
IMPROVING MAILING LIST ARCHIVES THROUGH CONDENSATION

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

INFORMATION AND COMPUTER SCIENCES

MAY 2000

By
Robert S. Brewer

Thesis Committee:

Philip M. Johnson, Chairperson
Wesley Peterson

Edoardo S. Biagioni

We certify that we have read this thesis and that, in our opinion, it is satis-

factory in scope and quality as a thesis for the degree of Master of Science

in Information and Computer Sciences.

THESIS COMMITTEE

Chairperson

ii

cCopyright 2000

by

Robert S. Brewer

iii

To Yuka: thanks for

all the love, support, and patience

you have shown me while I worked

on this document, which was go-

ing to be finished in “a year at

most”. It is most deeply

appreciated.

~

iv

Acknowledgments

Like any research project, this one could not have been completed without the help of a

number of people. I’d like to thank my parents for putting me through college and encouraging my

academic ambitions. Your lifelong scholarship set an example for me.

My thanks go to Philip Johnson, for putting up with me and my smart-alecky ways. You

have always supported my efforts, even when they were at best vaguely related to the group’s re-

search focus. You even supported my decision to temporarily leave the program (though I think you

should have taken me up on my investment offer :)

I’d also like to thank the past and present members of CSDL in chronological order:

Dadong Wan, Danu Tjahjono, Rosemary Sumajit, Cam Moore, Anne Disney, Jennifer Geis, Russell

Tokuyama, Joe Dane, Tie Fang, Monir Hodges, and Mette Moffett. Being able to bounce ideas off

of all of you was incredibly valuable to me.

Kirill Levchenko deserves mention as someone outside UHM who provided feedback

about the research. It was appreciated (even if your first comment on it was “weren’t you going to

do something cool?” :)

I would like to thank my committee members Wesley Peterson and Edoardo Biagioni for

taking the time to read and evaluate this thesis.

Tim Endres is the maintainer of the mailing list which was used in the case study of MCS.

His willingness to let his list be used and his general support is appreciated.

Last but not least, I thank Yuka Nagashima for all that she has done in support of me. You

have put up with griping, provided encouragement when I was depressed, and read drafts at the drop

of a hat. Thank you.

v

Abstract

Searching the archives of electronic product support mailing lists often provides unsatis-

factory results for users looking for quick solutions to their problems. Archives are inconvenient

because they are too voluminous, lack efficient searching mechanisms, and retain the original thread

structure which is not relevant to knowledge seekers.

I present MCS, a system which improves mailing list archives throughcondensation.

Condensation involves omitting redundant or useless messages, and adding meta-level information

to messages to improve searching. The condensation process is performed by a human assisted by

an editing tool.

I describe the design and implementation of MCS, and compare it to related systems. I

also present my experiences condensing a 1428 message mailing list archive to an archive containing

only 177 messages (an 88% reduction). The condensation required only 1.5 minutes of editor effort

per message. The condensed archive was adopted by the users of the mailing list.

vi

Table of Contents

Acknowledgments . v
Abstract . vi
List of Tables . x
List of Figures . xi
1 Introduction . 1

1.1 The Problem with Mailing List Archives. 1
1.2 Condensation as a Solution .. 3
1.3 MCS: Condensation Realized. 4
1.4 Two Example Searches . 5

1.4.1 Example 1: Finding Solutions in Traditional Archives 5
1.4.2 Example 2: Finding a Solution in a Condensed Archive. 10

1.5 Thesis Statement . 12
1.6 Overview of this Document . 13

2 Using MCS . 14
2.1 The Archive User Interface . 14

2.1.1 Keyword Search . 16
2.1.2 Symptom Search . 23
2.1.3 2D Search . 23
2.1.4 Full-Text Search . .. 25

2.2 The Editor Perspective . 25
2.2.1 Reading Messages .. 25
2.2.2 Editing Messages . .. 25
2.2.3 Keyword Maintenance . 31
2.2.4 Archive Testing . 35

3 MCS System Architecture and Design . 36
3.1 Requirements . 36
3.2 Architecture . 37
3.3 Design . 39

3.3.1 Packagecsdl.mcs.data . 39
3.3.2 Packagecsdl.mcs.gui . 39
3.3.3 Packagecsdl.mcs.editor . 41
3.3.4 Packagecsdl.mcs.util . 41
3.3.5 Packagecsdl.mcs.web . 41

3.4 Implementation . 41

vii

3.4.1 Startup . 42
3.4.2 Editing . 43
3.4.3 Searching . 44
3.4.4 Implementation Metrics. 45

4 Case Study Design . 46
4.1 Target Mailing List . 46
4.2 Evaluation Factors . 48

4.2.1 Editor Overhead . 48
4.2.2 Adoption . 48
4.2.3 Preference . 48

4.3 Data Sources . 49
4.3.1 Editing Results 49
4.3.2 In-Person Demos for Potential Archive Users 49
4.3.3 Web Server Log Analysis . 49
4.3.4 Brief User Questionnaire. 50

4.4 Study Implementation . 51
5 Case Study Results . 52

5.1 Editing Results . .. 52
5.1.1 Editing Metrics 52
5.1.2 Editing Experiences. 54

5.2 Archive User Results . 57
5.2.1 Interview Data . 58
5.2.2 Web Log Data . 59
5.2.3 Questionnaire Data .. 61

6 Related Work . 64
6.1 Moderated Mailing Lists . .. 64
6.2 Description and Review of Mailing Lists. 65
6.3 Frequently-Asked Question Files . 66
6.4 FAQ FINDER . 66
6.5 Answer Garden . 67
6.6 Answer Garden 2 . 68
6.7 Faq-O-Matic . 68
6.8 Open Directory Project . 69
6.9 Slashdot. 69
6.10 Expertise Web Sites. 71

6.10.1 Experts Exchange . 71
6.10.2 Other Expertise Sites. 72

6.11 The Coordinator . 73
7 Conclusion . 75

7.1 Research Summary and Contributions .. 75
7.1.1 New Ideas for Improving Mailing List Archives 75
7.1.2 Mailinglist Condensation System (MCS). 76
7.1.3 Case Study . 76

7.2 Future Directions . 76
7.2.1 MCS Improvements . 77

viii

7.2.2 Editor Recruitment . 78
7.2.3 Open Source Distribution 79
7.2.4 Adoption by Other Mailing Lists. 79

A “jcvs” Mailing List Subject Lines . 80
B Introductory Email to jCVS List .. 82
C Raw Web Server Log Analysis . 84
D Online User Questionnaire. 91

D.1 MCS Two Minute Questionnaire. 91
E Raw Questionnaire Results. 95
Bibliography . 97

ix

List of Tables

Table Page

5.1 Editing time results for two condensed archives (all times in minutes) 53
5.2 Statistics on the composition of two condensed archives 54

E.1 Raw response data from questionnaire’s multiple choice questions 95
E.2 Raw response data from questionnaire’s open answer questions. 96

x

List of Figures

Figure Page

1.1 View of Support Net bsdi-users archive in threaded mode 7
1.2 View of results from example search in Support Net bsdi-users archive 8
1.3 Example symptom search with initiated using an error message as input. 11
1.4 Results from example symptom search shown in Figure 1.3 12

2.1 Initial page of an MCS-condensed archive. 15
2.2 Keyword Selector interface . 17
2.3 Results from a search for keyword “Swing” 18
2.4 Message display page. 20
2.5 Unabridged message display page 21
2.6 A 2D search of Java Concepts vs. jCVS Versions. 24
2.7 ICEMail window of editing tool . 26
2.8 Message editing window of editing tool. 27
2.9 Keyword editor window of editing tool .. 32

3.1 Block diagram of MCS system architecture . 38
3.2 Diagram of package relationships in MCS. 40

xi

Chapter 1

Introduction

1.1 The Problem with Mailing List Archives

As the world economy shifts increasingly towards information, the computer hardware

and software products we use and their interrelationships become more complicated. Users of the

products often encounter problems and want to find solutions.

Electronic mailing lists provide an excellent way for users of a particular product to ex-

change information and help each other. While some mailing lists are created by the person or

organization that created the product, others are started by interested users. Discussions on the lists

include feature requests, bug reports, and reviews, but the most common topic is problem solving.

Users who encounter problems send messages to the list documenting what happened and other

users (possibly the vendor itself) respond with possible solutions.

Many mailing lists store the messages sent to the list in an archive for future retrieval.

These archives can range from giant text files to databases with sophisticated World-Wide Web

(also know as WWW or web) interfaces. The two most common types of archives are:

� browsable thread-based archives that allow a user to read messages in a format similar to the

one in which they were sent to the list

� searchable archives that allow users to do full-text searches over all the articles in the archive.

The mailing list format has a few important benefits: the barriers to participation are low,

the software required to participate is widely available, and it makes use of widely deployed server-

support (many mail servers have mailing list distribution functionality). Unfortunately, these very

benefits prevent the fullest use of the information in the mailing list data stream. Since anyone

1

can contribute to the list and the format is very conversation-like, the result is a data stream with

a mediocre signal to noise ratio at best. While there is a lot of valuable knowledge available, one

often has to slog through endless newbie questions, flamewars, and “Me Too”s.

The problem worsens when you take into account the archives of the list. When users

consult a mailing list archive, they are often searching for a specific piece of information like a

solution to a problem they are having. Unfortunately mailing list archives are poorly equipped to

support this kind of query. All the irrelevant information that was sent to the list is immortalized

in the archive, making it difficult to find useful information. Searchable archives also face the

problem that any particular query may return an enormous number of hits. For example, a search

for “OSPF” (Open Shortest Path First, a modern TCP/IP routing protocol) on the ascend-users

mailing list archive [1] returns 650 hits, which is an artificially imposed maximum. In this case the

hits are displayed in reverse chronological order, which isn’t necessarily desirable if you are looking

for a particular OSPF problem.

Some mailing list communities generate a list of Frequently Asked Questions (FAQs) for

the mailing list. Originally the purpose of a FAQ was to avoid the recurring situation where new

subscribers to the list would ask questions that had been asked and answered many times before.

By creating a list of these frequently asked questions, newbies’ questions could be answered by the

FAQ. The FAQ format is also used as a convenient format for disseminating useful information on

the subject matter, i.e., questions that might not be frequently asked but are useful to know. The big

problem with FAQs is that they are primarily maintained by hand. This means that keeping an FAQ

up to date is a labor-intensive process which frequently exhausts the volunteer maintainer. FAQs

are generally intended to be documents (text, HTML, etc.) which can be distributed (posted to a

newsgroup, downloaded from a web page). This “distributable” quality limits the size and organi-

zation of the document to something that can be read and understood by a human reader. It also

means that the there is rarely any searching facility provided for the FAQ (as such a process requires

interactivity). The combination of these two factors limits the amount and depth of information

that can be presented. In other words, a FAQ by definition leaves out useful information if it isn’t

used frequently enough to justify its inclusion to the space-limited FAQ. An additional failing of

FAQs is that they are not designed to deal with questions whose answer frequently changes. The

best way to work around a bug in a product may change from version to version, and eventually

become irrelevant when the bug is fixed. Keeping the FAQ up to date puts heavy demands on the

FAQ maintainer.

2

1.2 Condensation as a Solution

To solve the problems inherent in current mailing list archives of product support mailing

lists, I propose a process calledcondensationwhereby one can strip out all the extraneous, conver-

sational aspects of the data stream, leaving only the interconnected pearls of wisdom. Condensation

also involves the editing of the data stream for maximum utility and the addition of meta-level in-

formation to support more efficient searching. This condensation takes the voluminous data stream

from the mailing list and extracts the useful information. As an analogy, newspapers provide a daily

report on current events but are limited by short deadlines, a broad subscriber base, and other con-

siderations. These considerations prevent them from analyzing which events are accurate or relevant

over the long term. A story published one day might be amended or retracted the next, depending

on how events unfold. However, a book describing world events will tend to have a longer deadline

which permits more reflection and analysis: a hoax which might occupy weeks of headlines in a

newspaper will probably be little more than a footnote in a book (unless the book is about newspa-

per hoaxes). The book can also have an index to enable readers to jump directly to the information

they are interested in. It is this refinement of information that I refer to as condensation.

More specifically, creating acondensedarchive from a data stream involves several steps:

� Each message is read to decide if it is relevant to the condensed archive. Since the goal of

the archive is to solve problems, messages which describe neither problems nor solutions are

dropped.

� Editors add a variety of meta-level information to the message. They assign a type, write a

one-line summary, add keywords, and extract symptoms.

� Editors can remove, add, or change the body of the message in order to increase clarity or

provide context.

The result of condensation is a much smaller archive that contains problems which are

linked to their respective solutions (when solutions exist). This process destroys the conversational

structure of the list messages, but users with problems are looking for solutions, not conversation.

The reduction in size of the archive in itself makes searching more efficient because there is less

chance of receiving irrelevant search results. The added meta-level information enables new kinds

of searches like the symptom search (see Section 2.1.2) which are simply not possible with tra-

ditional archives. Condensation also solves the problems facing FAQs. Since condensation relies

on a centralized archive, it does not face the same size and complexity constraints that an FAQ

3

does. Unlike FAQs, condensed archives are good at handling questions whose answer changes fre-

quently, because the answer to a question is a query to the archive database. Each time the answer

is requested, it can be constructed from the latest information stored into the condensed archive.

Condensation requires less effort than maintaining an FAQ, because the messages which form the

raw materials for condensation are written by someone other than the editor.

1.3 MCS: Condensation Realized

To demonstrate the improvements possible through condensation, I have constructed a

new software system for condensing mailing list archives. I have named this system (for lack of

imagination) the Mailinglist Condensation System or MCS [2]. MCS has two main parts: one

which is dedicated to taking the raw material from the mailing list and condensing it, and another

which stores the condensed messages and allows users to access them.

One way to perform the condensation would be to implement an AI system that reads the

messages and then decides what information to keep, what to throw away, and what keywords to

assign to each. To perform this task adequately, the system would need superb natural language

processing capabilities and an in-depth knowledge of the mailing list’s domain. Such a system is

currently at or beyond the state of the art, and would at any rate require a substantial investment of

resources to develop and maintain.

A practical alternative to an AI system is the employment of human editors for conden-

sation, along with extensive tool support to lower editing overhead to an acceptable level. Humans

are quite good at examining textual information and determining what is useful and what is not,

while computers are good at queries across structured data [3]. Using human editors is also far

more resource efficient because most mailing lists already have a set of ‘gurus’: subscribers who

read all messages sent to the list and who are domain experts. Therefore, in MCS, humans do the

editing using the MCS editing program which makes the process as efficient as possible. Only the

editors need to use the editing subsystem; the user interface to the archive itself is separate and

geared towards ease of use.

The storage and retrieval subsystem of MCS consists of a web server connected to a

database system. As editors create condensed messages, they are placed into the database by the

editing tool. For ease of use, end-users access the condensed archive with a web browser.

4

1.4 Two Example Searches

To show how condensation can create a more useful archive than traditional methods, I

will consider an example query for a list that has two conventional archives and a FAQ to show some

of the difficulties users face when attempting to find solutions to problems. Then I demonstrate how

a condensed archive can solve a similar problem with ease.

1.4.1 Example 1: Finding Solutions in Traditional Archives

The first example involves compiling and installing perl 5.00404 on BSD/OS. Perl is a

interpreted language which is designed for text processing [4]. BSD/OS is an operating system

from Berkeley Software Design Inc. (BSDI) which runs on Intel-based computers [5]. BSD/OS has

a user-maintained mailing list called “bsdi-users” for discussion of all issues about the operating

system. This example uses the actual information available from the “bsdi-users” mailing list.

Perl 5.00404 comes with an automated configuration program which configures and com-

piles the software when told what operating system it is running on. Unfortunately, there is a prob-

lem with the configuration script. When this version of perl was released, BSDI was working on

a new version of BSD/OS. At that time, the new version was assigned number “3.1”. The config-

uration script for perl was set up so that certain changes would be made if perl was installed on a

3.1 system. This would allow the same perl distribution to work both on the existing 3.0 system

and the new 3.1 system when it was released. Unfortunately, the version which was to be called

3.1 was delayed and renumbered “4.0”. A minor revision of BSD/OS was released with the (now

unused) version number “3.1”. As a result of this version number mix up, installing perl 5.00404

on a BSD/OS 3.1 system would fail in strange ways due to the failure of some of the configuration

assumptions. User confusion over this was compounded by the existence of the special configura-

tion information for BSD/OS 3.1 in perl: since perl had configuration information preset for 3.1,

surely it couldn’t be wrong?

This problem has three interesting attributes:

1. The solution to the problem is fairly simple: a single configuration script in the perl distribu-

tion needs to have all instances of “3.1” changed to “4.0” and some other minor changes. The

changes can either be made automatically through the Unixpatch command or be made by

hand (once you understand the cause of the problem).

5

2. The problem has obvious symptoms which definitively indicate the problem: inability to

install perl on BSD/OS 3.1 or specific error messages that occur when attempting to compile

perl with unpatched configuration files.

3. The perl distribution is updated with bug fixes infrequently so this problem was encountered

by many people over several months. This caused people to post messages to bsdi-users

asking for help with the same problem repeatedly over several months.

There are three well-known information sources related to or derived from the bsdi-users

mailing list: the BSD/OS FAQ, the Support Net archive, and the Nexial Systems archive. I attempted

to find the solution to the problem in each information resource.

The BSD/OS FAQ

The BSD/OS FAQ [6] is maintained by a single person as a volunteer effort. There are

73 question/answer pairs in the FAQ, and it is not immediately clear what method was used to

order them. The word “perl” does not appear in version 1.1.0 (dated 98/12/07 [sic]) and there is no

discussion of our example problem. It is possible that the question was in the FAQ at one point and

then later removed when the perl distribution was fixed, but this seems unlikely given that there are

other question/answer pairs in the FAQ which are more than two years out of date. The fact that it

is not in the FAQ is not surprising. The FAQ is maintained in someone’s spare time, so many useful

question/answer pairs will never make it in due to time constraints. The FAQ is also a manageable

size at about 37 kilobytes, allowing it to be posted to the mailing list on occasion. If the FAQ were

to contain information every installation problem for every package used with BSD/OS, it would

probably become unmanageable.

The Support Net Archive

The Support Net archive contains all messages posted to the mailing list over the last 12

months [7]. The messages are accessible in two ways: each month’s messages displayed in a thread

format, or searched using the Excite for Web Servers search engine (EWS) [8]. An example of the

thread format is shown in Figure 1.1. The thread format is useful when trying to follow the flow of

a conversation, but it is ill-suited to finding a particular piece of information.

