to draw quantitative con-
clusions about its impact upon programmer behavior and product
quality. However, our experience using PSP in both industrial and
academic settings revealed problems both in collection of data and
its later analysis. We hypothesized that these two kinds of data
quality problems could make a significant impact upon the value of
PSP measures. To test this hypothesis, we built a tool to automate
the PSP and then examined 89 projects completed by ten subjects
using the PSP manually in an educational setting. We discovered
1539 primary errors and categorized them by type, subtype, sever-
ity, and age. To examine the collection problem we looked at the
90 errors that represented impossible combinations of data and at
other less concrete anomalies in Time Recording Logs and Defect
Recording Logs. To examine the analysis problem we developed a
rule set, corrected the errors as far as possible, and compared the
original and corrected data. This resulted in significant differences
for measures such as yield and the cost-performance ratio, con-
firming our hypothesis. Our results raise questions about the ac-
curacy of manually collected and analyzed PSP data, indicate that
integrated tool support may be required for high quality PSP data
analysis, and suggest that external measures should be used when
attempting to evaluate the impact of the PSP upon programmer be-
havior and product quality.

Keywords

Personal software process, defects, empirical software engineering,
measurement dysfunction, automated process support

1 INTRODUCTION

The actual process is what you do, with all its omis-
sions, mistakes, and oversights. The official process is
what the book says you are supposed to do.[8]

The Personal Software Process (PSP) was introduced in 1995
in the book, “A Discipline for Software Engineering” [8]. This text
describes a one-semester curriculum for advanced undergraduates
or graduate students in computer science that teaches concepts in
empirically-guided software process improvement. Since its intro-
duction, experience with the PSP has been reported on in several
case studies [1, 4, 9, 12, 10]. Although empirically-guided soft-
ware process improvement is a key feature of other software engi-
neering initiatives, such as the Capability Maturity Model (CMM)
[11], ISO-9000, and Inspection [5], the PSP differs from these other
approaches in important ways.

The CMM, ISO-9000, and Inspection discuss empirical soft-
ware process improvement in the context of a large organization.
Process improvement in this context requires the gathering and
analysis of large amounts of data, within and across departments,
generated by different people at different times. Indeed, inevitable
personnel turnover means that the data collected from the work-
ing procedures of one set of people tend to generate measurements
leading to process changes that affect the working procedures of a
potentially different set of people. The substantial effort required to
collect, interpret, and introduce organizational change based upon
the measurements for a large organization leads to the need for an
explicit software engineering process group (SEPG) whose mission
is to manage empirically guided improvement. Although the util-
ity of these approaches have been repeatedly validated, they leave
the unfortunate impression that empirically-guided software pro-
cess improvement is the sole province of large organizations who
can dedicate teams of people to its enactment.

The PSP provides an alternative, complementary approach in
which empirically guided software process improvement is “scaled
down” to the level of an individual developer. In the PSP, individu-
als gather measurements related to their own work products and the
process by which they were developed, and use these measures to
drive changes to their development behavior. PSP focuses on defect
reduction and estimation accuracy improvement as the two primary
goals of personal process improvement. Through individual collec-
tion and analysis of personal data, the PSP provides a novel exam-
ple of how empirically-guided software process improvement can
be implemented by individuals regardless of the surrounding orga-
nizational context and the availability of institutional infrastructure
support.

Since PSP is a new technique, relatively little data exists on
its use and effectiveness. Those studies of which we are aware all
report positive results, usually based upon measurements obtained
during enactment of the PSP curriculum. For example, one case
study states that “during the course, productivity improvements av-
erage around 20% and product quality, as measured by defects,
generally improves by five times or more” [4]. Another study states

that “the improvement in average defect levels for engineers who
complete the course is 58.0% for total defects per KLOC and 71.9%
for defects per KLOC found in test.” Indeed, our own PSP data
yields similarly positive measurements for process and products.

In this paper, we report on a case study performed to assess the
quality of PSP data—the data often used in evaluations of the effec-
tiveness of the PSP as shown above. Our case study was motivated
by our experiences teaching and using the PSP, which led us to sus-
pect that the empirical measures gathered by the PSP may not, in
all cases, reflect the true underlying process or products of develop-
ment. We hypothesized that one class of problems—data analysis
errors—could significantly change at least some of the measures
produced by the PSP that are commonly used to evaluate its ef-
fectiveness. To test this hypothesis, we taught a modified version
of the PSP curriculum augmented with mechanisms to ameliorate
potential PSP data quality problems. We then entered the PSP mea-
sures into a database and subjected them to a variety of data quality
analyses. These analyses uncovered over 1500 errors in the PSP
data generated by the ten students in the class during nine projects.
Additional analysis yielded a seven part classification scheme for
PSP data errors. Although we were not always able to generate cor-
rected values for the data errors, partial correction lead to substan-
tially different values for certain PSP measurements, confirming
our hypothesis.

The remainder of the paper is organized as follows. The next
two sections present a brief overview of the PSP and a simple model
we developed to organize our exploration of PSP data quality prob-
lems. The following three sections present the case study, its re-
sults, and our conclusions.

2 OVERVIEW OF THE PSP

In the PSP curriculum presented in “A Discipline for Software En-
gineering”, each student develops 10 small programs over the course
of a semester using a sequence of seven increasingly sophisticated
software development processes, labeled PSP0 to PSP3. For every
program, the students record various measurements related to their
personal development activities. Such measures include, for exam-
ple, the time spent in each phase of development, the numbers of
defects injected and removed during each phase, and the size of the
resulting work product.

The initial programs use relatively simple processes that estab-
lish a baseline set of process measures for time, size, and defects.
Later programs employ more advanced processes that extend these
baseline process statistics. Although there are a myriad of individ-
ual extensions, most fall into two conceptual categories.

