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Abstract

The Personal Software Process (PSP) is used by software engineers to gather and analyze data about
their work. Published studies typically use data collected using the PSP to draw quantitative conclusions
about its impact upon programmer behavior and product quality. However, our experience using PSP
led us to question the quality of data both during collection and its later analysis. We hypothesized
that data quality problems can make a significant impact upon the value of PSP measures—significant
enough to lead to incorrect conclusions regarding process improvement. To test this hypothesis, we
built a tool to automate the PSP and then examined 89 projects completed by ten subjects using the PSP
manually in an educational setting. We discovered 1539 primary errors and categorized them by type,
subtype, severity, and age. To examine the collection problem we looked at the 90 errors that represented
impossible combinations of data and at other less concrete anomalies in Time Recording Logs and Defect
Recording Logs. To examine the analysis problem we developed a rule set, corrected the errors as far as
possible, and compared the original and corrected data. We found significant differences for measures
such as yield and the cost-performance ratio, confirming our hypothesis. Our results raise questions
about the accuracy of manually collected and analyzed PSP data, indicate that integrated tool support
may be required for high quality PSP data analysis, and suggest that external measures should be used
when attempting to evaluate the impact of the PSP upon programmer behavior and product quality.
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1 Introduction

The actual process is what you do, with all its omissions, mistakes, and oversights. The official
process is what the book says you are supposed to do.[14]

The Personal Software Process (PSP) was introduced in 1995 in the book, “A Discipline for Software
Engineering” [14]. This text describes a one-semester curriculum for advanced undergraduates or graduate
students in computer science that teaches concepts in empirically-guided software process improvement.
Since its introduction, experience with the PSP has been reported on in several case studies [2, 6, 15, 16].
Although empirically-guided software process improvement is a key feature of other software engineering
initiatives, such as the Capability Maturity Model (CMM) [18], ISO-9000, and Inspection [7], the PSP
differs from these other approaches in important ways.

The CMM, ISO-9000, and Inspection discuss empirical software process improvement in the context of a
large organization. Process improvement in this context requires the gathering and analysis of large amounts
of data, within and across departments, generated by different people at different times. Indeed, inevitable
personnel turnover means that the data collected from the working procedures of one set of people tend to
generate measurements leading to process changes that affect the working procedures of a potentially dif-
ferent set of people. The substantial effort required to collect, interpret, and introduce organizational change
based upon the measurements for a large organization leads to the need for an explicit software engineering
process group (SEPG) whose mission is to manage empirically guided improvement. Although the utility
of these approaches have been repeatedly validated, they leave the unfortunate impression that empirically-
guided software process improvement is the sole province of large organizations who can dedicate teams of
people to its enactment.

The PSP provides an alternative, complementary approach in which empirically guided software pro-
cess improvement is “scaled down” to the level of an individual developer. In the PSP, individuals gather
measurements related to their own work products and the process by which they were developed, and use
these measures to drive changes to their development behavior. PSP focuses on defect reduction and estima-
tion accuracy improvement as the two primary goals of personal process improvement. Through individual
collection and analysis of personal data, the PSP provides a novel example of how empirically-guided soft-
ware process improvement can be implemented by individuals regardless of the surrounding organizational
context and the availability of institutional infrastructure support.

Since the PSP is a new technique, relatively little data exists on its use and effectiveness. Case studies
typically report positive results, usually based upon the data collected during enactment of the PSP cur-
riculum. One typical case study conclusion is that “during the course, productivity improvements average
around 20% and product quality, as measured by defects, generally improves by five times or more” [6].
Similarly, another study states that “the improvement in average defect levels for engineers who complete
the course is 58.0 percent for total defects per KLOC and 71.9 percent for defects per KLOC found in test”
[15]. Indeed, our own PSP data yields similarly positive measurements for process and products.

In this paper, we report on a case study performed to assess the quality of PSP data—the measurements
typically used to evaluate the effectiveness of the PSP as illustrated above. Our case study was motivated by
our experiences teaching and using the PSP, which led us to suspect that the empirical measures gathered by
the PSP may not, in all cases, reflect the true underlying process or products of development.

We hypothesized that problems with the quality of process data collected with the PSP could signifi-
cantly change at least some of the measures produced by the PSP that are commonly used to evaluate its
effectiveness. By “significantly”, we mean something stronger than just a statistically significant difference
between the recorded measurements and the actual underlying programmer behavior. We mean that the dif-
ference between recorded measures and actual behavior would be sufficient, at least in some cases, to lead
developers to the wrong conclusion about how to improve their process.
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To test this hypothesis, one of us taught a modified version of the PSP curriculum to a class of 10
students in the Fall of 1996. The course was augmented with features designed to improve the data quality
of the raw PSP data. We then entered the PSP measures into a database and subjected them to a variety of
data quality analyses. These analyses uncovered over 1500 errors in the PSP data used by the students to
track their work and motivate process improvements. Additional analysis yielded a seven part classification
scheme for PSP data errors. Although we were not always able to generate corrected values for the data
errors, partial correction lead to “significantly” different values for certain PSP measurements, confirming
our hypothesis.

The remainder of the paper is organized as follows. Section 2 presents a description of related work,
including an overview of the PSP itself, case studies of the PSP, and additions and enhancements to the basic
approach. Section 3 presents a model of PSP data quality we devised to guide our investigation. Section 4
presents the case study; its design, instrumentation, data collection, analysis, and threats to internal and ex-
ternal validity. Section 5 presents the quantitative and qualitative results we obtained from the study. Section
6 presents our interpretation of these results. This section also introduces the concept of “measurement dys-
function”, which is important to our interpretation of the results from this study and our recommendations
for future research and practice.

2 Related Work

There is a small but growing number of research studies describing experiences with teaching and evaluating
the PSP. This section overviews the relevant literature with special attention paid to three questions.

First, how does the research study evaluate the effectiveness of the PSP? The most common approach
is to compare PSP data collected at the beginning of the course to data collected at the end of the course.
We term these kinds of evaluationsinternal measurement evaluation, because measures collected using the
PSP are used to evaluate the PSP itself. The less common approach is to compare some other measure of
programmer/program quality collected before the introduction of PSP training to the same measure of pro-
grammer/program quality after the PSP training. We term these kinds of evaluationexternal measurement
evaluation, because measures collected independently of the PSP training itself are used to evaluate PSP
effectiveness.

Second, how does the research study verify the accuracy of the measurements used in evaluation–in
other words, verify that the measurements actually reflect the underlying behavior of the PSP users? This
question addresses one form of internal validity: that the research is designed in such a manner that the data
can actually be used to answer the questions posed. The most common approach to measurement verification
in PSP research ismanual inspectionof the data by the instructor. In some cases, the researcher employed
subject exclusion, i.e. eliminating all the data from one or more subjects based upon data incompleteness or
some qualitative appraisal of data quality.

Third, what issues related to data quality are raised by the research study? Does the research present any
experiences related to low data quality and how they might be overcome? The most common improvement
mentioned in the research is automation.

To begin, we present a brief overview of the PSP itself.

2.1 The Personal Software Process

In the PSP curriculum presented in “A Discipline for Software Engineering” [14], each student develops 10
small programs over the course of a semester using a sequence of seven increasingly sophisticated software
development processes, labeled PSP0 to PSP3. For every program, the students record various measure-
ments related to their personal development activities. Such measures include, for example, the time spent
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in each phase of development, the numbers of defects injected and removed during each phase, and the size
of the resulting work product. Five analysis exercises focus on trends and relationships between all of the
process data collected to that point in the course.

The initial programs use relatively simple PSP processes that establish a baseline set of process measures
for time, size, and defects. Later programs employ more advanced PSP processes that extend these baseline
process statistics. Although there are a myriad of extensions, most are of two general types: extensions to
planning and extensions to defect management.

Extensions to the planning phase include estimates of the program’s projected size, the projected time
required to complete each of the phases, and the number of anticipated defects that will be injected and re-
moved during development. The process by which these estimates are produced involves statistical analysis
of historical correlations between designs (i.e. class and method counts) and actual size (in lines of code),
between estimated size and actual time, between actual size and actual time, and between size and defects
injected and removed. (While lines of code as a metric of size at the organizational level is almost uniformly
condemned in the measurement literature, it seems to work surprisingly well in the PSP, since the measure
is collected and applied to a single individual working in a single language in a relatively uniform domain.)