The EWS search engine used by Support Net indexes a collection of documents and pro-

vides a “concept-based architecture” for searching. It claims to analyze the document collection and

6

Figure 1.1. View of Support Net bsdi-users archive in threaded mode

7

determine “statistical correlations between terms and documents” which improves recall and preci-

sion compared to other search methods. In an attempt to find the answer to our example question, I

performed a search with input “installing perl5 compile problems”. Part of the results can be seen

in Figure 1.2.

Figure 1.2. View of results from example search in Support Net bsdi-users archive

The initial search returned a few relevant messages, but they were all written by people

who had encountered the problem and were asking for a solution. After examining the first set of

messages, I used the EWS query-by-example feature to search for messages related to the most

relevant of the search results. This search resulted in several more messages asking for help on the

8

problem, and a few misguided attempts to help. Again, I selected the message that best reflected

the problem and performed a query-by-example. The next batch of messages included one which

acknowledged the problem, but referred the person asking the question to the archives for the actual

patch to solve the problem! After fifteen minutes and several more iterations of query-by-example, I

obtained both a message containing the actual patch and a message from BSDI personnel explaining

the problem’s genesis (as previously summarized).

These results plainly show the problems with a traditional archive. Since every message is

included in the archive, messages repeating the question are often returned by the search. Since the

results are frequently sorted first by relevance and then by date, these repeat questions are actually

more likely to be returned by a search than the first time the question was asked. The repeated

posting of questions also reduces the likelihood that a useful response will be given, as evidenced

by the “look it up in the archives” response and several repeats which did not appear to be answered

at all. One message responding to a repeat asks that the question/answer pair be put in the FAQ,

which we know has not been done! This shows that even though there was a recognized need for

this problem to be documented in the FAQ, it never happened (for whatever reason).

The Nexial Systems Archive

The Nexial Systems archive provides afuzzysearch mechanism for the bsdi-users list [9].

The fuzziness allows the engine to find messages that match keywords that are spelled in a similar

manner to the ones provided by the user. Starting with the same initial set of keywords as the search

of the Support Net archives, I attempted to find the solution in the Nexial archives. Finding the

answer in the Nexial archive took longer and required more effort because it does not provide a

query-by-example facility. This required massaging the keywords until I found ones that matched

the message containing the patch. Getting the keywords right also required me to extract keywords

from some of the earlier search results, like the word “hint” which refers to the hint file used by the

configuration system which the patch applies to.

The problems with traditional archives are the same in the Nexial archive. Most of

the messages retrieved were users re-asking the question or answers which just say “consult the

archives”. This latter request is somewhat amusing considering that it is rather difficult to dig up the

patch from either archive even when you know exactly what you are looking for. Another interesting

point is that the cycle of re-asking the question and being referred to the archives is actually a feed-

back loop. Each time someone asks this question, they increase the number of useless matches the

9

next person querying the archives will get. When someone cannot find the answer in the archives,

the obvious alternative is to post the question to the listagain.

1.4.2 Example 2: Finding a Solution in a Condensed Archive

For logistical reasons, the bsdi-users list was not the one which was condensed for the

case study (see Section 4.1) of this research. The list that was condensed is the jCVS list [10] which

is for the discussion of jCVS [11], a Java client for the Concurrent Versions System (CVS) [12].

My example of the condensation solution using MCS is therefore based on this list.

One of the enhanced searching techniques available in a condensed archive is the symptom

search. This kind of search is designed to be easy and quick for users who have problems that

generate diagnostic error messages. For example, say a user tries to run the jCVS tool for the first

time and receives the following error message on their console:

java.lang.NoClassDefFoundError: javax/swing/DefaultBoundedRangeModel

at com.ice.jcvsii.JCVS.instanceMain(JCVS.java:81)

at com.ice.jcvsii.JCVS.main(JCVS.java:63)

Not knowing what the problem is, the user visits the condensed jCVS archive and switches

to the symptom search mode, then pastes the above error message into the symptom field. The

resulting screen is shown in Figure 1.3.

After clicking the Search button, the user immediately receives the search results shown in

Figure 1.4. For this particular symptom, there is only one matching problem, and there is a matching

solution. The summaries of both problem and solution are shown so the user can tell that this looks

like a useful result. Selecting either problem or solution link displays the respective message.

The results here show the ease with which the desired information is found. The user was

able to use the actual error message to initiate the search which is far more intuitive than trying

to guess what keywords to use. Since the archive is condensed, the were only a few matches and

they were immediately useful because the user can tell which message describes the problem and

which describes the solution. MCS includes two other enhanced searching techniques made possible

through condensation: symptom search, and 2D search. These search methods are discussed in

Section 2.1.

10

Figure 1.3. Example symptom search with initiated using an error message as input

11

Figure 1.4. Results from example symptom search shown in Figure 1.3

1.5 Thesis Statement

This research has demonstrated three things:

1. Condensation of a non-trivial archive from a mailing list has been performed in a reasonable

amount of time.

2. A mailing list archive condensed using MCS has been adopted by the subscribers of that list.

3. Subscribers preferred the MCS condensed archive to the existing, conventional archive of the

list.

Statement 1 addresses the explicit trade-off that MCS makes by using the effort of a

human editor to improve the archive for users. If condensation required substantial time per message

(like 10 minutes), then editing a large archive would require an enormous amount of time. This

would make use of MCS prohibitive except for those cases where some organization was willing to

pay several editors to perform the condensation.

Statement 2 concerns whether subscribers will actually use the condensed archive. I de-

fine adoption as a significant fraction of the subscribers using the MCS archive either in addition to

or instead of the traditional archives. I have used the number of list subscribers as an estimate of

the number of potential MCS users. The adoption percentage is then the number of MCS archive

users divided by the number of list subscribers, expressed as a percentage. To decide what adop-

tion percentage would be indicative of success, I consulted Everett’s work on the the diffusion of

12

innovations [13]. He divides adopters into five categories based on the rate at which they adopt

innovations. The two categories containing the most rapid adopters are theInnovators(consisting

of 2.5% of the population), andEarly Adopters(consisting of 13.5% of the population). I decided

to target both these categories, so my target adoption percentage is the sum of the category sizes:

16%.

Statement 3 addresses whether the archive users actually preferred the MCS archive to

existing alternatives. The conventional archive is defined as the existing archive of a mailing list

that allow either browsing of or searching through the messages posted to the list over time. For

example, in Section 1.4 the traditional archives of the bsdi-users list are the Support Net and Nexial

Systems archives. If users had not preferred the MCS-condensed archive then the additional manual

effort required to maintain it might not be justified.

It should be noted that statements 2 and 3 assume that the archive is being maintained

by myself as an external researcher. Unlike traditional archives, an MCS archive requires effort to

maintain its usefulness. Therefore, future adoption of MCS by other mailing lists might fail despite

the positive results presented here because there was no external agent performing the condensation

“for free”. The issue of editor recruitment is discussed in Section 5.2.3 and Section 7.2.

1.6 Overview of this Document

In the remainder of this document, I explain the MCS system in detail, and then describe

a case study I designed to evaluate MCS. In Chapter 2, I describe the archive and editing interfaces

of MCS. In Chapter 3, I explain the design and implementation of MCS. In Chapter 4, I present

the case study I designed to evaluate MCS. In Chapter 5, I present the results I obtained through

the case study. In Chapter 6, I compare MCS to related systems and techniques. In Chapter 7, I

conclude with a summary of the research, and describe some possible future directions.

13

Chapter 2

Using MCS

MCS has two user interfaces: a web interface employed by users of the archive, and the

mailer interface used by MCS editors to create and maintain the archive. This chapter will step

through the functionality of both interfaces and point out how that functionality is obtained.

2.1 The Archive User Interface

Most archive users are subscribers of the mailing list that the archive is based on, although

the archive allows anyone to use it regardless of their list membership status. To make it as easy

as possible for users to access the archive, the user interface is purely web based. Users start their

session by pointing their browser to the front page of the MCS-condensed archive. The front page

of the condensed archive used in the case study (see Chapter 4) is shown in Figure 2.1.

From the front page the user can read more information about MCS or they can follow a

link directly into one of the four search methods supported by MCS:

� Keyword Searchallows the user to pick one or more keywords and see all messages which

contain that keyword. Unlike most archives, the set of keywords is quite small and only

contains words hand-selected to be highly relevant to this particular archive. The keywords

are arranged into categories through which the user can browse before making his or her

selection.

� Symptom Searchis designed to help the user search the archive using an error message as

input. If the user has encountered a problem which generates an error message, they can copy

and paste it into the symptom field and the system will try to find any problems which exhibit

that same symptom.

14

Figure 2.1. Initial page of an MCS-condensed archive

15

� 2D Searchallows the user to perform a unique kind ofintersection search. As mentioned

above, keywords are organized into categories for ease of browsing. To initiate a 2D search

the user selects two different categories from the keyword hierarchy. MCS then creates a

table that shows the results of searching for each keyword from the first category with each

keyword from the second category.

� Full-Text Searchallows searching based on words in the bodies of archived messages. This

is the kind of search most people are familiar with, but this method is de-emphasized because

this search does not exploit the benefits of condensation to the same degree.

The following sections step through each of these four search methods, explaining the

relevant concepts from MCS along the way. All four of the searches eventually result in a page

of search results where the user can display individual messages. Section 2.1.1 also discusses the

results page in detail but the other sections omit this information since it is the same for each type

of search.

2.1.1 Keyword Search

The keyword search is the primary search technique in MCS. During condensation each

message in the archive is assigned one or more keywords by the editor. This type of search is very

different from keyword searches in most archives where every word in a message is extracted into

an index file. In these conventional archives each unique word extracted is called a ‘keyword’ but

the keywords in MCS are potentially much more valuable. MCS keywords are chosen sparingly by

the editor such that there are only a few for each message. Because the keywords are hand picked by

the editor, terms that are irrelevant but appear in the message will not be promoted to keywords. The

reverse is also true: the editor may decide to add a keyword to a message when that term does not

appear in the message. Adding keywords which do not appear in a message is a common occurrence

when a message’s content implies a topic but the actual topic is never explicitly stated.

Figuring out what keyword has been used for a particular concept is a frequent problem

when using conventional archives. For example, “freeze”, “hang”, and “lock-up” are all words that

describe the same concept, but a user of a conventional archive might have to try all three in order to

retrieve all the problems related to that concept. With the keyword hierarchy, the synonym problem

is all but eliminated by picking one canonical term from the list of synonyms.

The keywords are organized into a hierarchy of categories by the editor. Each keyword

and category can be annotated by a description and an URL when appropriate. Having a relatively

16

small number of keywords arranged in a tree also allows users to browse through the keywords and

learn what kinds of topics are contained in the archive. Keywords can be browsed using a web

interface similar to the one used at the Yahoo! web portal [14], or they can optionally be selected

using a Java applet. Figure 2.2 shows the web interface for the selection of keywords.

Figure 2.2. Keyword Selector interface

By choosing links in the Keyword Selector, the user can drill down into the subcategories

or select one or more keywords. State information including which keywords have been selected

and whether the display should be verbose is maintained in the URL. For this reason, use of the

Back button in the user’s browser should be avoided since that essentially ‘erases’ part of the state

maintained in the URL. A Path bar, which shows the current location in the hierarchy, can be used

17

to pop back to higher levels while maintaining all state information. I chose to use URLs to save

state, instead of HTTPcookies, because many users consider the use of cookies to be an invasion of

their privacy.

After the user selects one or more keywords, the user can choose the “Search Now” link.

This initiates the actual search, and displays a list of messages, which contain the keyword. If the

user has selected multiple keywords, only messages which contain all of the selected keywords are

displayed (a logical AND search). Figure 2.3 shows the results of a search for the keyword “Swing”.

Figure 2.3. Results from a search for keyword “Swing”

Search Results

MCS’s search results provide much more useful information than results from conven-

tional archives. Instead of some cryptic message-ID or irrelevant subject line, MCS displays a brief

summary of the message as a proxy for the message in search results. Seeing the summary directly

18

on the results page gives the user immediate feedback on whether the results are relevant to their

query without having to do any further traversal.

The other major presentation difference between search results from MCS and those of

conventional search engines is the categorizing and clustering of messages. Each message in the

MCS database is classified as either a problem or a solution. MCS makes use of this information to

segregate problems and solutions in the results display, this makes the results easier to understand.

MCS also uses the links from problems to their solutions to make the relationship obvious. Each

problem which matches the search criteria is displayed on the left hand side of a row in theProblem

Focusedtable. On the right hand side of each row is a list of each solution which is linked to that

problem. Each problem row might have zero, one, or more solutions associated with it. Following

the problem-focused table is a separateSolution Focusedtable where each solution matching the

search criteria has a row, with the solution on the right side and all linked problems on the left

side. This somewhat complicated presentation is necessary because of the linking of problems

and solutions. A problem might contain a keyword like “Unix”, but the associated solution might

not contain that keyword if it wasn’t relevant to the solution (perhaps the solution is not platform-

specific). Thus MCS’s display needs to show all the matching messages plus any messages linked

to matching messages. For example, a search for a particular keyword might match ten messages

of which four are problems and six are solutions. However, one of the solutions is linked to a

problem which doesn’t contain the keyword searched for. This problem will not be displayed in

the problem table, but it will be displayed across from its solution in the solution table. To indicate

which messages actually matched the search criteria, messages which matched are displayed in bold

while non-matching messages are not bolded. An example of this scenario can be seen in the last

row of the solution table in Figure 2.3.

From the search results page the user can select any of the message summary links which

will display the selected message. Figure 2.4 shows a MCS message display page. The toolbar that

runs runs just above the message headers has two command buttons: “View unabridged message”,

and “Show all headers”. The first command will display the unedited version of the message in it’s

entirety (Figure 2.5 shows a portion of such a display). The second command will display some

hidden headers which are usually not useful for end users. The headers of the message provide

meta-level information about the message:

� Filename: the name of the file where this message is stored. This is internal information

displayed for debugging purposes only, and is not shown by default.

19

Figure 2.4. Message display page

20

Figure 2.5. Unabridged message display page

21

� Type: the classification of this message, as assigned by the editor. This is either “problem” or

“solution”.

� Summary: a short summary of this message, written by the editor.

� Solution or Problem: depending on the type of the current message, this header will be la-

beled Solution or Problem (always the opposite of the type of this message). It contains the

summary of the related message(s), each of which is also a link to that message.

� Keywords: the list of keywords added to this message by the editor. It is quite possible for

a message to have keywords which never actually appear in the body of the message. The

keywords can include spaces and are separated by commas.

� Message-ID: the unique identifier for this message, used to distinguish messages from one

another. Messages are referred to by message-ID internally throughout the system.

� Author: the name and usually email address of the original author of this message.

� Editor: the name and email address of the editor who actually edited this message.

� Date-Authored: the date and time that this message was created by the original author.

� Date-Edited: the date and time that this message was first edited.

� Date-Last-Modified: the date and time that this message was last changed by the editor. As

more information becomes available to the editor, messages may be re-edited to improve their

content.

� Symptom: an optional header which contains the regular expression used to match error

messages to problems. Not displayed by default.

� Content-Type: an internal value which represents the MIME content type of this message.

Most messages are “text/plain”. Not displayed by default.

After the headers, the body of the message is displayed. Text from the original author

of the message is displayed in a normal typeface, and text that the editor has altered or added is

displayed initalics.

22

2.1.2 Symptom Search

MCS also provides the capability to search for problems by symptom, as shown in Section

1.4.2. The symptom search is particularly useful because it is common for users to be aware of the

symptoms of their problem, but unaware as to what the cause might be. When users encounter such

a problem, they can copy and paste the error message directly into the symptom field of the symptom

search web page and initiate a search. MCS will then attempt to match the given text against all the

symptom expressions in the archive, displaying the results in the same manner discussed in Section

2.1.1.

The symptom search was designed to minimize the amount of effort required on the users’

part. To enable users to paste in their error message verbatim, regular expressions are used to match

the symptom to a problem stored in the archive. When the editor condensed the message that

contained the problem, he or she extracted the symptom from the body of the message. From his or

her knowledge of the domain, the editor removes parts of the error message that are specific to this

particular incident (like IP address, hostname, pathname), leaving the generally diagnostic parts.

The result is a regular expression that is attached to the message and stored in the archive. When a

user initiates a symptom search, any line termination in the error text is removed (in case the error

message was folded somewhere along the line) and then each symptom pattern in the archive is

matched against the text. Any messages that match are displayed in the standard format.

The major advantage of the symptom search is that it requires minimal effort on the part

of the user. However, many problems do not produce error messages so the number of problems that

can be solved in this way is limited. As shown later in Section 5.1.1, only 30% of the condensed

problem messages in the archive had useful diagnostic symptoms.

2.1.3 2D Search

The grouping of keywords into categories described in Section 2.1.1 enables another

unique option for users. MCS allows users to perform a2D searchby performing simultaneous

searches for pairs of keywords. The user selects two categories which contain keywords using an

interface similar to the one shown in Figure 2.2, and then initiates the 2D search. MCS performs

the cross-product of the two categories, and for each tuple of keywords it performs an AND search

of the database. The result is a table which shows the coincidence of the keywords in the two cat-

egories. Figure 2.6 shows the results of a 2D search with the categories of “Java Concepts” versus

“jCVS Versions”. The archive this search was performed on has a limited amount of data, but the

23

results provide some insight as to which concepts have proven problematic with which software

versions. Note that just because the JavaHelp row has no matches doesn’t mean that no messages

related to JavaHelp are in the database. It just means that no JavaHelp-related messages refer to a

particular version of jCVS, probably because the version of jCVS was not relevant to the problem

or solution.

Figure 2.6. A 2D search of Java Concepts vs. jCVS Versions

Each cell of the table either shows the number of matching problems and solutions or

“No matches”. The cells that contain matches are also links which allow the user to see the actual

matching messages from the standard MCS search results page.

The 2D search was designed to give users the ability to easily create their own views of

the archive. While 2D searches are not usually the best choice when looking for the solution to a

24

particular problem, their ability to show trends in the data is may be useful when making decisions

like which version of a program to deploy in an organization.

2.1.4 Full-Text Search

In addition to the more innovative searches previously described, MCS provides a con-

ventional search method. All words in the body of each message are indexed (except for a standard

list of stopwords like “the”) and the user can type the words they wish to search for on the full-text

search page. Multiple words can be searched for simultaneously by entering them separated by

commas. The words are not case sensitive but may not contain spaces. Only messages that contain

all the words entered will be displayed (an “AND” type search). The full-text search is provided

primarily as a last resort as in case the other types of searches fail.

