
A Case Study Of Defect Detection And Analysis With JWiz

Jennifer Geis
Dept. of Information and Computer Sciences

University of Hawaii
Honolulu, HI 96822 USA

+1 808 956-6920
jgeis@hawaii.edu

ABSTRACT
This paper presents a study designed to investigate the
occurrence of certain kinds of errors in Java[5] programs
using JavaWizard (JWiz), a static analysis mechanism for
Java source code. JWiz is a tool that supports detection of
certain commonly occurring semantic errors in Java
programs.

JWiz was used within a research framework designed to
reveal (1) knowledge about the kinds of errors made by
Java programmers, (2) differences among Java
programmers in the kinds of errors made, and (3) potential
avenues for improvement in the design and/or
implementation of the Java language or environment.

We found that all programmers inject a few of the same
mistakes into their code, but these are only minor, non-
defect causing errors. We also found that the types of
defects injected vary drastically with no correlation to
program size or developer experience.

Finally, we found that for those developers who make some
of the mistakes that JWiz is designed for, JWiz can be a
great help, saving significant amounts of time ordinarily
spent tracking down defects in test.

Keywords
static analysis, code review, run-time/semantic errors

1 INTRODUCTION
All programmers inject defects into their code. Even
experienced developers typically inject a defect about every
10 lines of code[6]. Half of these defects are normally
found by the compiler, while the rest must be found
through reviews, testing, or by the users.

Every programmer hates debugging their work. If you were
to guarantee a software developer that she would never

have to spend another minute tracking down bugs in her
code, she would probably worship you for life. In many
cases, the most time consuming part of debugging usually
isn't removing the defect, but tracking it down in the first
place. All programmers can remember some horrible night
spent searching for the cause of a strange behavior in their
program. Such a night frequently ends with the
programmer groaning in disgust when they finally spot the
offending line.

The JavaWizard Solution
JavaWizard (JWiz) can't prevent those late nights, but it can
make them happen a little less often. JWiz is a Java source
code analyzer. It scans through code looking for common
programming constructs which, though legal in the Java
language, are still likely to cause errors. Due to its nature,
JWiz is intended for use after the first clean compile and
before testing. JWiz requires the code to be compilable, and
thus it does not concern itself with syntactic errors. Instead,
JWiz notifies the user of possible run-time problems.

In essence,  JWiz serves as a kind of “smart compiler” that
can inform the programmer about constructs that will likely
cause the program to behave in unexpected ways, as
opposed to the syntactic errors that a compiler normally
captures. Basically, JWiz is like a Lint[3] for Java. What
distinguishes JWiz from Lint, other than the programming
language, is the way in which we used it for this research.

JWiz provided us with the opportunity to study, for the
errors it catches, what kinds of programmers make them,
what kinds of programs they are made in, and (ultimately)
how the programmer and perhaps even the Java language
itself could change so that these errors would not occur.

One might ask, given a mechanism to catch these errors,
why bother worrying about how to change programmers or
the language? Why not just use the tool to catch the errors?

The answer is that JWiz can be used that way, but the kinds
of semantic errors JWiz catches are only a narrow subset of
all the possible errors a programmer could make. Although
JWiz may signal that there are a lot of errors present that it
knows about, that could mean that there are a lot of other
errors present that it doesn't know about.

LEAVE BLANK THE LAST 2.5 cm (1”)
OF THE LEFT COLUMN ON THE FIRST PAGE

FOR THE COPYRIGHT NOTICE.
(preserve these six lines in some

 cases, but make their contents
 blank  in your text)



On the other hand, the kinds of improvements a
programmer might make in response to JWiz feedback
(such as changes to coding style, or the use of reviews), or
the kinds of changes that could ultimately be made to the
Java language (such as redesigns of the class libraries or
interfaces) or environment could not only eliminate the
JWiz errors, but also other errors not caught by JWiz. For
this reason, JWiz has important potential for software
quality improvement beyond its application as a Lint for
Java programs.