By the middle of the course, each student has typically recorded a hundred or more defects made during
development. More advanced PSP processes implement defect management mechanisms to help students
understand the impact of various kinds of defects and to drive process improvements intended to reduce
future occurrence of important defect types. For example, since students record the phase in which each
defect was injected and removed and the time required to fix it, it is possible to analyze the relationship
between fix time and various characteristics of defects. One relationship nearly always present in student
data is that the “longer” a defect is present, the more time it takes to remove it. Thus, defects injected
during design and not removed until testing are nearly always more expensive to remove than, for example,
defects injected during coding and removed during compiling. This outcome typically motivates students to
put more effort and care into design activities. Later processes support such behaviors by providing active
defect management mechanisms. For example, by analyzing defect data to determine the types of design
defects made on prior projects, a student can generate a checklist to be used as part of a personal design
review. This checklist can be used to ensure that when similar defects occur in future projects, they do not
escape into code, compile, or test phases.

The most advanced PSP processes extend the basic PSP paradigm to support larger projects using a
cyclic development method. In addition, PSP includes a meta-level process for defining personal processes
in non-software domains or for specific software organizational contexts.

Students record their PSP data onto one or more PSP forms provided in the textbook and made available
electronically at the textbook publisher’s website. Students fill out these forms manually and turn them in to
the instructor. Supplemental PSP spreadsheets automate some of the calculations, which students manually
transfer to the forms. The number of forms filled out increases from three for the first PSP process to over a
dozen for the most advanced processes.

In this curriculum, PSP data quality is addressed in two ways. First, the instructor manually reviews all
PSP data as it is submitted, and is instructed to accept only complete and accurate PSP data. If an error on a
prior assignment is discovered, the student must go back and recompute both the measurements for the prior
assignment and all assignments subsequently affected by this error. (The provided spreadsheets can ease
this process.) Second, the instructor should exhort the students to approach this course professionally, and
to recognize that only the completeness and accuracy of the data, not the actual values for defect density,
productivity, etc. will be used in the determination of their grade for the course.

The chosen PSP programming assignments are also important to understanding issues of data quality,
because the standard PSP assignments require students to build software systems that they later invoke to
produce important PSP measurements and analyses. For example, program 2A builds a size counter, a tool
necessary for obtaining one of the three primary measures in the PSP. Other assignments produce statistical
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calculations necessary for PSP analyses, including linear regression, correlation, multiple regression, and
prediction intervals.

2.2 Case Studies of the PSP

The PSP text contains the original “case study” of the PSP. Throughout the book, Humphrey informally
presents data collected from students in PSP classes at Carnegie Mellon University during pre-publication
development of the text. Utilizing an internal measurement evaluation approach, Humphrey compares PSP
data collected from early in the semester with data collected at the end of the semester, and finds trends to-
ward decreased defect density, improved yield, and improved estimation accuracy. Data verification appears
to consist of manual inspection in conjunction with some subject exclusion.

Humphrey provides more information about his experiences with the PSP in several related articles
[10, 11, 12, 13, 15]. In general, he presents results based on PSP data collected from over 100 engineers
in both industrial and academic settings. Humphrey employs internal measurement evaluation and subject
exclusion when engineers “reported either incomplete or obviously incorrect results.” Results include an
increase in size and time estimation accuracy, and a reduction in reported defects of approximately 50%
over the course of the training.

In his master’s thesis, Dellien describes his attempt to introduce a tailored version of the PSP into an ex-
isting industrial organization [3]. He analyzed the PSP, broke it down into components such as measurement
and quality management, compared these components with the existing processes used by the organization,
and rebuilt a modified version of the PSP that addressed the perceived needs of developers but did not result
in overlapping organizational processes. His evaluation concludes that using PSP in an industrial setting
is different than using it in an academic setting due to differences in accountability, group context, lack
of automation, and resistance to change. In his evaluation, Dellien found that it is difficult to objectively
evaluate whether a PSP introduction has been successful or not, even when success is measured purely as
cost-effectiveness.

Sherdil and Madhavji use the PSP as the basis for research on human-oriented improvement in the
software process [19]. This research attempts to measure an individual’s “progress function”, using such
variables as productivity, defect rate, and estimation error. The analysis attempts to differentiate progress
due to “first order learning” (i.e. simple task repetition, unrelated to the PSP) and progress due to “second
order learning” (i.e. introduction of PSP techniques). Their evaluation uses internal measurement evaluation
with standard PSP measures to track the progress function. Verification involved manual inspection of PSP
data “... for consistency, accuracy and logical validity. Automatic tools were also used to verify the program
size values. We also checked if two subjects were illegally exchanging code, but never found such an
occurrence.”

Hayes and Over report on a statistical analysis of a set of PSP data sets in an attempt to understand the
overall impact of PSP education [8]. This “case study on a set of case studies” involves 298 engineers who
spent more than 15,000 hours writing over 300,000 LOC and removing about 22,000 defects, during the
course of 23 separate PSP training programs in both academic and industrial settings. Hayes and Over used
internal measurement evaluation to demonstrate improvement in size estimation, time estimation, and defect
density, with no significant change in productivity. The report does not indicate that the authors performed
any independent data verification or assessment of data quality, though the authors do claim that the data
quality is “exceptional”:

Instructors enter the engineers’ data into a spreadsheet provided with the course materials.
The paper forms completed by the engineers are collected by the instructor, and the class data
are analyzed and used to provide feedback to the engineers. During the training, trends in class
data provide insights to the engineers, who may then compare their own data with that of the
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group. Given this careful focus on data and statistical analysis, the quality and accuracy of the
data used in any given class tends to be exceptional.

Emam, Shostak, and Madhavji report on a study of the implementation of PSP in a commercial setting,
with special emphasis on adoption success [4]. Unlike the majority of PSP studies, their evaluation focussed
primarily on the long-term adoption success, rather than short-term changes in PSP measurements during
training. In addition, they present several issues that may impact adversely upon PSP data quality and thus
the use of internal measurement evaluation. For example, high levels of reuse can act as a confounding
factor on trends in productivity and defect density. Trends in defect density could reflect changes in defect
detection capabilities rather than changes in the underlying density of defects in the work product. Trends
in yield could be primarily due to introduction of code reviews and not due to any other aspects of the PSP.
Finally, they found that the paper intensive nature of PSP was problematic for professional engineers.

Ferguson, Humphrey, Khajenoori, Macke, and Matvya report on case studies of the PSP at three industry
locations: Advanced Information Services, Motorola Paging Projects Group, and Union Switch and Signal
[6]. Unlike most other studies, PSP effectiveness was evaluated primarily using external measures. For
example, post-development defect report data (either during acceptance test or field use) was used to com-
pare the quality of PSP-developed projects with non-PSP-developed projects. Similarly, one of the studies
compared schedule estimation error before and after PSP training. These case studies showed substantial
improvement with respect to both defects and estimation on industry projects after introduction of the PSP.
The use of external measures for evaluation, and the particular external measures chosen (such as customer-
reported defects) eliminates the issue of PSP measurement accuracy. The researchers did not present any
issues regarding data quality.

Claes Wohlin discusses the use of the Personal Software Process as a context for empirical experimenta-
tion [20]. He finds that the PSP has several desirable aspects for experimentation, including a comprehensive
specification of the experimental context (i.e. the PSP textbook [14]), relative ease in replication, and the
ready availability of experimental measures. Among the challenges he cites are internal validity and external
validity. In the case study used as an example, data from six students were removed because it was “regarded
as invalid or at least questionable.”

Our own case study, presented in this paper, is intended to contribute to this body of knowledge concern-
ing the PSP by demonstrating the importance of explicit concern for data quality beyond what is covered
in the PSP textbook. The next several sections present our case study and its results. In Section 6, we will
revisit several of the case studies presented above and reinterpret them in the light of our findings.

3 Modeling PSP Data Quality

As we pursued this investigation of data quality problems in the PSP, we found it necessary to build a model
and define some new terminology to clarify the approach of this research and its conclusions. This section
presents the model and this terminology.