First, the planning phase is expanded to include estimates of
the program’s projected size, the projected time required to com-
plete each of the phases, and the number of anticipated defects that
will be injected and removed during development. The process
by which these estimates are produced involves statistical analysis
of historical correlations between designs (i.e. class and method
counts) and actual size (in lines of code), between estimated size
and actual time, between actual size and actual time, and between
size and defects injected and removed. (While lines of code as a
metric of size at the organizational level is almost uniformly exco-
riated in the measurement literature, it seems to work surprisingly
well in the PSP, since the measure is collected and applied to a sin-
gle individual working in a single language in a relatively uniform
domain.)

Second, by the middle of the course, each student has typi-
cally recorded a hundred or more defects made during develop-
ment. Later processes include mechanisms to help students under-
stand the impact of various kinds of defects and to drive process
improvements intended to reduce future occurrence of important
defect types. For example, since students record the phase each

defect was injected and removed and the time required to fix it, it
is possible to analyze the relationship between fix time and various
characteristics of defects. One relationship nearly always present in
student data is that the “longer” a defect is present, the more time
it takes to remove it. Thus, defects injected during design and not
removed until testing are nearly always more expensive to remove
than, for example, defects injected during coding and removed dur-
ing compiling. This outcome typically motivates students to put
more effort and care into design activities. Later processes sup-
port such behaviors by providing active defect management mech-
anisms. For example, by analyzing defect data to determine the
types of design defects made on prior projects, a student can gen-
erate a checklist to be used as part of a personal design review to
ensure that those defects do not escape into code, compile, or test
phases.

The final stages of the course further extend the basic PSP para-
digm. The last PSP process provides a way to scale the method
to support larger projects using a cyclic development method. In
addition, PSP includes a meta-level process for defining personal
processes in non-software domains or for specific software organi-
zational contexts.

3 A MODEL OF PSP DATA QUALITY

To guide our understanding of data quality problems in the PSP, we
devised a simple two stage model of PSP data, as illustrated in Fig-
ure 1. The model begins with “Actual Work”—the actual developer
efforts devoted to a software development project. As part of these
efforts, the developercollectsa set of primary measures on defects,
time, and work product characteristics—the “Records of Work”.
Based on these primary measures, the developer performs addi-
tional analyses, many of which result in secondary (i.e. derived)
measures which are themselves inputs for further analyses. The
secondary, derived measures and associated analyses are presented
in various PSP forms—the “Analyzed Work”—and hopefully yield
“Insights about Work” to improve future software development ac-
tivities.

We based this model upon the PSP as presented inA Discipline
for Software Engineering[8] — what we term “manual PSP”. Man-
ual PSP refers to a situation in which the PSP forms must be filled
out by hand, either by editing a copy of the form on-line, or by fill-
ing out out a printed copy with pen or pencil. Even if tools such
as spreadsheets are used to collect historical data and to provide
various computations, if they do not automatically insert and main-
tain the correct calculated values in the appropriate places in the
forms, then we define the technique as “manual”. We define par-
tially or fully “automated” PSP as one in which some or all of the
derived measures are calculated and placed into the forms automat-
ically. In other words, in automated PSP, the analysis tools and
forms presenting the PSP reports are tightlyintegrated. Although
“automated” PSP can essentially automate all of the analysis stage
calculations, there are limits to its ability to automate the collection
stage work. The collection stage is still quite “manual” in nature.

At the time we performed this case study, there was nointe-
gratedsoftware support for the PSP. Thus, the case study employed
what we call the “manual” version of the PSP, despite our exten-
sive use of spreadsheets, program size counting tools, and statistical
tools during the course. Since then, integrated tools have become
available, including spreadsheets available at the Addison-Wesley
FTP site which print out the project summary forms, and the Per-
sonal Software Process Studio tool produced by East Tennessee
State University [7].

There are three basic ways to affect PSP data quality in the col-
lection stage: errors of omission, errors of addition, and errors of
transcription. Errors of omission occur when the developer does
not record a primary measure related to defects, time, or the work

$QDO\VLV����

 Actual Work Records of Work Analyzed Work

&ROOHFWLRQ���

Insights about Work

Figure 1: A simple model for PSP data quality. Through a process ofcollection, the developer generates an initial empirical representation
(“Records of Work”) of her personal process (“Actual Work”). Through additionalanalyses, the developer augments her initial empirical
representation with derived data (“Analyzed Work”) intended to enable process improvement through “Insights about Work”.

product itself. If a defect occurring during “Actual Work” does not
appear in the “Records of Work”, then, for example, the PSP model
of that work product’s defect density will be lower than its actual
defect density. If time spent on the work product is not recorded,
then the PSP model of that developer’s productivity will be higher
than her actual productivity. Errors of addition occur when the de-
veloper augments the “Records of Work” with data not reflecting
actual practice. For example, a developer, having made an error of
omission to the point of having no time or defect data, may recover
by simply inventing enough time and defect entries to make his or
her PSP data appear plausible. Finally, errors of transcription occur
when the developer does intend to record their “Actual Work” in
the “Records of Work” but makes a mistake during this process.

The presence of collection stage data quality problems is typ-
ically difficult to ascertain and difficult or impossible to rectify.
In the PSP, primary data collection often feels both time consum-
ing and psychologically disruptive. Many students complain that
stopping to record defects disrupts their “flow” state, and that the
time spent recording a defect—particularly for compilation stage
errors—often exceeds the time spent correcting the defect. The
PSP requires users to learn to constantly interleave “doing work”
with “recording what work you are doing”.

There are also three basic ways to affect PSP data quality in the
analysis stage of manual PSP: errors of omission, errors of calcula-
tion, and errors of transcription. Errors of omission occur when the
developer does not perform a required analysis of the primary data.
Errors of calculation occur when the developer attempts to perform
an analysis but does so incorrectly. For example, a developer might
use a regression-based estimation method when the historical data
is so uncorrelated that this method is invalid. Finally, errors of
transcription occur when the developer makes a clerical error when
moving data from one form to another.

Unlike the collection stage, analysis stage data quality prob-
lems are much easier to ascertain and correct,provided that errors
did not occur during the collection stage. In other words, if one as-
sumes that the work records accurately reflect the underlying work,
then appropriate use of automated tools can reduce or eliminate
analysis errors of omission, calculation, and transcription. On the
other hand, since the quality of these analyses are totally depen-
dent upon the quality of the work records, overall PSP data quality
could be quite low even if the analysis stage is totally automated to
eliminate all of its potential data quality errors.

