Teaching Software Engineering skills with the Leap Toolkit

Carleton A. Moore
Collaborative Software Development Laboratory
Information & Computer Sciences Department
University of Hawaii, Manoa
Honolulu, Hawaii 96822 USA
(808) 956-6920
cmoore@hawaii.edu

ABSTRACT

The Personal Software Process (PSP) teaches software
developers many valuable software engineering tech-
niques. Developers learn how to develop high quality
software efficiently and how to accurately estimate the
amount of effort it will take. To accomplish this the PSP
forces the developer to follow a very strict development
model, to manually record time, to defect and size data,
and analyze their data. The PSP appears successful at
improving developer performance during the training,
yet there are questions concerning long-term adoption
rates and the accuracy of PSP data.

This paper presents our experiences using the Leap
toolkit, an automated tool to support personal devel-
oper improvement. The Leap toolkit incorporates ideas
from the PSP and group review. It relaxes some of the
constraints in the PSP and reduces process overhead.
We are using the Leap toolkit in an advanced software
engineering course at the University of Hawaii, Manoa.

Keywords
Software Developer Education, Process Improvement,
Measurement, Personal Software Process

1 INTRODUCTION

Every software engineer occasionally wishes they got
home from work sooner and spent less of their weekends
at work. Software developers work very hard and very
long, yet software is often delivered late, over budget,
and full of defects. How can software engineers learn to
produce high quality software more efficiently?

Software developers and managers have addressed the
issue of software quality and development issues by fo-
cusing on the work product and the development orga-
nization. Work product solutions include practices such
as testing and reviews. Testing and additionally reviews
help improve the work product and reviews attempt to

Draft of paper submitted to ICSE 2000.

reduce the cost of development by finding and fixing the
defect earlier in the development process.

Organization solutions focus on the software develop-
ment organization and processes. There are hundreds
of organization level solutions. Two widely followed
organization-mode solutions are the Capability Matu-
rity Model[8] and ISO 9000[6]. Both of these methods
focus on the development organization and processes.

Traditional software engineering techniques such as re-
quirements specifications, modularity, data abstraction,
coupling and cohesion, PERT and GANTT charts, ver-
sion control, and so forth are “best practice” techniques
that provide developers tools for solving specific soft-
ware engineering problems. Software developers should
know how to use these “best practices” on their devel-
opment problems. Not all practices are appropriate to
every situation, however using the correct practice can
save a project.

When a developer joins a software development organi-
zation they must learn the particular development pro-
cesses for the organization. The developer has to learn
what testing and review methods are used in the organi-
zation. They must learn how the organization manages
the software development process.

In 1995, Watts Humphrey introduced the Personal Soft-
ware Process in his book A Discipline for Software
Engineering[4], a software development process and im-
provement process for individual software developers.
The PSP incorporates many of the above best practices
into a single method for software developer improve-
ment.

After using the PSP for over two years we developed the
Leap toolkit to overcome restrictions that we noticed in
the PSP. The Leap toolkit relaxes many of the con-
straints in the PSP, and includes extensive automated
support in order to simplify training and adoption of
individual, empirically-based developer improvement.

2 Personal Software Process (PSP)
The PSP teaches software developers techniques in-
tended to support high-quality software development

and how to improve estimate the amount of effort re-
quired to produce software. These two goals drive the
entire PSP process.

Learning software development skills with the
PSP

To teach developers how to use the PSP, Humphrey
defines seven PSP processes (0, 0.1, 1.0, 1.1, 2.0, 2.1,
3.0). Each process has detailed scripts telling the user
exactly how to perform the process. Figure 1 shows
the seven levels. Each level builds upon the previous
levels and introduce new software engineering concepts.
Exercises at the end of each chapter ask the reader to
use the knowledge from the chapter to improve their
development skills. The book teaches powerful develop-
ment techniques: design and code reviews, size and time
estimation methods, and design templates. These tech-
niques help the developer produce high quality products
efficiently. As developers go through the book they de-
velop 10 small software projects using the different PSP
levels.

Cyelic PSP3 Cyeclic
Personal Development
Process
Personal PSP2.1
Qual- PSP2 Code & | Design
ity Man- Design Templates
agement Reviews

PSP1.1

Personal PSP1 Size & | Task & Sched-
Plannin Time estima- | ule Planning
Proces tion

PSP0.1 Cod-
PSPO Time & | ing Standard,
Defect record- | Size Measure-
ing ment

Baseline
Personal

Process

Figure 1: PSP levels

In the Baseline Personal Process level the developer
learns how to record their development process. They
record all defects that they find in their source code,
all the time it takes them to develop the source code
and the number of lines of code in their source. From
PSP 0.1 on the developer must use a very strict water-
fall method of development. 100% of the code must be
written before the developer can do their first compila-
tion. This development method teaches the developer
how to manage their development process. The next
level of the PSP teaches the developer how to plan their
projects.

