
IMPROVING MAILING LIST ARCHIVES THROUGH CONDENSATION

A THESIS PROPOSAL SUBMITTED TO MY THESIS COMMITTEE

By

Robert S. Brewer

Thesis Committee:

Philip M. Johnson, Chairperson
Wesley Peterson

Edoardo S. Biagioni

Version 1.5.1

Abstract

Electronic mailing lists are popular Internet information sources. Many mailing lists main-
tain an archive of all messages sent to the list which is often searchable using keywords.
While useful, these archives suffer from the fact that they include all messages sent to the
list. Because they include all messages, the ability of users to rapidly find the information
they want in the archive is hampered. To solve the problems inherent in current mailing list
archives, I propose a process called condensation whereby one can strip out all the extra-
neous, conversational aspects of the data stream leaving only the pearls of interconnected
wisdom.

To explore this idea of mailing list condensation and to test whether or not a con-
densed archive of a mailing list is actually better than traditional archives, I propose the
construction and evaluation of a new software system. I name this system the Mailing list
Condensation System or MCS. MCS will have two main parts: one which is dedicated to
taking the raw material from the mailing list and condensing it, and another which stores
the condensed messages and allows users to retrieve them.

The condensation process is performed by a human editor (assisted by a tool), not
an AI system. While this adds a certain amount of overhead to the maintenance of the
MCS-generated archive when compared to a traditional archive, it makes the system im-
plementation feasible.

I believe that an MCS-generated mailing list archive maintained by an external re-
searcher will be adopted as a information resource by the subscribers of that mailing list.
Furthermore, I believe that subscribers will prefer the MCS-generated archive over existing
traditional archives of the mailing list. This thesis will be tested by a series of quantitative
and qualitative measures.

ii

Chapter 1

Introduction

1.1 The Problem with Mailing List Archives

Electronic mailing lists provide an excellent way for people to rapidly share information
on a specific topic. In some cases the topic is extremely focused and highly technical,
thereby providing a resource which cannot be found outside of the electronic realm. Many
mailing lists store the messages sent to the list in an archive for future retrieval. These
archives can range from giant text files to databases with sophisticated WWW interfaces.
The two most common types of archives are:

� browsable thread-based archives that allow a user to read messages in a format sim-
ilar to the one in which they were sent to the list

� searchable archives that allow users to do full-text searches over all the articles in
the archive.

The mailing list format has a few important benefits: it is intuitively easy to participate,
software required to participate is widely available, and it makes use of widely deployed
server-support (many mail servers have mailing list distribution functionality). Unfortu-
nately these very benefits prevent the fullest use of the information in the mailing list data
stream. Since anyone can contribute to the list and the format is very conversation-like,
the result is a data stream with a mediocre signal to noise ratio at best. While there is
a lot of valuable knowledge available, one has to slog through endless newbie questions,
flamewars, and “Me Too”s.

The problem becomes even worse when you take into account the archives of the list.
When users consult a mailing list archive, they often are searching for a specific piece
of information like a solution to a problem they are having. Unfortunately mailing list
archives are poorly equipped to support that kind of query. All the irrelevant information
that was sent to the list is immortalized in the archive, making it difficult to find the useful
information. Searchable archives also face the problem that any particular query may re-
turn an enormous number of hits. For example, a search for “OSPF” (Open Shortest Path
First, a modern TCP/IP routing protocol) on the ascend-users mailing list archive [1] re-
turns 650 hits which is an artificially imposed maximum. In this case the hits are displayed
in reverse chronological order, which isn’t necessarily desirable if you are looking for a
particular OSPF problem.

1

Some mailing list communities generate a list of Frequently Asked Questions (FAQs)
for the mailing list. Originally the purpose of a FAQ was to avoid the recurring situation
where new subscribers to the list would ask questions that had been asked and answered
many times before. By creating a list of these frequently asked questions, it was hoped that
newbies would read the FAQ and have their questions answered that way. The FAQ format
is also used as a convenient format for disseminating useful information on the subject
matter, i.e., questions that might not be frequently asked but are useful to know. The big
problem with FAQs is that they are primarily maintained by hand. This means that keeping
an FAQ up to date is a labor-intensive process which frequently exhausts the volunteer
maintainer. FAQs are generally intended to be documents (text, HTML, etc.) which can
the distributed (posted to a newsgroup, downloaded from a web page). This “distributable”
quality limits the size and organization of the document to something that can be read and
understood by a human. The combination of these two factors limits the amount and
depth of information that can be presented; in other words an FAQ almost by definition
leaves out useful information if it isn’t used frequently enough to justify its inclusion to the
space-limited FAQ. An additional failing of FAQs is that they are not designed to deal with
questions whose answer frequently changes. The answer to a question like “What is the
most stable firmware version supporting frame relay?” may change from week to week
as new firmware releases are released. Answering this question would require frequent
revisions and put excessive demands on the FAQ maintainer.

1.2 Condensation as a Solution

To solve the problems inherent in current mailing list archives, I propose a process called
condensationwhereby one can strip out all the extraneous, conversational aspects of the
data stream leaving only the pearls of interconnected wisdom. This condensation takes the
voluminous data stream from the mailing list and extracts the useful information. As an
analogy, newspapers provide a daily report on current events, but their analysis of which
events are accurate or relevant are limited in that newspapers have short deadlines, a broad
subscriber base, and other considerations. A story published one day might be amended
or retracted the next depending on how events unfold. However, a book describing world
events will tend to have a longer deadline which permits more reflection and analysis: a
hoax which might occupy weeks of headlines in a newspaper will probably be little more
than a footnote in a book (unless the book is about newspaper hoaxes). It is this refinement
of information that I refer to as condensation.

There are a variety of ways that the information could be condensed, depending on the
intended use of the archive. Our goal is to provide a searchable archive of information
that allows archive users to quickly find answers to specific queries (see Section 2.4).
Since the goal is to respond to user queries, preserving the threaded nature of the mailing
list is not relevant. Condensation will require omitting unimportant messages, removing
unimportant portions of messages, inserting new text into messages when required for
clarification, and adding new messages to the database when that is the best way to explain

2

something. In order to support searching of the archive, messages will be assigned a type
and annotated with keywords. A condensed archive will not suffer from the problems of
an unabridged searchable archive. Since only truly useful information will be put into the
archive, the amount of data to be searched is smaller which improves the odds of a search
being accurate. Also, since condensation uses a set of standardized keywords a user can be
sure that messages using different terms but discussing the same topic will be retrieved by
a search. Condensation also solves the problems facing FAQs. Since condensation relies
on a centralized archive, it does not face the same size and complexity constraints that
an FAQ does. The issue raised earlier with FAQs about questions whose answer changes
frequently are handled well by a condensed archive, where the answer to a question can be
a query to the archive database. Each time the answer is requested, it can be constructed
from the latest information input into the condensed archive.

1.3 MCS: A System For Condensation

To explore this idea of mailing list condensation and to test whether or not a condensed
archive of a mailing list is actually better than traditional archives, I propose the construc-
tion and evaluation of a new software system. I name this system (for lack of imagination)
the Mailing list Condensation System or MCS. MCS will have two main parts: one which
is dedicated to taking the raw material from the mailing list and condensing it, and another
which stores the condensed messages and allows users to retrieve them.

One way to perform the condensation would be to implement an AI system that reads
the messages and then decides what information keep, what to throw away, and what key-
words to assign to each. In order to perform this task adequately, the system would need
superb natural language processing capabilities and an in-depth knowledge of the mailing
list domain. I believe the implementation of such a system is infeasible. If possible, it
would require substantial expenditure of resources to complete.