3.1 Collection and Analysis Stages

Figure 1 illustrates a simple two stage model of PSP data representing an iterative cycle ofcollection fol-
lowed byanalysis. The model begins with “Actual Work”—the actual developer efforts devoted to a software
development project. As part of these efforts, the developer enters the collection stage during which she col-
lects a set ofprimary measures of defects, time, and work product characteristics—the “Records of Work”.
Given these primary measures, the developer performs additional analyses during the Analysis Stage, many
of which producederivedmeasures which are themselves inputs for further analyses. The secondary, de-
rived measures and associated analyses are presented in various PSP forms—the “Analyzed Work”—and
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 Actual Work                   Records of Work               Analyzed Work
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Insights about Work

Figure 1: A simple model for PSP data quality. Through a process ofcollection, the developer generates an
initial empirical representation (“Records of Work”) of her personal process (“Actual Work”). Through ad-
ditional analyses, the developer augments her initial empirical representation with derived data (“Analyzed
Work”) intended to enable process improvement through “Insights about Work”.

hopefully yield “Insights about Work” that change and improve future actual software development work
activities.

3.2 Manual and Integrated Automation

We have also found it important to distinguish between the different levels of automation possible in the PSP.
“A Discipline for Software Engineering” [14] presents an approach to PSP automation that we callmanual
PSP. Manual PSP refers to a situation in which PSP forms are filled out by hand, either by editing a copy of
the form on-line, or by filling out a printed copy with pen or pencil. Manual PSP does not preclude the use of
tools “on the side” to store historical data and to perform certain computations. In our classification scheme,
if PSP tool support cannot eliminate manual manipulation and recalculation of derived measures, and thus
guarantee their consistency and accuracy (assuming consistent and accurate primary measurements), then
we view the level of automation as manual.

In contrast, we useintegratedPSP to refer to the use of tools in which most or all of the derived measures
during the analysis stage are calculated and placed into the forms automatically. Although integrated PSP
should essentially automate all analysis stage calculations, there are limits to the ability of current technology
to automate collection stage gathering of primary measures. For the foreseeable future, this part of the PSP
will continue to be essentially “manual” in nature.

At the time we performed this case study, as was the case at the time of publication of “A Discipline for
Software Engineering”, there was no integrated software support for the PSP. Thus, the case study involved
manual PSP, despite our extensive use of spreadsheets, program size counting tools, and statistical tools
during the course. Since then, integrated support for the PSP has become available, including the Personal
Software Process Studio tool produced by East Tennessee State University [9], and the Leap toolset at the
University of Hawaii [17].

3.3 Omission, Addition, Calculation, and Transcription Errors

There are three basic ways to affect PSP data quality in the collection stage: errors of omission, errors of
addition, and errors of transcription. Errors of omission occur when the developer does not record a primary
measure related to defects, time, or the work product itself. If a defect occurring during “Actual Work” does
not appear in the “Records of Work”, then, for example, the PSP model of that work product’s defect density
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will be lower than its actual defect density. If time spent on the work product is not recorded, then the PSP
model of that developer’s productivity will be higher than her actual productivity. Errors of addition occur
when the developer augments the “Records of Work” with data not reflecting actual practice. For example,
a developer, having made an error of omission to the point of having no time or defect data, may recover
by simply inventing enough time and defect entries to make his or her PSP data appear plausible. Finally,
errors of transcription occur when the developer does intend to accurately record his “Actual Work” in the
“Records of Work” but makes a mistake during this process.

The presence of collection stage data quality problems is typically difficult to ascertain and difficult or
impossible to rectify. In the PSP, primary data collection often feels both time consuming and psychologi-
cally disruptive. Many students complain that stopping to record defects disrupts their “flow” state, and that
the time spent recording a defect—particularly for compilation stage errors—often exceeds the time spent
correcting the defect. The PSP requires users to learn to constantly interleave “doing work” with “recording
the work you are doing”.

There are also three basic ways to affect PSP data quality in the analysis stage of manual PSP: errors
of omission, errors of calculation, and errors of transcription. Errors of omission occur when the developer
does not perform a required analysis of the primary data. Errors of calculation occur when the developer
attempts to perform an analysis but does so incorrectly. For example, a developer might use a regression-
based estimation method when the historical data is so uncorrelated that this method is invalid. Finally,
errors of transcription occur when the developer makes a clerical error when moving data from one form to
another.

Analysis stage data quality problems are typically much easier to ascertain and correct than collection
stage data quality problems,provided that the problems did not originate during the collection stage. In
other words, if one assumes that the work records accurately reflect the underlying work, then appropriate
use of automated tools can reduce or eliminate analysis errors of omission, calculation, and transcription.
On the other hand, since the quality of these analyses are totally dependent upon the quality of the work
records produced in the collection phase, overall PSP data quality could be quite low even if the analysis
stage is totally automated to eliminate all of its potential data quality errors.

4 The Case Study

To gain insight into the occurrence and significance of collection and analysis data quality problems, we
conducted a case study. The case study was designed to investigate the following hypothesis:

Data quality problems during collection and analysis can distort the PSP data’s represen-
tation of the programmer’s actual behavior, leading to invalid process improvement changes.

4.1 Case Study Design

The case study began by teaching a one semester course on the PSP, modified in certain ways in an attempt
to improve the quality of PSP data. The 10 students in the course submitted all of their paper forms to the
instructor after each assignment. Some errors required students to correct and resubmit prior forms. The set
of paper PSP forms collected over the course of the semester comprises theoriginal PSP dataset, and can
be thought of as one experimental treatment.

Next, the second author entered each data value from the original PSP dataset into a database system
that she developed. This database system implements automated calculation of the derived measures, and
detects a subset of the possible errors that can exist in a PSP dataset.

She also developed a second system to support correction of some of the errors found through the first
database system. This system corrects a subset of erroneous data values according to a set of correction rules
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(specified in Section 4.5.1). Application of these rules produced the second,correctedPSP dataset, which
can be thought of as the second experimental treatment. Note that we do not claim that this second dataset
is completely correct, merely that it corrects a set of clearly inaccurate calculations from the first dataset.

Given this approach, the case study design is similar to a within-subjects comparison of a “control”
treatment (the original PSP dataset) to the “experimental” treatment (the corrected PSP dataset). Our data
analysis is designed to determine whether significant differences exist between these two treatments.

In addition to the test of our primary hypothesis, we used the database systems to perform several
additional analyses on the observed errors to understand their cause and potential significance to PSP data
values and the method itself.

4.2 The Modified PSP Curriculum

The projects used for this study were obtained from a software engineering class taught by Philip Johnson,
in which the PSP was taught over the course of a semester using nine project assignments. There were ten
students in the class, and 89 completed projects.

Because of the concern with data quality from prior experience teaching PSP, the instructor made four
principal modifications to the standard PSP curriculum: increased process repetition, increased process
description, technical reviews, and tool support. For replication purposes, a more detailed description of the
curriculum used in this couse is available at the website: http://www.ics.hawaii.edu/�johnson/613s98/.

Increased process repetition. In the standard PSP curriculum, students are assigned 10 programs
during the semester (in addition to several midterm and final reports). Over the course of these ten programs,
students practice seven different PSP processes, which means that the development process used by the
students changes for seven out of ten programs. From our initial experience with the PSP, we found that
the overhead of this almost constant “process acquisition” led to data errors and could overwhelm the effort
related to actual development. To ameliorate this situation, the modified curriculum included only five PSP
processes, enabling students to practice most processes at least twice before moving on to a new one. The
modified curriculum also included only nine programs instead of ten, providing additional time in each
program for data collection and analysis.

Increased process description.In our initial experiences teaching the PSP, the instructor found that
students had a great deal of trouble learning to do size and time estimation correctly. For example, PSP time
estimation requires choosing between three alternative methods for estimation depending upon the types
of correlations that exist in the historical process data from prior programs. To help resolve this and other
problems, the instructor added four additional worksheets: (1) a Time Estimating Worksheet to provide
a guide through the various methods of time estimation; (2) a Conceptual Design Worksheet to help in
developing class names, method names, method parameters, and method return values; (3) an Object Size
Category Worksheet to help in size estimation; and (4) a Size Estimating Template Appendix to provide a
place to record planned and actual size for prior projects.