4 CASE STUDY

To gain insight into the occurrence and significance of collection
and analysis data quality problems, we conducted a case study.
The case study began by teaching a modified version of the PSP
designed to improve data quality. Next, we entered the data into
a database that automated most analysis calculations and revealed
the presence of a subset of the possible errors in student data. We
then performed additional analyses on these errors to understand
their cause and potential significance to PSP data values and the
method itself.

4.1 The Modi�ed PSP Curriculum

The projects used for this study were obtained from a software en-
gineering class taught by Philip Johnson, in which the PSP was
taught over the course of a semester using nine project assignments.
There were ten students in the class, and 89 completed projects.

Because of the concern with data quality from prior experi-
ence teaching PSP, the instructor made four principal modifications
to the standard PSP curriculum: increased process repetition, in-
creased process description, technical reviews, and tool support.

Increased process repetition.In the standard PSP curriculum,
students are assigned 10 programs during the semester (in addition
to several midterm and final reports). Over the course of these ten
programs, students practice seven different PSP processes, which
means that the development process used by the students changes
for seven out of ten programs. From our initial experience with the
PSP, we found that the overhead of this almost constant “process
acquisition” led to data errors and had a significant impact upon
the overall data values. To ameliorate this problem, the modified
curriculum included only five PSP processes, enabling students to
practice most processes at least twice before moving on to a new
one. The modified curriculum also included only nine programs
instead of ten, providing additional time in each program for data
collection and analysis.

Increased process description.In our initial experiences teach-
ing the PSP, the instructor found that students had a great deal of
trouble learning to do size and time estimation correctly. For ex-
ample, PSP time estimation requires choosing between three alter-
native methods for estimation depending upon the types of correla-
tions that exist in the historical process data from prior programs.
To help resolve this and other problems, the instructor added four
additional worksheets: (1) a Time Estimating Worksheet to pro-
vide a guide through the various methods of time estimation; (2) a
Conceptual Design Worksheet to help in developing class names,

method names, method parameters, and method return values; (3)
an Object Size Category Worksheet to help in size estimation; and
(4) a Size Estimating Template Appendix to provide a place to
record planned and actual size for prior projects.

Technical reviews. At the completion of each project, stu-
dents divided into pairs and carried out a technical review of each
other’s work. A two-page checklist facilitated this process. It in-
cluded such questions as “Did the author follow the PSP Devel-
opment Phases correctly?” and “Is the Projected LOC calculated
correctly?” A second “Technical Review Defect Recording Log”
form included columns for number, document, severity, location,
and description. Students were given approximately 60 minutes to
do the review. The technical review forms were submitted with
the completed projects. The instructor reviewed the projects a sec-
ond time for grading purposes, using the Technical Review Defect
Recording Log to record any additional mistakes.

Tool support. Finally, the instructor provided four spread-
sheets to support records of planned and actual data values. In
addition, students were provided with well-tested tools to count
non-comment source lines of code for Java programs, to compare
two versions of a Java program and report non-comment lines of
code added and deleted, and to perform certain statistical analyses.
(In the textbook PSP curriculum, students “bootstrap” their envi-
ronment by implementing these tools themselves. While elegant
pedagogically, this approach unfortunately introduces a potentially
significant source of data quality problems, since these freshly de-
veloped tools with no usage history are used to generate many of
the measures used in later data analysis.)

In addition to these curriculum modifications, the instructor
emphasized data quality throughout the course, as recommended
in the textbook. For example, he augmented the lecture notes in
the Instructor’s Guide with fully worked out examples of the PSP
process data for a fictitious student to show how data is collected
and analyzed for each assignment and accumulated over the course
of the semester. He dedicated lectures to collection and analysis
of data periodically throughout the semester. He regularly showed
the class aggregate statistics on class performance. He met with
students individually and in groups throughout the semester to go
over their assignments and PSP data while they were in the midst
of planning, design, code, compile, test, and/or postmortem; but
prior to project turn-in. He uncovered and removed many, many
PSP data errors through these meetings which are not counted in
our results. He did technical reviews of every assignment’s PSP
data, and circulated problem reports throughout the semester sum-
marizing issues discovered from student data.

4.2 PSP Data Entry Tool

We developed a database application to support analysis of PSP
data from PSP0 to PSP2, using the Progress 4GL/RDBMS [2]. In
order to reduce opportunities for making mistakes, this tool was
designed to require a minimum amount of user input and to pro-
vide the user with default values whenever possible. Apart from
task and scheduling template values, the application automated all
calculations, from determining delta times for Time Recording Log
entries to performing linear regression for size estimation. In addi-
tion, the application guides the user through the appropriate forms
and fields in the order most appropriate for the current process and
phase.

4.3 Error Recording Method

Once the database application was ready, we entered data from
the student project PSP forms manually and compared each stu-
dent value with the value computed by the application. Although
every discrepancy between the manually generated data and the

application-generated data could be considered an error, we only
counted an error at its insertion point. For example, in a Time
Recording Log entry for the Design phase, ifStop is incorrectly
subtracted fromStart, Delta Timewill be incorrect. Even if all other
calculations are done correctly for the rest of the project,Time in
Phase, Design, Actual; Time in Phase, Total, Actual; Time in Phase,
Design, To Date; Time in Phase, Total, To Date; Time in Phase, To
Date %; andTime in Phase, To Datevalues for an indefinite number
of future projects will all be inaccurate to some degree. And this
is just for the most simple process, PSP0! In more advanced pro-
cessesLOC/Hour, time estimation,Cost-Performance Index, and
Defect Removal Efficiencyvalues could all be affected for both the
current project and future projects. To eliminate this combinatorial
explosion in the number of errors, we counted this as a single error
in Delta Time.