As an alternative to an AI approach, I propose that this process of condensation be
carried out by a human editor with the help of software tool. Humans are quite good
at examining textual information and determining what is useful and what is not, while
computers are good at queries across structured data [2]. It will also be far more resource
efficient because most mailing lists already have a set of ‘gurus’; subscribers who read
all messages sent to the list and who are domain experts. Therefore in MCS humans will
do the editing using the MCS editing program which will make the process as efficient as
possible. Only the editors will need to use the editing program.

The storage and retrieval portion of MCS will consist of a web server connected to
a database system. As editors create condensed messages, they will be placed into the
database by the editing program. For ease of use, end-users will access the condensed
archive with a web browser. The MCS-generated web site will provide a variety of forms
or applets which will allow users to browse or query the database.

3

1.4 An Example

To show how condensation can create a more useful archive than traditional methods,
I will consider an example query and show the results from existing archives. Then I
explain how a condensed archive would be different.

1.4.1 The Question

The example I have chosen is somewhat complicated and involves compiling and installing
perl 5.00404 on BSD/OS. Perl is a interpreted language which is designed for text pro-
cessing [3]. BSD/OS is an operating system from Berkeley Software Design Inc. (BSDI)
which runs on Intel-based computers [4]. BSD/OS has a user-maintained mailing list
called “bsdi-users” for discussion of all issues about the operating system. For this exam-
ple I will use the actual information available from the “bsdi-users” mailing list.

Perl 5.00404 comes with an automated configuration program which configures and
compiles the software when told what operating system it is running on. Unfortunately,
there is a problem with the configuration script. When this version of perl was released,
BSDI was working on a new version of BSD/OS. At that time, the new version was as-
signed number “3.1”. The configuration script for perl was set up so that certain changes
would be made if perl was installed on a 3.1 system. This would allow the same perl
distribution to work both on the existing 3.0 system and the new 3.1 system when it was
released. Unfortunately, the version which was to be called 3.1 was delayed and therefore
renumbered “4.0”. A minor revision of BSD/OS was released with the (now unused) ver-
sion number “3.1”. As a result of this version number mix up, installing perl 5.00404 on
a BSD/OS 3.1 system would fail in strange ways due to the failure of some of the con-
figuration assumptions. User’s confusion over this was compounded by the existence of
the special configuration information for BSD/OS 3.1 in perl: since perl had configuration
information preset for 3.1, surely it couldn’t be wrong?

This problem has three interesting attributes:

1. The solution to the problem is fairly simple: a single configuration script in the
perl distribution needs to have all instances of “3.1” changed to “4.0” and some
other minor chances. The changes can either be made automatically through the
Unix patch command or be made by hand (once you understand the cause of the
problem).

2. The problem has obvious symptoms which definitively indicate the problem: in-
ability to install perl on BSD/OS 3.1 or specific error messages that occur when
attempting to compile perl with unpatched configuration files.

3. The perl distribution is updated with bug fixes only infrequently so this problem
was encountered by many people over several months. This caused people to post
messages to bsdi-users asking for help with the same problem over and over again.

4

There are three well-known information sources related to or derived from the bsdi-
users mailing list: the BSD/OS FAQ, the Support Net archive, and the Nexial Systems
archive. I attempted to find the solution to the problem in each information resource.

1.4.2 The BSD/OS FAQ

The BSD/OS FAQ [5] is maintained by a single person as a volunteer effort. There are 73
question/answer pairs in the FAQ, and it is not immediately clear what method was used
to order them. It appears semi-chronological, but not completely. In any case, the word
“perl” does not appear in version 1.1.0 (dated 98/08/05 [sic]) and there is no discussion of
our example problem. It is possible that the question was in the FAQ at one point and then
later removed when the perl distribution was fixed, but this seems unlikely given that there
are other question/answer pairs in the FAQ which are two years out of date. The fact that
it is not in the FAQ is not surprising. The FAQ is maintained in someone’s spare time, so
many useful question/answer pairs will never make it in due to time constraints. The FAQ
is also a manageable size at about 36 kilobytes, allowing it to be posted to the mailing list
on occasion. If the FAQ were to contain information every installation problem for every
package used with BSD/OS, it would probably grow unmanageable.

1.4.3 The Support Net Archive

The Support Net archive contains all messages posted to the mailing list over the last 12
months [6]. The messages are accessible in two ways: each month’s messages displayed
in a thread format, or searched using the Excite for Web Servers search engine (EWS) [7].
An example of the thread format is shown in figure 1.1. The thread format is useful when
trying to follow the flow of a conversation, but it is ill-suited to finding a particular piece
of information.

The EWS search engine used by Support Net indexes a collection of documents and
provides a “concept-based architecture” for searching. It claims to analyze the document
collection and determine “statistical correlations between terms and documents” which
improves recall and precision compared to other search methods. In an attempt to find the
answer to our example question, I performed a search with input “installing perl5 compile
problems”. Part of the results can be seen in figure 1.2.

The initial search returned a few relevant messages, but they were all written by peo-
ple who had encountered the problem and were asking for a solution. Using the EWS
query-by-example feature, I used one of these requests as the basis for our new query.
This resulted in several more messages asking for help on the problem, and a few mis-
guided attempts to help. Again, I selected the message that best reflected the problem
and performed a query-by-example. The next batch of messages included one which ac-
knowledged the problem, but referred the person asking the question to the archives for
the actual patch to solve the problem! After fifteen minutes and several more iterations of

5

Figure 1.1: Support Net bsdi-users archive viewed by thread

6

Figure 1.2: Support Net bsdi-users archive search results

7

query-by-example, I obtained both a message containing the actual patch and a message
from BSDI personnel explaining the problem’s genesis (as previously summarized).

These results plainly show the problems with a traditional archive. Since every mes-
sage is included in the archive, messages repeating the question are often returned by the
search. Since the results are frequently sorted first by relevance and then by date, these
repeat questions are actually more likely to be returned by a search than the first time the
question was asked. The repeated posting of questions also reduces the likelihood that a
useful response will be given, as evidenced by the “look it up in the archives” response
and several repeats which did not appear to be answered at all. One message responding
to a repeat asks that the question/answer pair be put in the FAQ, which we know has not
been done! This shows that even though there was a recognized need for this problem to
be documented in the FAQ, it never happened (for whatever reason).

1.4.4 The Nexial Systems Archive

The Nexial Systems archive provides a “fuzzy” search mechanism for the bsdi-users list
[8]. The fuzziness allows the engine to find messages that match keywords that are spelled
in a similar manner to the ones provided by the user. Starting with the same initial set of
keywords as the search of the Support Net archives, I attempted to find the solution in the
Nexial archives. Finding the answer in the Nexial archive took longer and required more
effort because it does not provide a query-by-example facility. This required ‘massaging’
the keywords until I found ones that matched the message containing the patch. Getting
the keywords right also required us to extract keywords from some of the earlier search
results, like the word “hint” which refers to the hint file used by the configuration system
which the patch applies to.

The problems with traditional archives are the same in the Nexial archive. Most of the
messages retrieved were users re-asking the question or answers which just say “consult
the archives”. This latter request is somewhat amusing considering that it is rather difficult
to dig up the patch from either archive even when you know exactly what you are looking
for. Another interesting point is that the cycle of re-asking the question and being referred
to the archives is actually a feedback loop. Each time someone asks this question, they
increase the number of useless matches the next person querying the archives will get.
When someone cannot find the answer in the archives, the obvious alternative is to post
the question to the listagain.