In the Personal Planning Process level the developer
learns how to estimate and plan future projects. The de-
veloper starts the planning phase by estimating the size
of the next project. The PSP uses a Proxy Based Esti-
mation (PROBE) technique to simplify size estimation.
To estimate the number of LOC for the next project,
the developer develops an initial design and counts the
number of methods. Methods are the proxy for lines of
code. The developer estimates the size of each method.
Based upon historical project size data the average LOC
for five different method sizes is calculated. The devel-
oper then counts up the number of methods of each
size category and multiplies by the average LOC per
method for that size category. The developer sums up
all the LOC and gets the total estimated LOC for the
project. Once the size of the project is estimated the
developer can estimate the amount of time the project
will take. The PSP uses a complicated time estimation
technique. The PSP time estimation technique requires
the developer to calculate two linear regressions. The
first regression is based upon their planned size for each
project vs the actual time spent developing the project.
The second regression is between the actual size of each
project and the actual time of taken for the project. De-
pending upon the correlation between the two size data
sets, planned or actual size, and the actual time taken,
the developer uses linear regression or historical aver-
age to calculate the effort for the next project. Based
upon the estimated time and past direct hour calcula-
tion the developer can schedule the project. The next
level of the PSP teaches the developer how to increase
the quality of their source code.

In the Personal Quality Management level the developer
learns how to efficiently find and remove defects from
their code by using reviews. They also learn how to
use design templates to help improve their design skills.
Prior to the introduction of design and code reviews
most of the defects are removed during the compile and
test phases. Adding design and code review efficiently
catches many defect before the compile phase. At this
level in the PSP developers can plan their projects and
efficiently remove defects. The next level teaches devel-
oper how to build larger software products.

In the Cyclic Development Process level developers
learn how to break large project into smaller chunks.
The PSP teaches developer how to do high-level design
to find the cycles of development. Each cycle of the
large project is considered a sub-project and the devel-
oper can use the PSP to manage them. To determine
if the PSP is a powerful tool for improving an individ-
ual’s software engineering skills, many researchers have
evaluated the PSP.

Evaluations of the PSP
In a 1996 article, Watts Humphrey reported the results

of 104 engineers taking the PSP course[5]. He states
that the two goals of PSP were met. First, reported de-
fects fell from an average of 116.4 defects per thousand
lines of code (KLOC) for assignment 1 to 48.9 defects
per KLOC for assignment 10. Second, the estimation
accuracy of the students increased. For assignment 1
32.7% of the engineers’ estimates were within 20% of
their actual times. By assignment 10 49.0% of the engi-
neer’s estimates were within 20% of their actual times.

In 1996, Sherdil and Madhavji studied human-oriented
improvement in the Software Process[9]. They used
PSP as a basis for their studies. They found that sub-
jects reduced their defect by 13% after project 6, when
code reviews are introduced. They also found that their
subjects reduced their size estimation error by more
than 7% than expected.

Hayes and Over conducted an extensive study, with 298
engineers, of the PSP[3]. The results of the study were
impressive. Over the projects completed, the median
improvement in size estimation was a factor of 2.5. This
means that 50% of the engineers reduced their size es-
timation error by a factor of 2.5. The median improve-
ment in time estimation was 1.75. The median reduc-
tion in overall defect density was by a factor of 1.5.
The engineers substantially reduced the percentage of
defects surviving to later stages of development.

Anne Disney did her masters thesis on data quality is-
sues in the PSP[2]. She found that in her sample of
students who learned the PSP, the errors in their data
were significant. These errors lead to incorrect insights
into the students development practices. For example,
in several cases the students’ incorrect data indicated
that they were over estimating their yield when in fact
they were underestimating their yield.

Most of the errors that Disney found in the the stu-
dents’ PSP data were caused by the manual nature of
the PSP. 66% of the errors were either calculation errors
or transfer errors. The students had difficulty correctly
manually calculating some of the values required and
transferring the values between the many forms used in
the PSP. This research and our experiences with using
the PSP raised some important issues with the PSP.