Another argument for programmer/language improvement
is that JWiz is not infallible. JWiz is a new tool.  We could
not anticipate all the possible ways a programmer could
make a particular error. What happens if the developer gets
a false sense of security? They might run JWiz in the
process of looking for a bug, and then think “It can't be
here since JWiz would have told me about it, so I won't
waste my time looking."

A Usage Scenario
In UNIX or DOS, JWiz can be run as an application
invoked via the command line. The user goes to the
directory containing the files on which they wish to run
JWiz and types the following command.

'jwiz *.java'

JWiz scans the files and prints out a listing of the warnings
generated. The listing might look like this:

TestFile.java:23: GUI component stopButton not added to a
container.

TestFile.java:30: addActionListener not called on button
'goButton'.

TestFile.java:42:  addActionListener not called on button
‘stopButton’.

TestFile.java:89: Multiple objects added to same
borderlayout area.

TestFile.java:131: Local variable 'varString' overshadows
member variable.

TestFile.java:171: Local variable 'testString' not used.

We have also implemented a JWiz mode for XEmacs
which allows the JWiz output to be mouse selectable as
shown in Figure 1.

Once the JWiz results are displayed, the user then goes
through the list and determines which were “real” errors
(which must be fixed in order for the program to function
properly), which were “maintenance” errors (which do not
cause problems in the running of the program but which
indicate “bad style”), and which were “false positives”
(where JWiz flagged something the programmer really
intended to do as an error).

When used with the intent of self improvement, the user

may note that she has a tendency to forget to add an action
listener when she makes her buttons (which causes the
buttons not to do anything when clicked). One possible step
she might take at this time is to start a checklist of her
common errors. She might use this checklist for future code
reviews.

By saving the JWiz output into a log, she would be able to
see patterns of errors. For example, she might notice that
where one error is found, more generally occur. Or, she
might notice that she has a habit of making the same errors
across multiple projects.

Figure 1: JWiz-mode in Emacs

2 EXPERIMENTAL DESIGN
Hypothesis
The JWiz research project involved the following
hypotheses:

1. The use of JWiz in the context of this research would
reveal areas of improvement both for Java programmers
and the Java language and/or environment.

2. JWiz uncovers certain classes of defects more efficiently
than manual debugging.

The following sections discuss how the experiment was
designed to address the above hypotheses.

Improvement to the Java Language/Environment/
Programmers
In order to discover problem areas for Java developers and
the Java language and/or environment, we needed to find
out what defects were being made. Since JWiz provided a
mechanism for defect reporting, we recorded all the defects
(JWiz functional errors) with the intent of answering the
following questions:

1. What defects occurred most frequently?

2. What defects could be avoided by changes to the Java
language/environment?

3. How can developers change their programming habits to
avoid these defects?



JWiz vs. Manual Debugging
In order to determine if JWiz is any more effective at
locating defects than manual debugging, we needed to
record data on how long it took people to find and remove
the defects which JWiz can detect. We accomplished this
by having students send me a copy of their code after they
got their first clean compile, but before they started doing
any testing. The students then went about their normal
development. They were required to record all the defects
they made, what the defects were, and how long they took
to find and fix.

Most developers would not have this information recorded,
but the nature of the class the students were taking required
it.  This will be elaborated on a little later in the section
regarding the Personal Software Process[6].

After the programs were finished, we sent each student a
listing of all the warnings that JWiz generated from their
pre-test code. For each warning, they were asked to verify
if it was a defect that they found, and if so, how long it took
them to locate the source of the problem and fix it.

As JWiz finds errors essentially instantly, we could look at
the students' responses to the warnings and see if JWiz is
any more efficient than their manual debugging efforts.

Experimental Procedures
For this research, we designed a case study.  Over a period
of four weeks, JWiz was given to two groups of students
and one research group of 5 graduate students.