1.4.5 The MCS Archive

There are several ways in which an MCS archive could be used to address the exam-
ple question. First and foremost, the MCS archive would only contain the original mes-
sage which contained the question, and a couple of responses (in this case one containing
the patch and one from BSDI which explains how the problem came to be). This alone
would dramatically reduce the effort required to find the solution in the archive: since only

8

the question and the canonical answer are archived there are no extra messages to wade
through. This lack of repetition is assured by the editor who will either remember seeing
this problem before or consult the archive before adding new information to the archive.

There are a variety of means by which a user can query the MCS archive. In the
case of the example question, the user would have access to error messages produced by
the compilation attempt like “Invalid option ‘-fPIC’ ”. This error message can
be used as the symptom in MCS’s symptom-based problem lookup. Figure 1.3 shows a
mockup how a user would use this type of query.

Figure 1.3: Mockup of MCS symptom-based problem lookup

The results here show the ease with which the desired information is found. Using
the diagnostic error message, a list of problems which result in that error message are
displayed. Next to each problem are its known solutions, which in the case of our example
are the patch and the explanation. One can see that the other problem with this symptom
has only an explanation as a solution.

9

1.5 Thesis Statement

I believe that an MCS-generated mailing list archive maintained by an external researcher
will be adopted as a information resource by the subscribers of that mailing list. Fur-
thermore, I believe that subscribers will prefer the MCS-generated archive over existing
traditional archives of the mailing list.

The traditional archives are any existing archives of a mailing list that allow either
browsing of or searching through the messages posted to the list over time. For example,
in section 1.4 the traditional archives of the bsdi-users list are the Support Net and Nexial
Systems archives.

I define adoption as a significant fraction of those using the traditional archives of the
list choosing to use the MCS archive either in addition or instead of the traditional archives.
Unfortunately, there is no straightforward way to determine the number of people currently
using traditional archives for a list since I do not have control over those archives. Instead
I plan to use the number of list subscribers as an estimate of the number of potential MCS
users. The adoption percentage is then the number of MCS archive users divided by the
number of list subscribers, expressed as a percentage. For the purposes of this research, I
will consider an adoption percentage of 10% or higher to be indicative of success.

I define preference as the expression by users of the MCS archive that they prefer to
use the MCS archive when searching for information related to the mailing list.

The caveat about maintenance by an external researcher is an important one. Unlike
traditional archives, an MCS archive requires effort to maintain its usefulness. If someone
not involved with this research was required to perform the maintenance (thereby lacking
an important motivator), adoption could be much lower. For more discussion on this issue
see chapter 4.

10

Chapter 2

System Specification

2.1 System Functionality

The primary goal of MCS is to make life easier for users of electronic mailing lists. It
aims to take the messages sent to the list and transform them into an archive of information
which users can refer to when they have problems or questions about the subject matter.

MCS will enable the maintainers of the archive to:

� Select messages for archival

� Annotate each message with keywords from a standardized list

� Add or delete text from the message for context or brevity

� Link messages to one another

MCS will allow users of the archive to:

� Search for solutions to problems they are having

� View tables of problem-reports which are organized by relevance

� Browse through a list of important, time-sensitive messages

2.2 Goals

The primary goal of MCS is adoption by the user community. To encourage users to
adopt the system, there are two issues that MCS must be designed around. Because MCS
receives its input from a mailing list, it is crucial that MCS be designed with the social
structure of a user-supported mailing list in mind. Specifically, the mailing list and its
community should not be adversely affected by MCS. Any attempt to impose restrictions
on how people read or participate in the list (like requiring users to use special software or
compose messages in a certain format) would be met with blistering criticism. MCS must
stand apart from the mailing list itself, resigned to using messages from the list on an as-is
basis.

11

MCS should also not attempt to condense all messages which come through the list. If
a user wants a comprehensive archive of all messages sent to the list, he or she should be re-
ferred to an existing archive that serves that function. The existence of other “unabridged”
archives frees MCS to eliminate any messages or parts of messages that are not worth
archiving. It may be possible to provide a link to the original article in an unabridged
archive, for any message in MCS which has been edited

2.3 Target Mailing List

To specify the requirements for the system, clearly I need to choose a particular mailing
list to target. I propose the “ascend-users” mailing list, which is a user-created and user-
administered list for the discussion of the use and deployment of equipment produced by
Ascend Communications [9]. Ascend Communications produces a wide array of commu-
nications equipment with a primary focus on remote access (POTS dialup, ISDN, frame
relay, etc). One large segment of equipment users are Internet Service Providers (ISPs)
who provide Internet access to the public at large.

The “ascend-users” mailing list was chosen for the following reasons:

1. There mailing list is already archived in at least two locations, and the archives are
well-used by the subscribers of the list.

2. The topic of discussion is technical. The participants of the list use it primarily
for information gathering on Ascend equipment and directly related topics (network
topology, environmental controls for equipment rooms, etc). This list is not used
for “social” purposes like chatting about current events or the weather. It will be
easier to extract the “useful” information from the list because there should be broad
agreement as to which messages are considered useful, which might not be the case
on a list with heavy social interaction.

3. Most list subscribers are System Administrators (sysadmins). Sysadmins are notori-
ously busy people. This fact works to our advantage for two reasons. First, because
they are short on free time, if they are willing to use a new system, (or data processed
by a new system) that in itself will be an accomplishment. Second, they are likely to
judge the system primarily by whether it helps them get their job done faster or not.

4. The topic of discussion is highly focused. The types of interaction on the list are
fairly limited: requests for help troubleshooting a problem, answers to questions,
real-world experiences with different software and hardware releases. This gives us
leverage in what MCS can provide to users. For example, the stability and perfor-
mance of different firmware patch releases is a topic of nearly constant discussion.
Frequently a patch release will improve in some aspect (like performance), only
to introduce new problems in other areas (like stability or security). It would be

12

straightforward to provide a table of firmware versions and links to relevant discus-
sion that occurred after their release.

5. The list is relatively low traffic. There are roughly 40-90 messages on the list a
day, which should provide sufficient input to the condensation system without over-
whelming the system or the maintainer of the system.

6. The author is highly familiar with the subject matter. The maintainer of the MCS
archive will require knowledge of the mailing list topic in order to properly catego-
rize information. The author can fill the role of maintainer because he is familiar
with the mailing list and the equipment it discusses.

Some of these reasons are really requirements for any list to be condensed by MCS, and
some are specific to the practicalities of this research project. Requirement 1 applies to any
list on which MCS is to be used; obviously it makes no sense to create a condensed archive
of a list if nobody would ever wish to consult the archive! Requirement 2 also is important
so that the editor need not spend a great deal of time worrying over whether a message
should be archived or not. The rest of the reasons relate primarily to the evaluation of the
system and are therefore not requirements for future MCS targets.

It is also worth noting that ascend-users is hardly the only list which meets the essential
requirements. Several other lists like the previously mentioned bsdi-users, portmaster-
users, and the cisco mailing list [10] would be likely candidates for future adoption (see
chapter 4).

2.3.1 Classes of Users on ascend-users

In order to better understand the mailing list, I have devised several categories into which
the subscribers to the “ascend-users” mailing list can be divided. The categories are based
on the subscriber’s level of experience with the equipment. Within each category, I will
identify the goals that I believe the group has with respect to their usage of the list (whether
active or passive). I identify these goals so that one can see how a system might meet
some or all of their needs. The users have been categorized as: prospective, newbie,
intermediate, and advanced.

2.3.1.1 Prospective User

These subscribers have joined the list because they are interested in determining whether
they should use Ascend equipment. They currently neither own nor directly manage As-
cend equipment.

Objectives:

� Want to read the experiences of others using the equipment in a similar environment
so they can decide whether to purchase Ascend equipment or not.

13

� Want comparisons between Ascend and other comparable equipment.