Although we analyzed the project data quite carefully, we do
not feel confident that we have uncovered all or even most of the er-
rors in this case study. While our database application does enable
us to determine the correctness or incorrectness of values gener-
ated during the analysis stage of our data quality model, it provides
only limited insight into collection stage errors. For example, in the
Time Recording Log, it was possible to check theDelta Timecom-
putation, but not the accuracy ofDate, Start, Stop, or Interruption
Time. Of course, the tool could not, in general, detect the absence
of entries for work that was done but not recorded. Two other areas
that created similar problems were the Defect Recording Log and
the measured and countedProgram Sizefields for the Project Plan
Summary.

4.4 PSP Error Data Analysis Tool

In order to analyze the 1539 errors uncovered by the PSP data en-
try tool, we developed a second database application, the PSP Error
Data Analysis Tool. For each error discovered, we tracked the per-
son who made the error, the method by which the error was found
(technical review, instructor review, or comparison with the PSP
tool results), the assignment in which the error occurred, the PSP
process used for that assignment, the PSP phase in which the stu-
dent was working when the error occurred, the general error type,
the specific error type, the severity of the error, the age of the error
(number of assignments since the introduction of the PSP opera-
tion in which the error occurred), the incorrect and correct values
(where applicable), and an optional comment for noting issues of
interest in that error.

4.5 Error Correction

Although our initial analysis of our case study data revealed many
errors, the sheer presence of errors might only lead to imprecision,
rather than inaccuracy. In other words, it was possible that these
errors were only “noise”, similar in magnitude to naturally occur-
ring random fluctuations in behavior, but not sufficient to actually
change the trends or interpretations of PSP data.

To test this hypothesis, we attempted, where possible, to fix
errors so that original and corrected versions of the data could be
compared. It soon became clear that errors fell into three classes.
First, there were errors where the correct value could be deter-
mined. This class included such values asLOC/Hour that were
wrong simply because of an incorrect calculation. These errors
were easily fixed by correctly performing the calculation in ques-
tion. Second, there were errors where the correct value could not
be determined, such as a blankPhase Injectedfor a Defect Record-
ing Log entry. Fortunately, most errors in this class occurred in
fields that didn’t affect other fields, such as missing header data
or missing dates in the Defect Recording Log. Third, there were
errors where the correct value could be guessed. In a Time Record-

ing Log entry withStart 10:00, Stop10:30, Interruption Time0,
andDelta Time40; it is clear that there is a problem, but not clear
which field is incorrect and should be corrected. However we can
guess that there was a problem calculatingDelta Timeand assume
that the other values are valid. To correct this third class of errors
in an explicit and consistent fashion, we developed a set of rules.
Underlying each of our rules is the assumption that primary data is
more likely to be accurate than calculations performed upon it. The
following lists each of the rules along with the number of times it
was used in the case study.

Rule 1 (used 53 times): Defects in Time Recording Log en-
tries should be handled by assuming that the start/stop/interruption
times are correct and that the delta time is wrong, unless two Time
Recording Log entries overlap. In that case, the preceding and fol-
lowing entries and the delta time for the current entry should be
used to formulate plausible start/stop times. Generally this will
mean starting the second entry where the first one stops.

Rule 2 (used 5 times): If a Time Recording Log is missing an
entry for an entire phase, but the Project Plan Summary form con-
tains a value for the phase underTime in Phase (min.), Actual, an
appropriate Time Recording Log entry should be formulated with
fabricated date and time values.

Rule 3 (used 28 times): For conflicts between a Defect Record-
ing Log and a Project Plan Summary it should be assumed that the
number of defects and the phases recorded in the Defect Record-
ing Log are correct and that the discrepancy occurred as a result
of incorrectly adding up the numbers of defects injected/fixed per
phase and/or incorrectly transferring these totals to the Project Plan
Summary form.

Rule 4 (used 10 times): If, for the Defect Recording Log, the
total of all fix times for defects removed in a certain phase is more
than the time recorded for that phase in the Time Recording Log,
a Time Recording Log entry should be inserted with start and stop
times that, combined with the existing Time Recording Log en-
tries for the phase, will produce a delta time of the total fix times
plus one minute for each defect. This will represent the minimum
amount of time required to find and remove the recorded defects.

Rule 5 (used 1 time): To provide a value for a blankTime in
Phase (min.), Planfield on the Project Plan Summary form, the
value forTime in Phase (min.), Actualfor the same phase should
be used. Note that this rule, if used widely, would itself introduce
error into the correction process. However, we used it only once on
one project and it has negligible impact upon our results.

Rule 6 (used 62 times): Conflicts inProgram Size (LOC)fields
on the Project Plan Summary form should be handled by assuming
that Base, Deleted, Modified, Added, and Reusedare correct and
that errors are the result of incorrect calculations forTotal New and
ChangedandTotal LOC. Actually, this is not a truly satisfactory
assumption becauseTotal LOC, Actualshould be a measurement
rather than a calculation and should therefore be relied upon. How-
ever, given correct values forBase, Deleted, Modified, Added,and
Reused, it is possible to calculateTotal LOC, whereas it is impossi-
ble to even guess at the correct values for the other fields. Unfortu-
nately, defects in theProgram Size (LOC)fields were some of the
most common defects.

4.6 Data Comparison

After we partially corrected the project data according to the rule
set, we investigated which values to compare to best reveal the ef-
fects of errors. Projects 8 and 9 had the most fields to compare
since they were completed using PSP2, and provided the best op-
portunities for observing the cumulative effect of errors made in
earlier projects. Project 9 was the best project for comparison be-
cause students had had the most practice in PSP by the time this
project was completed and because it provided more time for cu-

mulative effects to exhibit their true characteristics. Unfortunately
one student did not complete this project, resulting in fewer data
points for the final project.

One of the more interesting areas for comparison would have
been size and time estimation. This was not possible due to the
difficulties in adequately correcting theProgram Size (LOC)fields.
Instead, we selected a few fields from each of the other major sec-
tions of the Project Plan Summary, including some fields that re-
sulted from fairly simple calculations but represented to date values
from all nine projects, and other fields that were more local to the
current project but were the result of more difficult operations.