2.2 The Editor Perspective

To provide the wonderful end user experience described in Section 2.1, the messages

from the mailing list have to be condensed. This is the job of the editor. To make this sometimes

grueling job feasible, MCS provides an editing tool which eliminates most of the bookkeeping so

that the editor can focus on the higher-level tasks. The editing tool has been implemented as a set of

extensions to an existing email client called ICEMail [15]. This section will step through the tasks

performed by the editor.

2.2.1 Reading Messages

The first task of the editor is to become familiar with the messages to be condensed. This

is done through the basic email facilities provided by ICEMail. Figure 2.7 shows this interface. The

editor goes through the archive reading each message in turn, possibly deleting obviously irrelevant

messages.

2.2.2 Editing Messages

The next step is to start editing individual messages. The editor selects the message in the

display window and then selects the menu item “MCS edit displayed message” from the Extensions

menu. This command grabs all the relevant information from the displayed message and inserts it

into the message editing window which is shown in Figure 2.8.

25

Figure 2.7. ICEMail window of editing tool

The message editing window provides a number of fields which make up the condensed

message, followed by a control panel at the bottom of the window. The message fields will be

described first, then the control panel.

Message Editor Fields

The “Loaded from” status field cannot be manipulated directly. It can take on one of three

values:

� “Nowhere” indicates that there is no message loaded into the fields.

� “Email message” indicates that the fields are filled directly from an email message displayed

in ICEMail.

26

Figure 2.8. Message editing window of editing tool

27

� “Existing message in MCSDatabase” indicates that the message displayed had previously

been saved the archive and has been reloaded for further editing.

The “Keywords” field is where the editor assigns keywords to the message. The keywords

are separated by commas. Keywords can be inserted directly from the keyword editor window which

is discussed in detail in Section 2.2.3. Keywords can contain spaces internally but any leading or

trailing spaces are stripped.

The “Edit symptom” and “Symptom list” fields work together to allow the editor to set

the symptoms attached to a message. “Edit symptom” is a text area where the editor can type in a

regular expression. Suppose the editor is working on a problem message which contains same the

error message used in Section 1.4.2:

java.lang.NoClassDefFoundError: javax/swing/DefaultBoundedRangeModel

at com.ice.jcvsii.JCVS.instanceMain(JCVS.java:81)

at com.ice.jcvsii.JCVS.main(JCVS.java:63)

The editor knows that the error message is symptomatic of using the wrong version of

the Java Swing class library. So in this case, the relevant portion of this error in standard regular

expression form would be:

java\.lang\.NoClassDefFoundError: javax/swing/.*

This symptom gets at the core of the error because the only two important parts are the

type of the error and initial prefix of the mismatched package. The exact class which encountered

the error is irrelevant as are the line numbers and file names.

Once the symptom has been entered into the field, it must be saved by clicking the right

mouse button in the field which reveals a pop up menu. When the Save option on that menu is

selected, the new symptom is placed into the Symptom list. If a symptom needs to be edited after

being saved into the Symptom list it can be selected from that list and a right mouse click will copy

it into the Edit symptom field for further editing.

The “Summary” field allows the editor to enter in a one line summary of the message.

When editing a fresh email message, this field defaults to the Subject header of the email which is

sometimes a good starting point for the summary.

The “Content-Type” field represents the MIME (Multipurpose Internet Mail Extensions)

type of the message body. It can be set either to “text/plain” or “text/html”. In the current imple-

mentation this is always set to “text/plain”.

28

The “Author” field displays the original author of the email message. This field defaults

to the contents of the From header of the loaded email message, therefore the field contains either

the email address or the email address and name of the author.

The “Editor” field displays the name and email address of the editor of this message. No

provision is made for recording multiple editors which might be useful if a message is re-edited

later by someone other than the original author. This field is not cleared as the other fields are when

a new message is loaded, to save the editor from having to continually re-enter the information.

The “Type” field assigns the message to be either a “problem” or a “solution”. It defaults

to a non-valid value to force the editor to consciously choose type one or the other.

The “Links” field shows the other messages linked to this one. The other messages are

represented by their message-ID and are separated by commas. Note that links are not classified

themselves: anything linked to a problem is assumed to be a solution and vice versa. All links

in MCS should be bi-directional (problems link to their solutions and solutions link back to their

problems), but ensuring this is currently left up to the editor.

The “Message-ID” field shows the message-ID for the message. The message-ID is used

as a unique identifier for each message and is used as the key in the database. Unlike the other

fields, this field cannot be edited by directly selecting and changing the contents, because changing

a message-ID is complicated due to its use as a key in the database. When MCS saves a re-edited

message back to the archive it first deletes the existing message from the archive and then adds the

new one. If the message-ID were to be changed after loading, then the original message will not

be deleted and the re-edited message will be added to the archive as a duplicate. In addition, if the

message-ID is changed, the unabridged version of the message must have its message-ID changed

as well since the key fields are used interchangeably. This field defaults to the message-ID of the

email message being edited. The Links field of messages connected to the displayed message are not

changed when the message-ID is changed: they must be updated manually by the editor. To change

the message-ID, the “Change ID” button must be pressed (see next section). The most common

reason for changing a message-ID is to split an incoming mail message into multiple condensed

messages (see Section 5.1.2 for more details).

The “Date-Authored” field show when the original email was written and it defaults to

the value of the Date header of the email. This field, and the two other date fields which follow,

are editable to allow the editor to correct any mistakes which might have occurred, like a inaccurate

computer clock.

29

The “Date-Edited” field shows when the email was first edited and it defaults to the current

date and time.

The “Date-Last-Modified” field shows when the email was last changed by an editor.

This is useful information since messages can be changed after their initial editing. This field is

automatically set to the current date and time just before a message is saved to the archive.

The “Body” field is where the actual body of the message is placed. It defaults to the body

of the email message being edited. While the body is plain text, MCS recognizes certain pseudo-

HTML tags in the body area. The tags<mcseditor> and</mcseditor> are used to wrap any

text modified or deleted by the editor. When the message is displayed to end users, the tagged text

is displayed initalics. The Body field also has a popup menu which allows easy insertion of the

editing tags.

Control Panel

The control panel has four parts: the message server URL, the unabridged server URL,

the button panel, and the status line. The two URL fields provide the location of the MCS server

where messages will be uploaded and downloaded from. These URLs can be changed to point to

different servers or ports depending on which archive is being worked on.

The button panel contains five command buttons which act on the message. The “New”

button clears most of the fields after prompting the user for confirmation. The New button does

not clear the Editor field since that field rarely changes during an editing session. The “Save”

button saves the currently displayed message to the archive. If the message was condensed from

an email it is saved directly. If the message was loaded for re-editing from the archive then the old

message is first deleted and then the new version is saved. Along with saving the edited version of

the message, the Save button sends the unabridged text of the message to the unabridged archive.

The “Load” button allows the editor to reload a previously condensed message from the condensed

archive, which might need to be updated. The editor is prompted for the message-ID of the message

to be loaded. The “Change ID” button allows the editor to change the message-ID of a message.

Changing the message-ID should be done with care for the reasons listed above in the description

of the Message-ID field. The “Delete” button will delete from the archive whatever message is

currently loaded and displayed. If the displayed message has never been saved to the archive then

the fields are merely cleared.

30

The status line is used to communicate progress and status information to the editor. When

commands complete they change the message in the status bar. For example, after the New button

has been pressed, the status field reads “Editor fields cleared!”.

2.2.3 Keyword Maintenance

The maintenance of the keyword hierarchy is the other major part of the editor’s task. As

the editor condenses each message he or she will have to decide what keywords to assign to it. The

choice of what concepts are important and what actual text should be used to describe them is left

up to the editor. The keywords must be selected for relevance and also for applicability to other

future messages. The keywords are maintained in a hierarchy of categories which the editor also

constructs and maintains. To ease this task, MCS includes a keyword editor tool. Figure 2.9 shows

a keyword hierarchy displayed in the editor tool. While maintaining keywords is time consuming,

having the keywords organized in this way makes browsing keywords and 2D searches available to

the end user.

One of the reasons for having the editor pick the keywords rather than extracting them

automatically was to avoid the synonym problem mentioned in Section 2.1.1. An alternative so-

lution would be to maintain a database of synonyms and allow the user to search based on any of

them. The problem with this solution is that it requires the editor to dream up this list of synonyms

that a user might use, which is substantially harder than simply picking one term and using it as the

canonical one. The MCS method does assume that a user will recognize the canonical term when

he or she sees it in the keyword hierarchy.

The keyword editor window can be divided into three pieces: the keyword tree, the details

display, and the control panel.

Keyword Tree

In the upper left side of the window the keyword tree is displayed. The interface should

be familiar to most computer users: the top level categories are displayed and by double clicking on

them their contents are revealed in an indented manner. Open categories can be collapsed as well.

Only one keyword or category can be selected at any one time.

31

Figure 2.9. Keyword editor window of editing tool

32

Details Display

When a keyword or category is selected, details about it appear in the upper right portion

of the window. There are four fields of information displayed for each item:

� The “Type” field indicates whether this item is a keyword or a category. This field is not

editable because keywords and categories are not interchangeable. To change the type of an

item, one would have to delete the item and then recreate it. I decided to make keywords

and categories fundamentally different, because categories were designed purely for the clas-

sification of keywords. While it is possible that a message could actually be described by a

category rather than a keyword from that category, this is unlikely in my experience as an

editor. If assigning categories to messages like keywords were deemed to be a useful feature,

MCS could be extended to allow categories to be assigned to messages without extensive

changes.

� The “Name” field gives the name of the category or keyword. Names can contain spaces and

there is no length restriction though practicality dictates that keywords not be more than 50

characters long.

� The “Description” field allows the editor to add text providing more details about the keyword

or category. This can be useful if the keyword’s meaning is not immediately obvious. The

description field must not contain line breaks, but the tool does not currently prevent the editor

from accidentally adding line breaks.

� The “URL” field allows the editor to add a link which provides more information on the item.

The editor can make changes to any of the displayed text, but the changes are not recorded

back into the keyword tree unless the “Save Changes” button is pressed. If changes are made and a

different item is selected before saving the changes then the changes will be lost.

Control Panel

The control panel contains all the command buttons. The first row contains seven buttons:

� The “Add Keyword Under” button creates a new keyword inside the currently selected cat-

egory. The new keyword is created blank with the name “New Keyword”. This button is

disabled when the item selected is a keyword since keywords cannot contain other items.

33

� The “Add Category Under” button creates a new subcategory inside the currently selected

category. The new category is created blank with the name “New Category”. This button is

disabled when the item selected is a keyword since keywords cannot contain other items.

� The “Add Keyword After” button creates a new keyword just after the currently selected item

at the same level in the hierarchy. The new keyword is created blank with the name “New

Keyword”. This button works when either a keyword or category is selected.

� The “Add Category After” button creates a new category just after the currently selected item

at the same level in the hierarchy. The new category is created blank with the name “New

Category”. This button works when either a keyword or category is selected.

� The “Save Changes” button allows the editor to commit any changes he or she has made to

the text in the three editable display fields. If another item is selected before pressing this

button then any changes to previous item will be lost.

� The “Insert” button allows the editor to insert the currently selected keyword into the mes-

sage editor window. This makes it easy for the editor to assign keywords to a message by

just browsing the keyword tree and inserting relevant keywords. The button ensures that the

keywords inserted into the message editor will be properly comma separated. This button is

disabled when a category is selected because categories cannot be assigned to messages.

� The “Delete” button deletes the currently selected item from the tree. There is no user confir-

mation.

The second row of the control panel contains the controls for loading and saving the

keyword tree back to the archive server. Keyword tree I/O is done separately from the message

editing and the keyword tree could conceivably even be stored on a separate server. The “Keyword

Server” field contains the URL of the KeywordServer servlet which connects the editing tool to

the archive. When the “Load” button is pressed, the keyword tree is downloaded from the server

and displayed for editing. The user is reminded via a confirmation dialog box that this will erase

any unsaved changes in the currently displayed keyword tree before continuing. The “Save” button

writes the keyword tree back to the server.

The third row of the control panel contains the status line. This line is used to display

progress messages to the user during various operations and to indicate when operations fail.

34

2.2.4 Archive Testing

As the messages are being condensed and saved, the editor will want to make sure that

messages are appearing properly in the archive, and that the links between messages function as

expected. There is no special interface provided to the editor for testing: the editor simply accesses

the archive as an end user would.

35

Chapter 3

MCS System Architecture and Design

MCS is the system I have created that implements the idea of condensation. This chapter

describes the underlying requirements, architecture, and implementation details of the system.

3.1 Requirements

MCS was designed to help users of problem-solving mailing lists by improving the us-

ability of their archives. Making archives more useful not only helps the archive users, it also helps

to improve the quality of the mailing list itself, because people are less likely to re-request informa-

tion which is easily available via the archive. To achieve this goal, the user community must adopt

MCS in preference to the many existing systems for generating and maintaining searchable mailing

list archives. To encourage users to adopt the system, the design of MCS takes into account two

issues: an explicit domain focus, and the existing list community.

Most mailing list archive search engines are designed to work with any mailing list. Be-

cause they must work with any mailing list, conventional search engines are limited to keyword

searches and simple search results presentation. The idea of MCS is the exact opposite: mailing

list archives can be enhanced by tailoring the search engine to a particular mailing list domain. By

embracing the details of a particular kind of mailing list MCS provides greater utility and efficiency

for archive users.

To explore the idea of domain-specific enhancements, I had to choose a domain. The do-

main I selected was product support mailing lists dedicated primarily to problem solving. The focus

on a single domain simplified both the implementation and the execution of the case study. Because

these lists focus on problem solving, the users of their archives are also interested in problem solv-

ing. For this reason, the MCS-condensed archive contains only messages describing problems or

36

solutions. Users looking for a comprehensive archive of all messages sent to the list, can consult an

existing traditional archive. The existence of other “unabridged” archives frees MCS to eliminate

any messages or parts of messages that are not worth archiving.

Because MCS receives its input from a mailing list, it is crucial that MCS be designed

with the social structure of a user-supported mailing list in mind. Specifically, the mailing list and

its community should not be adversely affected by MCS. Any attempt to impose restrictions on

how people read or participate in the list (like requiring users to use special software or compose

messages in a certain format) would be met with blistering criticism. MCS must stand apart from

the mailing list itself, limited to using messages from the list on an as-is basis. MCS also takes into

account the needs of the user community by having very low requirements accessing the archive.

The archive is accessed using a web browser which is presumably standard equipment for most

mailing list participants. Furthermore, the web pages themselves are simple; they contain no images,

no Java applets, and no JavaScript to ensure that users can use older browsers to access the archive.

The omission and editing of messages is central to MCS, but those actions can reasonably arouse

suspicion among list members as to the fairness of the editing. To assuage these fears and to assure

context, MCS provides a link from each edited message to the original message maintained in a

separate unabridged archive.

The editing process itself imposes certain constraints on the system. Since a human does

the editing, the amount of effort required to condense a message must be kept fairly small. The

system would not be useful if the overhead of condensing anything other than a trivially small

archive is too great. One solution to the problem of editing overhead is to spread the work out over

multiple editors. However, I designed the current system on the assumption that only one editor will

be condensing at any time. Adding support for multiple editors is possible and discussed further in

Section 7.2.1.

To support future goals of open source distribution and adoption by many mailing lists (see

Section 7.2), MCS must be portable. Mailing lists and their archives operate on a broad spectrum

of platforms so MCS must impose as few constraints as possible in that area. It should also be

self-contained to encourage people to install it.

3.2 Architecture

In this section I discuss the overall architecture of the MCS system. The users of MCS

can be broken down into two different roles:

37

� Editor. The editor actually performs the condensation of the archive. In the current system the

editor is a human, but in the future this role could conceivably be taken over by a sufficiently

advanced AI system.

� Archive user. Archive users are the people who actually make use of the condensed archive.

From these two roles springs the basic division of the system. It consists of three subsys-

tems:

� A centralized database which stores the messages that form the archive, and supports queries

on that data.

� An editing tool to condense the queue of messages from the mailing list which are then fed

into the central database.

� Display and query tools which provide an interface to the database for archive users.

The architecture of MCS is comprised of several blocks which are shown diagrammati-

cally in Figure 3.1.

Mailing
list

Raw
Message
Database

Condensed
Message
Database

Editor Web
Server

User

User

Figure 3.1. Block diagram of MCS system architecture

The input for MCS obviously comes from the mailing list itself. The central server is

subscribed to the mailing list and receives each message as any subscriber would. The editor then

uses the editing tool to pick up the messages waiting in his or her queue and condenses them. The

condensed messages are shipped back to the central server which stores them in a database. The

editing tool also allows the editor to create and maintain the keyword hierarchy.

Users access the archive using a normal web browser. Users can select from one of the

four searching methods, and then enter their search parameters. The system then performs the

search and returns a list of matching messages.

38

3.3 Design

I implemented all executable aspects of MCS entirely in Java 2 (also known as Java 1.2).

This decision follows the requirement that MCS (server and editor) be usable on a wide variety of

platforms. I implemented the end user interface in HTML as web pages, thereby enabling almost

universal access by archive users.

MCS consists of three different subsystems coded in Java: a cluster of servlets (a way to

extend the functionality of servers, particularly web servers) which provide the storage and retrieval

of the messages, two extensions to the ICEMail program which make up the editing tool, and two

Java applets which are used as an experimental searching mechanism.

The code is broken into five different packages:csdl.mcs.data ,csdl.mcs.editor ,

csdl.mcs.gui , csdl.mcs.util , andcsdl.mcs.web . Figure 3.2 shows the packages and

their calling relationships.

3.3.1 Packagecsdl.mcs.data

This package is the glue that holds together all the other packages. It contains all the

abstract data types used in the system likeMCSMessagewhich represents the individual messages

in the system, andKeywordTreeNode which represents each item in the keyword tree. The

other major part of this package is theMCSDatabase object. MCSDatabase is a static class

which provides an abstraction layer for the actual data in the archive. All the servlets search and

retrieve data from the archive through calls toMCSDatabase to allow for future changes to the

underlying data storage and indexing implementation. The class needs to be static because all the

servlets require access to the information but they don’t have access to each other’s data. The static

class provides a shared data space that all servlets can access because they share the same execution

environment.

3.3.2 Packagecsdl.mcs.gui

This package contains only one class:KeywordTreePanel . This class displays the

keyword tree and the details of the selected item. This class is used by the keyword editor and the

Java searching applets because they both need to display the keyword tree.