2.3.1.2 Newbie User (or just “Newbie”)

These subscribers have recently acquired or been put in charge of Ascend equipment. They
have little experience with the equipment, but they do have ready access to it.

Objectives:

� Want step-by-step installation instructions for real-world configuration scenarios
(ISP, corporate telecommuting, etc)

� Want brief summary of information other subscribers think a newbie would find
useful

� Want glossary of frequently used terms

� Want to know what firmware version to use

� Want to know what equipment can do

� Want to find quick answers to problems in configuration

� Want pointers to more information

2.3.1.3 Intermediate User

These subscribers have been using Ascend equipment for more than three months but less
than twelve months. In general they have the equipment mostly working, or they have at
least spent considerable time trying to get it to work.

Objectives:

� Want to be able to browse through topics that have been brought up on the list

� Want to find quick answers to operational problems

� Want to be informed of new firmware releases

� Want to be informed of hardware issues (recalls, new related products)

2.3.1.4 Advanced User

These subscribers have been using Ascend equipment for more than one year. They are
typically quite familiar with the equipment, and they have tuned their configuration to
meet their needs. Their needs are similar to the intermediate user, with an addition.

Objectives:

� Want to be able to help others solve problems without having to read or answer the
large volume of total questions posed to the list

14

2.4 Operational Scenarios

This section will provide several operational scenarios which describe ways in which a
user could potentially interact with MCS.

2.4.1 Firmware Version Lore

This is perhaps the most classic use of the ascend-users list. Every time a firmware release
for the Ascend MAX product line comes out people want to know if it solves important
long-standing problems, breaks existing configurations, improves/degrades performance,
etc. Some people are masochists (or are forced to use the new version because of a show-
stopping bug that affects them) and try the new versions out right away, but most people
take a wait-and-see attitude. Also, people who have only recently acquired Ascend equip-
ment (or a particular model of Ascend equipment) want to know which version will best
meet their needs.

A very useful representation for the user would be a table of all existing versions for a
particular model. This table would have a link to the firmware itself, a link to the Ascend
release notes, and then a series of links to whatever keywords appeared together with that
version. For example, if there are a lot of messages which discuss version 5.0Ap12 and
its performance with OSPF, then there should be a link on the table titled “OSPF” which
takes you to the appropriate messages. The table could also have a count of how many
users submitted positive or negative opinions on each version.

Software Versions
MAX
MAX 1800
MAX 2000
MAX 4000

Figure 2.1: Software Contents Web Mockup

2.4.2 Hot Topics

Many people subscribe to the mailing list but don’t have time to keep up with it most of the
time. They just set their mailer to file messages from the list into a folder and only look at
it from time to time. However, it would be very nice if one could see what topics are being
discussed on the mailing list in the last week or so. Scanning subject headers gives some
of this effect, but as we know subjects can often be radically different from what is actually
being discussed due to topic drift. Keywords attempt to solve this problem through human

15

Software Release Positive Negative Issues

5.0Ap42 4 43 Stability

5.0Ap44 0 9 Stability Security OSPF

5.0Ap46 6 34 Stability Performance

5.0Ap48 27 12 Performance OSPF

5.0Ap51 14 17 Performance

Figure 2.2: Software Table Web Mockup

analysis. Simply showing a graph with frequency counts for keywords assigned in the past
week might satisfy this need.

2.4.3 Symptom-Based Problem/Solution Lookup

The majority of messages sent to the list are on the topic of solving problems. Usually peo-
ple describe their problem, which is followed by answers from others or possibly requests
for additional information to the original author. When using an archive for solutions one
is presumably in the same situation as a person sending their problem to the list: you know
what the symptoms are but you want to know how to solve the underlying problem.

The ideal solution would be an archive of problem/solution pairs that is indexed by
symptom. For example, if you receive a particular error message, the archive would allow
you to enter that message and it would return all the possible problems which have that
symptom and their best known solutions. While in some cases there may be controversy
over what the best way to solve a problem is, in most cases there is a best solution. FAQs
sometimes take this form, but they usually aren’t indexed by symptom. They might be
more accurately called Frequently Encountered Problems (FEPs).

To support this kind of search it seems like it would be useful to abandon the thread
metaphor and go to a symptom(s)->problem(s)->solution(s) setup. From this view the
threaded nature of the list really becomes a handicap: all the user wants is the answer and
any time spent following a thread of conversation is wasted. For an example of this kind
of interface, see section 1.4.5.

2.4.4 Browsable Configuration Help

Another set of issues users encounter is trying to configure Ascend hardware to perform
some particular task. A user looking for configuration help probably wants to get whatever
it is set up as quickly as possible. Unlike the symptom of a problem, it can be hard to
distill a configuration question into something that can be searched on. For this reason, a
browsing method where users can view hierarchically-organized categories would be the

16

more efficient way of finding the desired information, though keyword searching can be
offered as an alternative.

Configuration needs can exist at a high level (“How do I set up dynamic routing?”) or
a lower level (“How do I make my MAX 4048 aggregate routes in OSPF?”). At the higher
level the user may very well not know the options available to him or her, and might not
know where to start. At this level the best format would be a tutorial which explains what
options the user has to meet his or her needs. At the lower level the user probably knows
(or suspects or hopes :) that the equipment is capable of doing something specific but
doesn’t know how to configure it to accomplish the task. These kinds of configuration
queries are similar to the problem/solution pairs in Section 2.4.3.

2.4.5 Strategies

Sometimes a subscriber to the list will post a message (possibly in response to someone’s
question or problem) which really gives an excellent overview of a feature or solution to
a high level problem. These messages don’t come along very often, but when they do
smart subscribers save them to their personal archives. Some of these messages explain
all the possible ways to accomplish a goal and explain the tradeoffs of each. Others might
give insight into why it is better to choose one way rather than another, which can only
be gained through painful experience. In any case, these pearls of wisdom are the kind of
thing that make a mailing list worthwhile for a lurker (someone who rarely posts to the
list). Users would like a way to see the crem´e de la crem´e of the list. Since these articles
are presumably infrequent, it might make sense to have a special area which links to such
messages across the archive, and when a list of messages contains both normal messages
and some of these gems, the gems should emphasized in some way (like boldface).

2.5 System Roles

There are three different kinds of entities that interact with MCS. The first role could either
be filled by a human, or a computer agent, while the latter two are definitely intended to
be human roles.

� Managing Editor. The managing editor is in charge of farming out messages to
editors.

� Editor. An editor uses the condensation tool to condense the queue of messages
prepared for him/her by the managing editor. The results are added to the central
database.

� User. Users are the people who actually use the condensed archive. They access it
through a web browser (optionally Java-enabled).

17

2.6 Architecture

In this section I discuss the overall architecture of the MCS system. MCS is comprised of
several blocks which are shown diagrammatically in figure 2.3.

The input for MCS obviously comes from the mailing list itself. The central server is
subscribed to the mailing list and gets each message as any subscriber would. A managing
editor then decides which editors should receive which messages for condensation. The
editors then use a tool to pick up the messages waiting in their queue and condense them.
The results are shipped back to the central server which stores them in a database.

Users access the system using a normal web browser. The central server maintains
a HTML view of the database for browsing, and allows searches through standard web
form mechanisms. For advanced searches a Java applet which interacts directly with the
database can be made available.

The central server has two parts, the part that interfaces with editors and the part that
interfaces with users. The two parts share a database of condensed information. When
new messages come in, they are put into an input queue. The managing editor then moves
messages from the input queue into the personal queues of the editors. These queues will
be implemented as IMAP mail spools, which facilitates operations since the objects being
moved are email messages. The managing editor has to keep a history of messages and to
which editor they went to in order to send future messages in the same thread to the same
editor. Most of these decisions could be made by a computer agent, but it might be useful
to have a human managing editor who decides which editor would be most appropriate for
a particular message or thread.