5 RESULTS

Despite the discovery of data quality problems to be reported be-
low, we still view the case study semester as an unqualified success
from an educational standpoint. From a quantitative perspective,
student data for the course parallels the positive outcomes from
other PSP case studies, such as those reported by the Software En-
gineering Institute [6]:

� Average defect density showed a downward trend from around
200 defects/KLOC to around 50 defects/KLOC, a 75% de-
crease.

� Average productivity showed a very slight positive trend, from
around 15 LOC/hour to around 20 LOC/hour.

� Time and size estimation showed dramatic improvement. On
the last program, both size and time estimation error dropped
below 15% for half the class, with several student estimates
within 3-5% of their actual values. For example, one size
estimate of 507 LOC was off by only 11 LOC. One time
estimate of 14.5 hours was off by only 25 minutes.

� Two students out of ten during the case study achieved what
we consider to be the “Holy Grail” of PSP:100% yield, i.e.
programs that compiled and ran correctly the first time with-
out any syntax or run-time errors.

The qualitative outcomes were equally positive. Most students
expressed a very high degree of satisfaction with the course. The
following comments are typical:

� “In September, I didn’t know anything about software engi-
neering. Now I know a great deal thanks to PSP. I now know
the importance of why a process is used to finish a task. Soft-
ware development is not easy and using a process helps in
development.”

� “I thought I was a good programmer, but after using PSP I
realize that I was nothing back then. Now, I can proudly say
that I have gotten much much better than ever before.”

� “I must admit, when I started this course, I understood what
we were supposed to do in good software engineering, but
I never really did it. Now I understand the reasons behind
these practices and the benefits of actually following a pro-
cess instead of just jumping right into coding... Teachers who
push doing planning and design might actually know what
they’re talking about.”

� “At the beginning, I just coded to finish the project or solve
the problem. Now I take an in-depth look at the problem and
think about it for a while before trying to develop a solution.
By executing and learning this process I know way more
about software engineering than when I started this course.”

Despite these excellent educational outcomes, our post-course
analysis discovered significant numbers of errors in the PSP data.
The following sections provide a breakdown of these defects ac-
cording to their type, severity, age, the manner in which they were
detected, whether they occurred during the analysis or collection
stage, their “ripple effect”, and the overall percentage error rate.

5.1 Error Types

We found that the errors naturally fell into one of seven general
types. We present each type in descending order of frequency, and
include the number of errors found of that type and the percentage
of all errors represented by this type.

Calculation Error. (705 errors, 46%). This error type applied
to data fields whose values were derived using any sort of calcula-
tion from addition to linear regression. If the calculation was not
done correctly, an error was counted. This type was not used for
values that were incorrect because other fields used in the calcula-
tion contained bad numbers.

Blank Field. (275 errors, 18%). This error type was used when
a data field required to contain a value, such as theStartfield in a
Time Recording Log entry, was left blank. This type was not used
in fields where a value was optional, such as comment fields.

Transfer of Data Between Projects Incorrect. (212 errors,
14%) This error type was used for incorrect values in fields that
involved data from a prior project. Typically these fields were “to
date” fields that involved adding a to date value from a prior project
with a similar value in the current project. Unfortunately, it was
often impossible to determine if the error arose from bringing for-
ward a bad number, or incorrectly adding two good numbers, or
bringing forward the correct number and correctly adding it to the
wrong number from the current form. However, in two important
areas, time and size estimation, the forms were modified so that
students were required to fill in the prior values to be used in the
estimation calculations. In these cases we could determine when
incorrect values originated in the transfer.

Entry Error. (142 errors, 9%). This error type applied when
a student clearly did not understand the purpose of a field or used
an incorrect method in selecting data. Examples include the use of
a phase name in theFix Defectfield of the Defect Recording Log,
or having theDefects Injected, To Datevalues in the Project Plan
Summary originate from a different project than theProgram Size
(LOC), To Datevalues.

Transfer of Data Within Project Incorrect. (99 errors, 6%).
This error type is similar to the error type involving incorrect trans-
fer of data between projects, except that it applied to values trans-
ferred from one form to another within the current project. For
example, filling in 172 forEstimated New and Changed LOCon
the Size Estimating Template, but using 290 forTotal New and
Changed, Planon the Project Plan Summary.

Impossible Values.(90 errors, 6%). This error type indicates
that two values were mutually exclusive. Examples of this error
type include overlapping time log entries, defect fix times for a
phase adding up to more time than the time log entries for the phase,
or phases occurring in the Defect Recording Log in a different order
than those in the Time Recording Log.

Process Sequence not Followed(16 errors, 1%). This error
type was used when the Time Recording Log showed a student
moving back and forth between phases such as Compile and Test
instead of sequentially moving through the phases appropriate for
the process.

5.2 Error Severity

Some PSP data errors have relatively little “ripple effect” upon
other data values, while others can have an enormous impact. To
gain insight into the distribution of the ripple effect, we classified
the errors into one of five “severity” levels. We present the levels
in increasing order of ripple effect. As before, we include the total
number of errors found for a given severity level and its percentage
of the total.

Error has no impact on PSP data. (104 errors, 7%). This
level included errors such as missing header data, incorrect dates
in the time recording log, and filling in fields for a more advanced
process.

Results in a single bad value, single form.(674 errors, 44%).
This level was used if a significant field which affected no other
fields, such asLOC/Hour, Actual, was blank or incorrect.

Results in multiple bad values, single form. (197 errors,
13%). This level indicates when an incorrect or blank value was
used in the calculation of values for one or more other fields on the
same form, but when none of these other values were used beyond
the current form. For example, in PSP1 on the Size Estimating
Template, incorrectly calculating a prediction interval. This results
in a bad prediction interval and a bad prediction range, but these
values are not used anywhere else in the process.