39

csdl.mcs.web
KeywordSelectorApplet MCSStatus
KeywordSelectorButtonPanel MatchStructure
KeywordSelectorPanel MessageServer
KeywordServer ProblemSolutionCluster
MCSAdmin SearchRedirector
MCSDisplay TableSearchApplet
MCSFeedback TableSearchButtonPanel
MCSKeywordSelector TableSearchPanel
MCSSearch UnabridgedDisplay
MCSServlet UnabridgedServer
MCSStandardServlet

csdl.mcs.editor
InsertListener
KeywordEditorButtonPanel
KeywordEditorPanel
MCSExtension
MessageDeletionException
MessageEditorPanel
MessageLoadingException
Metric
MetricCollector
MetricExtension
NetworkKeywordEditorPanel

csdl.mcs.gui
KeywordTreePanel

csdl.mcs.data
InitFailureException
KeywordTreeData
KeywordTreeNode
KeywordTreeParseException
MCSDatabase
MCSMessage
MCSRegex
MalformedMessageException
NoMessageIDException
SymptomStructure
UnabridgedDatabase

csdl.mcs.util
MiscUtility
StringIntegerComparator
rsbAWTUtils

Figure 3.2. Diagram of package relationships in MCS. Some regression testing classes have been
omitted.

40

3.3.3 Packagecsdl.mcs.editor

This package contains the editing functionality of MCS. The two major classes areMes-

sageEditorPanel andNetworkKeywordEditorPanel which are used to create the two

editing windows (see Figures 2.8 and 2.9). The panels are built out of a layering of components.

For example,NetworkKeywordEditorPanel adds functionality on top ofKeywordEdi-

torPanel which is an amalgamation ofKeywordTreePanel and KeywordEditorBut-

tonPanel . The package also contains some modest wrapper classes which turn the panels into

ICEMail extensions.

3.3.4 Packagecsdl.mcs.util

This package contains miscellaneous utilities used by the other packages. Most of the

methods are static as they are intended to be used directly without the need to instantiate the class.

For example, theMiscUtility class provides methods for escaping HTML metacharacters, find-

ing the intersection of two Vectors, and counting the number of elements in a comma delimited

String.

3.3.5 Packagecsdl.mcs.web

This package contains all of the servlets used to run the archive and the search applets.

Some of the servlets likeMCSSearch and MCSDisplay provide the interface to the archive

user.Another group of servlets,KeywordServer and MessageServer provide communica-

tion services to the editing tool. All the servlets conform to version 2.0 of the Sun Servlet API,

which means that they are compatible with any of the many web servers which support servlets.

3.4 Implementation

Since MCS is a research project, the implementation priorities were different from a com-

mercial package. Two of the major priorities were: creating an accurate implementation of the

condensation concept, and completing the implementation as quickly as possible. While I gave

some thought to future expansion, I spent very little time optimizing MCS’s execution speed or

memory requirements. There is little point in spending time optimizing a system before it has even

been demonstrated that the system is useful. However, the performance of MCS has been more than

41

satisfactory in my usage to date. This section provides a brief tour of the MCS implementation by

following the life-cycle of an archive.

3.4.1 Startup

The core of MCS is the group of servlets and support classes that run within a web server.

All the archives created so far use Sun’s Java Web Server, but any web server that supports servlets

and embedding servlet output into static HTML pages could have been used. All the servlets and

their support classes are bundled together into a single Java archive file (JAR file) which is added

to the classpath of the web server. I discovered several incompatibilities in the Java execution

environments available to me which prevented the proper operation of the servlets. Finally I found

that the Solaris Reference JDK 1.2.2 with the HotSpot VM 1.0.1 worked both with and without

the JIT compiler enabled (debugging is easier when the JIT compiler is off since line numbers are

provided in stack traces). The MCS archive also needs an HTML start page that contains special

server side tags to embed the output of theMCSStatus servlet in the page.

As mentioned in Section 3.3.1, all the servlets communicate via theMCSDatabase ob-

ject which has only static methods and member variables. However, theMCSDatabase needs to

read in information about the database from disk before its methods are called. I solved this problem

by putting special initialization code in one servlet’sinit() method which reads initialization pa-

rameters passed by the web server. These parameters are then passed on toMCSDatabase so that

it can properly initialize. To ensure thatMCSDatabase is initialized before the web server accepts

any HTTP requests, the web server was configured to load the special servlet when starting up. I

chose to make theMCSSearch servlet the special servlet, since it was likely to be used as soon

as the server starts. The initialization parameters (like the directory where messages are stored) are

configured in the web server, so no archive-specific information has to be compiled into the servlets.

MCSDatabase initializes by building several internal data structures:

� A Hashtable mapping from message-IDs to filenames

� A Hashtable mapping from a keyword to a Vector of message-IDs

� A Vector of symptoms and their associated message-IDs

� A Hashtable mapping from full text words to a Vector of message-IDs

� A Hashtable containing all the stopwords (words not indexed in the full text Hashtable)

42

All these data structures are built by scanning every message in the archive. This process

is fairly slow, but only happens at startup (or as a result of an infrequent action). This process could

easily be optimized by building the indexes and saving them as separate files instead of scanning

each message. MCS keeps all this meta-level information in memory which might not scale well for

very large condensed archives, but does make for fast queries on small archives. In addition to this

meta-level information,MCSDatabase reads in the keyword hierarchy and the last modification

date for use by the servlets.

A parallel class,UnabridgedDatabase , for unabridged messages requires similar

initialization. However the class is much simpler, because it only supports retrieval by message-ID,

but no searching methods.

3.4.2 Editing

The editing tool makes use of the fact that the data source for condensation comes in

the form of email. The messages to be condensed are stored in normal mailbox folders on an

email server. The Java email client ICEMail [15] has been extended for use as the MCS editing

tool. Since ICEMail is an open source program, I added hooks to it that cause it to load extension

classes. The names of the extension classes are added to a property in the ICEMail configuration file.

ICEMail extensions implement a simple interface which provides for initialization and shutdown of

the extension. On startup, ICEMail reads the names of the extension classes, loads them via the

standard class loader, and then calls theirinit() method.

There are two ICEMail extensions in MCS:MCSExtension , and MetricExten-

sion . MCSExtension provides access to both the message and keyword editors.MetricEx-

tension collects and records low-level data about the editor’s activities for analysis.

The keyword editor loads and saves the keyword tree via HTTP connections to a servlet

namedKeywordServer . To receive the keyword tree, the keyword editor connects to a given

URL and sends an HTTP GET request and the servlet responds with the keyword tree flattened into

a textual format (the same one used to store the keyword tree to disk) which it has retrieved through

a call to theMCSDatabase object. The keyword editor then parses this into the internal format

and displays it to the user. When the editor wants to save the tree, the keyword editor window sends

an HTTP POST request and sends the keyword tree in the textual format. The servlet then passes

this information on to theMCSDatabase object which stores it to disk. There is no provision for

partial updates of the keyword tree, and there is no locking protocol. In addition, no authentication

or authorization is performed on these operations so the only security is provided through obscurity.

43

This could easily be remedied through the web server’s HTTP authentication mechanisms which

are straightforward to implement on both the servlet and editor side.

The message editor is a little more complicated than the keyword editor. The message

editor tool must deal with both the edited and unabridged versions of each message. There are three

operations that the message editor can perform on the database: save a message, load a message,

and delete a message. When a message is saved in the message editor window, it makes HTTP con-

nections to both theMessageServer and theUnabridgedServer using the URLs provided

by the user. The two connections are made in parallel, because if the upload to one servlet fails,

the other upload should be aborted to avoid an inconsistent archive state. The upload is made as an

HTTP POST request in a textual format, which the servlet reconstitutes and sends to eitherMCS-

Database or UnabridgedDatabase as appropriate. The static object writes the new message

to disk and adds the meta-level information to the in-memory data structures.

To load or delete a message the message editor makes an HTTP GET request to both

servlets. It passes two parameters to each servlet: message-ID and function. The message-ID indi-

cates which message is to be acted upon and the function indicates whether to load or delete the mes-

sage. When loading, the servlets will request the message fromMCSDatabase or Unabridged-

Database , convert it to text, and send it to the message editor. Deletion of an edited message is

complicated by the in-memory meta-level information which needs to be updated. The current im-

plementation solves this problem by simply deleting the message file from the disk and then forcing

MCSDatabase to rebuild all the meta-level information from scratch! While this kludge simpli-

fies the implementation mightily, it makes message deletion a time consuming operation. On an

archive of 177 messages the rebuild can take 5 to 10 seconds, but message deletion happens only

infrequently, making it acceptable. To optimize this operation all the meta-information tables could

be stepped through and all references to the message-ID removed.

MCSDatabase andUnabridgedDatabase are write-through for all editing opera-

tions, so there is little chance for data loss in the case of a server crash.

3.4.3 Searching

End users of the MCS-condensed archive access the archive using their web browser. The

front page of the archive is an HTML page with an embedded call to theMCSStatus servlet, so

that users can immediately see how many messages are in the archive and when the archive was last

modified. There are also a variety of help pages which are written in static HTML. However, the

rest of the web pages seen by the user are created dynamically by the servlets in the system. Each

44

servlet can be accessed directly via an URL like<http://csdl.ics.hawaii.edu:8100/

servlet/MCSStatus> and they will generate a full page of HTML which is displayed by the

browser. TheMCSSearch andMCSStatus servlets optionally take an “embedded” parameter

which causes them to omit header tags, which are not needed when the output is spliced into an

HTML page.

The servlets communicate with each other in two ways: the staticMCSDatabase object,

and parameters in URLs. TheMCSDatabase object contains the information which relates to the

archive itself, so most inter-servlet communication is done via URLs. As mentioned in Section

2.1.1, the URL is also used to save state between servlet invocations. I needed to use this technique

because HTTP is a stateless protocol.

Most of the operations the searching servlets perform eventually boil down to calls to

MCSDatabase or UnabridgedDatabase . For example, theMCSDisplay servlet takes two

URL parameters: messageID and verbose. Most of the code in this servlet involves writing HTML

headers and doing error checking on the parameters. The real work of retrieving a message from

the database is done by a call toMCSDatabase.getMessageFromID() which returns aMC-

SMessage object when given a message-ID. TheMCSSearch servlet, however, contains a sub-

stantial amount of code to perform the four different types of searches. To allow initiation of

searches and display their results from the same page, theMCSSearch servlet is ‘reentrant’. When

the user initiates the search from the form generated byMCSSearch, the form data is sent via the

URL to theMCSSearch servlet. This is another example of the servlet state being maintained in

the URL. Most of the code inMCSSearch involves the clustering and display of the search results

it receives from method calls toMCSDatabase .

3.4.4 Implementation Metrics

The implementation of MCS consists of 7387 lines of Java code, 343 methods, and 55

classes. On the server side, MCS uses 13 HTML files (primarily help files) which total 41 kilobytes

in size. I implemented the system in several stages as the various research ideas were explored.

First I implemented the archive servlets to test the basic research idea. The archive used a small

number of messages which I had condensed by hand. Next I implemented the keyword selector and

editor to allow keyword searches. Then I implemented the 2D search method on top of the keyword

selector. Finally I wrote the code for the message editor and ICEMail integration, which allowed

me to condense an archive of useful size. It took me 18 months to complete the implementation.

45

Chapter 4

Case Study Design

To evaluate the research hypothesis that MCS is an improvement over existing archives, I

designed a case study of MCS. The case study involved creating a condensed archive of a mailing

list, releasing the archive to the list subscribers, and collecting qualitative and quantitative data on

the users of the archive. This chapter details the design of the case study and the type of data that

I collected. Section 4.1 discusses the characteristics of the mailing list I used in the case study.

Section 4.2 explains the three different measures which I used to evaluate the research hypotheses.

Section 4.3 details the three different types of data collected in the study and how I analyzed them.

Section 4.4 lists the stages of the study implementation.

4.1 Target Mailing List

To perform a case study, I had to select a mailing list. As mentioned in Section 1.4.2, I

selected the jcvs mailing list. Appendix A shows the subject lines from a few days of traffic on the

list. The jcvs list has the following characteristics:

1. The main topic of the mailing list is solving problems encountered in jCVS. While there are

some other discussions like feature requests and interface design reviews, the bulk of the

messages are either descriptions of problems or solutions to those problems. There is little or

no traffic of a purely social nature.

2. Most of the list subscribers are developers who are notoriously busy people. This fact works

to our advantage for two reasons. First, because they are short on free time, their willingness

to adopt a new system will in itself be an accomplishment. Second, they are likely to judge

the system primarily by whether it helps them get their job done faster or not.

46

3. I am familiar with the list subject matter of software development and version control. As the

editor of the jcvs condensed archive, I required knowledge of the mailing list topic in order to

properly categorize information.

4. The list had 401 subscribers at the start of the case study, which is large enough to provide a

pool of archive users.

5. The mailing list already has an archive which allows users of the condensed archive to com-

pare it to the existing archive.

6. The list is relatively low traffic. There are roughly 15-20 messages sent to the list a week,

which provided sufficient input to the condensation system without overwhelming the system

or its maintainer.

7. 1428 messages had been sent to the mailing list by the time the condensation had completed.

This allowed me to create a condensed archive of non-trivial size without requiring an exces-

sive amount of time for condensation.

8. The author of jCVS and the jcvs list maintainer (Tim Endres) stated, on the mailing list on

January 19, 1999, that the jCVS package was downloaded over 20000 times per year. At that

time, he estimated that jCVS was used “pretty actively” by over 1000 sites.

9. Tim was very enthusiastic about the MCS project and was eager to provide the number of

subscribers and the existing list archives in a format usable by the editing tool. This support

made the condensation feasible.

Some of these characteristics are also requirements for any list to be condensed by MCS,

and some are specific to the practicalities of this research project. Characteristic 1 is necessary for

any MCS list archive because MCS is geared towards problem solving lists. Characteristic 3 is also

important since the editor needs to know the subject matter to properly condense. Characteristic 9

is a practical one: you cannot condense a list if you don’t have access to the archive and permission

to use it. The rest of the characteristics relate primarily to the evaluation of the system, and are,

therefore, not requirements for future MCS targets. In fact, larger mailing lists would presumably

benefit even more than smaller ones if the editing overhead can be met.

It is also worth noting that the jcvs mailing list is hardly the only list which meets the

essential requirements. Several other lists like the previously mentioned bsdi-users, or the ascend-

users lists are good candidates. The main problem with those two lists is that they have been in

47

existence for several years so their archives are voluminous. Condensing those archives would be

infeasible for this research project due to the limited resources available (one graduate student).

However, these lists [16] could be good candidates for future condensation (see Section 7.2).

4.2 Evaluation Factors

In this section I discuss the three measures used to test the thesis statement presented in

Section 1.5: editor overhead, adoption percentage, and MCS preference percentage.

4.2.1 Editor Overhead

Even if condensed archives are deemed by users to be more useful than conventional

archives, the system will not be adopted if the condensation process requires too much effort by the

editor. The editing task must be feasible to perform, and it must not require too much time spent per

message. I assessed this measure by collecting time data from the editing tool as the archive was

condensed, and by introspecting about the editing process.

4.2.2 Adoption

To measure the adoption percentage defined in 1.5, I needed two pieces of information:

the number of list subscribers and the number of users of the condensed archive. The list maintainer

provided the number of list subscribers from the subscription list. An estimate for the number of

users of the condensed archive was obtained by surveys and analysis of log data from MCS. Note

that the adoption percentage, as I have defined it, is an imperfect measure since I cannot positively

determine whether the users of the condensed jcvs archive are actually subscribers of the mailing

list.

4.2.3 Preference

Assessment of the users’ preference of the condensed archive over traditional archives

was determined in a qualitative way through user surveys. My survey included the question: “Since

the new problem-solving archive has been available, do you find yourself using it instead of the old

archive?”.

48

4.3 Data Sources

The case study was designed to provide data from four different sources: editing experi-

ences, in-person demos, web server logs, and a questionnaire. In the following sections I describe:

each source of data, how the data was collected, and how it can be used to compute the measures in

Section 4.2.

4.3.1 Editing Results

To gain insight into whether condensation is feasible for editors, data was collected about

the editing process. I recorded data on both the time required to condense a series of messages, and

how many condensed messages and keywords resulted from the process. Since there is only one

editor, qualitative feedback on editing is also valuable source of information. I kept a diary of issues

encountered while condensing the archive which is detailed in Section 5.1.2.

4.3.2 In-Person Demos for Potential Archive Users

To evaluate the design and usability of the system before it was released to the list sub-

scribers, I gave several demos to colleagues in the ICS department. I gave the first set of demos to

the Collaborative Software Development Laboratory (CSDL) of which I am a member. After I had

implemented some of the suggested changes, I demoed the archive to a member of my committee

to get his assessment as someone who was not close to the development of the system.

4.3.3 Web Server Log Analysis

The Java Web Server, like most web servers, records a log of all HTTP [17] requests made

to it. Each log entry contains the request made, the IP address of the requester, and a timestamp. At

this level, the data provides mere “hit count” information which is a poor indicator of the number of

actual users of the system. To track the number of users, I counted the number of unique IP addresses

making requests. This technique, however, has problems because of dynamic IP addressing and

the use of public access computers (such as in a University lab) [18]. In the case of dynamic IP

addressing, a user may access the archive from the same computer but over the course of a day that

computer’s IP address might change which would cause this user to be counted more than once.

In the case of a public access computer, multiple people may use the same computer to access the

archive. Since the computer only has one IP address, the multiple users will only be counted once.

49

Despite these inaccuracies, counting by unique IP address should provide a rough estimate of the

number of users. Other more accurate alternatives for counting visitors exist; however, they require

the user to either register and log on or acceptcookies, which many people consider intrusive. Since

the major goal for MCS is adoption, annoying users is to be avoided at all costs. Dynamic IP

addressing is expected to be more prevalent than shared computers among jcvs subscribers, so I

expect the unique IP address count to be an overestimate of the adoption rate.

Another method for estimating the number of users of the archive is organizational anal-

ysis. Organizational analysis attempts to collate the number of distinct organizations that issued

requests to the web server. While requests are recorded in the log by IP address, the Domain Name

System (DNS) can be used to map the IP address into a domain name. Domain names can more

more useful than raw IP addresses as they indicate what organization an IP address belongs to. Or-

ganizational analysis categorizes the requests according to domain name. However, determining

which portion of the domain name indicates a unique organization requires additional processing.

Top Level Domains (TLDs), such as “.com” and “.uk”, use different organization schemes. For ex-

ample, most organizations in the US are uniquely identified by the two top levels of a domain name:

“collab.net”, “lanl.gov”. Some other countries require three levels of hierarchy before reaching the

organizational level: “monash.edu.au”, and “demon.co.uk”. Using a lookup table based on the TLD,

the portion of the domain name which indicates a unique organization can be determined. Then all

requests originating from that organization can be categorized together. This analysis results in a

list of organizations which accessed the archive, which is much less sensitive to the problems of

counting raw IP addresses mentioned in the previous paragraph. Of course this method has its own

problems: multiple users at the same organization are only counted once, and some IP addresses

cannot be resolved to a domain name. However these problems should make the size organization

list an underestimate of the number of users of the archive.