Data
Collecting the defects discovered by JWiz is not enough.
That would only indicate whether or not the program
works, not if it is really a useful tool. To understand more
about the effectiveness of the tool, we decided to collect
some other pieces of information as well, specifically, the
size of the program, the phase of development at which
JWiz was executed, and the developer's experience in terms
of number of years of programming, experience with Java,
and number of languages. We also planned to track “false
positives,” warnings which the developer decided were not
valid.

Size
The size of the program is useful in determining JWiz'
effectiveness. By effectiveness, we mean the number of
defects found per thousand lines of code. If JWiz reports
only one valid error, the effectiveness of JWiz to that
program's developer varies depending on whether the
program was one thousand lines of code or ten.

Total Number of Errors in Test
The effectiveness of JWiz also depends on the percentage
of all errors found in the test phase that were detected by
JWiz. If there were 40 errors found during test and JWiz
caught only one, there is still much for the developer to do.

However, the thing to keep in mind regarding effectiveness

is that even if JWiz finds only a small proportion of errors,
the errors it does find can still save significant amounts of
time in debugging.

Development Phase
The phase of development in which the developer uses
JWiz can have a big impact on the number and types of
defects JWiz finds. If JWiz is used after compile and before
test, it is probable that more warnings will be generated
than if JWiz is used after testing is already completed.

Whether a code review is performed before or after using
JWiz can have an affect on JWiz' effectiveness as well. If
the developer has used JWiz before and noticed that there is
a specific error that she makes frequently, than she might
be watching out for it during a review, hence eliminating it
before JWiz is run.

Developer Experience
There are a variety of things to consider regarding
developer experience: amount of time doing programming
in general, amount of time programming in Java, and the
number of languages the developer has worked with.

We hypothesized that developer experience would be a
factor in what kinds of errors JWiz is likely to find. If the
developer is a first year introductory student, she would
probably not be using inheritance and inner-classes, so
advanced defect checks are not likely to be invoked. On the
other hand, she would probably make the mistake of not
creating a listener for events or adding multiple
components to the same area in a BorderLayout (which
causes components to not be displayed).

If the developer is experienced with Java, she could make
the same mistakes as a novice, but she is more likely to
make mistakes such as calling Thread.suspend() (this
causes your program to hang). A beginning student would
probably not be using threads, so she is unlikely to
encounter this problem.

False Positives
The accuracy of JWiz can be determined by comparing the
number of functional errors, maintenance errors, and false
positives. If for every 10 warnings that JWiz generates, half
are functional errors, then JWiz is accurate 50 percent of
the time (maintenance errors are not counted towards
accuracy). This measure of accuracy must be combined
with effectiveness in order to evaluate the usefulness of
JWiz.

Although false positives are a nuisance, they can not all be
avoided. Occasionally, what JWiz identifies as an error is
something the programmer meant to do.

Other false positives are a result of a limitation in the
current design of JWiz. JWiz runs on one file at a time, so
if you have a package with multiple classes, JWiz may
generate warnings for things which if the class was stand-
alone, it would be an error, whereas in a package, it may



not be an error. For example, you might declare a variable
in one class that isn't used in that class, but is used by
another class in the package. Since JWiz does not check for
interdependencies among classes in a package yet,
erroneous warning messages will be produced.

Time
Time required for testing is another indicator of the
effectiveness of JWiz. We believe that developers would
spend less time debugging the defects for which JWiz is
designed. If the developer runs JWiz after the first clean
compile and before starting testing, JWiz will locate
specific defects, saving the developer the time it would
have taken to locate them manually.

The Personal Software Process (PSP)
Some data collection relied heavily on the use of Watts
Humphrey’s Personal Software Process (PSP)[6]. The PSP
requires that the developer follow a strict software
development process consisting of the following phases:
plan, design, code, compile, test, and postmortem.  The
developer keeps track of all defects that are found in their
programs.  For each defect, the data collected includes a
description of the defect, the phase of development during
which the defect was injected into the program, the phase
in which it was removed, and the amount of time it took to
find and remove it.  Exactly how the PSP is used in this
experiment and by whom will be discussed in the following
section.