Issues with the PSP
After using the PSP for over two years, we noticed sev-
eral issues with the PSP:

e The PSP is designed for only for software develop-
ment. It hardwires estimation, size measurement,
and development processes. Since the PSP is de-
signed around a set of hardcopy forms, the pro-
cesses in PSP are intimately tied to the hardcopy
forms. Modifying the forms or the processes are
sufficiently difficult that the Humphrey strongly ad-

vises against doing so, at least until after finishing
the course.

The entire PSP process is focused on one type of
work product, source code. If the software devel-
oper does not produce source code they cannot use
the PSP. They must also modify most of the forms
if they do not have a “compile” phase in their de-
velopment process. Some of the key analyses calcu-
late the number of defects before and after “com-
pile”. Without a “compile” phase these analyses
are meaningless.

e The manual nature of the PSP introduces large
amounts of overhead for the developer. It also re-
duces the benefits to the developer since it is diffi-
cult to analyze all the data. For each project the
developer records their time, size and defects on
log forms. At the end of the project they produce
a postmortem report that summarizes the project.
In higher levels of the PSP the developer must use
over 10 different forms. Producing a report of the
most costly defect type is a very time consuming
process since the developer must pour through all
of their defect logs and collate the data manually.

e The PSP collects all defects from the first project.
This project introduces additional overhead to the
developer’s development process. They have to fol-
low a new development process and record their
effort. The addition of recording all their de-
fects changes their development process signifi-
cantly. Manually recording each defect on the
defect recording log interrupts their thought pro-
cesses.

e The PSP has no group support. The PSP is a
personal process, however some of the most valu-
able insights about your development process may
come from other developers that can see issues that
you cannot. Coaches observe athletes perform and
provide insight the athlete cannot get themselves,
similarly in software development other observers
can provide insights that the developer cannot see
themselves.

These issues motivated us to begin designing an au-
tomated, empirically based, personal process improve-
ment tool. Our goal is to reduce the collection and
analysis overhead for the developer. This should
improve the benefits to the developer and the long
term adoption of empirically based process improve-
ment. To pursue this work, we initiated Project LEAP,
<http://csdl.ics.hawaii.edu/Research/LEAP/LEAP.html>,
and began developing the Leap Toolkit.

3 Leap

Design Criteria

We hypothesized that improved support for software de-
veloper improvement would be obtained by attempting
to satisfy four major design criteria: a light-weight pro-
cess, empirical measurement, minimization of measure-
ment dysfunction, and portability within and across or-
ganizations.

Criteria #1: Light- Weight

The first principle is that any tool or process used in
software developer improvement should be light weight.
This means that the tool or process should not impose
too much overhead on the developer. Data collection
should be easy to perform and should not add signifi-
cant effort to the process. The processes that are used
should not impose a burden on the developer. We do not
want the developer to worry about the improvement ef-
fort while they are doing the development. They should
be worrying about the development. Analyses and other
work should also require as little effort by the developer
as possible. The benefit of using the improvement pro-
cesses should outweigh the cost of to the developer.

This principle implies that any improvement process
must be automated as much as possible. A manual pro-
cess requires too much overhead by the developer. The
overhead of recording information by hand and manu-
ally doing the analyses will out weigh the benefits of
the process. The PSP suffers from the problem of high
overhead for data entry and analysis. It also suffers from
high process overhead.

Criteria #2: Empirical

We believe in empirical data collection-that improve-
ments should be based upon the developer’s experi-
ences. Leap supports the observe-evaluate-modify im-
provement cycle. Each modification is then tested by
further observation to see if the change is actually an
improvement or just a false start. By using looking at
their development empirically the developer is able to
judge for themselves what is best.

Criteria #3: Anti-measurement Dysfunction

Based upon our experiences with industrial software de-
velopment and Richard Austin’s book Measuring and
Managing Performance in Organizations[1l], we believe
that any process improvement method should deal with
the issue of measurement dysfunction. The empirical
data collected could be misused. This issue is impor-
tant since the development process is very interesting
to people other than the developer. If there is measure-
ment dysfunction then the data collected and analyses
will not reflect reality. Any insights gained from this
data and analyses will be faulty and may cause more
problems than they solve.

Criteria #4: Portable
Software developers often change jobs and the tool

support for their development improvement should be
portable. They should be able to take their data and
the tool support with them when they change organiza-
tions or jobs. A tool that supports developer improve-
ment that cannot follow the developer as they move is
not going to help those developers very much.