4.3.4 Brief User Questionnaire

To obtain broader feedback on the system, I administered a web-based questionnaire. I

considered distributing the questionnaire to the entire list, but rejected the idea on the grounds that

sending a large email message which requests a response would annoy many subscribers. Since the

intended audience for the questionnaire is MCS users, I decided to make the questionnaire available

directly through the MCS archive. The questionnaire has been designed to only require two minutes

to complete. It consists of a series of rating questions (e.g., “Overall, how would you rate your

satisfaction with this new archive?” with answers ranging from 1 to 5). After the system was in

50

use by the mailing list’s community for a few weeks, the questionnaire was advertised on the top

page. Since the questionnaire is a web form, data collection and analysis was straightforward. The

questionnaire itself can be found in Appendix D.

The questionnaire solicited data on both adoption and preference. Since it required effort

to fill out and submit the questionnaire, it gave an accurate lower bound on how many people are

using the archive. The questions regarding archive preferences provided direct data on whether

users prefer MCS to traditional archives.

4.4 Study Implementation

The case study was implemented in several stages:

1. The MCS software was completed and an internal baseline release was made.

2. A trial run condensation was performed on an much smaller mailing list archive which con-

sisted of roughly 165 messages. This allowed testing of the editing tool and the search facili-

ties before exposing the system to a broader audience.

3. The MCS software was revised from the lessons learned in the trial run.

4. The jcvs archive was condensed over several weeks.

5. The archive was demoed to colleagues here in the ICS department who provided a variety of

suggestions for improving the search interface.

6. The MCS software was revised in light of the suggestions.

7. The jcvs archive was announced to the mailing list on January 24, 2000 (see Appendix B for

the text of the announcement email).

8. Users were able to use the condensed archive at their leisure.

9. On January 31, 2000, an update email was sent to the list which provided some example

searches in an effort to make users more aware of the MCS archive.

10. On February 10, 2000, an online questionnaire was made available via the top page of the

MCS archive. An announcement was made to the mailing list informing users of the ques-

tionnaire’s existence and encouraging them to fill it out.

11. On February 23, 2000, I ceased collecting data from the questionnaire.

51

Chapter 5

Case Study Results

This chapter presents the results of the case study. In Section 5.1, I describe the data

collected as I condensed two archives, including both qualitative observations and quantitative data

on the process. In Section 5.2, I present the data collected from archive users or potential archive

users, including qualitative data from the questionnaire and quantitative usage data.

5.1 Editing Results

As I listed in Section 4.4, two archives were condensed in preparation for the case study.

The first archive was the icemail archive and it was quite small. I condensed it as a trial run of

MCS. The archive was released to the subscribers of the list; however, there was almost no use of

the archive by subscribers. I attribute this to the small size of the list (166 subscribers when the

archive was condensed) and the very slow traffic (roughly three messages a week). Because there

were no archive users, no data on the icemail archive is presented in Section 5.2. They are included

in this section because the editing experiences did provide valuable insights for this research. Links

to both archives can be found on the MCS research web page [2].

5.1.1 Editing Metrics

As I condensed the two archives, I recorded how much time I spent using the Leap toolkit

[19]. I recorded time spent reading messages, condensing them, and any external reading required

to condense the messages (e.g., a CVS reference book [20]). I did not record time spent fixing

any critical defects in the MCS software as they were discovered as that time is not relevant to

52

Table 5.1. Editing time results for two condensed archives (all times in minutes)

Mailing List Messages Examined Condensing Time Average Time Per Message

icemail 166 481 2.90
jcvs 1428 2165 1.52

determining the expected time required to condense future archives. Table 5.1 shows the time data

for both archives.

As you can see, I took substantially less time per message examined when condensing

the jcvs archive compared to the icemail archive. I attribute this to two factors: tool improvement,

and editor improvement. The editing tool had a variety of quirks and defects when the first archive

was condensed, so the condensation required substantial manual effort. After I condensed the first

archive, I made many improvements to the editing tool which increased the speed with which mes-

sages could be condensed. In addition, I learned more about how to condense from my experience

condensing the first archive. My increased knowledge allowed me to spend less time thinking about

those issues when condensing the second archive. With more practice and enhancements to the edit-

ing tool, it should be entirely possible to bring the amount of time spent per message to one minute

or lower. For a medium to low traffic mailing lists, this seems like an entirely acceptable amount of

time to spend editing, particularly since this includes the time required to read the email for the first

time, which an editor would presumably be doing anyway.

Table 5.2 shows a summary of the contents of the archives. As you can see, the archives

contain only a fraction of the messages examined (23% for icemail, 12% for jcvs). This is to

be expected because one of the goals of MCS is removing unnecessary messages. The jcvs list

had a smaller percentage retained than the icemail list, presumably due to the heavier traffic of

the jcvs list. For both lists, the number of keywords is fairly close to the number of archived

messages. Because most messages contain multiple keywords, this indicates that many messages

used the same keywords, otherwise the number of keywords would be larger than the number of

archived messages. Symptoms were also fairly common on both lists: 21% of icemail problems

had symptoms, 30% of jcvs problems had symptoms. The relatively high incidence of problems

with symptoms indicates that the symptom search can be a useful search technique. To prove this

conclusively, I would need to determine what percentage of symptoms actually encountered by users

are actually included in the database.

53

Table 5.2. Statistics on the composition of two condensed archives

List Msgs Examined Msgs Archived Problems Keywords Symptoms

icemail 166 39 19 40 4
jcvs 1428 177 82 120 26

5.1.2 Editing Experiences

While condensing the mailing lists, I kept a diary of thoughts and observations that oc-

curred to me. In this section I will present the interesting parts of the diaries, and a process I

developed to perform the condensation.

Many of the diary entries concern defects found in MCS or improvements that could be

made to MCS. For example, when condensing the icemail list, there was a serious defect in MCS

when saving a reloaded message: it would cause another message to be deleted as a side effect.

One improvement which became immediately obvious to me when the editing began was

the order in which messages were displayed in ICEMail. ICEMail sorts messages by date from the

most recent to the least recent. This makes sense for normal mail reading since you are usually most

interested in recent messages. However, for editing purposes, it makes much more sense to display

the messages from least recent to most recent so the editor can see problems before their proposed

solutions. To make matters worse, when a message is deleted, the next message is automatically

selected. This means that even if you start at the bottom of the list of messages (least recent), the

selection moves back to older messages every time you delete one. I fixed both of these problems

after I finished the icemail condensation, and before I condensed the second list.

The task of condensation boils down to understanding the content and relationships be-

tween messages. Understanding the content can be achieved straightforwardly by reading every

message under consideration. This effort grows linearly with the size of the archive. However,

understanding the relationships between messages grows as the square of the size of the archive.

Therefore, my central concern when editing was figuring out how to consider the interrelationships

of all the messages to be condensed simultaneously. Every message could potentially relate to any

other message which makes the process difficult. By the time I had completed condensing the sec-

ond list I had developed a multi-phase process for condensation to address this problem. The phases

are:

1. Read every message in the archive, and delete those that are obviously not useful (reposts,

advertisements, incoherent messages, etc.).

54

2. Scan through the remaining messages, and condense any problem-solution threads that are

relatively short and appear only once in archive. After condensing the thread, delete it from

the mailbox. Any thread that is long or occurs more than once should be moved to its own

newly created mailbox bearing a name descriptive of the thread.

3. Scan through each of the thread mailboxes, condensing each thread one at a time. After

condensing a thread, delete the mailbox.

4. By this point all the messages should be deleted.

These phases streamline the process of building a condensed archive from scratch using

an existing full text archive as the source. The first phase allows the editor to read all the messages

without having to make any decisions about condensation other than removing the totally useless

messages. At the completion of the first phase the editor should have a feel for the archive. In the

second stage the editor cherry-picks the easy problems for immediate condensation. The longer

or repeating threads are deferred by placing them in individual mailboxes. The third stage is the

hardest because these are the complicated threads, but at least the relevant messages are all in the

same mailbox for easy perusal by the editor. By creating the individual mailboxes for each thread

we have reduced the exponential complexity to something more manageable.

One of the more annoying problems for the editor in the current system is linking prob-

lems and solutions together. To link a problem to a solution, the editor places the message-ID of the

solution message into the Links field of the problem message. However, the editor is condensing the

thread sequentially so the solution message’s message-ID is not immediately at hand since it hasn’t

been condensed yet! The workaround that I used was to copy the message-ID of the solution mes-

sage to the clipboard before editing the problem message. Then the message-ID can be pasted into

the Links field of the problem. The same thing can be done with the problem message’s message-ID

before condensing the solution message. This problem could be resolved by having some way in

the user interface to indicate the problem-solution pair of messages being condensed. Then both

messages could be linked together by the tool, instead of by hand.

As I condensed the archives, a variety of practical issues came up. One of the assump-

tions of the MCS implementation is that each message has a unique message-ID. This is a natural

assumption because each email message from the mailing list should contain a unique message-ID

according to Internet standard STD11 [21]. This assumption also ensures some correspondence

between MCS messages and their origins. However, this assumption breaks down when a single

message from the mailing list needs to be split into multiple messages in the archive (a message

55

containing multiple problems for example), or when a multiple messages from the mailing list need

to be merged into a single message in the archive (such as the case when two messages each contain

part of a single solution). I encountered this message fission problem most frequently when a user

had written the author of the system a private email explaining the problem they were encounter-

ing, and the author had copied his reply to the public mailing list. To solve the problem of one list

message splitting into multiple archive messages, I decided to use the original message-ID for the

first part and generate a new message-ID for each additional part by appending “.MCS-N” (where

N increments for each part) to the original message-ID. Each of the edited messages has the same

unabridged message associated with it. Unfortunately, MCS requires that the message-ID of the

edited and unabridged messages be the same, so there are multiple copies of the unabridged mes-

sage in the unabridged database. This also means that the extra copies of the unabridged message

have the altered message-ID of their edited counterpart. This is a regrettable side-effect because

the unabridged messages are supposed to not be altered in any way. However, the minor and obvi-

ous changing of the message-ID in the relatively small number of messages which had to be split

seems like an acceptable workaround to this problem. The problem of multiple list messages being

merged into one archive message doesn’t have any easy solutions in the current MCS architecture.

One solution would be to change MCS so that one could specify authorship of text on a finer grain

than a message, but this would require major changes to the message storage and user interface of

MCS. The workarounds that I used were to either put the solutions in separate messages, or, if one

of the solutions was minor, to place a paraphrase of it in editor notes of the main message.

Other issues I encountered while condensing involved judgment calls I had to make. One

of the things I noticed was that it isn’t always easy to decide whether or not a message should be in-

cluded in the archive. These marginal messages included: problems or solutions which were poorly

explained or confusing, problems that appear to be caused by “pilot error” or unique circumstances,

or problems that have no solution. When faced with these kinds of messages I decided whether to

include them or not based on my impression of their long-term usefulness: would anyone ever care

about this message? Another area where I had to make judgment calls was the removal of irrelevant

social aspects from messages. Many messages start with text like “Hello, my name is...” and end

with signature filescontaining contact information. I decided to remove this kind of information

from all messages since it is rarely relevant to archive users, but this could conceivably cause back-

lash from users. Users might like these social niceties and it’s not clear that there is any substantial

benefit from removing them. So far no user has complained about the removal of this kind of text.

56

The editing of message bodies brings up another potential issue for users. When I re-

moved, changed, or added text to messages I always wrapped the changes in the editing tags dis-

cussed in Section 2.2.2, which ensures that users can differentiate between the original author’s text

and the editor’s text. However, the tags do not differentiate between the different kinds of changes:

a user cannot tell if text added summarizes something the original author said, or if the text is an

addition written by the editor. The two kinds of changes are potentially very different since authors

might be more concerned with editors adding text to their messages than they are by paraphras-

ing by an editor. Of course the user can always look at the unabridged message to do their own

comparison. If this distinction turns out to be important to users, additional tags could be added to

differentiate the different kinds of editing changes.

The building and maintaining of the keyword hierarchy, another major component of the

editing task, provided additional challenges. Building the tree from scratch proved to be quite

daunting because it required me to think not only about what keywords would be appropriate for a

particular message, but also if the keyword would be relevant to other messages and whether this

keyword fits under an existing category or not. This task increases the difficulty of condensing the

first set of messages because of the overhead involved in defining and organizing the new keywords.

Future editors might find it easier to start out using a keyword hierarchy from an existing (and

hopefully related) MCS archive. I used the icemail hierarchy as the starting point for the jcvs

archive. A common problem when creating keywords is what to call them. For example, if a

message discusses the Java package Swing 1.1.1, what keywords should it have? If you simply use

the keyword “Swing 1.1.1”, then an archive user who is only interested in the differences between

the Swing 1.0.X versions and the Swing 1.1.X versions may miss the message. What about users

who are searching for Swing in general? The solution I used (primarily for keywords containing a

version number) was to create a top level keyword (”Swing”), and then a general version number

if appropriate (”Swing 1.1.X”), and then the actual version number being discussed if appropriate

(”Swing 1.1.1”), with the versions grouped together under a category. This allows users to search

across all those different levels of abstraction.

5.2 Archive User Results

In this section I detail the results obtained from archive users or potential users. First,

I cover the information obtained through informal interviews and demos. Then, I cover the data

collected in the web server log files. Finally, I present the results of the online questionnaire.

57

5.2.1 Interview Data

Before announcing the availability of the jcvs archive to the mailing list, I solicited feed-

back from members of my research group. I gave a demo of MCS at one of my group’s weekly

meetings. The demo elicited a variety of suggestions for improvements in the MCS interface. The

original MCS archive web interface presented the user with a form containing all four of the search

methods at once, which my colleagues pointed out was confusing. Based on their suggestions, I

rewrote the search page so that the search methods were only displayed one at a time. They also

suggested that I reduce the amount of text on the front page of the archive to simplify the expe-

rience for archive users. These suggestions led to my switching to a modal search form, because

the original form was displayed on the front page and took up considerable screen real estate. Af-

ter implementing their suggestions a few days after the demo, I showed them the interface again.

They had additional comments and I went through several iterations before settling on the current

interface.

In addition to the other members of my research group (who were already rather famil-

iar with MCS from previous presentations and prototype demos), I asked one of the ICS faculty

members, Edoardo Biagioni, to try out MCS briefly. Edo is one of the members of my thesis com-

mittee, so he was somewhat familiar with the MCS research but he had not seen the user interface.

I asked him to perform a few searches and watched over his shoulder as he used the system. The

first usability scenario I asked him to attempt was a symptom search. I had constructed a Windows

NT batch file which launched the jCVS program with an appropriate CLASSPATH, except that I

deliberately left out the “swingall.jar” file which contains the required Swing GUI libraries. Be-

cause it was lacking the Swing libraries, when Edo launched the batch file at my request, it failed

with a stack trace similar to the one shown in Section 1.4.2. I asked him to attempt to find the

solution to this problem in the condensed archive. He correctly ascertained that the symptom search

would be the best search method in this case, and he was able to find the appropriate solution in the

archive. I asked him to continue to browse through the archive, and he was able to select and initiate

a keyword search without prompting. After the brief session was over, I asked him if the keyword

selection interface reminded him of any other web site. I was expecting that he would say “Yahoo”

or some other directory service, since that is what the interface was patterned after. Interestingly, he

said that the interface reminded him of Dell Computer’s online ordering site. Dell’s online ordering

system allows customers to customize their PC purchase by selecting from a range of computer

components. These additional components are recorded in the interface until the customer is ready

58

to actually place the order for the computer. While the comparison is interesting, it may indicate that

the keyword selector interface is too complicated, if it seems similar to an online ordering system.

5.2.2 Web Log Data

At the end of the questionnaire period, I copied the web server log file for analysis. The

logfile contained data from January 22 to February 23. Using a program calledanalog [22], I

analyzed the log file. The raw results of the analysis can be found in Appendix C.

Since the web logs were used to assess adoption of the MCS archive, it was important to

screen out data that would skew the results. For this reason, I configured analog to ignore all re-

quests which originated from either the “hawaii.edu” domain or the “lava.net” domain. I eliminated

“hawaii.edu” because my testing and development was done from that domain, and I eliminated

“lava.net” because my advisor’s home access and my own home access are provided by that com-

pany. By eliminating the log entries from these two domains, all the internal usage of the archive

should be removed from the data set.

According to the analysis by analog, the web server received requests from 99 distinct IP

addresses. As mentioned in Section 4.3.3, this value is almost certainly an overestimate of the actual

users since some users probably accessed the archive from different computers. However, this value

is probably an upper bound on the number of users of the archive.

Analog also generated what it calls an organization report which uses the organizational

analysis technique also described in 4.3.3. Analog has a table of domains and the number of levels

required to identify an organization. Using this table, it attempts to group together all the requests

from a particular organization. Therefore the organization report provides an estimate of the number

of organizations have accessed the web server. Since every organization consists of at least one

person, we can obtain a lower bound for the number of users by simply counting the number of

entries in the organization report.

There were 70 entries in the organizational report. Some of the entries are not actual users

such as the googlebot.com entry which is presumably a spider which collects data for the Google

search engine [23]. The last nine entries have only one request which indicates that they didn’t really

do anything meaningful with the archive. On the other hand, however, there were 176 requests from

IP addresses which could not be mapped into domain names which would presumably raise the

organization count if they could have been resolved. The organization list also counts multiple users

coming from the same organization as one, which could cause an underestimation of the number of

59

users. On balance, the value of 70 is probably a better estimate of the number of actual users than

the 99 distinct IP addresses mentioned earlier.

Now that we have an estimate of the number of users of the archive, we can estimate the

percentage of list subscribers that used the archive. As stated in Section 4.1, the list had approx-

imately 401 subscribers at the start of the case study. Using the figure 70 as the estimate of the

number of archive users, we find that this accounts for roughly 17% of the list membership. This

exceeds the 16% goal which I set as the measure of whether or not the list subscribers had adopted

the condensed archive.

There are a few other interesting insights available from the web log data. One involves

a feature of Microsoft’s Internet Explorer 5 for Windows product. Internet Explorer 5 allows web

sites to provide custom icons to users who add the site to their list of favorite web sites (also known

as bookmarks). When a user adds a site to their favorites list, Internet Explorer 5 will send an HTTP

request for the file “favicon.ico”. If it exists, this file is downloaded and used to provide a custom

icon next to the item in the Favorites menu. While this is a minor improvement on the browser side,

it provides additional information to the web site maintainer which is not normally available: an

indication when a user has bookmarked their web site! By searching the log file for requests for

this file, I found that it had been requested by five distinct IP addresses. Therefore, we can conclude

that the archive was added as a bookmark on at least five different computers. This is only a lower

bound since this feature currently only exists on Internet Explorer 5 for Windows.