Technical reviews.At the completion of each project, students divided into pairs and carried out a tech-
nical review of each other’s work. A two-page checklist facilitated this process. It included such questions
as “Did the author follow the PSP Development Phases correctly?” and “Is the Projected LOC calculated
correctly?” A second “Technical Review Defect Recording Log” form included columns for number, doc-
ument, severity, location, and description. Students were given approximately 60 minutes to do the review.
The technical review forms were submitted with the completed projects. The instructor reviewed the projects
a second time for grading purposes, using the Technical Review Defect Recording Log to record any addi-
tional mistakes.

Tool support. Finally, the instructor provided four spreadsheets to support records of planned and actual
data values. In addition, students were provided with well-tested tools to count non-comment source lines of
code for Java programs, to compare two versions of a Java program and report non-comment lines of code
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added and deleted, and to perform certain statistical analyses. (In the textbook PSP curriculum, students
“bootstrap” their environment by implementing these tools themselves. While elegant pedagogically, this
approach unfortunately introduces a potentially significant source of data quality problems, since these
freshly developed tools with no usage history are used to generate many of the measures used in later data
analysis.)

In addition to these curriculum modifications, the instructor emphasized data quality throughout the
course, as recommended in the textbook. For example, he augmented the lecture notes in the Instructor’s
Guide with fully worked out examples of the PSP process data for a fictitious student to show how data is
collected and analyzed for each assignment and accumulated over the course of the semester. He dedicated
lectures to collection and analysis of data periodically throughout the semester. He regularly showed the
class aggregate statistics on class performance. He met with students individually and in groups throughout
the semester to go over their assignments and PSP data while they were in the midst of planning, design,
code, compile, test, and/or postmortem; but prior to project turn-in. He uncovered and removed many, many
PSP data errors through these meetings which are not counted in our results. He did technical reviews of
every assignment’s PSP data, and circulated problem reports throughout the semester summarizing issues
discovered from student data.

4.3 Case Study Instrumentation

We developed a database application to support analysis of PSP data from PSP0 to PSP2, using the Progress
4GL/RDBMS. In order to reduce opportunities for making mistakes, this tool was designed to require a min-
imum amount of user input and to provide the user with default values whenever possible. Apart from task
and scheduling template values, the application automated all analysis stage calculations, from determining
delta times for Time Recording Log entries to performing linear regression for size estimation. In addition,
the application guides the user through the appropriate forms and fields in the order most appropriate for the
current process and phase.

4.4 Data Collection

Once the database application was ready, we entered data from the student project PSP forms and compared
each student value with the value computed by the application. Although every discrepancy between the
manually generated data and the application-generated data could be considered an error, we only counted
an error at its insertion point. For example, in a Time Recording Log entry for the Design phase, ifStop
is incorrectly subtracted fromStart, Delta Timewill be incorrect. Even if all other calculations are done
correctly for the rest of the project,Time in Phase, Design, Actual; Time in Phase, Total, Actual; Time in
Phase, Design, To Date; Time in Phase, Total, To Date; Time in Phase, To Date %; andTime in Phase, To
Date values for an indefinite number of future projects will all be inaccurate to some degree. And this is
just for the most simple process, PSP0! In more advanced processes,LOC/Hour, time estimation,Cost-
Performance Index, andDefect Removal Efficiencyvalues could all be affected for both the current project
and future projects. To eliminate this combinatorial explosion in the number of errors, we counted this as a
single error inDelta Time.

Although we analyzed the project data quite carefully, we do not feel confident that we have uncovered
all or even most of the errors in this case study. While our database application does enable us to determine
the correctness or incorrectness of values generated during the analysis stage of our data quality model, it
provides only limited insight into collection stage errors. For example, in the Time Recording Log, it was
possible to check theDelta Timecomputation, but not the accuracy ofDate, Start, Stop, or Interruption
Time. Of course, the tool could not, in general, detect the absence of entries for work that was done but not
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recorded. Two other areas that created similar problems were the Defect Recording Log and the measured
and countedProgram Sizefields for the Project Plan Summary.

4.5 Data Analysis

In order to analyze the 1539 errors uncovered by the PSP data entry tool, we developed a second database
application, the PSP Error Data Analysis Tool. For each error discovered, we tracked the person who made
the error, the method by which the error was found (technical review, instructor review, or comparison with
the PSP tool results), the assignment in which the error occurred, the PSP process used for that assignment,
the PSP phase in which the student was working when the error occurred, the general error type, the specific
error type, the severity of the error, the age of the error (number of assignments since the introduction of
the PSP operation in which the error occurred), the incorrect and correct values (where applicable), and an
optional comment for noting issues of interest in that error.

4.5.1 Error Correction

Although our initial analysis of our case study data revealed many errors, the sheer presence of errors might
only lead to imprecision, rather than inaccuracy. In other words, it was possible that these errors were only
“noise”, similar in magnitude to naturally occurring random fluctuations in behavior, but not sufficient to
actually change the trends or interpretations of PSP data.

To test this hypothesis, we attempted, where possible, to fix errors so that original and corrected versions
of the data could be compared. It soon became clear that errors fell into three classes. First, there were errors
where the correct value could be determined. This class included such values asLOC/Hourthat were wrong
simply because of an incorrect calculation. These errors were easily fixed by correctly performing the
calculation in question. Second, there were errors where the correct value could not be determined, such as
a blankPhase Injectedfor a Defect Recording Log entry. Fortunately, most errors in this class occurred in
fields that didn’t affect other fields, such as missing header data or missing dates in the Defect Recording
Log. Third, there were errors where the correct value could be guessed. In a Time Recording Log entry
with Start10:00,Stop10:30,Interruption Time0, andDelta Time40; it is clear that there is a problem, but
not clear which field is incorrect and should be corrected. However we can guess that there was a problem
calculatingDelta Timeand assume that the other values are valid. To correct this third class of errors in an
explicit and consistent fashion, we developed a set of rules. Underlying each of our rules is the assumption
that primary data is more likely to be accurate than calculations performed upon it. The following lists each
of the rules along with the number of times it was used in the case study.

Rule 1 (used 53 times): Defects in Time Recording Log entries should be handled by assuming that the
start/stop/interruption times are correct and that the delta time is wrong, unless two Time Recording Log
entries overlap. In that case, the preceding and following entries and the delta time for the current entry
should be used to formulate plausible start/stop times. Generally this will mean starting the second entry
where the first one stops.

Rule 2 (used 5 times): If a Time Recording Log is missing an entry for an entire phase, but the Project
Plan Summary form contains a value for the phase underTime in Phase (min.), Actual, an appropriate Time
Recording Log entry should be formulated with fabricated date and time values.

Rule 3 (used 28 times): For conflicts between a Defect Recording Log and a Project Plan Summary
it should be assumed that the number of defects and the phases recorded in the Defect Recording Log
are correct and that the discrepancy occurred as a result of incorrectly adding up the numbers of defects
injected/fixed per phase and/or incorrectly transferring these totals to the Project Plan Summary form.

Rule 4 (used 10 times): If, for the Defect Recording Log, the total of all fix times for defects removed in
a certain phase is more than the time recorded for that phase in the Time Recording Log, a Time Recording
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Log entry should be inserted with start and stop times that, combined with the existing Time Recording Log
entries for the phase, will produce a delta time of the total fix times plus one minute for each defect. This
will represent the minimum amount of time required to find and remove the recorded defects.

Rule 5 (used 1 time): To provide a value for a blankTime in Phase (min.), Planfield on the Project Plan
Summary form, the value forTime in Phase (min.), Actualfor the same phase should be used. Note that this
rule, if used widely, would itself introduce error into the correction process. However, we used it only once
on one project and it has negligible impact upon our results.

Rule 6 (used 62 times): Conflicts inProgram Size (LOC)fields on the Project Plan Summary form
should be handled by assuming thatBase, Deleted, Modified, Added, and Reusedare correct and that errors
are the result of incorrect calculations forTotal New and ChangedandTotal LOC. Actually, this is not a
truly satisfactory assumption becauseTotal LOC, Actualshould be a measurement rather than a calculation
and should therefore be relied upon. However, given correct values forBase, Deleted, Modified, Added,and
Reused, it is possible to calculateTotal LOC, whereas it is impossible to even guess at the correct values for
the other fields. Unfortunately, defects in theProgram Size (LOC)fields were some of the most common
defects.