The editors use a Java application which displays the messages waiting in their queues.
If the messages in the queue are part of a thread which has already been condensed then
the state of that thread is restored. The editor can then edit, annotate, and manipulate the
new messages. Once complete, the new condensed information is sent back to the server
to be stored in the database.

Users access the condensed information through a web site. Periodically (perhaps once
every 24 hours), the server will run a series of standard queries on the database and format
the result as static HTML. The HTML can be easily viewed using only a basic browser.
For users who wish to run custom queries, either a web form-based interface (using CGI
or Java servlets on the server side) or a Java applet can be used.

18

0DLOLQJ
OLVW

PHVVDJHV

5DZ�0HVVDJH
'DWDEDVH

0DQDJLQJ
(GLWRU

(GLWRU (GLWRU

&RQGHQVHG�0HVVDJH
'DWDEDVH

8VHU

:HE�6HUYHU

8VHU

Figure 2.3: Block Diagram of MCS System Architecture

19

Chapter 3

Evaluation

To evaluate the thesis statement, I will collect both qualitative and quantitative data on
the users of the archive. Through analysis of this data I will determine both the level of
adoption and whether users consider MCS archives to be superior to traditional archives.

3.1 Measures

In this section I discuss the measures necessary to test the thesis statement presented in
section 1.5.

3.1.1 Adoption

To measure the adoption percentage defined in 1.5, I need two pieces of information: the
number of list subscribers and the number of users of the MCS archive. I should be able to
determine the number of subscribers with a query to the list maintainer (which should be
readily provided since it does not give us any private information about subscribers). The
other measure required to assess adoption is the number of people using the MCS archive.
I will obtain an estimate for this number by surveys and analysis of log data from MCS.
Note that the adoption percentage as I have defined it is an imperfect measure since I will
not be able to positively determine whether the users of MCS are actually subscribers of
the mailing list.

3.1.2 Preference

Assessment of the users preference of MCS over traditional archives can only be easily
determined in a qualitative way through user surveys. I expect that most users of the MCS
archive will have attempted to use the traditional archives of the ascend-users list since an
URL to one of the archives is included in the footer which is appended to each message
distributed to the list. Therefore questionnaire respondents will be able to compare the
MCS archives with traditional ones.

20

3.2 Data Sources

I will be collecting data from four different sources: web server logs, guided interviews,
questionnaires, microsurveys, and editor time metrics. In the following sections I describe:
each data source, how the data will be collected, and how it will be used to compute the
measures in section 3.1.

3.2.1 Web Server Log Analysis

Most web servers are capable of recording a log of all HTTP [11] requests made. Each
log entry contains the request made, the IP address of the requester, and a timestamp.
At this level the data provides mere “hit count” information which is a poor indicator of
the number of actual users of the system. In order to track the number of users one can
count the number of unique IP addresses making requests, but this technique has problems
because of dynamic IP addressing and the use of public access computers (such as in a
University lab) [12]. In the case of dynamic IP addressing, a user may access the archive
from the same computer but over the course of a day that computer’s IP address might
change which would cause this user to be counted more than once. In the case of a public
access computer, multiple people may use the computer to access the archive, but the
computer only has one IP address so the multiple users will not be counted. Despite these
inaccuracies, counting by unique IP address should provide a rough estimate of the number
of users. Other more accurate alternatives for counting visitors exist, however they require
the user to either register and log on or accept ‘cookies’ which many people consider
intrusive. Since the major goal for MCS is adoption, annoying users is to be avoided at all
costs.

To count the number of visits, one can analyze the web server logs on a temporal
basis. Since the HTTP protocol is stateless, it is practically impossible to exactly count
the number of visits to a web site without using the intrusive methods discussed above
[13]. I can obtain an estimate for the number of visits by considering a sequence of HTTP
requests from a particular IP address with less than 30 minutes in between requests to be a
single visit. The length of the time interval is arbitrary, I adopt the value suggested by the
Internet Advertising Bureau [14].

The unique IP address count can be used directly to compute the adoption percentage.
Since dynamic IP addressing is more prevelant than shared computers (especially among
ascend-users subscribers), I will expect this to be an overestimate on the adoption rate.
This value can be compared to those obtained through the other data sources.

3.2.2 Guided Interviews with System Users

In order to evaluate the design and usability of the system, in-depth interviews will be
conducted. Users or potential users of both the editing and browsing systems will be
asked to operate the system. As they use the system they will be solicited for comments

21

on what they like and don’t like about the system, and whether it meets their needs or not.
These interviews might be videotaped for ease of evaluation. Given the effort required to
perform the interviews and the difficulties in scheduling, only a few such interviews will
be performed.

The questions to be used in guiding the interview can be found in Appendix B.
The guided interview questions will provide direct data on whether users prefer the

MCS archive to traditional archives. However, since only a few of these interviews will be
conducted, the results will almost certainly not be statistically significant. However, it is
hoped that the guided interviews will provide a way to gather information on what users
really feel about the system which is not obtainable in any other way. This information
may be helpful in analyzing data from the other sources.

3.2.3 Brief User Questionnaire

To obtain broader feedback on the system, a web-based questionnaire will be developed.
The possibility of distributing the questionnaire to the entire list was considered and re-
jected on the grounds that sending a large email message which requests a response would
annoy many subscribers. Since the intended audience for the questionnaire is MCS users,
there should be no problem making the questionnaire available through the MCS archive.
The questionnaire will be designed to only require 5-10 minutes of effort to complete. It
will consist of a series of rating questions (i.e., “rate how useful this system was to you on
a scale from 1-5”) with space provided for comments after each question. After the system
has been in use by the mailing list’s community for a few weeks, the questionnaire will be
advertised on the top page and at the bottom of every query result. Since the questionnaire
will be created as a web form, data collection and analysis will be straightforward. The
questionnaire itself can be found in Appendix C.

The questionnaire will provide data on both adoption and preference. Since it requires
effort to fill out and submit the questionnaire, it will give an accurate lower bound on
how many people are using the archive. The questions regarding archive preferences will
provide direct data on whether users prefer MCS to traditional archives.

3.2.4 Microsurvey on Every Query Result

Each time a user submits a query to the system, the result page generated will have a
tiny survey appended. The survey will ask the user the rank the appropriateness of the
query results. With the information in the query and the survey, data can be collected on
how well the system handles specific kinds of queries. While there is the opportunity for
one survey result with each query submitted, it is likely that most users will ignore the
survey most of the time. In fact, the survey might be filled in on less than 1% of query
results. However, since the effort required to obtain the data is minimal and the data it
could provide is unique, it is worth collecting. The question to be used as the micro survey
and a screenshot of a possible web form implementation can be found in Appendix D.

22

The microsurvey data will provide another count of the number of users since sub-
mitting the survey requires a small amount of effort. It will also provide feedback as to
whether a particular query was useful or not. This data will be useful as a continual assess-
ment of whether users are finding the information they want. The data will also ensure that
the system can be fine-tuned if certain types of queries are not returning the information
that users want.

3.2.5 Editor Time Metrics

As the editor performs his or her duties, the editing tool will record how much time is
spent in the tool and how much time is spent on each message. While this information
does not directly relate to the thesis statements, it can provide a way to assess the potential
for long-term MCS adoption when there is no longer a research-motivated editor doing the
work.

