
Leap: A “Personal Information Environment”
for Software Engineers

Philip M. Johnson
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawaii

Honolulu, HI 96822 USA
johnson@hawaii.edu

ABSTRACT
The Leap toolkit is designed to provide Lightweight, Empiri-
cal, Anti-measurement dysfunction, and Portable approaches
to software developer improvement. Using Leap, software
engineers gather and analyze personal data concerning time,
size, defects, patterns, and checklists. They create and main-
tain definitions describing their software development proce-
dures, work products, and project attributes, including docu-
ment types, defect types, severities, phases, and size defini-
tions. Leap also supports asynchronous software review and
facilitates integration of this group-based data with individ-
ually collected data. The Leap toolkit provides a “reference
model” for a personal information environment to support
skill acquisition and improvement for software engineers.

Keywords
Software developer improvement, metrics

1 INTRODUCTION
The demands of software development on “Internet Time”
include shortened time to market, reduced development bud-
gets, and faster release cycles. The pace of technical and
economic innovation in Internet Time industries tends to re-
sult in increased organizational volatility, including frequent
restructuring and high employee turn-over. These combined
pressures can wreak havoc with traditional, top-down pro-
cess improvement initiatives, which typically require: (a)
sustained commitment from top-level management for years
at a time; (b) “champions” who remain within the organiza-
tion with stable responsibilities; and (c) a stable developer,
product, and market focus so that any process improvement
opportunities identified during one product or development
cycle remain relevant during the next. Finally, top-down
process improvement initiatives tend to incur significant fi-
nancial and administrative costs to implement and adminis-
ter the program, report its findings, and justify its continued
existence.

Empirical top-down process improvement initiatives must
combat an additional problem: measurement dysfunction.
Research by Robert Austin on software development orga-
nizations identifies measurement dysfunction as a significant
obstacle to process improvement [1]. Measurement dysfunc-
tion refers to a situation in which the act of measurement af-
fects the organization in a counter-productive fashion. Such
dysfunction occurs because many process measures have two
potential applications: (1) to provideinformationto the orga-
nization and (2) to supportperformance evaluationof indi-
viduals and groups. Since it is impossible for an organization
to guarantee that a measure, once collected by the organiza-
tion, will never be used for performance evaluation, process
measures may be skewed to reflect what the organization (or
process improvement team) wants or needs to hear, rather
than what is actually occurring in the organization.

Despite these concerns, traditional top-down process im-
provement initiatives remain an important and valuable com-
ponent of a high quality software development organiza-
tion. However, it is also possible to pursue a “bottom up”,
developer-centered approach that addresses many of these
concerns. In a bottom-up approach, the focus is on providing
individual developers with the insights necessary to acquire
and improve their technical skills. Management buy-in and
support becomes secondary to the developers’ self-interest in
their own professional development. Management reports on
the progress and success of the individual’s skill acquisition
efforts are no longer required and in fact counterproductive,
since preserving the privacy of personal measurements and
insights is crucial to preventing measurement dysfunction.
Finally, the tendency of modern software developers to fre-
quently change organizations can undermine their commit-
ment to top-down process improvement initiatives, while a
bottom-up approach represents a “portable” activity that the
developer can maintain across jobs and organizations.

For two years, we have pursued a research initiative regard-
ing bottom-up technical skill acquisition and improvement
called Project Leap. We hope through this research initia-
tive to uncover some of the principles underlying successful
bottom-up process improvement. Project Leap leverages our
prior research experiences in formal technical review [6] and
the Personal Software Process [3]. Based upon these expe-



riences, we conjecture that approaches to bottom-up process
improvement are made more effective by obeying the four
“Leap” design constraints:

� L ightweight. Bottom-up methods should be light-
weight. In other words, they must involve a minimum
of process constraints, be easy to learn, be easy to inte-
grate with existing methods and tools, and require min-
imal investment and commitment from management. If
a bottom-up method imposes new overhead on a devel-
oper, then that effort should yield a short-term, positive
return-on-investment to that same developer.

� Empirical. Bottom-up methods should have a quantita-
tive, as well as qualitative dimension. A lightweight ori-
entation cannot be gained at the expense of high quality
collection and analysis of data. Developer improvement
should be observable over time through measurements
of effort, defects, size, and time, in combination with
improvements in checklists, patterns, and so forth.