Subjects
For this research, we collected Java code and/or the JWiz
results from two classes at the University of Hawii (ICS
311 and 613), and a research group (Collaborative Software
Development Laboratory). A variety of approaches for the
use and data collection of JWiz were needed because of the
different types of developers.

ICS 311
Algorithms and Data Structures (ICS 311), a class in which
all assignments were done in Java, was taught by Dr. Feng
Gao at the University of Hawaii. We made a short
presentation to the class regarding what JWiz was and how
to use it. JWiz was provided to the students in a GUI
application, a text-only application, and an applet.  All
three were available for them to use at will.

Collaborative Software Development Laboratory
The Collaborative Software Development Laboratory
(CSDL) is a graduate student research group within the
Information and Computer Sciences Department at the
University of Hawaii.

Being members of this group, we had daily, immediate
access to all of its members. We were already familiar with
the demographic data for each member and had the luxury
of asking questions or soliciting opinions at any time. One
feature of this group is that members have access to all
code developed in the laboratory.

The experimental design for this group involved several
methods of data collection. The first method was a result of
the CSDL system release process. CSDL developed a
program called JDS to automate releasing Java software
systems. We added a JWiz run to this release process which
would send me an email of the results.

This CSDL data was collected over a two month period.
We found a number of false positives which we had not
anticipated and we received bug reports as well. The
release data provided me with a means of refining my
system and building experience regarding the use of JWiz
on the same system over consecutive releases.

The second method of data collection within CSDL was
manual. We ran JWiz over all the Java source code in the
CSDL archives. The code was written by many different
people with a variety of programming experience. This
code was already tested. We ran JWiz to see what sort of
errors may be left undetected and how useful it would be to
run JWiz on tested code. Due to the nature of the
laboratory, we had access to all the code and the authors. In
the interest of inconveniencing my fellow group members
as little as possible, we ran the JWiz tests myself and then
queried the authors as to the validity of JWiz warning
messages as needed.

ICS 613
ICS 613, Advanced Software Engineering, was a graduate
course conducted by Dr. Philip Johnson at the University of
Hawaii. In this course the students used the PSP in the
development of all their programming assignments.

As defined by the PSP, the students were required to keep
track of all defects made during the development cycle. For
each defect, the students recorded when the defect was
made, when it was found, a description of the defect, and
the amount of time it took to find and remove it.

The members of ICS 613 were offered extra credit in return
for sending me the source code of their assignments
immediately after the first clean compile but prior to
testing. Since the students were following the PSP, all
coding is completed prior to the first attempt at compiling.

After the students completed their projects, we notifed
them of warnings generated by JWiz. We asked the
students to note which of these warnings were valid. For
the warnings which identified real defects, the students
indicated whether they had found the defect, and if so, how
long it took them to remove it. We also asked the students
to provide some demographic data regarding their
experience level.  The students were never given JWiz
itself.

We later compared this data with the data obtained from
running JWiz on CSDL code. The data differed in the
phase of development in which JWiz was run. Since we
could control the phase at which JWiz was run, JWiz was



always run on post-compile, pre-test code.

Means of Data Collection
ICS 311
JWiz was offered to the ICS 311 students in several
formats: A GUI application, a text-only application, and an
Internet-based applet.

The GUI application displays the user's source code along
with any warnings that were generated. It also displays a
short survey and provides the user with the option of
submitting their code along with the survey and defect data.

In addition to showing the line numbers for the code, the
application also provide the ability to go directly to each
line which generated a warning by moving the mouse over
the description of the problem. Should the warning be
invalid, the student would then deselect the corresponding
checkbox.

Students in ICS 311 were offered extra credit if they used
JWiz. In order to report the use to their professor, we
provided a field where students would enter their email
address.

For each warning shown, the student was asked to indicate
whether it was a real defect or not by toggling the checkbox
next to the description of the problem. If the student was
using the text only version, she would be queried about the
validity of each warning generated.