4.5.2 Data Comparison

After we partially corrected the project data according to the rule set, we investigated which values to
compare to best reveal the effects of errors. Projects 8 and 9 had the most fields to compare since they were
completed using PSP2, and provided the best opportunities for observing the cumulative effect of errors
made in earlier projects. Project 9 was the best project for comparison because students had had the most
practice in PSP by the time this project was completed and because it provided more time for cumulative
effects to exhibit their true characteristics. Unfortunately one student did not complete this project, resulting
in fewer data points for the final project.

One of the more interesting areas for comparison would have been size and time estimation. This was
not possible due to the difficulties in adequately correcting theProgram Size (LOC)fields. Instead, we
selected a few fields from each of the other major sections of the Project Plan Summary, including some
fields that resulted from fairly simple calculations but represented to date values from all nine projects, and
other fields that were more local to the current project but were the result of more difficult operations.

4.6 Threats

We tested the hypothesis investigated in this study by comparing two PSP datasets: an uncorrected PSP
dataset obtained from our students, and a (partially) corrected PSP dataset produced through automated
analysis and implementation of correction rules. In this section, we discuss threats to the internal validity
(whether the approach used is actually valid for testing the hypothesis) and to external validity (whether the
results obtained in this study are applicable to external industry and academic practice of the PSP).

4.6.1 Internal Validity

One threat to internal validity is an instrumentation effect. This could have occurred in two ways. First, there
could exist defects in the design and/or implementation of the database system used to create the partially
corrected PSP dataset. To minimize this threat, great care was taken in the development of this database
system to ensure the accuracy of its computations, and all data entered was re-checked at least once to
ensure that there were no transcription errors. It is also relevant to note that Anne Disney, who designed and
implemented the database, has worked professionally for many years doing database development using the
same DBMS employed in this study.
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A second threat to internal validity occurs from our use of correction rules. It is conceivable that a
correction rule, if improperly designed, could introduce a systematic bias into corrected dataset that produces
an artificial difference between the two datasets not related to underlying programmer behavior. To minimize
this threat, we evaluated each of our rules for the potential presence of such systematic bias. One rule, in
fact, does have the potential to produce this problem, but we used this rule in only one case in the entire
dataset and our results are not sensitive to the specific value chosen.

4.6.2 External Validity

One threat to external validity is the sample size and nature of our subjects. Our sample size of 10 students
leaves open the possibility that the results could be an artifact of the individuals involved in the study. A
related threat involves the use of students for the study. Perhaps professional software engineers would
approach the learning of the PSP in a different manner than students, given that the rewards and motivation
structure in industry are quite different from academia.

Another threat to external validity is the instructor. Clearly, the level of PSP data quality during both
collection and analysis is influenced by the quality of instruction. It may be possible to obtain different
outcomes merely through alternative approaches to instruction. Furthermore, the instructor in this study has
not attended the official SEI-sponsored PSP instructor training course. However, as discussed in Section 5.1,
the PSP datasets submitted by students in the case study show precisely the same sorts of trends reported by
other instructors, and as discussed in Section 5.2.8, the number of PSP dataset errors detected in our study
is actually quite low, when viewed as a percentage of the total number of possible errors. In addition, the
case study semester was the second time the instructor taught the PSP curriculum, and student evaluations
were overwhelming positive. The case study outcomes do not appear to be the result of lack of instructor
familiarity with the material or the result of simple student apathy regarding the course.

While we attempted to minimize these threats to both internal and external validity of this study, they are
still real. The most effective way to evaluate these threats is through replication of this study in other envi-
ronments using different data verification mechanisms, different subjects, and different instructors. We hope
that this study will demonstrate the need and importance of such replication efforts in the PSP community.

5 Results

This section presents two types of results from the case study. First, we present the educational results,
indicating that students did acquire substantial insight into software engineering during the semester and
viewed the course as valuable. Second, we present the data quality results, obtained from a comparison of
the original PSP dataset with the corrected PSP dataset according to our experimental design as discussed
in Section 4.1.

5.1 Educational Results

Despite the discovery of data quality problems to be reported below, we still view the case study semester
as an unqualified success from an educational standpoint. From a quantitative perspective, student data for
the course parallels the positive outcomes from other PSP case studies:

� Average defect density showed a downward trend from around 200 defects/KLOC to around 50 de-
fects/KLOC, a 75% decrease.

� Average productivity showed a very slight positive trend, from around 15 LOC/hour to around 20
LOC/hour.
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� Time and size estimation showed dramatic improvement. On the last program, both size and time
estimation error dropped below 15% for half the class, with several student estimates within 3-5% of
their actual values. For example, one size estimate of 507 LOC was off by only 11 LOC. One time
estimate of 14.5 hours was off by only 25 minutes.

� Two students out of ten during the case study achieved what we consider to be the “Holy Grail” of
PSP: 100% yield, i.e. programs that compiled and ran correctly the first time without any syntax or
run-time errors.

The qualitative outcomes were equally positive. Most students expressed a very high degree of satisfac-
tion with the course. The following comments are typical:

� “In September, I didn’t know anything about software engineering. Now I know a great deal thanks
to PSP. I now know the importance of why a process is used to finish a task. Software development is
not easy and using a process helps in development.”

� “I thought I was a good programmer, but after using PSP I realize that I was nothing back then. Now,
I can proudly say that I have gotten much much better than ever before.”

� “I must admit, when I started this course, I understood what we were supposed to do in good software
engineering, but I never really did it. Now I understand the reasons behind these practices and the
benefits of actually following a process instead of just jumping right into coding... Teachers who push
doing planning and design might actually know what they’re talking about.”

� “At the beginning, I just coded to finish the project or solve the problem. Now I take an in-depth look
at the problem and think about it for a while before trying to develop a solution. By executing and
learning this process I know way more about software engineering than when I started this course.”

5.2 Data Quality Results

Despite these excellent educational outcomes, comparison of the original PSP dataset with the corrected
dataset yielded 1539 errors. The following sections provide a breakdown of these defects according to their
type, severity, age, the manner in which they were detected, whether they occurred during the analysis or
collection stage, their “ripple effect”, and the overall percentage error rate.

5.2.1 Error Types

We found that the errors naturally fell into one of seven general types. We present each type in descending
order of frequency, and include the number of errors found of that type and the percentage of all errors
represented by this type.

Calculation Error. (705 errors, 46%). This error type applied to data fields whose values were derived
using any sort of calculation from addition to linear regression. If the calculation was not done correctly,
an error was counted. This type was not used for values that were incorrect because fields used in the
calculation contained bad numbers.

Blank Field. (275 errors, 18%). This error type was used when a data field required to contain a value,
such as theStartfield in a Time Recording Log entry, was left blank. This type was not used in fields where
a value was optional, such as comment fields.

Transfer of Data Between Projects Incorrect.(212 errors, 14%) This error type was used for incorrect
values in fields that involved data from a prior project. Typically these fields were “to date” fields that
involved adding a to date value from a prior project with a similar value in the current project. Unfortunately,
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it was often impossible to determine if the error arose from bringing forward a bad number, or incorrectly
adding two good numbers, or bringing forward the correct number and correctly adding it to the wrong
number from the current form. However, in two important areas, time and size estimation, the forms were
modified so that students were required to fill in the prior values to be used in the estimation calculations.
In these cases we could determine when incorrect values originated in the transfer.

Entry Error. (142 errors, 9%). This error type applied when a student clearly did not understand the
purpose of a field or used an incorrect method in selecting data. Examples include the use of a phase name
in the Fix Defectfield of the Defect Recording Log, or having theDefects Injected, To Datevalues in the
Project Plan Summary originate from a different project than theProgram Size (LOC), To Datevalues.

Transfer of Data Within Project Incorrect. (99 errors, 6%). This error type is similar to the error
type involving incorrect transfer of data between projects, except that it applied to values transferred from
one form to another within the current project. For example, filling in 172 forEstimated New and Changed
LOC on the Size Estimating Template, but using 290 forTotal New and Changed, Planon the Project Plan
Summary.

Impossible Values.(90 errors, 6%). This error type indicates that two values were mutually exclusive.
Examples of this error type include overlapping time log entries, defect fix times for a phase adding up to
more time than the time log entries for the phase, or phases occurring in the Defect Recording Log in a
different order than those in the Time Recording Log.