Based upon the four design principles we developed
the Leap Toolkit, a Java application for software de-
veloper improvement. The Leap Toolkit combines the
data recording and analysis ideas of the PSP with group
review. The developer can record time, size, and defect
data for their project just like in the PSP. They can
also ask their co-workers to review their work product
using the Leap Toolkit and share any defects the re-
viewers find. The Leap Toolkit also supports checklists
and patterns.

Benefits of Leap

The Leap Toolkit provides many benefits and has al-
lowed us to explore different aspects of personal soft-
ware process improvement. Some of the benefits are
fewer constraints, lower overhead and support for group
review.

Relazes many constraints in the PSP

The Leap toolkit allows the developer to define their
own size definitions, development processes, defect
types, defect severities and document types.

By allowing the developer to define their own hierarchi-
cal size definition the Leap toolkit can support different
size measurements for the same work product. For ex-
ample, a developer might define a object oriented size
definition for Java that consists of packages that contain
classes that contain methods that have lines of code.
They might also define a size definition that just counts
the number of expressions in the source code. Both of
these size measures could be used for the same source
code. The Leap Toolkit allows the developer to compare
their projects in either of these size definitions.

The Leap toolkit allows the developer to define their
own processes. They can use the PSP’s software devel-
opment process or use their own process. The developer
can define processes for non-software development ac-
tivities. For example, one writing process includes the
following phases: Brain storming, Planning, Outlining,
Writing and Editing.

Leap also relaxes the constraint that time, size and de-
fects must always be recorded. In our Advanced Soft-
ware Engineering classes we wait until the students have
mastered time and size recording before we introduce
defect recording. This reduces the cognitive overhead
on the students. They become accustomed to collecting
data about their development process without overly
disrupting their process. Teaching the developer how to

collect the data that they are interested in gives them
more control over their process improvement efforts.

Low overhead

“70- Timer {Io): Writing =]

Project:| ICSE 2000 paper - |Phase Editing ﬂDoc Type| Text -
’E?D:I}] @11:58 | Irec: It Desc:l || Reword | Clear || Save
1 I

Figure 2: Time Recording Tool (Io) recording time for
this paper. This screen shot illustrates an interactive
time. During this session, 70 minutes of direct time has
elapsed with almost 12 minutes of interrupt time.

Since the Leap Toolkit is an automated tool the amount
of overhead for recording size, time and defect is greatly
reduced. The developer does not have to take their
hands off the keyboard and mouse to enter their data.
Time recording is simplified by a single line time entry
tool. Figure 2 shows the time entry tool Io recording
time for this paper.

The Leap Toolkit also has a similar tool for defect col-
lection. This tool simplifies the recording of defects and
their fix times. Figure 3 shows the defect recording tool
Mano.

As a part of his Master’s thesis Joseph Dane developed
LOCC[7] a grammar based size counting tool that pro-
duces size data that the Leap Toolkit can use. Cur-
rently, LOCC supports counting Java, C++ and plain
ASCII text files. Using LOCC greatly simplifies the
problem of determining the actual size of the current
project.

All of these tools for data collection have reduced the de-
veloper’s overhead so much that, in many cases, it now
takes more effort to fake your data than it takes to col-
lect accurate data. In her study of students’ PSP data,
Anne Disney found some suspicious data that possibly
indicated that the students were making up their data.
The Leap toolkit solves this problem—at least for situa-
tions where the data is faked due to time constraints.

The Leap Toolkit also allows the developer to rapidly
analyze their data. In the manual PSP, comparing dif-
ferent time estimation techniques is very time consum-
ing. Leap allows the developer to rapidly compare dif-
ferent time estimation models such as: linear regression,
historical average, exponential regression, and power re-
gression. The Leap Toolkit also allows the developer to
quickly compare their planning values to their actual
values. Figure 4 shows the Leap time estimation tool.

Support group review
To provide additional insight into a developer’s pro-
cess, the Leap Toolkit supports group review. Users can

email their Leap data to each other. This allows review-
ers to use the Leap Toolkit to record and share defect
data. The Leap toolkit can load all the defects found
by the different reviewers and then filter, and sort the
data. The insights provided by other reviewers might
be even more valuable than the defect detected by the
developer.

The Leap Toolkits flexibility even allows reviewers to
record data about their review process and improve
their review techniques. We can use the toolkit to teach
developers different review methods and compare the
results of these different methods.

4 Strengths: Leap vs. PSP

The PSP’s strong scripts tell the developer exactly what
they have to do and exactly what data they must collect.
There is very little ambiguity when using the PSP. The
user just follows the scripts and does the analyses called
for. The developer does not have to create their own
goals, questions, and metrics: they are built into the
PSP.