� Anti-measurement dysfunction. Measurement, while
an integral part of effective bottom-up methods, should
be carefully designed to minimize dysfunction. Yet the
most simple solution to dysfunction—making all data
totally private—is incompatible with the benefits to the
organization of sharing certain kinds of data and pro-
cess improvements. A goal of Project LEAP is to find
a suitable balance between public and private measure-
ment data.

� Portable. Useful developer improvement support
should not be tied to a particular organization such that
the developer must “give up” the data and tools when
they leave the organization. Rather, this support should
be akin to a developer’s address book; a kind of “per-
sonal information environment” for their software en-
gineering skill set that they can take with them across
projects and companies.

These four criteria, when composed together, create addi-
tional requirements. For example, we believe that extensive
automation is required for any method that is simultaneously
lightweight, empirical, and anti-measurement dysfunction.
On the other hand, automation clearly does not guarantee
lightweight processes or meaningful empirical evidence of
improvement. As an example, one criticism of our CSRS
automated review system [5] was that its extensive measure-
ment system would lead to dysfunctional behavior in an in-
dustrial setting.

Our efforts in Project Leap have produced a toolkit which
has been in public release for approximately one year, and
in active classroom and research use for approximately six
months. The Leap toolkit is also under small scale evalua-
tion at two of our industrial affiliate sites, and we intend to
pursue broader industrial evaluation over the coming year.

Refine 
Goals

Refine 
Definitions

Gather 
Primary 

Data

Perform 
Group
Review

Perform
Leap 

Analyses

Evaluate
Progress

Refine 
Checklists 

and Patterns

Figure 1: Paths of data collection and analysis in Leap. Sev-
eral potential entry and exit points exist.

Indeed, our motivation for this research demo presentation
is to introduce the toolkit to a broad audience and solicit in-
creased involvement in its evaluation from the research and
industry communities.

The Leap toolkit is implemented in 100% Java and runs
on most platforms. The most recent release is avail-
able for download from our research group home page at
http://csdl.ics.hawaii.edu/.

2 The Leap method
The tools in the Leap toolkit are designed to support the fol-
lowing general paths of personal and review-based data col-
lection and analysis as illustrated in Figure 1.

In Leap, there are two “central” activities: gathering primary
data and performing Leap analyses. These can be augmented
by secondary activities of refining definitions, checklists, and
patterns. Finally, these central and/or secondary activities
can be directed toward individual skill acquisition and im-
provement or group review of work products. The following
paragraphs provide a bit more detail:

� Generate or refine goals for technical skill acquisition
and improvement.Example goals could include im-
proved estimation of size or time, improved skill at up-
stream design, increased direct hours on major tasks,
decreased incidence of certain classes of defects, etc.

� Generate or refine definitions of projects, defect types,
document types, etc.Leap definitions provide two ben-
efits: (1) they reduce the overhead of data collection (by
providing pull-down or pop-up menu support for defi-
nition usage), and (2) they aid in analysis (by ensuring
common terminology between projects).



� Collect primary data on size, time, and defects.The
basic Leap toolkit has been augmented with special-
ized tool support for in-process time data collection, in-
process defect collection, and with a tool for hierarchi-
cal, grammar-based size calculation.

� Obtain additional defect data via group review.Leap
builds in support for asynchronous review and dissemi-
nation of review artifacts via the web and/or email.

� Perform analyses on primary data. Leap builds
in dozens of analyses accessible through pull-down
menus, including charts and tables providing project
summary statistics on time, size, and defects; de-
fect types, rates (size/time, defects/time), densi-
ties (defects/time, defects/size), trends, and plan-
ning/estimation tool support.

� Evaluate progress toward goals.Leap analyses pro-
vide software engineers with quantitative data that they
can use to determine if they are making progress to-
ward their goals. Sample goals include targets for di-
rect hours applied to given projects, reduction in the fre-
quency and/or expense of certain types of design or im-
plementation defects, improvement in review efficiency
and/or effectiveness, and improvement in the accuracy
of planned size and time values. Figure 2 illustrates one
example analysis chart for planning.

� Generate checklists and patterns.To support defect
prevention and encode “best practice”, Leap enables de-
velopers to generate checklist items and simple process
pattern information.

Leap is similar to other formulations for individual and group
process improvement in software engineering, such as Goal-
Question-Metric (GQM) [2] and the Personal Software Pro-
cess (PSP) [4]. It is the attempt to satisfy the Leap constraints
in a bottom-up context that produces differences between the
Leap toolkit and many other approaches.