After indicating the validity of the errors and filling out the
survey, the student could quit the program and the data
would be sent to me.

The Internet-based applet was similar to the application in
all ways except for the manner of entering the file to be
parsed. The application took a path and file name whereas
the applet required an Internet URL due to applet security
restrictions.

The  text-based application would take the file name as
input and then run JWiz on it. It would then prompt the
user for responses to the survey questions in addition to
validating the errors.

ICS 613
In contrast to ICS 311, the students of ICS 613 were never
offered JWiz for their use. Instead, as I've already
mentioned, the students would send me their post-compile,
pre-test code upon which we would run JWiz. After their
assignments were finished, we sent them the results of the
run and asked them to verify if the warnings referred to real
errors or not.

3 RESULTS
Defect Classification
We classified JWiz warnings into the following three
categories: functional errors, maintenance errors, and false
positives.

A functional error is a defect which will result in the
program not doing what the developer intended. These are
the real defects that programmers must fix in order for a
program to work properly. For each of these defects, we
obtained (when possible) data on how long the programmer
spent locating and fixing the defect.

A maintenance error is a construct which will not prevent
the program from functioning properly but is still not
correct. For example, these defects involve situations where
variables are declared but never used in a method. These
will not cause the program to malfunction, but they are still
errors in the sense that they make the program more
difficult to understand and modify. We call these
maintenance errors because they could cause problems if
the program is to be revised in the future.

A false positive is a construct which JWiz flags as an error
but is actually what the programmer intended. For example,
JWiz flags a warning when it finds a local variable that
overshadows a class variable. While this can signal a real
problem, sometimes the programmer actually wants to do
this. When a programmer says, “I meant to do that," the
warning is classified as a false positive.

Raw Data
Out of the 235 warnings generated by JWiz, the warnings
were spread fairly evenly across the three categories.
Functional errors accounted for 29 percent of the warnings,
maintenance errors for 43 percent, and the remaining 28
percent were false positives.

Out of the 30 tests for defects that can be performed by
JWiz, only nine tests generated any warnings. Also, only
two of these tests indicated defects which required
significant fixes.

Developer Experience
We categorized developer experience using three factors.

1. General programming experience (years).

2. Java programming experience (months).

3. Number of languages known.

The amount of experience varied greatly for the developers
in this research. We had developers with general
programming experience ranging from one year to twenty-
five. We didn't see any correlation between the number of
years of general experience and the number of years of Java
experience. For the majority of the students, ICS 613 was
their first exposure to the Java programming language.

Program Size
In comparing the number of new and changed lines of code
along with the number of defects made, there didn’t seem
to be any relationship.

One possibility for this is that the students were not
accurate in the recording of the number of new and



changed lines of code. For example, one student listed the
number of lines of code reused from a previous project as
zero, then he listed the new and changed as also zero. Yet,
his total lines of code were over 300. We omitted
“impossible" numbers such as this.

Another potential source of error is the recording of
defects. Perhaps the students were less than exact in noting
when an error occurred. If this is the case, no correlation
would be shown in this data, while there may be a relation
with the number of defects that were really made.

Development Phase
As expected, the development phase during which JWiz
was run was a big factor in the kinds of warnings
generated. When JWiz was used before testing began, the
types of JWiz warnings were split up evenly with roughly
the same percentages of functional errors, maintenance
errors, and false positives.

In contrast, when JWiz was run after testing, it was,
without exception, a waste of the developer's time. No
functional errors were ever found by JWiz at this stage. The
only useful outcome of running JWiz after testing was the
cleaning up of code.  Some users took to running JWiz after
testing so they could remove unreferenced variables and
parameters.