3.3 Duration

Some aspects of the evaluation will run continuously like the web server logs and the
microsurvey. The guided interviews and user questionnaire will be undertaken after the
MCS archive has been available to the subscribers for at least one month. Both should
require no more than two weeks for data collection.

� System implementation complete.

� Data entry begins by keeping up with new messages while simultaneously filling in
old data.

� Data entry ends when at least one month of mailing list messages has been input.

� Announcement of archive availability sent to mailing list

� Web logs and microsurvey data collection begins with incremental analysis

� Data entry continues to keep archive up to date and continue to enter old messages
as time allows.

� One month after announcement message, guided interviews and web questionnaire
data collection starts. Mention of questionnaire sent to list.

� Two weeks later interviews complete and questionnaire data frozen (though ques-
tionnaire remains available for additional data

23

Chapter 4

Post-Thesis Goals

After the thesis work is complete, there are several projects that would help change the
system from a research project into a more generally accepted tool for Internet mailing
lists. These projects are not explicitly part of the thesis process, but are useful areas for
future work.

4.1 Editor Recruitment

The editor(s) obviously play(s) a crucial role in the operation of MCS. Without continual
updating, the database becomes of only historical interest. For the duration of the thesis
project I will be acting as the sole editor. In order to ensure the continued survival of the
archive, it will be necessary to recruit other editors. If the archive is useful enough and
the editing tool is easy to use, it should be possible to get volunteers from the list to step
forward as editors.

4.2 Open Source Distribution

As part of the growing Open Source movement [15], I would like to see MCS released in
source form to the public. In some sense this isn’t that uncommon in the academic world,
but I believe that easily downloadable source (and binaries for that matter) will encourage
others to adopt the system for their mailing lists, and spur other researchers to build on the
MCS framework.

4.3 Adoption by Other Mailing Lists

Convincing other mailing lists to use the software for their archives would be the final
stage in moving the software out into general use. This adoption process may be more
difficult because it requires the mailing list’s community to embrace the system and it also
requires recruitment of one or more editors from the mailing list. It might be necessary for
me to target another mailing list to which I subscribe so that I could jump start the process
by acting as editor for some period of time. Once a few mailing lists are using the system,
word of mouth should attract other mailing lists to adopt the system.

24

Chapter 5

Related Work

There are a variety of systems and research related to maintaining and searching collective
memory. Here I examine several such systems and compare them to MCS. Some of these
systems are somewhat informal (like moderated mailing lists and FAQ files), and some are
formal research projects. The informal systems are based on the author’s knowledge of
those systems and generally do not have references because they evolved from common
Internet practices.

5.1 Moderated Mailing Lists

Some mailing lists address the signal to noise problem by having a moderator or a group
of moderators. All submissions to the list are forwarded to the moderator(s) who read the
messages and decide whether or not to distribute them to the list. On most lists the mod-
erator(s) do not edit the messages submitted, they just choose whether or not to distribute
the message. Also, to allay fears of censorship on the part of the subscribers, usually the
criteria used to decide whether to distribute a message are rather liberal, e.g. the message
is related to the topic of the mailing list and not an advertisement [16].

While moderation can be useful for maintaining a high signal to noise ratio, it suffers
from several problems which MCS does not. Moderation requires a substantial commit-
ment on the part of the moderator(s) to review submissions in a timely manner. Failure to
do so halts all traffic on the mailing list and annoys subscribers who have come to expect
the short turnaround time that digital media can provide. Moderators also tend to face con-
tinual concerns from subscribers as to whether they are moderating in a fair and consistent
manner. Since the whole point of moderation is to prevent the distribution of inappropriate
material, there is no way for a subscriber to tell whether or not submissions are actually
being judged by the stated criteria or whether the moderator(s) are acting on whim or out
of spite. Finally, moderation only partially improves the archives of a mailing list. Mod-
eration will reduce the size of the archive and improve the average quality of a message in
the archive compared to the archives of non-moderated lists. However, moderation does
not solve retrieval problems, and due to the time pressures faced by moderators they rarely
have time to do more than a cursory check of submissions.

MCS reduces or eliminates all these problems with moderated mailing lists. One way
of thinking about MCS is a form of moderation of the archives of a non-moderated list.
Since MCS relates to the archive and not the list itself, the issue of timeliness is much less

25

crucial: if you need to know what happened today on the list you should be reading the list
itself, not the archive. Also, since MCS does not affect the list distribution itself at all, most
concerns about censorship should be eliminated. A subscriber could consult traditional
unabridged archive for the list and compare the results with the MCS-maintained archive if
he or she believes the MCS editors are editing improperly. Finally, since MCS’s goal in life
is improving archives, it overcomes that issue with moderated lists’ archives. Specifically,
an MCS editor can remove or rewrite parts of a message if that is necessary to make the
message more useful.

5.2 Description and Review of Mailing Lists

Robert C. Pedersen has done some preliminary work on the subject of describing Internet
mailing lists [17]. His goal was to come up with a quantitative method for describing the
content of a mailing list so that potential subscribers could make an informed decision on
whether or not to subscribe. To do this, he devised nine categories for messages: admin-
istrative, announcements, discussion, information exchange, metadiscussion, networked
resource pointers, noise, organizational communications, and position announcements.
These categories were designed for use on mailing lists related to librarianship. He then
subscribed to 13 librarian-related mailing lists, and over the course of 29 days he classified
all messages sent to the lists using the categories previously listed. With this data he was
able to determine the average number of messages sent to the list per day, and the distri-
bution of messages over the categories. He found that the distribution of message types
was a good descriptor of the mailing list. As an aid to potential subscribers, MCS can
provide this kind of distribution information since it requires very little additional work
after a message has been edited.

In a second article he recommends that mailing lists be reviewed in the same way that
movies or books are to provide further assistance to potential subscribers [16]. Again, this
would be a useful addition for MCS users who are potential list subscribers. While MCS
need not provide any automated support for writing reviews, it makes sense for the MCS
archive to provide a concise description of the mailing list being archived and what kinds
of material a user would be likely to find within. This can be presented in the same area as
the distribution of message types discussed previously.

5.3 Frequently-Asked Question Files

Most frequently-asked question (FAQ) documents attempt to provide a similar service to
MCS: a condensed version of important and useful information that came from a mailing
list or newsgroup. There are several important differences between the two systems. FAQ
files are usually maintained without specific tool support so they require extensive effort
on the part of the maintainer to create and update. FAQ files are generally created with the
intention of easy distribution either as plain text or HTML. Because of this requirement,

26

FAQ files are mostly limited in size to a few hundred kilobytes and they are laid-out to
be easy for humans to read. Since FAQs cannot be of arbitrary size and complexity, they
must omit useful information.

MCS does not have these limitations. Since it is not intended to be distributed by FTP
or by posting to a mailing list or newsgroup it can be as large as is necessary. A sophis-
ticated query system is an integral part of MCS, so it is not necessary that the underlying
data be structured in an easily understandable human format. Because MCS lacks these
two restrictions, it need not limit the archives it creates to merely “frequently-asked” top-
ics, it can contain any information that would be useful regardless of how broad its appeal.

5.4 FAQ FINDER

This system allows users to quickly find answers to questions by searching a database
made up of FAQ documents posted to Usenet [18]. The user enters his or her question
into the system in natural language. First the system uses standard information retrieval
techniques to determine which FAQs in the database are most likely to contain the answer
to the question. It presents the top five FAQs to the user, who can select the most likely
candidate. Then the system uses a combination of lexical and semantic similarity checks
between the asked question and the question-answer pairs in the FAQ file. It then presents
the 5 most likely pairs for user consideration. A live version of the system can be found at
the University of Chicago web site [19].