Results in multiple bad values, multiple forms, single project.
(41 errors, 3%). This level indicates when an incorrect or blank
value was used to determine the values for one or more other fields
on one or more different forms in the same project, but when none
of these other values were used beyond the current project. For ex-
ample, in PSP1, on the Size Estimating Template, calculating an
incorrect value forEstimated Total New Reused (T). This results in
an incorrect value forTotal New Reused, Planon the Project Plan
Summary form, but this value is not referenced by future projects.

Results in multiple bad values, multiple forms, multiple pro-
jects. (523 errors, 34%). This level was used if an incorrect or
blank value affected future projects. For example, whenDefects
Injected, Planning, Actualon the Project Plan Summary does not
match the number of defects entered for the planning phase in the
Defect Recording Log.

5.3 Age of Errors

In any learning situation, a certain number of errors are to be ex-
pected. We hypothesized that perhaps the errors we discovered
were simply a natural by-product of the learning process, and would
“go away” as students gained experience with the various tech-
niques in the PSP.

To evaluate this hypothesis, we calculated the “age” of errors—
in other words, the number of projects since the introduction of
the data field in which the error could be observed. If the errors
were simply a by-product of the learning process, then we would
expect a low average “age” for errors. In other words, people might
make an error in a field initially, but then stop making the error after
gaining more experience with the data field in question.

For example, the calculation ofDelta Timefor the Time Record-
ing Log was introduced in the first project. If a student made an
error in this field during the first project the error would have an
age of zero. If a similar error was made during the second project
the error would have an age of one. By the ninth project this type
of error would have an age of eight.

We first analyzed the errors to determine the average error age
in each project. Figure 2 shows the average age for all errors in
each project.

We then filtered out the 309 errors with an age of zero. This
eliminated errors that could result from students being introduced
to new fields and/or PSP operations for the first time. Figure 3
shows the resulting data.

Project # PSP Process # of Errors Average Age
1 PSP0 51 0.00
2 PSP0.1 59 0.73
3 PSP0.1 63 1.76
4 PSP1 150 1.27
5 PSP1 165 2.27
6 PSP1 186 3.30
7 PSP1.1 160 3.26
8 PSP2 351 3.04
9 PSP2 354 3.84

Figure 2: Average Error Age by Project - All Errors

Project # PSP Process # of Errors Average Age
1 PSP0 0 NA
2 PSP0.1 43 1.00
3 PSP0.1 63 1.76
4 PSP1 70 2.71
5 PSP1 165 2.27
6 PSP1 186 3.30
7 PSP1.1 135 3.86
8 PSP2 214 4.99
9 PSP2 354 3.84

Figure 3: Average Error Age Where Age is not Zero

When combining the 1539 errors from all projects, the average
error age was 2.78 projects. After removing the 309 errors with an
age of zero, the average error age rose to 3.48 projects.

5.4 Error Detection Methods

In this study, there were three ways an error could be detected: by
another student during technical review (40 errors), by the instruc-
tor during the grading/evaluation process (32 errors), or through the
use of the PSP data entry tool (1467 errors). Thus, students were
made aware of about 5% of the mistakes in their completed projects
during the course of the class.

5.5 Analysis Stage Errors

Our two stage model of PSP data quality indicates that errors can be
introduced during either collection or analysis. Most of the errors
that we detected occurred during PSP analysis activities, with 700
errors occurring in the Plan phase and 561 errors in the Postmortem
phase. Some of the errors occurring in other phases, such as errors
in Delta Timecalculations, were also analysis errors.

5.5.1 The Most Severe Errors

34% of errors found were of the most serious type - persistent er-
rors. These were the errors resulting in multiple bad values on mul-
tiple forms for multiple projects. A defect of this type not only
causes incorrect values in the current project, but may still be caus-
ing flawed results ten projects later, even if all subsequent calcu-
lations are done correctly. Figure 4 shows the four most common
errors of this type.

There were two main ways that the error in transferring time es-
timation data appeared to occur: incorrectly transferring the value
from the correct field, or accidentally transferring the correct value
from an incorrect field. For example, instead of transferringTotal

Description #
Time Estimation: historical data
not transferred correctly 61
Size Estimation: historical data
not transferred correctly 56
Time Log: delta time incorrect 48
Project Plan Summary: Total LOC,
actual, not equal to B-D+A+R 45

Figure 4: Most Frequently Occurring Persistent Errors

Project # Errors Time Log Entries % in Error
1 7 84 8.33
2 2 88 2.27
3 8 92 8.70
4 8 108 7.41
5 2 102 1.96
6 9 121 7.44
7 2 77 2.60
8 5 122 4.10
9 5 105 4.76

Figure 5: Delta Time Errors by Project

New and Changed (N)(Plan or Actual), students often transferred
Total LOC (T). This could easily occur because the Project Plan
Summary form has over 90 fields even at the level of PSP1, and
these two values are vertically adjacent on the form. It is partic-
ularly easy to make this mistake with the Actual values because
the fields are separated by one column from the labels. Addition-
ally, it appeared that students made spreadsheets to avoid thumbing
through the entire stack of completed projects every time a time
or size estimation was needed for a new project. We infer this be-
cause the same incorrect value for a particular project would be
transferred over and over again for time and/or size estimation in
new projects.

Similar factors surrounding the error in transferring data for
size estimation. These transfer errors were not insignificant. Over
the 56 errors resulting from incorrect transfer of data used for size
estimation, the sum of the errors was 7753 LOC (lines of code),
with an average error of 138.4 LOC. The sum of the LOC as they
should have been transferred was 10,255, with an average of 183
LOC per field. Thus, the average incorrectly transferred number
was in error by an amount equaling 75.6% of the number that
should have been transferred.

The error in calculatingDelta Timein the Time Recording Log
was notable in several respects. First, the errors were not insignifi-
cant. The average mistake was 37.8 minutes, which was an average
of 39.9 percent of the correct value. Secondly, of 48 occurrences,
16 were in error by one hour and 4 were in error by two hours, in-
dicating small errors in simple arithmetic. Thirdly, the distribution
of this error across projects is as shown in Table 5.

Despite nine projects worth of experience, this error never “went
away”. However it did appear to occur less frequently after Project
6. Interestingly, the assignment for this project was a Time Record-
ing Log applet, which at least some students seem to have used for
subsequent projects.