By manually examining the log file I was also able to determine that the symptom search

mechanism was being used incorrectly on a routine basis. Users were typing in symptoms such

as “red files” or “can’t add multiple files to current directory”. Both of these examples appear to

be natural language descriptions of symptoms, but they are not error messages provided by the

jCVS program. For this reason, both these searches return no results. It appears that some users

believed that the symptom search was some sort of natural language search which could work from

a description of a symptom to the problem which causes it. I might be able to solve this confusion

by adding additional explanatory text to the symptom page just above the text entry box. Another

possible solution would be to change the name of this type of search from “symptom search” to

“error message search”, which is more descriptive.

60

5.2.3 Questionnaire Data

I made the questionnaire available on the archive web page from February 10-23. A total

of six questionnaires were submitted. The questionnaire itself can be found in Appendix D, and the

answers provided by users can be found in Appendix E.

I classified the six questionnaires returned into three different groups: those who had used

neither the old archive nor MCS, those who had only used MCS, and those who had used both the old

archive and the MCS archive. Each group had two questionnaire results which fit the characteristics.

Due to the small number of questionnaires returned, I limit my analysis to qualitative trends that I

noticed in the data.

First I will examine the results from each question. Included in brackets after each ques-

tion is the total number of responses for that question (omitting responses of “Not applicable”).

1. [6] Most of the respondents had substantial experience using the jCVS program. Except for

one respondent who had never actually used jCVS, all respondents had used it for 3 months

or more.

2. [6] All but one respondent said they were subscribed to the jcvs mailing list. It’s not clear

how the one respondent heard about the MCS archive without being subscribed to the mailing

list. This respondent might have received a forwarded email about the archive.

3. [4] There was substantial variety in how frequently the respondents reported reading the mail-

ing list messages. Some reported reading messages as soon as they arrived in their mailbox,

while another said they almost never read the messages. It’s not clear why one respondent

who said in question 2 that they were subscribed answered “not applicable” to this question.

4. [5] There was also a lot of variety in how many messages the respondents reported reading

from the list. Two users said they read every message, while two others said they read less

than a third of the messages.

5. [5] Only two of the respondents reported actually having used the old, existing jcvs list

archive. This may indicate that the old archive was not very well known to list users, or

that the existing archive was not considered useful.

6. [2] The two respondents who had used the old archive had both used it on more than one

occasion.

61

7. [2] The two users of the original archive both said that only sometimes would they they find

what they had been looking for.

8. [4] This question about MCS usage frequency revealed rather light usage of the MCS archive

by respondents. In fact three of the four respondents had only used the archive once at the

time they answered the questionnaire.

9. [4] The respondents varied on how often they were able to find what they were looking for in

the MCS archive. Two respondents said they always found what they were looking for, while

one respondent reported having success only rarely.

10. [2] Both users who had used both the old and the MCS archive preferred the MCS archive to

the old one.

11. [4] The four users who had used the MCS archive were split with two users reporting complete

satisfaction with MCS, and the other two reporting only partial satisfaction.

12. [5] Respondents were divided on whether they would be willing to volunteer to be editors.

Two said they were willing to be editors, two were unsure, and one was not willing.

The small number of responses was somewhat disappointing: two of the respondents

hadn’t even bothered to try the MCS archive before filling out the questionnaire (despite the para-

graph before the questionnaire which asks that people use the archive before filling out the question-

naire), and only two respondents had used both the old archive and the MCS archive. However, the

two users who did use both archives reported that: they always found what they were looking for in

the MCS archive, they were completely satisfied with the MCS archive, and that they were willing

to volunteer as editors. This makes some sense: in order to fully appreciate MCS you need to have

used traditional mailing list archives. The willingness of respondents to consider volunteering to

be editors is encouraging, and provides some hope that the burden of editing could be spread out

among multiple editors.

The open-answer questions also provided some useful feedback (the full text of the an-

swers can be found in Table E.2). The first open answer question provided respondents with the

opportunity to suggest other mailing lists that would benefit from having a condensed MCS archive.

Four of the six respondents indicated that they had mailing lists which they would like to see con-

densed. This indicates to me that there is interest in using MCS on other mailing lists. The general

comments were quite varied but primarily upbeat and supportive of the MCS paradigm.

62

Overall, the questionnaire data seems to indicate that the MCS archive was useful to those

who actually bothered to use it. While the sample size is very small, those who used both archives

did indicate that they preferred the MCS archive to the existing one.

63

Chapter 6

Related Work

There are a variety of systems and research related to maintaining and searching collective

memory. Here, I examine several such systems and compare them to MCS. Some of these systems

are somewhat informal (like moderated mailing lists and FAQ files), and some are formal research

projects. The informal systems are based on the author’s knowledge of those systems and generally

do not have references, because they evolved from common Internet practices.

6.1 Moderated Mailing Lists

Some mailing lists address the signal to noise problem by having a moderator or a group

of moderators. All submissions to the list are forwarded to the moderator(s) who read the messages

and decide whether or not to distribute them to the list. On most lists, the moderator(s) do not edit

the messages submitted. They just choose whether or not to distribute the message. Also, to allay

fears of censorship on the part of the subscribers, usually the criteria used to decide whether to

distribute a message are rather liberal, e.g., the message is related to the topic of the mailing list and

not an advertisement [24].

While moderation can be useful for maintaining a high signal to noise ratio, it suffers from

several problems addressed in the design of MCS. Moderation requires a substantial commitment

on the part of the moderator(s) to review submissions in a timely manner. Failure to do so halts all

traffic on the mailing list and annoys subscribers who have come to expect the short turnaround time

that digital media can provide. Moderators also tend to face continual concerns from subscribers as

to whether they are moderating in a fair and consistent manner. Since the whole point of moderation

is to prevent the distribution of inappropriate material, there is no way for a subscriber to tell whether

64

or not submissions are actually being judged by the stated criteria or whether the moderator(s) are

acting on a whim or out of spite. Finally, moderation only partially improves the archives of a

mailing list. Moderation will reduce the size of the archive and improve the average quality of a

message in the archive compared to the archives of non-moderated lists. However, moderation does

not solve retrieval problems, and due to the time pressures faced by moderators, they rarely have

time to do more than a cursory check of submissions.

MCS reduces or eliminates all these problems with moderated mailing lists. One way of

thinking about MCS is a form of moderation of the archives of a non-moderated list. Since MCS

relates to the archive and not the list itself, the issue of timeliness is much less crucial: if you need

to know what happened today on the list, you should be reading the list itself, not the archive. Also,

since MCS does not affect the list distribution itself at all, most concerns about censorship should

be eliminated. MCS provides a link from each edited message to the original unabridged message

so users can easily see what was edited out or changed in any particular message. A truly suspicious

user could even compare the MCS-condensed archive to other unabridged archives of the list since

MCS archives are designed to exist in parallel with traditional archives. Finally, an MCS editor can

remove or rewrite parts of a message long after the message is sent to the list when necessary to

make the message more useful which is not done in a traditional archive even of a moderated list.

6.2 Description and Review of Mailing Lists

Robert C. Pedersen has done some preliminary work on the subject of describing Internet

mailing lists [25]. His goal was to come up with a quantitative method for describing the content

of a mailing list so that potential subscribers could make an informed decision on whether or not to

subscribe. To do this, he devised nine categories for messages: administrative, announcements, dis-

cussion, information exchange, metadiscussion, networked resource pointers, noise, organizational

communications, and position announcements. These categories were designed for use on mailing

lists related to librarianship. He then subscribed to 13 librarian-related mailing lists, and over the

course of 29 days, he classified all messages sent to the lists using the categories previously listed.

With this data he was able to determine the average number of messages sent to the list per day, and

the distribution of messages over the categories. He found that the distribution of message types

was a good descriptor of the mailing list. While MCS has only two types of messages instead of

nine, it does display statistics on the front page of the archive such as the number of messages in the

archive, and the date of the last modification of the archive.

65

In a second article he recommends that mailing lists be reviewed in the same way that

movies or books are to provide further assistance to potential subscribers [24]. Again, this would

be a useful addition for MCS users who are potential list subscribers. While MCS need not provide

any automated support for writing reviews, it makes sense for the MCS archive to provide a concise

description of the mailing list being archived and what kinds of material a user would be likely to

find within. This information can be provided on the front page of the MCS archive, or it could

refer to an informational page elsewhere (possibly maintained by the mailing list administrator).

6.3 Frequently-Asked Question Files

Most frequently-asked question (FAQ) documents attempt to provide a similar service to

MCS: a condensed version of important and useful information that came from a mailing list or

newsgroup. There are several important differences between the two systems. FAQ files are usually

maintained without specific tool support so they require extensive effort on the part of the maintainer

to create and update. FAQ files are generally created with the intention of easy distribution either

as plain text or HTML. Because of this requirement, FAQ files are mostly limited in size to a few

hundred kilobytes and they are laid-out to be easy for humans to read. Since FAQs cannot be of

arbitrary size and complexity, they must omit useful information.

MCS does not have these limitations. Since the system is not intended to be distributed by

FTP or by posting to a mailing list or newsgroup, it can be as large as is necessary. A sophisticated

query system is an integral part of MCS, so it is not necessary that the underlying data be structured

in an easily understandable human format. Because MCS lacks these two restrictions, it need not

limit the archives it creates to merely frequently-asked topics, it can contain any information that

would be useful regardless of how broad its appeal.

The Internet FAQ Consortium [26] maintains an index of many FAQs and has some out-

lines of a plan to write a book on FAQs.

6.4 FAQ FINDER

FAQ FINDER allows users to quickly find answers to questions by searching a database

made up of FAQ documents posted to Usenet [27]. The user enters his or her question into the sys-

tem in natural language. First the system uses standard information retrieval techniques to determine

which FAQs in the database are most likely to contain the answer to the question. It presents the top

66

five FAQs to the user, who can select the most likely candidate. Then the system uses a combination

of lexical and semantic similarity checks between the asked question and the question-answer pairs

in the FAQ file. It then presents the five most likely pairs for user consideration. A live version of

the system can be found at the University of Chicago web site [28].

While FAQ FINDER is an interesting system, it is attempting to solve a different problem

than MCS. FAQ FINDER assumes that there exists a large number of FAQ files which are already

organized in question-answer format, and from those files it attempts to help users find the answer

to their questions. The designers of FAQ FINDER explicitly chose not to implement any domain-

specific knowledge into their system because their intended dataset is a large number of unrelated

FAQ files. MCS attempts to create a FAQ-like body of knowledge from a mailing list, and then

present the condensed information in useful, possibly domain-specific ways. In this way MCS

attempts to solve the problem of getting the information into an FAQ-like state, which is already

presupposed in FAQ FINDER. It might be possible to create a “stub” FAQ which FAQ FINDER

could index, and if the user’s question is a good match, FAQ FINDER would just send the user to

the MCS-created archive.

6.5 Answer Garden

The Answer Garden system is designed to provide an “organically” growing database of

answers to questions by end-users [29]. Users interact with the system by answering a series of

diagnostic multiple-choice questions which lead them through the tree of answers already in the

system. If users find that their questions are not answered in the database, they can enter their

questions into the system and it will be forwarded to an appropriate expert via email. When the

expert answers, the result is sent back to the original question-poser and also inserted into the tree

for future retrieval.

Answer Garden’s goal in life is to answer questions. Like MCS, it uses human input to

decide what questions and answers should be in the database. However, Answer Garden is really

only suited to the task of answering questions. A user who just wants to browse information either

has to answer the diagnostic questions or guess where on the tree the information might be located.

It also requires a group of experts to be responsible for answering the questions posed by users. In

an organization where certain people’s job function is answering the questions of others in the same

organization, this works well because users get answers efficiently and experts don’t have to answer

the same questions over and over. However, the assumption that there is a pool of experts who are

67

required to answer questions falls down in a volunteer user community where nobody is required to

do anything. In MCS, experts can answer questions posed to the list at their whim; only the editor

is required to work in order to keep the system functional. MCS also does not require users to use

any special software to continue participation in the mailing list, while Answer Garden assumes that

all users will use the Answer Garden tool when they have a question. In addition, MCS provides

the symptom search method which allows a user to use an error message to find the solution to a

problem immediately. Answer Garden requires users to answer a series of diagnostic questions,

with no way to short circuit the process.

Finally, the information in Answer Garden only grows as the system is used, while the

information in MCS grows as long as there is useful traffic on the mailing list.

6.6 Answer Garden 2

Answer Garden 2 is a refinement of the Answer Garden system in Section 6.5. It im-

proves on Answer Garden by adding a system of gradual escalation for questions input into the

system (thereby providing more context to the person answering the question), and a subsystem for

collaboratively “refining” the information in the database [30]. All of this is built on a set of versatile

and configurable components which allow the system to be tuned for a particular environment.

This system appears to implement many of the features required for MCS. The system

which inputs data into the system (CafeCK) provides a mechanism for capturing mailing list mes-

sages, and the “refining” system called Co-Refinery allows collecting, culling, organizing, and

distilling information. The Co-Refinery system seems particularly close to MCS’s requirements.

Unfortunately, Answer Garden 2 is not available for public distribution [Ackerman, personal com-

munication], so the actual implementation was not available for use as a foundation for MCS. In

addition, there does not appear to have been an evaluation of the Answer Garden 2 system in the

field, so it is difficult to obtain further insight into the differences between MCS and Answer Garden

2.

6.7 Faq-O-Matic

Faq-O-Matic was created to solve some of the same problems MCS addresses: the dif-

ficulty in finding answers in mailing list archives, and the substantial effort required to maintain

an FAQ. Faq-O-Matic addresses these issues by creating a dynamic WWW-based FAQ which any

68

member of a user community can contribute to. Any user can browse through the web pages and

make additions as necessary. This provides an easy way to maintain an FAQ since any member of

the community can volunteer to help. The system offers limited access control, but this must be

balanced against the need for openness since contributions are from volunteers. There is a provision

for moderation of the FAQ, and moderators can move or delete contributions. However, there is no

centralized authority in charge of the FAQ, so pieces of potentially incorrect or mutually conflicting

information can be posted. Furthermore, new additions have to written from scratch by contributors,

unlike MCS. Simple keyword searching of the FAQ is provided. Documentation on Faq-O-Matic is

provided through an FAQ maintained using Faq-O-Matic [31].

6.8 Open Directory Project

The Open Directory Project (ODP) [32] is a large directory of web sites categorized by

human editors. Like Yahoo! [14], it attempts to list the best web sites relevant to every imaginable

subject area. However, unlike Yahoo!, there are 22000 editors who are all volunteers. An expert in

a particular subject area can register at the site to become an editor. Editors look for the best web

sites in their subject area and add them to the directory. Since the web sites are selected by human

experts, the quality of the links can be higher than those generated through automated techniques.

Users can browse the categories or perform keyword searches.

The ODP addresses a different problem than MCS, but it uses human effort to remove

low-quality information in the same way as MCS. It supports massively parallel editing of the

directory, while MCS currently supports only a single editor. However, it does not support any type

of domain-specific searching as it attempts to support all types of web sites.

6.9 Slashdot

Slashdot is a popular news and discussion web site which describes itself as “News for

Nerds” [33]. Slashdot runs on a system called Slash (which stands for Slashdot-Like Automatic

Storytelling Homepage) which was written specifically for Slashdot. There are several human ed-

itors who select which news stories to present to readers. The stories range in length from a few

sentences to several pages. After each story, users can add comments and discussion in a threaded

format, either anonymously or with attribution. Each message has a point value associated with

it, ranging from�1 to 5, where higher point values should indicate more useful or interesting

69

messages. Anonymous messages start at value 0, and attributed messages usually start at value 1.

Registered readers of Slashdot can set a default threshold, and all comments below that threshold

will not be displayed. This configurability allows readers to choose the quantity and, hopefully, the

quality of comments they read.

Messages gain or lose points through a process of moderation. Moderators are selected

from the pool of registered readers based on a complex set of criteria including the frequency of

reading Slashdot (favoring regular readers), and the amount of time since initial registration as

a reader (favoring long time readers). When selected, a moderator can annotate comments with

descriptive words such as “flamebait”, “informative”, or “redundant” chosen from a short fixed

list. Positive words such as informative cause the comment to gain one point value, while negative

words such as redundant cause the comment to drop one point value. The moderator status only lasts

for a few days, and the moderator is only allowed to annotate a small number of messages during

their session. Moderators are further restricted from contributing their own written comments to any

story if they have moderated any comments on that story. The substantial restrictions on moderation

were designed to spread the task of moderation out over the user community, and to ensure that no

moderator could exert undue influence on the comments.

Slashdot also uses the moderation values to calculate aKarmavalue for each registered

user. The Karma value is the sum of all moderations made to a user’s comments. Therefore, a user

whose comments have usually been positively moderated will have a positive Karma and vice versa.

Users with high Karma levels are given the option of adding a bonus point to any comment that they

post, thus starting their comment with a point value of 2 instead of 1. There is even a system of

meta-moderation which any user can participate in. When meta-moderating, 10 randomly selected

comments which have been moderated are displayed, and the user is asked to vote on whether the

moderation was appropriate. The results of the meta-moderation are factored into the moderator’s

Karma value as an additional check against the abuse of moderator power.

Slashdot exists for a different purpose than MCS. Slashdot has created a community of

users who are interested in reading and discussing the latest technology news, while MCS focuses

solving problems rather than news dissemination. The extensive moderation facilities were created

to deal with the problem of too many comments, which is similar to the impetus for MCS. However,

Slashdot provides only keyword searching which limits the long-term value of the stories and com-

ments. The Slashdot moderation facility only allows moderators to provide meta-level information

to comments, unlike MCS where the editor can actually change the message body itself. Slashdot’s

70

moderation facilities are interesting, and providing something similar in MCS would be one way to

include archive user feedback into the system.

6.10 Expertise Web Sites

A variety of companies have started web sites that attempt to match users with questions

to experts who can answer them. Given their large number, I have written a detailed description of

one such web system. Then, I provide a brief summary of some of the other available systems.