Process Sequence not Followed(16 errors, 1%). This error type was used when the Time Recording
Log showed a student moving back and forth between phases such as Compile and Test instead of sequen-
tially moving through the phases appropriate for the process.

5.2.2 Error Severity

Some PSP data errors have relatively little “ripple effect” upon other data values, while others can have an
enormous impact. To gain insight into the distribution of the ripple effect, we classified the errors into one
of five “severity” levels. We present the levels in increasing order of ripple effect. As before, we include the
total number of errors found for a given severity level and its percentage of the total.

Error has no impact on PSP data.(104 errors, 7%). This level included errors such as missing header
data, incorrect dates in the time recording log, and filling in fields for a more advanced process.

Results in a single bad value, single form.(674 errors, 44%). This level was used if a significant field
which affected no other fields, such asLOC/Hour, Actual, was blank or incorrect.

Results in multiple bad values, single form.(197 errors, 13%). This level indicates when an incorrect
or blank value was used in the calculation of values for one or more other fields on the same form, but when
none of these other values were used beyond the current form. For example, in PSP1 on the Size Estimating
Template, incorrectly calculating a prediction interval. This results in a bad prediction interval and a bad
prediction range, but these values are not used anywhere else in the process.

Results in multiple bad values, multiple forms, single project.(41 errors, 3%). This level indicates
when an incorrect or blank value was used to determine the values for one or more other fields on one
or more different forms in the same project, but when none of these other values were used beyond the
current project. For example, in PSP1, on the Size Estimating Template, calculating an incorrect value for
Estimated Total New Reused (T). This results in an incorrect value forTotal New Reused, Planon the Project
Plan Summary form, but this value is not referenced by future projects.

Results in multiple bad values, multiple forms, multiple projects.(523 errors, 34%). This level was
used if an incorrect or blank value affected future projects. For example, whenDefects Injected, Planning,
Actualon the Project Plan Summary does not match the number of defects entered for the planning phase in
the Defect Recording Log.
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5.2.3 Age of Errors

In any learning situation, a certain number of errors are to be expected. We hypothesized that perhaps the
errors we discovered were simply a natural by-product of the learning process, and would “go away” as
students gained experience with the various techniques in the PSP.

To evaluate this hypothesis, we calculated the “age” of errors—in other words, the number of projects
since the introduction of the data field in which the error could be observed. If the errors were simply a
by-product of the learning process, then we would expect a low average “age” for errors. In other words,
people might make an error in a field initially, but then stop making the error after gaining more experience
with the data field in question.

For example, the calculation ofDelta Timefor the Time Recording Log was introduced in the first
project. If a student made an error in this field during the first project the error would have an age of zero. If
a similar error was made during the second project the error would have an age of one. By the ninth project
this type of error would have an age of eight.

We first analyzed the errors to determine the average error age in each project. Figure 2 shows the
average age for all errors in each project.

Project # PSP Process # of Errors Average Age

1 PSP0 51 0.00
2 PSP0.1 59 0.73
3 PSP0.1 63 1.76
4 PSP1 150 1.27
5 PSP1 165 2.27
6 PSP1 186 3.30
7 PSP1.1 160 3.26
8 PSP2 351 3.04
9 PSP2 354 3.84

Figure 2: Average Error Age by Project - All Errors

We then filtered out the 309 errors with an age of zero. This eliminated errors that could result from
students being introduced to new fields and/or PSP operations for the first time. Figure 3 shows the resulting
data.

When combining the 1539 errors from all projects, the average error age was 2.78 projects. After
removing the 309 errors with an age of zero, the average error age rose to 3.48 projects.

5.2.4 Error Detection Methods

In this study, there were three ways an error could be detected: by another student during technical review
(40 errors), by the instructor during the grading/evaluation process (32 errors), or through the use of the
PSP data entry tool (1467 errors). Thus, students were made aware of about 5% of the mistakes in their
completed projects during the course of the class.

5.2.5 Analysis Stage Errors

Our two stage model of PSP data quality indicates that errors can be introduced during either collection
or analysis. Most of the errors that we detected occurred during PSP analysis activities, with 700 errors
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Project # PSP Process # of Errors Average Age

1 PSP0 0 NA
2 PSP0.1 43 1.00
3 PSP0.1 63 1.76
4 PSP1 70 2.71
5 PSP1 165 2.27
6 PSP1 186 3.30
7 PSP1.1 135 3.86
8 PSP2 214 4.99
9 PSP2 354 3.84

Figure 3: Average Error Age Where Age is not Zero

occurring in the Plan phase and 561 errors in the Postmortem phase. Some of the errors occurring in other
phases, such as errors inDelta Timecalculations, were also analysis errors.

The Most Severe Errors. 34% of errors found were of the most serious type - persistent errors. These
were the errors resulting in multiple bad values on multiple forms for multiple projects. A defect of this type
not only causes incorrect values in the current project, but may still be causing flawed results ten projects
later, even if all subsequent calculations are done correctly. Figure 4 shows the four most common errors of
this type.

Description #

Time Estimation: historical data
not transferred correctly 61
Size Estimation: historical data
not transferred correctly 56
Time Log: delta time incorrect 48
Project Plan Summary: Total LOC,
actual, not equal to B-D+A+R 45

Figure 4: Most Frequently Occurring Persistent Errors

There were two main ways that the error in transferring time estimation data appeared to occur: incor-
rectly transferring the value from the correct field, or accidentally transferring the correct value from an
incorrect field. For example, instead of transferringTotal New and Changed (N)(Plan or Actual), students
often transferredTotal LOC (T). This could easily occur because the Project Plan Summary form has over
90 fields even at the level of PSP1, and these two values are vertically adjacent on the form. It is particularly
easy to make this mistake with the Actual values because the fields are separated by one column from the
labels. Additionally, it appeared that students made spreadsheets to avoid thumbing through the entire stack
of completed projects every time a time or size estimation was needed for a new project. We infer this
because the same incorrect value for a particular project would be transferred over and over again for time
and/or size estimation in new projects.

Similar factors surround the error in transferring data for size estimation. These transfer errors were not
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Project # Errors Time Log Entries % in Error

1 7 84 8.33
2 2 88 2.27
3 8 92 8.70
4 8 108 7.41
5 2 102 1.96
6 9 121 7.44
7 2 77 2.60
8 5 122 4.10
9 5 105 4.76

Figure 5: Delta Time Errors by Project

insignificant. Over the 56 errors resulting from incorrect transfer of data used for size estimation, the sum
of the errors was 7753 LOC (lines of code), with an average error of 138.4 LOC. The sum of the LOC as
they should have been transferred was 10,255, with an average of 183 LOC per field. Thus, the average
incorrectly transferred number was in error by an amount equaling 75.6% of the number that should have
been transferred.

The error in calculatingDelta Timein the Time Recording Log was notable in several respects. First, the
errors were not insignificant. The average mistake was 37.8 minutes, which was an average of 39.9 percent
of the correct value. Second, of 48 occurrences, 16 were in error by one hour and 4 were in error by two
hours, indicating small errors in simple arithmetic. Third, the distribution of this error across projects is as
shown in Table 5.

Despite nine projects worth of experience, this error never “went away”. However it did appear to occur
less frequently after Project 6. Interestingly, the assignment for this project was a Time Recording Log
applet, which at least some students seem to have used for subsequent projects.

5.2.6 Collection Stage Errors

As noted previously, analysis stage errors are relatively easy to determine and correct. However, the accuracy
of recorded process measures from the collection stage was much more difficult to examine because the time
of collection had already passed and, unlike the analysis operations, was impossible to reproduce. However,
we found both direct and indirect evidence for collection errors during the case study.

Direct Collection Error Evidence. Direct evidence of collection problems appeared in the 90 errors of
type of “Impossible Values”. We classified these errors into three major subtypes.

Internal Time Log Conflicts. There were five time logs with overlapping entries, indicating some sort
of problem with accurately collecting time-related data.

Internal Defect Log Conflicts. 51 errors showed problems with correctly collecting defect data. 48
of these errors were Defect Recording Log entries showing defects that were injected during the Compile
and Test phases, but these same defects were not noted as being the result of correcting other defects found
during Compile or Test.