5.6 Collection Stage Errors

As noted previously, analysis stage errors are relatively easy to de-
termine and correct. However, the accuracy of recorded process
measures from the collection stage was much more difficult to ex-
amine because the time of collection had already passed and, unlike
the analysis operations, was impossible to reproduce. However, we
found both direct and indirect evidence for collection errors during
the case study.

5.6.1 Direct Collection Error Evidence

Direct evidence of collection problems appeared in the 90 errors of
type of “Impossible Values”. We classified these errors into three
major subtypes.

Internal Time Log Conflicts. There were five time logs with
overlapping entries, indicating some sort of problem with accu-
rately collecting time-related data.

Internal Defect Log Conflicts. 51 errors showed problems
with correctly collecting defect data. 48 of these errors were Defect
Recording Log entries showing defects injected during the Compile
and Test phases, but not as a result of correcting other defects found
during Compile or Test.

Discrepancies Between Time and Defect Logs.In 22 cases,
Defect Recording Log entries were entered with dates that did not
match any Time Recording Log entries for the given date. For
example, a defect would be recorded as injected during the Code
phase on a Wednesday, but the time log would show that all coding
had been completed by Monday and that the project was in the Test
phase on Wednesday. For 10 projects, the totalFix Timefor defects
removed during a particular phase added up to more time than was
recorded for that phase in the Time Recording Log. Finally, in two
cases, the Defect Recording Log showed a different phase order
than the Time Recording Log.

5.6.2 Indirect Collection Error Evidence

Besides the recorded errors, there were other indicators that collec-
tion problems had occurred. Some Time Recording Logs showed a
suspicious number of even-hour (e.g. 6:00 to 7:00, 10:00 to 12:00)
entries. Others showed long stretches of consecutive entries with
no breaks or interruptions. Often, the totalFix Timefor the defects
in a phase was far less than the time spent in the phase. For ex-
ample, the Time Recording Log might show three hours spent in
the Test phase, but the Defect Recording Log would show two de-
fects that took eight minutes to fix. Obviously, it is not impossible
that this would occur, but it is much more likely that not all defects
found in test were recorded.

In a similar vein, some projects had suspiciously few defects
overall, such as seven defects for a project with 284 new lines of
code and almost 11 hours of development time, (including 40 min-
utes in compile for two defects requiring 6 minutes of fix time). Our
analysis of the PSP data for that same project yielded 27 errors.

Finally, the instructor has anecdotally observed the following
trend in every PSP course he has taught so far: the students turning
in the highest quality projects also tend to record far higher num-
bers of defects than the students who turn in average or lower qual-
ity projects. If this trend is real, then we can provide two possible
explanations. It may be the case that the students turning in lower
quality projects tend to make far fewer errors than those turning in
the higher quality projects, although this seemsextremelyunlikely.
What appears more likely is that the students turning in the high-
est quality projects also exhibit the lowest level of collection error,
which indicates that substantial but non-enumerable collection er-
ror exists in the PSP data we examined.

5.7 Comparison of Original and Corrected Data

When we compared the original and corrected data, we found sig-
nificant differences (p<.05) for the Cost-Performance Ratio (planned
time-to-date/actual time-to-date) and Yield (percentage of defects
injected before first compile that were also removed before first
compile). We used the Wilcoxon Signed Rank Test [3], a non-
parametric test of significance which does not make any assump-
tions regarding the underlying distribution of the data. Figure 6
and Figure 7 illustrate the differences between these two measures
graphically.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A B C D E F G H I J

Student
C

P
I

-
pr

oj
ec

t
8

Original
Corrected

Figure 6: Effect of Correction on CPI

0

10

20

30

40

50

60

70

80

A B C D E F G H I J

Student

Y
ie

ld
 -

 p
ro

je
ct

 8

Original
Corrected

Figure 7: Effect of Correction on Yield

A CPI value of 1 indicates that planned effort equals actual ef-
fort. CPI values greater than 1 indicate overestimation of resource
requirements, while CPI values less than 1 indicate underestimation
of resource requirements. In half of the subjects, correction of the
CPI value reversed its interpretation (from underplanning to over-
planning, or vice-versa). In the remaining cases, several corrected
CPI values differed dramatically from original values. For exam-
ple Subject A’s original CPI was 0.32, indicating dramatic under-
planning, while the corrected CPI was 0.99, indicating an average
planned resource requirements virtually equal the average actual
resource requirements.

Correction of yield values tended to move their values down-
ward, sometimes dramatically. In half of the subjects, the corrected
yield was less than half of the original yield values, indicating that
subjects were removing a far fewer proportion of defects from their
programs prior to compiling than indicated by the Yield measure-
ment.

Process Approx. Fields Projects Total Values
PSP0 200 10 2000
PSP0.1 220 20 4400
PSP1.0 329 20 6580
PSP1.1 437 20 8740
PSP2.0 528 19 10,032

Total 89 31,752

Figure 8: Data values present in PSP

5.8 Overall Percentage Error Rate

Such a large number of data quality errors calls into question the
quality of instruction. Perhaps these results are a simple artifact
of poor quality control on the part of the teacher? Unfortunately,
the very large number of data values to check in the manual PSP
suggests otherwise.

For example, a time recording log contains six fields (plus a
comment field, but this one is extraneous): Date, Start, Stop, Inter-
rupt time, Delta Time, and Phase. Students typically entered about
10 time log entries for an assignment. This results in 60 data values
to check for one student on one assignment, and 600 data values
to check for a class of 10 students. This is for one form and one
assignment. Following this approach, one can arrive at an estimate
of almost 32,000 data values to be checked by hand for this single
case study, as illustrated in Figure 8. The 1539 data errors uncov-
ered during this study represents only 4.8% of the total possible,
which means that the instructor obtained over 95% correctness (at
least with respect to analysis-stage data quality).