However, there might be some benefit to running JWiz
while still in the test phase. In looking through one
student's defect recording log, we noticed that he had
created one defect in the process of fixing another. The
original defect involved the GUI. While fixing this error, he
decided to create another button, and this is where the
second defect occurred. He forgot to add the button to the
window, a defect which JWiz looks for. He spent close to
an hour on this defect, almost forty percent of the total
amount of time he spent testing. We noticed similar events
on other DRLs as well. It might be worthwhile to run JWiz
during test when you encounter a problem that may be
found by JWiz (for example, a component not appearing in
the display).

JWiz Effectiveness and Accuracy
One of the goals we wanted to accomplish with this
research is to determine the accuracy and effectiveness of
JWiz.

Effectiveness is a measure of valid defects found per
thousand lines of code, accuracy is a comparison of the
number of functional errors with maintenance errors and
false positives. JWiz analyzed 12848 lines of code from
ICS 613. The students reported spending 125 hours in test.
Of this time, 76 hours were spent debugging and 240
defects were removed. On average, the students recorded
removing one defect in test every fifty-four lines.

JWiz generated 235 warnings. Of these warnings, 69 were
functional errors, 100 were maintenance errors, and 66

were false positives.

Regarding effectiveness, JWiz found one functional error
every 186 lines of code. This accounted for 29 percent of
all defects found by developers in test during the study.

Although JWiz caught 29 percent of all reported defects
found in test, the time spent locating and fixing those
defects amounted to only five and a half hours, or 7.3
percent of the total amount of time spent debugging in test.

We believe this apparent discrepancy is a result of the
nature of the defects that JWiz found. It turned out that the
warnings which most frequently indicated real defects were
the ones which were included in JWiz because they
occurred in most developer's programs during a pilot study.
It is possible that since these defects are fairly common,
people have become somewhat skilled at finding and fixing
them. Perhaps the more time consuming defects are the
odd, rarely occurring ones. This would account for why
JWiz found a large percentage of the reported test defects,
yet resulted in a much smaller percentage of the debugging
time.

All in all, JWiz appears to be fairly promising. As one
student put it “It took me 30 minutes to find [an error
reported by JWiz]. If I had seen the results of [JWiz]
before, I would have gone straight to the point."

Changes to Java
In looking at the warnings which found the most functional
errors, it is not too difficult to identify some potential
improvements to the Java programming
language/environment. One such improvement would be to
disallow unused variables and parameters. Additionally,
another possibility would be to eliminate the possibility of
using the same parameter name as the class variable. We
imagine that some developers may not be to keen on these
ideas however. Perhaps a better solution would be to equip
the compiler with something similar to the deprecation
warnings that arise when the code uses 1.0 event handling.

Changes to JWiz
As a result of this experiment, we found that some changes
to JWiz should be made. We noticed that some of the false
positives are avoidable. For example, one false positive
occurred whenever an interface class was created. For each
of the methods in the class, JWiz generated “Parameter not
used in method" warnings. This happened because no code
is allowed within the method of an interface, but it is not an
error. JWiz can check if the class is an interface, and
eliminate this particular false positive.

This same warning was also considered a false positive
when the parameter was required as part of an event
handling method. For example, consider the action method
used for Java 1.0 event handling. The method requires two
arguments, an Event and an Object. If the user does not
reference the Object argument, JWiz would issue a



warning. We had anticipated some of the event methods,
but not all (such as the Object argument to the action
method), so JWiz generated warnings when the developer
did not use one of the parameters required for certain event
handling methods. Making these two changes would
eliminate over seven percent of false positives that occurred
during the course of the experiment.

Another result of the experiment may be to prove the
usefulness of a functional addition to JWiz. We planned to
implement a mechanism which allowed users to choose
specific warnings. For the purpose of this experiment, we
wanted everyone to run all the tests. We found that certain
tests were useful only to a few people. One test in
particular, “Assigning a division result to an int," was
always called a false positive by the developers in the
study. However, this test made it into JWiz from data we
collected prior to the development of JWiz when we found
that one student spent almost a half an hour on this
particular bug.