Discrepancies Between Time and Defect Logs.In 22 cases, Defect Recording Log entries were entered
with dates that did not match any Time Recording Log entries for the given date. For example, a defect would
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be recorded as removed during the Code phase on a Wednesday, but the time log would show that all coding
had been completed by Monday and that the project was in the Test phase on Wednesday. For 10 projects,
the totalFix Timefor defects removed during a particular phase added up to more time than was recorded for
that phase in the Time Recording Log. Finally, in two cases, the Defect Recording Log showed a different
phase order than the Time Recording Log.

Indirect Collection Error Evidence Besides the recorded errors, there were other indicators that collec-
tion problems had occurred. Some Time Recording Logs showed a suspicious number of even-hour (e.g.
6:00 to 7:00, 10:00 to 12:00) entries, even though students were required to record times at the minute level.
Others showed long stretches of consecutive entries with no breaks or interruptions. Often, the totalFix Time
for the defects in a phase was far less than the time spent in the phase. For example, the Time Recording
Log might show three hours spent in the Test phase, but the Defect Recording Log would show two defects
that took eight minutes to fix. Obviously, it is not impossible that this would occur, but it is much more
likely that not all defects found in test were recorded.

In a similar vein, some projects had suspiciously few defects overall, such as seven defects for a project
with 284 new lines of code and almost 11 hours of development time, (including 40 minutes in compile for
two defects requiring 6 minutes of fix time). Our analysis of the PSP data for that same project yielded 27
errors.

Finally, the instructor has anecdotally observed the following trend in every PSP course he has taught
so far: the students turning in the highest quality projects also tend to record far higher numbers of defects
than the students who turn in average or lower quality projects. If this trend is real, then we can provide two
possible explanations. It may be the case that the students turning in lower quality projects tend to make far
fewer errors than those turning in the higher quality projects, although this seemsextremelyunlikely. What
appears more likely is that the students turning in the highest quality projects also exhibit the lowest level of
collection error, which indicates that substantial but non-enumerable collection error exists in the PSP data
we examined.

5.2.7 Comparison of Original and Corrected Data

When we compared the original and corrected data, we found significant differences (p<.05) for the Cost-
Performance Index (planned time-to-date/actual time-to-date) and Yield (percentage of defects injected be-
fore first compile that were also removed before first compile). We used the Wilcoxon Signed Rank Test [5],
a non-parametric test of significance which does not make any assumptions regarding the underlying distri-
bution of the data. Figure 6 and Figure 7 illustrate the differences between these two measures graphically.
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Figure 6: Effect of Correction on CPI
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Figure 7: Effect of Correction on Yield

A CPI value of 1 indicates that planned effort equals actual effort. CPI values greater than 1 indicate
overestimation of resource requirements, while CPI values less than 1 indicate underestimation of resource
requirements. In half of the subjects, correction of the CPI value reversed its interpretation (from under-
planning to overplanning, or vice-versa). In the remaining cases, several corrected CPI values differed
dramatically from original values. For example Subject A’s original CPI was 0.32, indicating dramatic
underplanning, while the corrected CPI was 0.99, indicating an average planned resource requirements vir-
tually equal the average actual resource requirements.

Correction of yield values tended to move their values downward, sometimes dramatically. In half of
the subjects, the corrected yield was less than half of the original yield values, indicating that subjects were
removing a far fewer proportion of defects from their programs prior to compiling than indicated by the
Yield measurement.

These particular results confirm our hypothesis. In the case of CPI, use of the uncorrected data would
lead half of the subjects to make exactly the wrong process improvement. In the case of yield, use of the
uncorrected data would lead subjects to not take process improvement actions indicated when yield is low.

5.2.8 Overall Percentage Error Rate

Such a large number of data quality errors calls into question the quality of instruction. Perhaps these results
are a simple artifact of poor quality control on the part of the teacher? Unfortunately, the very large number
of data values to check in the manual PSP suggests otherwise.

For example, a time recording log contains six fields (plus a comment field, but for our purposes, this
field is extraneous):Date, Start, Stop, Interrupt time, Delta Time,andPhase. Students typically entered
about 10 time log entries for an assignment. This results in 60 data values to check for one student on one
assignment, and 600 data values to check for a class of 10 students. This is for one form and one assignment.
Following this approach, one can arrive at an estimate of almost 32,000 data values to be checked by hand for
this single case study, as illustrated in Figure 8. The 1539 data errors uncovered during this study represents
only 4.8% of the total possible, which means that the instructor obtained over 95% correctness (at least with
respect to analysis-stage data quality).

6 Discussion

This paper reports on the results of analysis of the data from a single PSP class with only 10 students. As
with any case study, care must be taken in interpreting these results. We do not know whether this data is
representative of PSP courses in general, and if the way we teach the PSP is representative of the way the
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Process Approx. Fields Projects Total Values

PSP0 200 10 2000
PSP0.1 220 20 4400
PSP1.0 329 20 6580
PSP1.1 437 20 8740
PSP2.0 528 19 10,032

Total 89 31,752

Figure 8: Data values present in PSP

PSP is taught by others. Data quality problems might be less prevalent in other PSP courses; on the other
hand, they might just as easily be more prevalent.

While we do not claim that these results are representative of all PSP courses, neither do we believe
that they are an artifact of some peculiarity and/or failing of our environment. First, this case study was
performed after the instructor had taught the PSP for one semester in a graduate level course, and instituted
it within his research group, and adopted it himself for his own software development activities. By the time
of this study, we were quite experienced as both teachers and users of the PSP. Second, as already noted,
we were concerned with data quality problems from the beginning, and instituted curriculum modifications
specifically intended to raise data quality. The overall error rate of less than 5%, while quite small, was still
not sufficiently small to prevent significant differences between original and corrected data sets. Third, our
results cannot be due to our lack of enthusiasm for the PSP: both of us consider it to be one of the most
powerful software engineering practices we have adopted in our careers. The second author, for example,
has used her automated PSP tool to gather data on over 120 of her industrial projects over the past two
years. Fourth, our results cannot be due to lack of enthusiasm for the PSP by our students, as the post-course
comments reveal, most of the students indicated that they found the class to be very useful and interesting.

6.1 Recommendations for research and practice

Based upon the results of this study, we have the following recommendations for future research and practice
of the PSP:

6.1.1 Replication

We believe this study provides strong evidence for the need for more research on collection and analysis data
quality in the PSP. Current studies of the PSP appear to take the accuracy of PSP data for granted, or else
simply assume that tool support can eliminate all sources of data quality problems. This study is the first
to methodically examine the assumptions underlying data quality in the PSP and subject them to empirical
investigation. Our results indicate that the PSP community may be overly optimistic about the quality of PSP
data, particularly when produced using the traditional, manual approaches that lack integrated, PSP-specific
tool support. Even when such support is provided, the possibility of measurement dysfunction introduces
substantial threats to the accuracy of the data in the collection phase as discussed below in Section 6.1.5.
Better understanding of the true extent of PSP data quality problems requires replication of this study, or at
least further PSP research that includes PSP data quality verification as an explicit design component. To
support this endeavor, researchers are invited to peruse a website containing curriculum materials from this
course at http://www.ics.hawaii.edu/�johnson/613s98/.
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6.1.2 Software engineering education

We continue to believe that the PSP has substantial educational value in software engineering, despite the
issues we have raised with data quality. Students learn valuable, concrete skills concerning defect man-
agement and planning in the PSP curriculum. Additionally, the PSP provides students with a framework
for empirically evaluating the usefulness of any other process improvement techniques or programming
methods they come across in the future.

6.1.3 PSP tool support

We believe that integrated tool support for the PSP is required, not merely helpful, to obtain high analysis-
stage PSP data quality. We also believe that integrated tool support will make adoption of the PSP substan-
tially easier, since the most common complaint made by students using the manual PSP in our classes is the
time and effort required to fill out the forms. Currently, we have designed and implemented a Java-based
toolset for integrated empirical software process improvement that automates many of the analysis stage
computations in the PSP, and which extends the PSP paradigm with support for group review and patterns
[17]. We are currently using this toolset, called Leap, in a software engineering course and will deploy it in
an extensively redesigned PSP-like curriculum in Fall 1999.

6.1.4 PSP research design

We believe that the results of this case study have a number of implications for current and future research
on the PSP.