6.10.1 Experts Exchange

Experts Exchange is a virtual community, where users can ask questions which are an-

swered by volunteer experts [34]. In order to encourage experts to answer questions, each question

is assigned a point value by the author of the question. After the question has been posed, experts

can propose answers or make comments on the question for further clarification. Once an expert

has proposed an answer, the author of the question decides if the answer is satisfactory or not. If

the author of the question judges the answer satisfactory, the he or she assigns a grade to the quality

of the answer. Then the value of the question is subtracted from the author’squestion pointtotal,

and that value is multiplied by the grade and added to the expert’sexpert pointtotal. This exchange

creates an information economy where questions are assigned point values by authors which are

proportional to the question’s difficulty, and experts compete for the right to answer questions.

Users must register before they can pose questions on the web site. By registering, users

receive 75 question points, and then receive 5 additional points every day they remain an active

user. Expert points are not convertible into question points, but they provide recognition to valuable

experts, and might be redeemable for prizes in the future. The system maintains grading histories

for both normal users and experts, so that authors of questions who grade unreasonably and experts

who provide poor answers can be avoided by other users.

Registered users can search through archives of Previously Asked Questions (PAQs). If

a user finds a question which is relevant, they can view the question for free, but they must spend

question points equal to 10% of the original price of the question to see the answer.

The Experts Exchange, like MCS, exists to solve users’ problems in a quick and easy

manner. Unlike MCS, it does not get its content from an existing data stream: it encourages the

generation of the content directly through the point system. The Experts Exchange also encom-

passes both the creation of content, and the archival of that content for future retrieval, whereas

71

MCS is purely an archival system. The point system is an interesting technique for motivating the

experts to participate. Mailing lists usually do not have an explicit motivator: users participate out

of a desire to help or be helped. MCS relies on this implicit motivation or mailing lists rather than a

currency system. Requiring users to spend points to retrieve answers from the archive appears to be

a disadvantage for Experts Exchange, since it might encourage lazy users to pose questions which

have been answered before.

6.10.2 Other Expertise Sites

There are a number of other expertise web sites, and the number seems to increase daily.

Some of the systems like KnowPost [35], use a credit system like Experts Exchange, but simply

charge one credit for asking a question and give one credit for answering a question. No differenti-

ation is made between hard and easy questions. Due to the simpler credit system, KnowPost allows

free access to answered questions.

Other systems such as infomarco.com [36], HotDispatch [37], InfoRocket [38], and

EXP.com [39] use actual money as their currency. Since real money is being exchanged, users

may be reluctant to ask questions. Using money as the currency also causes problems for archives,

since this means that the system must charge users for access to the archive, or risk having users

browse the archives for free instead of paying to get their question answered. Some of the systems

don’t have an archive for this reason. Others plan to add archives in the future, but charge users

for viewing answers and pay the owner of the information (who could be the question poser or the

expert that answered) a royalty each time the information is accessed. Some systems like Expert-

Central [40] and QuestionExchange [41] attempt to solve the problem by having a hybrid payment

system where answers can either have a price assigned to them, or can be free. Both systems have

archives which contain all the free questions and answers.

Ithority [42] also uses money as the currency, but acts solely as a broker between clients

and experts. All the information transactions take place outside of the web site.

Two other sites, ExpertCity [43] and NoWonder [44], focus on computer support. They

are different from the other systems because they provide live experts for real-time help. Both sites

provide software for screen sharing, so that the experts can directly view and manipulate the user’s

computer system.

All of the systems provide some sort of rating system for experts, and many provide a

rating system for the users. These rating systems attempt to provide a way for users and experts to

decide whether or not to enter into a transaction. While this kind of rating system could be added

72

to MCS, the editor in MCS implicitly rates messages by choosing which messages to keep in the

archive. Since the systems here provide a currency exchange (often with actual money) users and

experts want assurances that they will not be cheated. There is no analog to this problem in MCS

since there is no explicit currency other than respect and goodwill.

6.11 The Coordinator

The Coordinator is a communication tool based on the language/action perspective, which

views language as a means for directing the actions of oneself and others [45]. The Coordinator

attempts to enhance human collaboration by explicitly supporting “conversations” such as requests

and offers [46]. The conversation is viewed as having various states, and actions of the requester or

the requestee can move between the various states. For example, a user who would like to have a

paper reviewed, sends a request message to the reviewer with a deadline for reply to the request and

a deadline for completion of the review. The reviewer can then select one of a finite list of options:

accept the request, make a counter proposal, or decline the request. The idea behind this structure

is that it allows the system to show the state of the conversations a user is having with other users.

Coordinator can provide explicit reminders about commitments made, and ensure that there is no

misunderstanding about what was requested, and whether the request was accepted.

Some have brought up problems with respect to the Coordinator. Lucy Suchman claims

that the Coordinator and the language/action perspective enforce a certain worldview about how

people ought to go about collaborating [47]. A survey of groupware across 25 organizations and 223

people found that many people ignored the speech act capabilities of the Coordinator and simply

used it as an email program (specifying all messages as requests whether they were or not) [48].

Another Coordinator trial found that the benefits of the product were not offset by the effort required

to use it [49].

In some sense MCS can be thought of as performing the opposite task as the Coordinator:

extracting structure and meaning from unstructured dialog, as opposed to requiring users to specify

the structure with the initial message. This reversal is crucial because MCS is designed to work with

existing mailing lists made up of voluntary subscribers. If subscribers were forced to add structure

and keywords when submitting new messages, or required to use a special software program to read

messages, they would flame the person imposing this system to a crisp and abandon the mailing list

en masse. Since MCS wants its interaction with the host mailing list to be as painless as possible,

it must reverse-engineer the structure after the fact. If MCS becomes popular, it may be that some

73

advanced users will want to include MCS structure in their submissions to the list. I could support

user-added structure by creating an authoring tool which is a subset of the editing tool. However,

it is unlikely that these pre-structured messages would ever account for more than a fraction of the

actual list traffic for the reasons cited in the paragraph above.

74

Chapter 7

Conclusion

The goals of this research were three-fold. First, to introduce the ideas of human involve-

ment and domain-specific representations to the area of mailing list archives. Second, to develop a

system for improving mailing list archives which demonstrates these ideas. Third, to test these ideas

by actually constructing a condensed mailing list archive, and by collecting data to see whether the

subscribers prefer it to existing archives.

This chapter first summarizes how these goals were achieved in this research, and presents

the major contributions of this research. Then it discusses the future directions of this research.

7.1 Research Summary and Contributions

This section discusses the three major contributions of this research: new ideas for im-

proving mailing list archives, the MCS system, and the case study.

7.1.1 New Ideas for Improving Mailing List Archives

My personal experience using the archives of product support mailing lists to solve prob-

lems led me to believe that mailing list archives could be improved. The two main improvements

that I came up with are:

1. The involvement of human editors to improve the quality of the contents of the archives.

2. A focus on data representations and search methods which were domain specific.

By adding some human effort on the part of an editor, the messages in the archive could

be categorized, linked, and trimmed to their essentials. Obviously this involves a trade-off since

75

human effort is relatively scarce compared to most computer effort, but the result could be much

reduced effort on the part of the many archive users. The human editing factor also allows for the

use of domain specific representations such as assigning a type to messages and opening the door

to new search methods like the symptom search. Most search facilities attempt to be maximally

generic in order to be applicable to the widest possible set of data sources, while MCS harnesses

the domain specificity to make a particular kind of archive easier to use and more powerful.

7.1.2 Mailinglist Condensation System (MCS)

Another goal of this research was to implement some of the ideas for improving mailing

list archives. In light of the time constraints of masters-level research, I chose to implement a system

designed for improving the archives of product support mailing lists. Since these lists consist pri-

marily of users describing their problems and other users explaining the solution to those problems,

MCS focuses on exclusively on this aspect. All messages kept in the archive are either problems or

solutions. An editing tool allows the editor to condense the messages and annotate them with meta-

level information. This meta-level information is then used by the archive’s searching subsystem to

enable the four different search methods: keyword, symptom, 2D, and full text.

7.1.3 Case Study

The third goal of this research was to actually use MCS to condense an appropriate mail-

ing list and find out whether users actually preferred it to conventional mailing list archives. I

condensed over 1400 messages from two mailing lists to test whether MCS’s editing features would

actually work. I successfully created the archives at an average rate of 1.5 minutes per message,

thus demonstrating that condensation is feasible. The archives were then made available to the lists’

subscribers. On the jcvs mailing list the web log entries suggest that approximately 17% of the list

subscribers used the MCS archive, exceeding the target threshold for adoption of 16%. There are

also some limited indications from the user questionnaire that users prefer the new MCS archive to

the conventional one.

7.2 Future Directions

With the completion of this phase of the MCS research, there are a variety of avenues

for future work. In Section 7.2.1, I discuss some of the obvious improvements that could be made

to MCS. In Section 7.2.2, I deal with the topic of recruiting one or more editors to maintain the

76

archives built for the case study. In Section 7.2.3, I explain the plan to make MCS freely available.

In Section 7.2.4, I describe how to encourage other lists to adopt MCS for their archives.

7.2.1 MCS Improvements

I accumulated a variety of ideas for future improvements in MCS over the course of the

research which could not be implemented due to time constraints. One of the most obvious is

extending MCS so that multiple people can work collaboratively as editors. Supporting multiple

editors will require a locking mechanism for both individual messages and the keyword tree to

prevent one editor from overwriting another’s work. Implementing locking for messages would

be straightforward, but locking the keyword tree is more difficult. Access to the keyword tree is

required by all editors throughout their session, so in the current design the editor tool downloads

the tree at startup. A simple approach would be to have a mutex on the keyword tree so only

one editor can have read/write access to it at a time. However this reduces the utility of allowing

multiple editors since almost any editing will require adding new keywords to the tree. A more

complicated solution would allow only one editor full read-write access and allow all other editors

read-append access. The editors with read-append access could add new keywords, but not change

existing keywords. This would require that the read-append clients remember the added keywords

and report to the KeywordServer only those keywords to be spliced into the tree. And, of course,

they can’t be spliced into the tree until the read/write editor checks the tree back in. In addition,

once there is a mutex of some sort timeouts will be needed or some way for an editor to break the

mutex in case of editor negligence or an editor computer crash.

Another area which needs improvement is the editing tool. It needs to be even more

efficient than it currently is. Many keystrokes and mouse clicks could be reduced by minor user

interface improvements such as default values or selections. Improvements in editing efficiency

will reduce overhead, and thereby make it more likely that other mailing lists will adopt MCS for

their archives. In the message editor window, keywords could be displayed in a scrolling list or a

pop-up menu rather than the current comma-separated text field, to make it easier to add or delete

keywords.

From the archive user perspective, one concern that came up repeatedly was the complex-

ity of the searching interface. This is important since most users will be expecting the canonical

search interface which consists of a text field where they can enter arbitrary keywords. Because

MCS uses a hand-picked set of keywords, the interface for the simple task of selecting a keyword

was overly complicated. One reason for complication in the keyword selector is the ability to select

77

more than one keyword for a search. There are several possible solutions to this problem. If the

ability to select multiple keywords was eliminated (or at least deemphasized), the keyword selector

could be made much easier to use: selecting a keyword immediately initiates a search using that

keyword. Another possibility would be to allow users to search through the keyword tree itself

instead of having to browse it. However, this additional layer of searching could potentially add

confusion. For archives with a reasonable number of keywords, one possibility would be to display

all the keywords on a single web page in alphabetical order. Another improvement suggested for

the archive would be to allow users to selectively expand regions of text which have been changed

by the editor, instead of having to switch between the edited message and the unabridged version.

In the current implementation of MCS, the Java servlets generate substantial amounts of

HTML. This means that even simple changes to the desired layout require the entire system to be

recompiled, which is clearly suboptimal. A variety of systems exist for separating the HTML layout

from the underlying implementation, such as JavaServer Pages from Sun [50], or WebMacro from

the shimari project [51]. In addition to cleaning up the servlet code, this would make it easier for

MCS to be adapted to the needs of other mailing lists.

Several aspects of MCS could be improved by moving from the current ad-hoc database

system to a production-quality database system. While the current system has worked well for the

case study, it is clear that it would not scale well for much larger condensed archives. Using the

locking and transaction features of a production database system would make it much easier to

support multiple editors. Finally, a variety of small problem would be fixed by moving to a real

database, such as the current lack of consistency checking on the links between messages.

Since some users may still wish to have an FAQ for a mailing list, it would be possible

to write an FAQ generator module for MCS. It would take all the problems and solutions in the

database and format them as one large document. The linking of problems and solutions could be

collapsed so that solutions follow the problems they solve in the document, and solutions that apply

to more than one problem could either be repeated, or cross-referenced.

7.2.2 Editor Recruitment

The editor obviously plays a crucial role in the operation of MCS. Without continual

updating, the database becomes of only historical interest. For the case study, I acted as the sole

editor. To ensure the continued survival of the archive created in the case study, it will be necessary

to recruit other editors. Given the responses on the questionnaire described in Section 5.2.3, it

should be possible to get volunteers from the list to step forward as editors.

78

7.2.3 Open Source Distribution

As part of the growing Open Source movement [52], I would like to see MCS released in

source form to the public. Easily downloadable source (and binaries for that matter) will encourage

others to adopt the system for their mailing lists, and spur other researchers to build on the MCS

framework.

7.2.4 Adoption by Other Mailing Lists

Convincing other mailing lists to use the software for their archives would be the final

stage in moving the software out into general use. This adoption process may be more difficult

because it requires the mailing list’s community to embrace the system as well as recruitment of

one or more editors from the mailing list.

79

Appendix A

“jcvs” Mailing List Subject Lines

In this appendix I present some actual Subject lines extracted from a few days of traffic

on the jCVS mailing list. I provide this to demonstrate the chatty an disorganized nature of most

mailing lists.

Subject: Re: [jcvs] HELP--authentication error

Subject: Re: [jcvs] Examples of Implementation

Subject: Re: [jcvs] failed authentication with the user name

Subject: [jcvs] Analog to cvs update -n -q?

Subject: Re: [jcvs] Analog to cvs update -n -q?

Subject: Re: [jcvs] Analog to cvs update -n -q?

Subject: Re: [jcvs] Analog to cvs update -n -q?

Subject: Re: [jcvs] Analog to cvs update -n -q?

Subject: Re: [jcvs] Analog to cvs update -n -q?

Subject: [jcvs] connect doesn’t seem to work

Subject: Re: [jcvs] connect doesn’t seem to work

Subject: [jcvs] admin -m / change log entries

Subject: [jcvs] cannont chdir(/root.home)

Subject: Re: [jcvs] Analog to cvs update -n -q?

Subject: [jcvs] License question..

Subject: [jcvs] Browsing projects with jCVSlet

Subject: [jcvs] Direct Connection with Kerberos

Subject: Re: [jcvs] admin -m / change log entries

Subject: [jcvs] Where WinInstaller

Subject: [jcvs] JCVS bug

Subject: Re: [jcvs] JCVS bug

80

Subject: Re: [jcvs] Where WinInstaller

Subject: [jcvs] kinda stuck...

Subject: RE: [jcvs] kinda stuck...

Subject: Re: [jcvs] cannont chdir(/root.home)

Subject: Re: [jcvs] Browsing projects with jCVSlet

Subject: Re: [jcvs] Direct Connection with Kerberos

Subject: [jcvs] Installation woes or ClassNotFoundException

Subject: Re: [jcvs] Installation woes or ClassNotFoundException

81

Appendix B

Introductory Email to jCVS List

The following email was sent to the jCVS list as an introduction to the existence of the

condensed jCVS list archive:

Date: Mon, 24 Jan 2000 17:18:34 -1000

From: Robert Brewer <rbrewer@lava.net>

To: jcvs@mail.gjt.org

Subject: Problem Solving jCVS archive

Message-ID: <3841508885.948734314@sabrina.ics.Hawaii.Edu>

X-Mailer: Mulberry (Win32) [1.4.5, s/n U-300878]

MIME-Version: 1.0

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

Mahalo for that kind introduction Tim!

As Tim mentioned, I’m working on my Masters degree in ICS here at the

University of Hawaii at Manoa.

My research is in the area of improving the archives of product support

mailing lists like this one. My basic thesis is that when people go to an

archive of a product support mailing list, it is usually because they are

having some sort of problem with the product and they want to find a

solution. Therefore the archive should be designed to maximize the

efficiency with which users can find solutions to their problems.

I have created a system called MCS (Mailinglist Condensation System) which

82

takes existing mailing list archives and turns them into problem solving

archives. This is done through a process called condensation which takes

the verbose content of a mailing list and removes the messages which don’t

have long-term relevance. The condensation is done by a human editor (for

the jCVS archive this was me) who leaves out all the messages which are

irrelevant to problem solving. The editor annotates the messages with

keywords, writes a one-line summary of each message, and even removes

extraneous text from the body of messages. The result is an archive which

is much smaller with a higher information density and four methods by which

searches can be performed: keyword search, symptom search, 2D search, and

full-text search.

I hope you’ll take the time to try out the archive and maybe it will save

you some time by tracking down a problem you’ve been having with jCVS. In

about two weeks I will be putting up an online survey at the MCS archive to

gauge people’s reaction to the system. Feel free to send comments about the

system using the Feedback page.

The MCS archive is located at <http://csdl.ics.hawaii.edu:8100/> and Tim

has graciously added it to the footer of each message to the list for easy

access. I’ll be continuing to condense new messages and add them to the

archive.

Thanks for your time, and I hope the archive can become a valuable resource

for the list which lets us spend more time discussing new issues and less

time answering frequently asked questions. :)

83

Appendix C

Raw Web Server Log Analysis

This is the report generated by version 4.03 of theanalog log file analysis program [22]

when supplied with the log file from the web server running the condensed archive of the jcvs

mailing list.

Web Server Statistics for jcvs Condensed Mailing List Archive

===

Program started at Wed-23-Feb-2000 17:46.

Analysed requests from Sat-22-Jan-2000 08:57 to Wed-23-Feb-2000 17:18 (32.3

days).

--

General Summary

(Figures in parentheses refer to the 7 days to 23-Feb-2000 17:46).

Successful requests: 949 (281)

Average successful requests per day: 29 (40)

Successful requests for pages: 240 (76)

Average successful requests for pages per day: 7 (10)

Failed requests: 11 (0)

Distinct files requested: 339 (135)

Distinct hosts served: 99 (31)

Unwanted logfile entries: 278

Data transferred: 2.626 Mbytes (837.015 kbytes)

Average data transferred per day: 83.159 kbytes (119.573 kbytes)

--

84

Monthly Report

Each unit (+) represents 4 requests for pages or part thereof.

month: reqs: pages:

--------: ----: -----:

Jan 2000: 262: 63: ++++++++++++++++

Feb 2000: 687: 177: +++

Busiest month: Feb 2000 (177 requests for pages).