We wanted people to be able to add tests that they would
find useful. These tests could be made publicly available
for anyone to include in her copy of JWiz. Combined with
error toggling, users would then be able to share tests,
turning them off if they proved to be more of a nuisance
than a help. Some new tests were implemented based on
the results of the experiment. Some of the participants in
the study took to writing me about defects which caused
them problems. For example, one student spent a half an
hour tracking down a NullPointerException. In this case, he
was referencing 'this' while initializing a class field. Since
the object was not yet set up, there was no 'this' to
reference.

4 CONCLUSION
Contributions of this Research
The major contribution of this research is JWiz itself. If the
data produced by this research is representative, then JWiz
can truly support the Java software development
community. This is evidenced by JWiz reporting defects
which amounted to seven percent of the total amount of
time the ICS 613 developers spent debugging in test.

By releasing JWiz to the general development community,
it is possible that JWiz will provide even better results as
programmers create the tests which are most useful to
themselves.

Future Directions
One avenue of research could be an investigation into the
likelihood of JWiz warnings being functional errors or false
positives. Perhaps by stating that a given error has a high
percentage of being a real error, a developer would be more
inclined to look into it.

We could use current results to attach a “probability” to
each test. However, this would only allow me to rate a few
of the tests, as a majority of the tests never generated any

warnings with which we could evaluate their effectiveness.
Also, the small sample size may not be indicative of the
tests' general performance.

Publicly Available JWiz
A possible topic arising from the idea of making JWiz
available to the general public is the potential of collecting
data on the kinds of defects made by developers. We
believe my sample size was too small and restricted to yield
any real data on this topic. Perhaps there could be a JWiz
Internet site which would maintain a collection of JWiz
tests as well as collect the results from JWiz usage. By
allowing people to contribute tests, perhaps the
effectiveness of JWiz could be increased, resulting in more
expensive defects to be found.

Obviously, one future effort could be the development of a
package to assist developers in the creation of new JWiz
tests.

Shrinking Test Time
“The longer the defect is in the product the larger the
number of elements that will likely be involved."[6]

Humphrey's quote refers to a fact widely known among
developers. It is also known that the test phase can be the
most time consuming and frustrating of all the development
phases. Anything that eliminates defects prior to test is a
good thing.

We found that, on occasion, JWiz could save developers
non-trivial amounts of time in test. One developer in my
study spent just over six hours debugging. When we sent
him the results of the JWiz run, he reported that one of the
warnings was indeed an error. The error cost him an hour
and a half, 15 percent of the total amount of time he spent
in test. It turns out that this one defect accounted for seven
percent of his total development cycle for that program.

A future avenue of research could be the investigation of
potential time savings as a result of using JWiz. Perhaps the
amount of time spent in test will shrink, or maybe people
will start to make new errors, resulting in no time savings at
all. One could also investigate a reduction of testing as a
percentage of the total development cycle or whether JWiz
results in an increase in productivity (lines of code per
hour).

5 INFORMATION AND QUESTIONS
For more information, contact Jennifer Geis
(jgeis@hawaii.edu).

ACKNOWLEDGEMENTS
I offer much thanks to the members of Collaborative
Software Development Laboratory: Robert Brewer, Anne
Disney, Cam Moore, and especially Philip Johnson for
being my advisor and editor.



REFERENCES
1. Anderson, John R. and Jeffries, Robin. Novice lisp

errors: Undetected losses of information from working
memory. Human-Computer Interaction, 1(2):107-131,
1985.

2. Austin, Robert D. Measuring and managing
performance in organizations. Dorset House, 1996.

3. Darwin, Ian F. Checking C Programs with Lint.
O'Reilly, 1988.

4. Geis, Jennifer. JavaWizard: Investigating Defect
Detection And Analysis. M.S. Thesis, Technical
Report 98-01, Dept. of Information and Computer
Sciences, University of Hawaii, 1998.

5. Grand, Mark. Java Language Reference. O'Reilly,
1997.

6. Humphrey, Watts S. A Discipline for Software
Engineering. Addison-Wesley, January 1995.