First, until questions raised by this study with respect to PSP data quality are resolved, PSP data should
not be used to evaluate the PSP method itself. In other words, we believe that it is not yet appropriate to
assume that changes in PSP measures during (or after) a training course accurately reflect changes in the
underlying developer behavior. A statement such as “The improvement in average defect levels for engineers
who complete the course is 58.0%”, if based upon PSP data alone, might only reflect a decreasing trend in
defect recording, not a decreased trend in the defects present in the work product.

Second, our research on the PSP has demonstrated that high quality pedagogical design is not equivalent
to high quality experimental design. In other words, some of the features of the PSP with respect to pedagogy
are bugs with respect to experimental design.

One problem in the PSP with respect to experimental design concerns uncontrolled instrumentation.
The PSP programming exercises incrementally build a set of tools for use in gathering and managing PSP
data. This is elegant pedagogically, since it enables an instructor to use the PSP and have the students build
partial tool support for it as they go along. Unfortunately, this is disastrous from an experimental design
viewpoint, since it means that crucial primary data measures (size) and derived measures (size and time
estimates) are calculated from a set of student programs with no experimental control over their quality
and accuracy. We know from bitter experience that writing a high quality size counting and differencing
tool for Java that handles all aspects of the language and produces both a meaningful measure of size and
differences in size between two versions of a program is a nontrivial programming project. It requires
extensive design, implementation, and field use far beyond the 10 days available for this program in the PSP
curriculum. For the PSP curriculum to be useful experimentally, there must be control over and verification
of the instrumentation.

Another problem in the PSP with respect to experimental design concerns the lack of control over cur-
riculum modifications. For example, the SEI study notes that “there are many cases where instructors
tailored the training course (including selection of assignments, data collection requirements, and sequence
of introduction for process changes.)” Our course also deviates from the standard curriculum.
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Yet another problem in the manual PSP with respect to experimental design concerns systematic bias
in the data. For example, the PSP curriculum requires, in an academic setting, a full semester course. In
academic settings, the workload on students tends to be light during the beginning of the semester, become
heavier after midterms, and reach a peak near the end of the semester. For PSP measures to be accurate,
students must maintain a consistent level of process data collection throughout the course of the semester.
From our personal experience, we have observed that a portion of the students in our PSP classes appear to
begin to “cut corners” in their recording of defects and time near the end of the semester, presumably due to
external pressures on their time and energies. This “end of semester crunch” can introduce a systematic bias
into PSP data, leading to, for example, artificial decrease in defect density values near the end of the course.

Another example of systematic bias can occur from what we term the “process overhead ceiling effect”.
Many students complain that the amount of effort collecting and analyzing PSP process data can equal,
exceed, or interfere with the time and focus required to actually develop the programs. Early in the course,
process overhead consists almost purely of time and defect data collection, so students devote a great deal
of time and energy to that task. By the end of the semester, the total process overhead of the PSP has risen
dramatically, since estimation, time and schedule planning, and so forth have all been added. If at least some
portion of the students decide to limit the amount of time spent on process collection and analysis, the most
likely place to cut corners is, once again, in defect recording, which would once again produce an artificial
decrease in defect density values near the end of the course.

A final example of systematic bias occurs from the format of the manual PSP forms themselves. As
we note in our results, the case study students frequently transferred a “Total” LOC value from one form to
another instead of the “New and Changed” LOC value. Since the Total value is always greater than “New
and Changed”, a systematic bias toward inflated system sizes is present. We found other situations in which
the design of the forms lead to consistent user errors.

From an experimental design standpoint, uncontrolled instrumentation and systematic bias are threats to
the internal and external validity of any study which both uses the manual PSP and which draws conclusions
about underlying programmer behavior based purely upon the PSP data. One example of research suffering
from these threats is the Software Engineering Institute technical report by Hayes and Over [8]. The report
refers to collection of “paper forms”, indicating the manual PSP. There is no mention of any control over the
quality and accuracy of PSP instrumentation, such as the size counter. There is no mention of any rigorous
validation of the PSP data. Instead, the researchers simply claim that “the quality and accuracy of the data
used in any given class tend to be exceptional.” Unfortunately, our case study shows that even an accuracy
of over 95% in the PSP dataset is insufficient to obtain data accurately reflecting underlying programmer
behavior. Furthermore, our original dataset is quite consistent in its outcome with the aggregate outcome
reported by the SEI. The research design presented in their report cannot detect the data quality problems
in our original dataset, and so presumably cannot detect data quality problems present in any of the datasets
actually used in the study. Finally, although the researchers subjected the PSP data to extensive statistical
analysis, these analyses all assume the absence of systematic bias in the dataset, an assumption which we
believe to be incorrect in the manual PSP.

We are happy to note that not all PSP evaluations are based upon PSP data alone. For example, in one
industrial case study, evidence for the utility of the PSP method was based upon reductions in acceptance
test defect density for products subsequent to the introduction of PSP practices [6]. Although alternative
explanations for this trend can be hypothesized (such as the PSP-based projects were more simple than
those before and thus acceptance test defect density would have decreased anyway), at least the evaluation
measure is independent of the PSP data and not subject to PSP data quality problems.
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6.1.5 Collection data quality and measurement dysfunction

Unfortunately, integrated tool support is not a “magic bullet” that will solve all PSP data quality problems.
As our simple model of PSP data quality shows, no matter how perfectly we are able to automate the analysis
stage, overall PSP data quality will still depend largely upon the data quality from the collection stage.

Our case study was able to detect substantial numbers of analysis errors which could be eliminated
through appropriate automation. Our case study was also able to detect the potential presence of substantial
collection errors, but the solution to this issue is much more complex. It is currently beyond the state of
the art to accurately and completely automate the collection of all primary process measures (time, size,
defects) for a programmer. For the foreseeable future, we must rely on users of the PSP to accurately and
consistently record primary data values.

In our research on the collection data quality problem, we have gained insight from research on “mea-
surement dysfunction” [1]. According to Austin, whenever you measure an attribute of an organization with
the goal of improving the organization’s performance, you run the risk of worsening the organization’s per-
formance as a direct result of the measurement. This is because there are at least two uses to which a given
measurement can be applied: for information and for motivation.

Informational measurement “tells about an organizational process... It is used to learn from and to plan.”
In the PSP, all measures are intended to be informational.

Motivational measurement, on the other hand, “is used to quantify the value of compensation for com-
pliance with objectively verifiable standards of work.” In other words, motivational measurement is used to
evaluate the performance of individuals. In the PSP, no measures are meant to be motivational.

Although this seems straightforward, a principal claim of Austin’s research is that any individual mea-
sure is ”value-free” with respect to its application: it can be used for informational purposes, motivational
purposes, or both. Importantly, it is impossible for an organization to guarantee that a measure, once col-
lected, will never be used for motivational purposes. Thus, individuals in an organization may tend to operate
under the assumption that any measures of individual performance can be used for motivational purposes,
regardless of the stated intention of the organization with respect to that measure at the time it is taken.

We find the measurement dysfunction perspective quite revealing with respect to the PSP, because in
any PSP academic or industrial training situation, the “organization” collects the PSP measures from the
individual. Even though competant PSP instructors always inform the students that they will not be evaluated
on the actual values of their PSP data they collect, measurement dysfunction theory indicates that individuals
may still act under the assumption that they might at some point become accountable for the values they
submit. As PSP data provides very revealing and potentially dangerous information about a programmer’s
practice, the appropriate PSP data to provide the organization for motivational measurement may be quite
different from the appropriate data for personal, informational measurement.

We conjecture that collection stage data quality requires, at a minimum, a combination of low collection
overhead along with environmental features that minimize the potential for measurement dysfunction. Over-
head can be reduced through tool support that makes manual recording of time, defect, and size data fast
and accurate. Minimizing measurement dysfunction requires, in essence, the property of privacy for PSP
data—in other words, that the organization does not and cannot have access to an individual’s PSP data.

Measurement dysfunction, unfortunately, introduces yet another obstacle to the use of PSP data for ex-
perimental purposes. In order to teach a PSP course effectively, the instructor must inspect the PSP data
submitted by students. However, this essential educational feature violates the privacy of an individual’s
PSP dataset, an essential feature to minimize measurement dysfunction. The problem of measurement dys-
function, on top of the problems cited earlier, lead us to question if collecting PSP data from an educational
setting is a fundamentally unsound approach to assessing underlying programmer behavior. If this is true,
we must redesign our current paradigms for research using the PSP.
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