While FAQ FINDER is an interesting system, it is attempting to solve a different prob-
lem than MCS. FAQ FINDER assumes that there exists a large number of FAQ files which
are already organized in question-answer format, and from those files it attempts to help
users find the answer to their questions. The designers of FAQ FINDER explicitly chose
not to implement any domain-specific knowledge into their system because their intended
dataset is a large number of unrelated FAQ files. MCS attempts to create a FAQ-like body
of knowledge from a mailing list, and then present the condensed information in useful,
domain-specific ways. In this way MCS attempts to solve the problem of getting the in-
formation into an FAQ-like state, which is already presupposed in FAQ FINDER. Once the
MCS archive is available, it might be possible to create a “stub” FAQ which FAQ FINDER

could index, and if the user’s question is a good match, FAQ FINDER would just send the
user to the MCS-created archive.

5.5 Answer Garden

The Answer Garden system is designed to provide an “organically” growing database
of answers to questions by end-users[20]. Users interact with the system by answering a
series of diagnostic multiple-choice questions which lead them through the tree of answers
already in the system. If users find that their questions are not answered in the database,

27

they can enter their questions into the system and it will be forwarded to an appropriate
expert via email. When the expert answers, the result is sent back to the original question-
poser and also inserted into the tree for future retrieval.

Answer Garden’s goal in life is to answer questions. Like MCS, it uses human input to
decide what questions and answers should be in the database. However, Answer Garden
is really only suited to the task of answering questions. A user who just wants to browse
information either has to answer the diagnostic questions or guess where on the tree the
information might be located. It also requires a group of experts to be responsible for
answering the questions posed by users. In an organization where certain people’s job
function is answering the questions of others in the organization, this works well because
users get answers efficiently and experts don’t have to answer the same questions over
and over. However, the assumption that there is a pool of experts who are required to
answer questions falls down in a volunteer user community where nobody is required to
do anything. In MCS, experts can answer questions posed to the list at their whim; only
the moderator is required to work in order to keep the system functional.

Finally, the information in Answer Garden only grows as the system is used, while the
information in MCS grows as long as there is useful traffic on the mailing list.

5.6 Answer Garden 2

Answer Garden 2 is a refinement of the Answer Garden system in Section 5.5. It improves
on Answer Garden by adding a system of gradual escalation for questions input into the
system (thereby providing more context to the person answering the question), and a sub-
system for collaboratively “refining” the information in the database [21]. All of this is
built on a set of versatile and configurable components which allow the system to be tuned
for a particular environment.

This system appears to implement many of the features required for our system. The
system which inputs data into the system (CafeCK) provides a mechanism for capturing
mailing list messages, and the “refining” system called Co-Refinery allows collecting,
culling, organizing, and distilling information. The Co-Refinery system seems particularly
close to MCS’s requirements. Answer Garden 2 is not available for public distribution, so
the actual implementation cannot be used as a foundation for MCS [22].

5.7 Faq-O-Matic

This system was designed to allow a user community to create a dynamic WWW-based
FAQ. Any user can browse through the web pages and make changes or additions as neces-
sary. This provides an easy way to maintain an FAQ since any member of the community
can volunteer help. However, there is no access control, so it relies on a cooperative user
community. Since there is no centralized authority in charge of the FAQ, pieces of po-

28

tentially incorrect or mutually conflicting information can be posted. In addition, new
additions have to written from scratch by contributors. Documentation on Faq-O-Matic is
provided through an FAQ maintained using Faq-O-Matic [23].

5.8 The Coordinator

The Coordinator is a communication tool based on the language/action perspective, which
views language as a means for directing actions of oneself and others [24]. The Coordina-
tor attempts to enhance human collaboration by explicitly supporting “conversations” such
as requests and offers [25]. The conversation is viewed as having various states and actions
of the requester or the requestee can move between the various states. For example, a user
who would like to have a paper reviewed sends a request message to the reviewer with a
deadline for reply to the request and a deadline for completion of the review. The reviewer
can then select one of a finite list of options: accept the request, make a counter proposal,
or decline the request. The idea behind this structure is that it allows the system to show
the state of the conversations a user is having with other users. Coordinator can provide
explicit reminders about commitments made, and ensure that there is no misunderstanding
about what was requested, and whether the request was accepted.

Some have brought up problems with respect to the Coordinator. Lucy Suchman claims
that the Coordinator and the language/action perspective enforce a certain worldview about
how people ought to go about collaborating [26]. A survey of groupware across 25 orga-
nizations and 223 people found that many people ignored the speech act capabilities of the
Coordinator and simply used it as an email program (specifying all messages as requests
whether they were or not) [27]. Another Coordinator trial found that the benefits of the
product were not offset by the effort required to use it [28].

In some sense MCS can be thought of as performing the opposite task as the Coordi-
nator: extracting structure and meaning from unstructured dialog as opposed to requiring
users to specify the structure with the initial message. This reversal is crucial because
MCS is designed to work with existing mailing lists made up of voluntary subscribers. If
subscribers were forced to add structure and keywords when submitting new messages, or
required to use a special software program to read messages, they would flame the person
imposing this system to a crisp and abandon the mailing listen masse. Since MCS wants
its interaction with the host mailing list to be as painless as possible, it must “reverse-
engineer” the structure after the fact. If MCS becomes popular, it may be that some ad-
vanced users will want to include MCS structure in their submissions to the list. I could
support this by creating an authoring tool which is a subset of the editing tool. However, it
is unlikely that these pre-structured messages would ever account for more than a fraction
of the actual list traffic for the reasons cited in the paragraph above.

29

Chapter 6

Research Plan

The MCS research is divided into two parts: system development and evaluation. MCS
system development will consist of design and implementation of the tools and database.
The evaluation phase will consist of the creation of an MCS database for ascend-users,
and the experimental usage of that database by subscribers to ascend-users.

Dates Milestones
September Proposal completion
October Design of MCS
November Implementation of MCS
December Data entry
January Experimental evaluation
February Analysis and draft completion
March Thesis defense

Table 6.1: Important Research Milestones

30

Appendix A

Actual Subject Lines

Here are the actual subject lines from a day on the ascend-users mailing list:

Subject: (ASCEND) CMU SNMP and Ascend MIBs
Subject: Re: (ASCEND) Max 4K modems bad?
Subject: Re: (ASCEND) Arp routing
Subject: (ASCEND) Script for updating firmware on a pipeline 50
Subject: Re: (ASCEND) 56K modem disconnects
Subject: (ASCEND) Emerging Markets Technology and Information
Subject: Re: (ASCEND) 56K modem disconnects
Subject: (ASCEND) Question regarding modem card arrangement
Subject: (ASCEND) Channel usage
Subject: Re: (ASCEND) Cistron Radius (fwd)
Subject: Re: (ASCEND) Question regarding modem card arrangement
Subject: Re: (ASCEND) NAT, Pipe75, stops routing.
Subject: RE: (ASCEND) Channel usage
Subject: Re: (ASCEND) Script for updating firmware on a pipeline 50
Subject: Re: (ASCEND) Question regarding modem card arrangement
Subject: (ASCEND) Re: GRF problems with gated
Subject: (ASCEND) bridisplay
Subject: Re: (ASCEND) Channel usage
Subject: Re: (ASCEND) NAT: 2nd PC sometimes unable to surf
Subject: (ASCEND) Re: GRF problems with gated
Subject: (ASCEND) V.90 Status?
Subject: Re: (ASCEND) NAT: 2nd PC sometimes unable to surf
Subject: Re: (ASCEND) Arp routing
Subject: Re: (ASCEND) bridisplay
Subject: Re: (ASCEND) Script for updating firmware on a pipeline 50
Subject: Re: (ASCEND) V.90 Status?
Subject: Re: (ASCEND) backto 5.0ApXX from 6.0.0
Subject: (ASCEND) SNMP Object for Hangup
Subject: (ASCEND) CallerID is not presented when interrupting a 128K c a
Subject: Re: (ASCEND) V.90 Status?
Subject: Re: (ASCEND) NAT: 2nd PC sometimes unable to surf
Subject: Re: (ASCEND) IDSL + PSeries Compatibility