Leap builds upon many of the strengths of PSP. Au-
tomated tool support for data collection and analysis
greatly reduces the user’s overhead. By relaxing many
of the constraints, Leap gains valuable flexibility. De-
velopers can use the Leap toolkit to improve their devel-
opment skills in a wide range of activities not possible
with the PSP. Developers are able to experiment with
different development techniques to find the one best
suited to them.

5 Experiences with Leap

We started developing Leap in the summer of 1997.
Our first release, 1.7.0, of the system, in Novem-
ber 1997, only supported recording and analyzing de-
fect data. Since then we have made 25 public re-
leases of the Leap toolkit. Currently, the Leap
toolkit, version 5.8.2, consists of over 41,000 lines of
Java code, over 2,000 methods, and over 275 classes
in 13 packages. It is available for down-load from
<http://csdl.ics.hawaii.edu/Tools/LEAP/LEAP.html>.

We have used the Leap toolkit to help teach advanced
software engineering at the University of Hawaii. The
Leap toolkit is currently being used by Dr. Philip
Johnson in ICS 613: Advanced Software Engineering
<http://csdl.ics.hawaii.edu/~johnson/613£99/>. Over the
past 2 and a half years we have collected data on over
350 projects. The Leap toolkit has been used by sev-
eral people working in industry not affiliated with the
Collaborative Software Development Laboratory.

We are currently conducting an evaluation of the Leap
toolkit by surveying and interviewing the students in
ICS 613. We are also using the Leap toolkit to investi-
gate the accuracy of different time estimation methods

Defect (AMano) [O] x]
F‘mject|ll:SE 2000 paper | - |#:| 1 3: Do Ty pe| Taxt w |Defect T\,rpe|l|2l: Syritax | - |Fix ﬁme@ 022

Injected|'tl'l.|'|"rting | - |Remwed|5diting| | - |Checklist| | - || Record || [lear || Save |

Dz

Figure 3: Defect Recording Tool (Mano) recording a simple syntax error found in a draft of this paper.

based upon historical size and time data. The initial
results of our evaluation will be available in January,
2000.

REFERENCES

[1] R. D. Austin. Measuring and Managing Perfor-
mance in Organizations. Dorset House Publishing,
1996.

[2] A. M. Disney. Data quality problems in the Personal
Software Process. M.S. thesis, University of Hawaii,
August 1998.

[3] W. Hayes and J. W. Over. The Personal Software
Process (PSP): An empirical study of the impact
of PSP on individual engineers. Technical Report
CMU/SEI-97-TR-001, Software Engineering Insti-
tute, Pittsburgh, PA., 1997.

[4] W. S. Humphrey. A Discipline for Software Engi-
neering. Addison-Wesley, New York, 1995.

[5] W.S. Humphrey. Using a defined and measured Per-
sonal Software Process. IEEE Software, 13(3):77-88,
May 1996.

[6] International Organization for Standardization. ISO
Standards Compendium - ISO 9000 Quality Man-
agement, 7th edition, 1998.

[7] The loce system.
http://csdlics.hawaii.edu/Tools/LOCC/LOCC.html.

[8] M. Paulk, C. Weber, B. Curtis, and M. B. Chrissis.
The Capability Maturity Model: Guidelines for Im-
proving the Software Process. Addison-Wesley, New
York, 1995.

[9] K. Sherdil and N. H. Madhavji. Human-oriented
improvement in the software process. In Proceedings
of the 5th European Workshop on Software Process
Technology, October 1996.

Time Estimation M=l E3

istorical Data:
Trend Lings:—————— Size Type:
i_! Planned Size vs. Actual Time - - -
| Linear Regression - | | Javasize - |
@ Actual Size vs. Actual Time
Choose Method
ize Estimate: Historical Ave

) I— _|Linear Regression
e 4 ! Exponential Regression
Logarithmic Regression

Power Regression
T ld.lLlI.Lllg

2800

2400 =

2000 f {_//rj_
1600

Tl u
1200 =

-400
1] 20 40 B0 a0 100 120 140 160 180 200
Methed
Projects Linear Regression
Mrethod - Linear Regression
Lovwer T0%
¥ Upper T0%
R Squared=0.7011339, Betal= 98310738, Betal = 10.016641
Time Estimate:
’;'Jlin Estimate;| [Mid Estimate:| [Max Estimates| |

Figure 4: Time Estimation Tool with the author’s Java development data. Showing the different time trend line
options.