6 CONCLUSIONS

This paper reports on the results of analysis of the data from a single
PSP class with only 10 students. As with any case study, care must
be taken in interpreting these results. We do not know whether
this data is representative of PSP courses in general, and if the way
we teach the PSP is representative of the way the PSP is taught by
others.

While we do not claim that these results are representative of all
PSP courses, neither do we believe that they result from some pecu-
liarity and/or failing of our environment. First, this case study was
performed after the instructor had taught the PSP for one semester
in a graduate level course, and instituted it within his research group,
and adopted it himself for his own software development activi-
ties. By the time of this study, we were quite experienced as both
teachers and users of the PSP. Second, as already noted, we were
concerned with data quality problems from the beginning, and in-
stituted curriculum modifications specifically intended to raise data
quality. Our overall error rate of less than 5% while quite small,
was still not sufficient to prevent significant differences between
original and corrected data. Third, our results cannot be due to our
lack of enthusiasm for the PSP: both of us consider it to be one of
the most powerful software engineering practices we have adopted
in our careers. The first author, for example, has used her auto-
mated PSP tool to gather data on over 120 of her industrial projects
over the past two years. Fourth, our results cannot be due to lack
of enthusiasm for the PSP by our students, as the post-course com-
ments reveal, most of the students indicated that they found the
class to be very useful and interesting.

We believe there are four basic conclusions to be drawn from
this case study.

First, we believe this study indicates the need to explicitly as-
sess collection and analysis data errors by others in the PSP com-
munity. With better understanding of these two types of errors and
their impact upon the PSP, the community can better guide the evo-
lution of the PSP toward higher data quality.

Second, we continue to believe that the PSP has substantial ed-
ucational value. It has had a tremendous positive impact on our
students for several semesters, and we do not plan to abandon it
due to these results.

Third, we believe that integrated tool support for the PSP is re-
quired, not merely helpful, to obtain high analysis-stage PSP data
quality. We also believe that integrated tool support will make
adoption of the PSP substantially easier, since the most common
complaint made by students using the manual PSP in our classes is
the time and effort required to fill out the forms.

Finally, we believe that until questions raised by this study with
respect to PSP data quality are resolved,PSP data should not be
used to evaluate the PSP method itself.In other words, we be-
lieve that it is not yet appropriate to infer that changes in PSP mea-
sures during (or after) a training course accurately reflect changes
in the underlying developer behavior. A statement such as “The im-
provement in average defect levels for engineers who complete the
course is 58.0%”, if based upon PSP data alone, might only reflect
a decreasing trend in defect recording, not a decreased trend in the
defects present in the work product.

We are happy to report that not all PSP evaluations are based
upon PSP data alone. For example, in one of the case studies [4],
evidence for the utility of the PSP method was based upon reduc-
tions in acceptance test defect density for products subsequent to
the introduction of PSP practices. Although alternative explana-
tions for this trend can be hypothesized (such as thePSP-based
projects were more simple than those before and thus acceptance
test defect density would have decreased anyway), at least the eval-
uation measure is independent of the PSP data and not subject to
PSP data quality problems.

Unfortunately, integrated tool support is not a “magic bullet”
that will solve all PSP data quality problems, and it is useful to re-
call the age-old computing axiom: “garbage in, garbage out”. No
matter how automated the analysis stage, overall PSP data quality
will still depend completely upon the data quality from the collec-
tion stage. Obtaining high quality from both collection and analysis
stages in the PSP is a challenging goal for future research on per-
sonal software process improvement.

7 ACKNOWLEDGMENTS

We gratefully acknowledge all of the students in all of the PSP
classes at the University of Hawaii. Our colleagues in the Col-
laborative Software Development Laboratory during the time of
this study (Cam Moore, Robert Brewer, Jennifer Geis, and Russ
Tokuyama) provided ongoing support. We would like to thank
Watts Humphrey, James Over, and Will Hayes of the Software
Engineering Institute, and the anonymous reviewers, whose com-
ments sharpened the presentation of this research. This research
was sponsored in part by grants CCR-9403475 and CCR-9804010
from the National Science Foundation.

References

[1] Anna Ch. Ceberio-Verghese. Personal software process: A
user’s perspective. In Nancy R. Mead, editor,Ninth Confer-
ence on Software Engineering Education, 10662 Los Vaque-
ros Circle, P. O. Box 3014, Los Alamitos, CA 90720-1264,
April 1996. IEEE Computer Society Press.

[2] Progress Software (Data Language Corporation). Information
is available at: www.progress.com/core/develop.htm.

[3] George A. Ferguson and Yoshio Takane.Statistical Analysis
In Psychology And Education. McGraw-Hill Book Company,
6th edition, 1989.

[4] Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Su-
san Macke, and Annette Matvya. Introducing the personal
software process: Three industry cases.IEEE Computer,
30(5):24–31, May 1997.

[5] Tom Gilb and Dorothy Graham. Software Inspection.
Addison-Wesley, 1993.

[6] Will Hayes and James W. Over. The Personal Software Pro-
cess (PSP): An empirical study of the impact of PSP on in-
dividual engineers. Technical Report CMU/SEI-97-TR-001,
Software Eng. Inst., Pittsburgh, 1997.

[7] Joel Henry. Personal software process studio. http://www-
cs.etsu.edu/softeng/psp/, 1997.

[8] Watts S. Humphrey.A Discipline for Software Engineering.
Addison-Wesley, New York, 1995.

[9] Watts S. Humphrey. Using a defined and measured personal
software process.IEEE Software, 13(3):77–88, May 1996.

[10] Watts S. Humphrey.Introduction to the Personal Software
Process. Addison-Wesley, New York, 1997.

[11] Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth
Chrissis.The Capability Maturity Model: Guidelines for Im-
proving the Software Process. Addison-Wesley, 1995.

[12] James E. Tomayko. Carnegie Mellon’s software development
studio: a five year retrospective. In Nancy R. Mead, ed-
itor, Ninth Conference on Software Engineering Education,
10662 Los Vaqueros Circle, P. O. Box 3014, Los Alamitos,
CA 90720-1264, April 1996. IEEE Computer Society Press.