31

Appendix B

Guided Interview Questionnaire

1. Name

2. Employer/Organization

3. Job description

4. Experience level with Ascend equipment

� Not a user

� Prospective user

� Newbie

� Intermediate

� Advanced

5. Are you subscribed to ascend-users?

6. If you are subscribed, on average how often do you read list messages?

� Multiple times a day

� Once a day

� About three times a week

� Once a week

� Once a month

� Almost never

� I only read it when I have a problem that needs solving

7. Have you used thread-based archives of ascend-users?

8. Have you used searchable archives of ascend-users?

9. Their first impression of MCS

10. If they can recall a recent problem or issue they attempted to look for in other ascend-
users archives, ask them to try to find the information in MCS

11. Let them play around and record any further comments they have

32

Appendix C

Brief User Questionnaire

1. Employer/Organization

� Internet Service Provider

� School/University

� Other Non-Profit

� Network Equipment Vendor

� Corporation

� Other

Comments:

2. Position as it relates to Ascend equipment

� System Administrator

� Technical Support

� Manager

� Executive

� User

� Other

Comments:

3. Experience level with Ascend equipment

� No experience at all

� No experience, but considering purchase/use of Ascend equipment

� Less than 3 months experience

� 3-12 months experience

� More than 12 months experience

Comments:

33

4. Are you subscribed to ascend-users?

5. If you are subscribed, on average how often do you read list messages?

� Multiple times a day

� Once a day

� About three times a week

� Once a week

� Once a month

� Almost never

� I only read it when I have a problem that needs solving

Comments:

6. Have you used thread-based archives of ascend-users?

� Yes

� No

Comments:

7. If so, how frequently have you used them, on average?

� Multiple times a day

� Once a day

� About three times a week

� Once a week

� Once a month

� Almost never

Comments:

8. How often would you find what you are looking for in thread-based archives?

� Never

� Rarely

� Sometimes

� Usually

� Always

Comments:

34

9. Have you used searchable archives of ascend-users?

� Yes

� No

Comments:

10. If so, how frequently have you used them, on average?

� Multiple times a day

� Once a day

� About three times a week

� Once a week

� Once a month

� Almost never

Comments:

11. How often would you find what you are looking for in searchable archives?

� Never

� Rarely

� Sometimes

� Usually

� Always

Comments:

12. How much have you used MCS?

� Multiple times a day

� Once a day

� About three times a week

� Once a week

� Once a month

� Almost never

Comments:

13. How often would you find what you are looking for in MCS?

35

� Never

� Rarely

� Sometimes

� Usually

� Always

Comments:

14. Since MCS has been available, do you find yourself using MCS instead of other
archives?

� Yes, only rarely use other archives now

� Somewhat, but I still use other archives occasionally (though less than before)

� No, I still use other archives just as much as I did before

Comments:

15. Overall, how would you rate your satisfaction with MCS?

� Completely Unsatisfied

� Somewhat Unsatisfied

� Somewhat Satisfied

� Completely Satisfied

� Undecided

Comments:

16. If you have any other comments or suggestions about MCS, you can enter them
here.

36

Appendix D

Micro Survey

Did the query results answer your question?

� Yes

� Partially

� No

� Undecided

The web form might look something like this:

Did the query results answer your question?
 Yes Partially No Undecided Submit

Figure D.1: Micro Survey Web Form

37

Bibliography

[1] Nexial Ascend users mailing list searchable archive. http://www.nexial.com/cgi-
bin/ascendbody.

[2] Frederick P. Brooks, Jr. The computer scientist as toolsmith II.Communications of
the ACM, 39(3):61–68, March 1996.

[3] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl.
O’Reilly & Associates, Inc., second edition, September 1996.

[4] Berkeley Software Design, Inc. http://www.bsdi.com/.

[5] Brett Wynkoop. BSD/OS FAQ. http://www.wynn.com/bsdi/bsdi.faq, August 1998.

[6] Support Net BSDI list archives. http://www.support.nl/online/bsd.html.

[7] Excite for web servers. http://www.excite.com/navigate/.

[8] Nexial Systems BSDi-Users archive. http://www.nexial.com/cgi-bin/bsdibody.

[9] Ascend Communications web site. http://www.ascend.com/.

[10] Nexial systems mailing list indexes. http://www.nexial.com/mailinglists/.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transfer
protocol – HTTP/1.1. RFC 2068, Internet Engineering Task Force, January 1997.

[12] Bill Winett.
Tracking your visitors. http://www.hotwired.com/webmonkey/98/16/index2a.html,
1998.

[13] Bill Winett. Troubles with tracking.
http://www.hotwired.com/webmonkey/98/25/index4a.html, 1998.

[14] The Media Measurement Task
Force. Metrics and methodology. http://www.iab.net/advertise/metricsource.html,
September 1997.

[15] Open Source web site. http://www.opensource.org/.

38

[16] Robert C. Pedersen. Reviewing Internet mailing lists.The Serials Librarian,
30(2):27–33, 1996.

[17] Robert C. Pedersen. A quantitative approach to the description of Internet mailing
lists. The Serials Librarian, 30(1):39–47, 1996.

[18] Robin D. Burke, Kristian J. Hammond, Vladimir A. Kulyukin, Steven L. Lytinen,
N. Tomuro, and S. Schoenberg. Question answering from frequently asked question
files: Experiences with the FAQ finder system. Technical Report TR-97-05, Depart-
ment of Computer Science, University of Chicago, June 20 1997. Mon, 23 Jun 1997
21:02:34 GMT.

[19] FAQ Finder web site. http://faqfinder.cs.uchicago.edu/.

[20] Mark S. Ackerman and Thomas W. Malone. Answer garden: A tool for growing
organizational memory. InOIS90, Filtering, Querying, and Navigating, pages 31–
39. ACM Press, 1990.

[21] Mark S. Ackerman and David W. McDonald. Answer garden 2: Merging organiza-
tional memory with collaborative help. InProceedings of the ACM 1996 Conference
on Computer Supported Work, pages 97–105, New York, November16–20 1996.
ACM Press.

[22] Mark S. Ackerman. Personal communication, July 1998.

[23] Faq-O-Matic web site. http://www.dartmouth.edu/�jonh/ff-cache/1.html.

[24] Terry Winograd. A language/action perspective on the design of cooperative work.
Human-Computer Interaction, 3(1):3–30, 1987-1988.

[25] T. Winograd. Where the action is (groupware).Byte Magazine, 13(13):256A–258,
December 1988.

[26] Lucy Suchman. Do categories have politics? The language/action perspective recon-
sidered. InProceedings of the Third European Conference on Computer-Supported
Cooperative Work, pages 1–14, 1993.

[27] C. V. Bullen and J. L. Bennett. Learning from user experience with groupware. In
Proceedings of the Conference on Computer Supported Cooperative Work (CSCW
’90), pages 291–302, Los Angeles, California, 1990. ACM Press.

[28] R. P. Carasik and C. E. Grantham. A case study of CSCW in a dispersed organiza-
tion. In Proceedings of ACM CHI’88 Conference on Human Factors in Computing
Systems, Organizational Issues on Effective Use of Interfaces, pages 61–66, 1988.

39