--

Daily Summary

Each unit (+) represents 2 requests for pages or part thereof.

day: reqs: pages:

---: ----: -----:

Sun: 68: 30: +++++++++++++++

Mon: 167: 37: +++++++++++++++++++

Tue: 150: 32: ++++++++++++++++

Wed: 336: 67: ++++++++++++++++++++++++++++++++++

Thu: 67: 23: ++++++++++++

Fri: 110: 38: +++++++++++++++++++

Sat: 51: 13: +++++++

--

Hourly Summary

Each unit (+) represents 1 request for a page.

hr: reqs: pages:

--: ----: -----:

0: 12: 2: ++

1: 48: 8: ++++++++

2: 7: 3: +++

3: 40: 4: ++++

4: 68: 28: ++++++++++++++++++++++++++++

5: 0: 0:

6: 80: 18: ++++++++++++++++++

7: 50: 14: ++++++++++++++

85

8: 146: 11: +++++++++++

9: 73: 13: +++++++++++++

10: 14: 5: +++++

11: 46: 16: ++++++++++++++++

12: 34: 10: ++++++++++

13: 47: 17: +++++++++++++++++

14: 33: 9: +++++++++

15: 0: 0:

16: 48: 16: ++++++++++++++++

17: 50: 16: ++++++++++++++++

18: 4: 4: ++++

19: 0: 0:

20: 8: 7: +++++++

21: 82: 22: ++++++++++++++++++++++

22: 43: 9: +++++++++

23: 16: 8: ++++++++

--

Domain Report

Listing domains, sorted by the amount of traffic.

reqs: %bytes: domain

----: ------: ------

360: 37.08%: .com (Commercial)

205: 21.56%: .net (Network)

176: 18.77%: [unresolved numerical addresses]

85: 10.37%: .de (Germany)

26: 2.91%: .fr (France)

25: 1.79%: .gov (USA Government)

12: 1.39%: .dk (Denmark)

12: 1.19%: .uk (United Kingdom)

13: 1.15%: .au (Australia)

12: 1.04%: .at (Austria)

4: 0.66%: .edu (USA Educational)

5: 0.65%: .se (Sweden)

4: 0.41%: .fi (Finland)

3: 0.29%: .br (Brazil)

3: 0.27%: .arpa (Old style Arpanet)

2: 0.23%: .be (Belgium)

1: 0.12%: .mil (USA Military)

86

1: 0.11%: .za (South Africa)

--

Organisation Report

Listing organisations, sorted by the number of requests.

reqs: %bytes: organisation

----: ------: ------------

176: 18.77%: [unresolved numerical addresses]

70: 6.81%: moorebcs.com

39: 4.35%: collab.net

35: 3.74%: uu.net

33: 3.63%: eumetsat.de

33: 3.31%: ses-astra.com

28: 2.80%: earthlink.net

28: 2.53%: pacbell.net

25: 2.66%: nucleus.com

24: 2.08%: best.com

24: 2.87%: pacoffee.com

24: 1.68%: lanl.gov

24: 2.64%: ara.com

22: 3.14%: dresdnerbank.de

21: 2.27%: novell.com

17: 1.61%: mindspring.net

17: 1.50%: trustice.com

14: 1.56%: ihost.com

13: 1.15%: monash.edu.au

13: 1.77%: multipath.com

13: 1.06%: digex.com

13: 1.64%: rmc.de

13: 1.56%: cnc.net

12: 1.19%: demon.co.uk

12: 1.30%: mp3.com

12: 1.59%: ubs.com

12: 1.04%: tuwien.ac.at

9: 0.92%: fedex.com

9: 1.02%: fast-search.net

9: 1.12%: fzk.de

9: 1.03%: prserv.net

8: 1.01%: kia.dk

87

8: 0.95%: dialups.net

7: 0.68%: codiciel.fr

7: 0.54%: home.com

7: 0.70%: hp.com

7: 0.58%: kuit.com

6: 0.27%: pncbank.com

6: 0.94%: betasys.com

6: 0.86%: silicomp.fr

5: 0.45%: snap.com

5: 0.65%: volvo.se

5: 0.68%: univ-angers.fr

4: 0.49%: bellsouth.net

4: 0.21%: emn.fr

4: 0.47%: uhc.com

4: 0.41%: regex.fi

4: 0.45%: uni-sb.de

4: 0.37%: mediaone.net

4: 0.38%: bfc.dk

3: 0.37%: mich.net

3: 0.33%: voyager.net

3: 0.36%: univ-nantes.fr

3: 0.33%: cnet.com

3: 0.29%: acessonet.com.br

3: 0.16%: cyrus.net

3: 0.28%: rwth-aachen.de

3: 0.27%: arpa

2: 0.33%: msus.edu

2: 0.23%: skynet.be

2: 0.23%: eu.net

2: 0.33%: rpi.edu

1: 0.12%: af.mil

1: 0.12%: capgemini.fr

1: 0.12%: nasa.gov

1: 0.11%: mweb.co.za

1: 0.12%: digital.de

1: 0.12%: verity.com

1: 0.12%: brixnet.com

1: 0.11%: lanxtra.com

1: 0.11%: googlebot.com

--

88

Directory Report

Listing directories with at least 0.01% of the traffic, sorted by the amount

of traffic.

reqs: %bytes: directory

----: ------: ---------

707: 70.26%: /servlet/

215: 26.69%: [root directory]

27: 3.06%: /help/

--

File Type Report

Listing extensions with at least 0.1% of the traffic, sorted by the amount

of traffic.

reqs: %bytes: extension

----: ------: ---------

707: 70.26%: [no extension]

167: 19.04%: [directories]

73: 10.69%: .html [Hypertext Markup Language]

2: 0.02%: [not listed: 1 extension]

--

File Size Report

size: reqs: %bytes:

----------: ----: ------:

0: 6: :

1b- 10b: 0: :

11b- 100b: 0: :

101b- 1kb: 14: 0.29%:

1kb- 10kb: 925: 97.99%:

10kb-100kb: 4: 1.71%:

--

Status Code Report

Listing status codes, sorted numerically.

89

reqs: status code

----: -----------

948: 200 OK

1: 304 Not modified since last retrieval

11: 404 Document not found

--

Request Report

Listing files with at least 20 requests, sorted by the number of requests.

reqs: %bytes: last date: file

----: ------: ---------------: ----

305: 23.94%: 23/Feb/00 17:17: /servlet/MCSSearch

53: 2.60%: 23/Feb/00 17:16: /servlet/MCSSearch?mode=keyword

37: 1.77%: 23/Feb/00 11:23: /servlet/MCSSearch?mode=twod

28: 1.68%: 23/Feb/00 11:23: /servlet/MCSSearch?mode=symptom

27: 1.52%: 23/Feb/00 09:55: /servlet/MCSSearch?mode=fulltext

298: 38.48%: 23/Feb/00 17:17: /servlet/MCSKeywordSelector

38: 4.32%: 23/Feb/00 17:16: /servlet/MCSKeywordSelector?java=false&mode=

keyword

30: 4.94%: 23/Feb/00 09:19: /servlet/MCSKeywordSelector?java=false&mode=

category

167: 19.04%: 23/Feb/00 17:18: /

80: 6.76%: 23/Feb/00 09:20: /servlet/MCSDisplay

99: 11.79%: 23/Feb/00 17:15: [not listed: 16 files]

--

This analysis was produced by analog4.03/Unix.

Running time: 1 second.

90

Appendix D

Online User Questionnaire

I made the following questionnaire available to users of the system through a web form.

The questions were numbered, and each possible response is listed with the numerical value which

was used to denote that choice when recording the data from the web form. Note that every multiple

choice question contains the option “Not applicable”. This value was set as the default for every

question in the web form so that any bias towards default values would not skew the results.

D.1 MCS Two Minute Questionnaire

Once you have used the this problem-solving archive, we would appreciate it if you would

take the time to fill out this brief questionnaire. It should only take two minutes of your time.

Mahalo!

If you have not used this archive yet, please check it out and then fill out the questionnaire

when you have experienced it.

1. How long have you used the jCVS software?

� 1. Never

� 2. Downloaded, installed, or read documentation but never actually used

� 3. Less than 3 months

� 4. 3-12 months

� 5. More than 12 months

� 0. Not applicable

91

2. Are you subscribed to the jcvs mailing list?

� 1. Yes

� 2. No

� 0. Not applicable

3. If you are subscribed, on average, how often do you read list messages?

� 1. Whenever an email arrives

� 2. Once a day

� 3. About three times a week

� 4. Once a week

� 5. Once a month

� 6. Almost never

� 7. I only read it when I have a problem that needs solving

� 0. Not applicable

4. If you are subscribed, on average, what fraction of list messages do you actually read?

� 1. Zero

� 2. Less than a third

� 3. Between one and two thirds

� 4. More than two thirds

� 5. Every message

� 0. Not applicable

5. Have you used the old archive of the jcvs mailing list?

� 1. Yes

� 2. No

� 0. Not applicable

6. If so, roughly how many times have you used it?

� 1. More than 10 times

92

� 2. 6-10 times

� 3. 2-5 times

� 4. Once

� 0. Not applicable

7. How often did you find what you were looking for in the old archive?

� 1. Never

� 2. Rarely

� 3. Sometimes

� 4. Usually

� 5. Always

� 0. Not applicable

8. Roughly how many times have you used this new problem solving archive?

� 1. More than 10 times

� 2. 6-10 times

� 3. 2-5 times

� 4. Once

� 5. Never

� 0. Not applicable

9. How often did you find what you were looking for in this new archive?

� 1. Never

� 2. Rarely

� 3. Sometimes

� 4. Usually

� 5. Always

� 0. Not applicable

10. Since the problem-solving archive has been available, do you find yourself using it instead of

the existing archive?

93

� 1. Yes

� 2. Somewhat

� 3. No

� 0. Not applicable

11. Overall, how would you rate your satisfaction with this new archive?

� 1. Completely Satisfied

� 2. Somewhat Satisfied

� 3. Somewhat Unsatisfied

� 4. Completely Unsatisfied

� 5. Undecided

� 0. Not applicable

12. The messages in this archive were condensed by a human editor, requiring some effort. Would

you be willing to help maintain this archive as one of many editors on a volunteer basis?

[Note: this information is for research purposes so answering “Yes” will not commit you to

anything]

� 1. Yes

� 2. Not sure

� 3. No

� 0. Not applicable

13. Would any other mailing lists you are interested in benefit from having this kind of archive?

If so, please list them below:

14. If you have any other comments or suggestions about this archive, please let us know!

94

Appendix E

Raw Questionnaire Results

In this appendix, I provide all the raw data from the web questionnaire provided to users.

See Appendix D for the list of questions and what the answer values correspond to. In Table E.1

I show the answers given to the multiple choice questions, and Table E.2 shows the results of the

open-answer questions.

Survey # Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 Q 11 Q 12

1 5 1 6 2 2 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 2
3 5 1 3 2 1 3 3 4 5 1 1 1
4 5 1 0 5 1 1 3 3 5 1 1 1
5 4 1 1 5 2 0 0 4 3 0 2 3
6 4 1 1 3 2 0 0 4 2 0 2 2

Table E.1. Raw response data from questionnaire’s multiple choice questions

95

Survey # Q 13 Q 14

1 if there were a jcvs-announce list, i would unsub from
the jcvs list, join the announce list, and make use of your
archive when it was announced. because the noise-to-
signal ratio on the jcvs list is so high, i never noticed your
archive announcement. i’m looking forward to checking
it out now :-)

2 Yes, will discuss it
with them.

Your product looks good. As a concept I would be
VERY interested in a page giving stats (time devoted to
editing, etc...) by those that condense, and some per-
sonal feedback from those people as far as how difficult
they percieve their task. Keep me on what ever mailing
list I recieved your notice and I will watch the develop-
ment of your program. Thank you.

3 The webmacro
mailing list (www.
webmacro.org)

Maybe you could consider using tools that help you in
summarizing and tagging text. There are a lot of scien-
tific projects out there, but I’m not sure if it would be
easy to get them on an open source basis.

4 GNUJSP, GJT-DEV I think the effort is tremendous, and the tool a great im-
provement over what was available. I would be very ex-
cited to see further development and support.

5 PHP Mailing List ->
www.php.net

Neat concept - could be very useful for larger lists like
the php or perl or mysql list. A significant part of the
message volume is from people asking common ques-
tions. People are usually asking the question because
they don’t know what keywords to use to search the
archives for the solution to their problem. (i.e. If you
know how to grok widgets, then you probably know that
you need to use the foo() function to do this. However,
if you don’t know how to grok widgets, then you would
have to use ’grok and widget’ as your keys for searching
the archives. Chances are that whoever asked the ques-
tion last phrased their question in a different fashion - so
the previous exchange on the list regarding this topic is
very little help to the new user.) ..uh.. why I am both-
ering to write this - you obviously know this already -
that is why you built the system... :P One note - I found
that the interface was pretty clunky. Good Luck! PS
Remember that the best defense is a good offence - try
using foul language in your thesis defense ;)

6

Table E.2. Raw response data from questionnaire’s open answer questions

96

Bibliography

[1] Nexial Ascend users mailing list searchable archive.<http://www.nexial.com/

cgi-bin/ascendbody> .

[2] MCS: Mailinglist Condensation System. <http://csdl.ics.hawaii.edu/

Research/MCS/MCS.html> .

[3] Frederick P. Brooks, Jr. The computer scientist as toolsmith II.Communications of the ACM,

39(3):61–68, March 1996.

[4] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl. O’Reilly &

Associates, Inc., second edition, September 1996.

[5] Berkeley Software Design, Inc.<http://www.bsdi.com/> .

[6] Brett Wynkoop. BSD/OS FAQ.<http://www.wynn.com/bsdi/bsdi.faq> , August

1998.

[7] Support Net BSDI list archives.<http://www.support.nl/online/bsd.html> .

Archive no longer available.

[8] Excite for web servers.<http://www.excite.com/navigate/> .

[9] Nexial Systems BSDi-Users archive. <http://www.nexial.com/cgi-bin/

bsdibody> .

[10] jCVS mailing list. <http://www.gjt.org/servlets/MailingLists/

ListInfo.html/jcvs> .

[11] jCVS application.<http://www.ice.com/java/jcvs/index.shtml> .

[12] CVS: Concurrent Versions System.<http://www.sourcegear.com/CVS> .

97

[13] Everett M. Rogers.Diffusion of Innovations, chapter 7. The Free Press, fourth edition, 1995.

[14] Yahoo web portal.<http://www.yahoo.com/> .

[15] ICEMail a Java based email client.<http://www.ice.com/java/icemail/> .

[16] Nexial systems mailing list indexes.<http://www.nexial.com/mailinglists/> .

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext transfer protocol

– HTTP/1.1. RFC 2068, Internet Engineering Task Force, January 1997.

[18] Bill Winett. Tracking your visitors.<http://www.hotwired.com/webmonkey/98/

16/index2a.html> , 1998.

[19] Philip M. Johnson. Leap: A “personal information environment” for software engineers. In

Proceedings of the 1999 International Conference on Software Engineering, Los Angeles,

CA., May 1999.

[20] Karl Fogel.Open Source Development with CVS. The Coriolis Group, October 1999.

[21] D. Crocker. Standard for the format of ARPA Internet text messages. STD 11, Internet Engi-

neering Task Force, August 1982.

[22] analog web server log file analyzer.<http://www.analog.cx/> .

[23] Google search engine.<http://www.google.com/> .

[24] Robert C. Pedersen. Reviewing Internet mailing lists.The Serials Librarian, 30(2):27–33,

1996.

[25] Robert C. Pedersen. A quantitative approach to the description of Internet mailing lists.The

Serials Librarian, 30(1):39–47, 1996.

[26] Internet FAQ consortium.<http://www.faqs.org/> .

[27] Robin D. Burke, Kristian J. Hammond, Vladimir A. Kulyukin, Steven L. Lytinen, N. Tomuro,

and S. Schoenberg. Question answering from frequently asked question files: Experiences

with the FAQ Finder system. Technical Report TR-97-05, Department of Computer Science,

University of Chicago, June 20 1997. Mon, 23 Jun 1997 21:02:34 GMT.

[28] FAQ Finder web site.<http://faqfinder.ics.uci.edu:8001/> .

98

[29] Mark S. Ackerman and Thomas W. Malone. Answer Garden: A tool for growing organi-

zational memory. InOIS90, Filtering, Querying, and Navigating, pages 31–39. ACM Press,

1990.

[30] Mark S. Ackerman and David W. McDonald. Answer Garden 2: Merging organizational

memory with collaborative help. InProceedings of the ACM 1996 Conference on Computer

Supported Work, pages 97–105, New York, November16–20 1996. ACM Press.

[31] Faq-O-Matic web site. <http://www.dartmouth.edu/ �jonh/ff-serve/

cache/1.html> .

[32] Open directory project web site.<http://dmoz.org/> .

[33] Slashdot web site.<http://slashdot.org/> .

[34] Experts exchange web site.<http://www.experts-exchange.com/> .

[35] KnowPost web site.<http://www.knowpost.com/> .

[36] Information markets company web site.<http://www.infomarco.com/> .

[37] Hotdispatch web site.<http://www.hotdispatch.com/> .

[38] Inforocket web site.<http://www.inforocket.com/> .

[39] Exp.com web site.<http://www.exp.com/> .

[40] Expertcentral web site.<http://www.expertcentral.com/> .

[41] Questionexchange web site.<http://www.questionexchange.com/> .

[42] Ithority web site.<http://www.ithority.com/> .

[43] Expertcity web site.<http://www.expertcity.com/> .

[44] Nowonder web site.<http://www.nowonder.com/> .

[45] Terry Winograd. A language/action perspective on the design of cooperative work.Human-

Computer Interaction, 3(1):3–30, 1987-1988.

[46] T. Winograd. Where the action is (groupware).Byte Magazine, 13(13):256A–258, December

1988.

99

[47] Lucy Suchman. Do categories have politics? The language/action perspective reconsidered.

In Proceedings of the Third European Conference on Computer-Supported Cooperative Work,

pages 1–14, 1993.

[48] C. V. Bullen and J. L. Bennett. Learning from user experience with groupware. InProceedings

of the Conference on Computer Supported Cooperative Work (CSCW ’90), pages 291–302,

Los Angeles, California, 1990. ACM Press.

[49] R. P. Carasik and C. E. Grantham. A case study of CSCW in a dispersed organization. In

Proceedings of ACM CHI’88 Conference on Human Factors in Computing Systems, Organi-

zational Issues on Effective Use of Interfaces, pages 61–66, 1988.

[50] JavaServer Pages.<http://java.sun.com/products/jsp/index.html> .

[51] Webmacro java servlet framework.<http://www.webmacro.org/> .

[52] Open Source web site.<http://www.opensource.org/> .

100