First, Leap does not record authorship or other identification;
all data collected and manipulated in Leap is unattributed. In
a personal environment, authorship is unnecessary, and lack
of attribution is a small but important step toward decreased
measurement dysfunction.

Second, while Leap provides various definition mechanisms
to enable developers to describe what kind of procedures
they used to develop a work product or perform a review,
Leap makes no attempt to enforce or assess compliance with
a particular procedure. Indeed, Leap recognizes that useful
definitions must be “bootstrapped” over time through the use
of the tool.

Third, Leap enables developers complete control over what
kinds of Leap information is shared with others. While de-
velopers typically are happy to share certain kinds of in-
sights, such as checklists and patterns, we have found that

time data is especially susceptible to measurement dysfunc-
tion. Thus, for example, Leap makes it easy for developers
to keep track of time they devote to a review activity, but pro-
vide to others only the set of defects they uncovered during
review.

Fourth, Leap provides an integration mechanism for both
personal software engineering data and data generated
through the process of group review.

Leap is similar in many ways to the Personal Software Pro-
cess (PSP). The essential differences between Leap and the
PSP are as follows. First, the PSP views automated support
as helpful but optional. In contrast, Leap views automation
as essential to reducing the overhead of process data collec-
tion and analysis to an acceptable level. Our prior research
also indicates that automation may be necessary (though not
sufficient) for collection of accurate personal process data
[3]. Second, the PSP involves an essentially “heavyweight”
orientation toward process definition and adherence: in the
PSP, one is instructed to follow quite rigidly defined pro-
cess scripts which sometimes involve practices quite unfa-
miliar to most developers (such as to completely code all
system definitions before compiling for the first time). Leap
allows a more “lightweight” orientation, in which one can
begin collecting and analyzing data without a great deal
of process definition, adding such definitions incrementally
when deemed useful. Third, unlike PSP, Leap integrates sup-
port for asynchronous review as an essential service in the
toolkit. Fourth, the PSP requires you to collect data on your
defects—what you do wrong. In addition to defects, Leap
also helps you to collect data on your patterns—what you do
right.

STATUS
Leap has been in internal and public release for approxi-
mately one year, and we are now seeking greater external use
in academic and industrial settings. We provide three paths
for extension of the platform. First, the Leap data file spec-
ification is a simple, restricted HTML format, which facili-
tates interoperation of Leap with other software engineering
tools at the file level. Second, Leap includes an “extensions”
mechanism, which allows developers to write Java code that
can be dynamically linked to the Leap at invocation time and
allow third-party Java tools to extend Leap with new menus
and applications. Finally, we intend to make an open source
version of the Leap tool kit available for direct modification,
experimentation, and enhancement by the software engineer-
ing community.

ACKNOWLEDGMENTS
I gratefully acknowledge my colleagues in the Collabora-
tive Software Development Laboratory (Cam Moore, Robert
Brewer, Jennifer Geis, Joe Dane, Jay Corbett, Anne Disney,
and Russ Tokuyama). This research was sponsored in part by
grants CCR-9403475 andCCR-9804010 from the National
Science Foundation.



Figure 2: A sample analysis in Leap allowing the developer to use historical data to estimate the time required for a new project.
The tool produces estimates by applying either linear regression or average/min/max analyses to historical data. The size metric
used is user-definable.

REFERENCES

[1] Robert D. Austin. Measuring and Managing Perfor-
mance in Organizations. Dorset House Publishing,
1996.

[2] Victor Basili and David Weiss. A methodology for col-
lecting valid software engineering data.IEEE Trans-
actions on Software Engineering, SE-10(6), November
1984.

[3] Anne M. Disney. Data quality problems in the Personal
Software Process. M.S. thesis, University of Hawaii,
August 1998.

[4] Watts S. Humphrey.A Discipline for Software Engineer-
ing. Addison-Wesley, New York, 1995.

[5] Philip M. Johnson. An instrumented approach to im-
proving software quality through formal technical re-
view. In Proceedings of the 16th International Confer-
ence on Software Engineering, pages 113–122, Sorrento,
Italy, May 1994.

[6] Philip M. Johnson and Danu Tjahjono. Does every in-
spection really need a meeting?Journal of Empirical
Software Engineering, 4(1), January 1998.


