
Improving Problem-Oriented
Mailing List Archives with MCS

Robert S. Brewer
Collaborative Software Development Laboratory
Department of Information & Computer Sciences

University of Hawaii, Manoa
Honolulu, Hawaii 96822 USA

(808) 956-6920
rbrewer@lava.net

ABSTRACT
Developers often use electronic mailing lists when seek-
ing assistance with a particular software application. The
archives of these mailing lists provide a rich repository of
problem-solving knowledge. Developers seeking a quick
answer to a problem find these archives inconvenient, be-
cause they lack efficient searching mechanisms, and retain
the structure of the original conversational threads which are
rarely relevant to the knowledge seeker.

We present a system called MCS which improves mailing
list archives through a process calledcondensation. Con-
densation involves several tasks: extracting only messages
of longer-term relevance, adding metadata to those messages
to improve searching, and potentially editing the content of
the messages when appropriate to clarify. The condensation
process is performed by a human editor (assisted by a tool),
rather than by an artificial intelligence (AI) system.

We describe the design and implementation of MCS, and
compare it to related systems. We also present our experi-
ences condensing a 1428 message mailing list archive to an
archive containing only 177 messages (an 88% reduction).
The condensation required only 1.5 minutes of editor effort
per message. The condensed archive was adopted by the
users of the mailing list.

Keywords
Knowledge condensation, mailing lists, archives, collective
memory

1 INTRODUCTION
Modern software development is a complicated task. Over
the course of a project a developer may use: a design tool,
an editor, a compiler, a debugger, a regression test system,
and a packaging tool. The developer may need to use third
party libraries or application programming interfaces (APIs)
from a variety of sources. On top of all these software de-
velopment related tools, developers may be responsible for

the installation and maintenance of their computing environ-
ment: operating system, hardware drivers, word processing,
electronic mail, etc. In this kind of complicated technical
environment, problems and questions inevitably arise.

Electronic mailing lists have become a common means for
users to exchange information and help each other to solve
problems. They can be administered by the producer of the
product, but they are often run by a user of the product who
wants to create a community for the product’s users. These
mailing lists often become an essential information source
for the product, providing up-to-the-minute information and
wise advice from experienced users.

As useful as mailing lists are, they have problems that limit
their usefulness. A popular mailing list can have tens or hun-
dreds of new messages daily, but keeping up with that level
of traffic is prohibitive for most subscribers. While there
is a lot of valuable knowledge available, it can be buried
among a seemingly endless stream of beginner questions,
off-topic discussions, and sometimes unsolicited advertising.
The amount of traffic leads many subscribers to delete or file
away messages from the list without reading them, simply
due to time constraints. When a subscriber has a question,
they frequently send it to the list blindly, without knowing
whether the answer was just posted recently. This further
adds to the information glut.

Luckily for developers, there is another way to find solu-
tions to problems: the mailing list archives. Most mail-
ing lists maintain an archive of all the messages sent
to the list, and usually provide some searching capabil-
ity. With the rise of the browser, most archives are made
available via a web page with a search form, such as
the Sun archive of the “jserv-interest” list for the discus-
sion of Sun’s Java Web Server (http://archives.java.sun.com/
archives/jserv-interest.html). These searchable archives pro-
vide a way for developers with problems to see if their prob-
lem has already been discussed, and possibly even solved.

Unfortunately, mailing list archives are poorly equipped to
support problem-solving queries. All the irrelevant infor-
mation that has been sent to the list is immortalized in the
archive, making it difficult to find the useful information.
Searchable archives also face the problem that any particular



query may return an enormous number of hits. For example,
a developer looking for help on how to redirect a web client
to different web page with the Java Web Server might do a
search for “redirect” on the jserv-interest mailing list archive.
As of this writing, that search returns 175 articles, many of
which are irrelevant to the developer’s goal. The search hits
are displayed in chronological order, and this arbitrary or-
dering doesn’t help the developers find the solutions they are
looking for. Another problem with conventional archives is
that a particular question may have been asked and answered
many times with varying levels of accuracy and clarity. A
developer might find a message proposing a solution only to
miss the follow up message which explains how that solution
is flawed.

We have developed a method for improving the archives
of these kinds of problem-oriented mailing lists which we
call condensation. Condensation involves several tasks: ex-
tracting only the messages of longer-term relevance, adding
metadata to those messages to improve searching and brows-
ing, and even editing the content of the messages when ap-
propriate to clarify or provide context. The condensation
process is performed by a human editor (assisted by a tool),
rather than an AI system.

2 CONDENSATION AS A SOLUTION
The goal of condensation is to take the voluminous data
stream generated by a mailing list and extract the informa-
tion which would be useful to future users of the archive.
As an analogy, newspapers provide a daily report on current
events but are limited by short deadlines, a broad subscriber
base, and other considerations. These considerations pre-
vent them from analyzing which events are accurate or rel-
evant over the long term. A story published one day might
be amended or retracted the next, depending on how events
unfold. However, a book describing world events will tend
to have a longer deadline which permits more reflection and
analysis: a hoax which might occupy weeks of headlines in
a newspaper will probably be little more than a footnote in a
book (unless the book is about newspaper hoaxes). The book
can also have an index to enable readers to jump directly to
the information they are interested in. It is this refinement of
information that we refer to as condensation.

There are a variety of ways that the information could be
condensed, depending on the intended use of the archive.
Our goal is to provide a searchable archive of information
that allows developers to quickly find solutions to specific
problems. Since the goal is to help developers find solutions
as efficiently as possible, there is little point in preserving the
conversational nature of the mailing list data stream. Users
with problems are looking for solutions, not conversation.
Condensation requires omitting unimportant, contradictory,
or inaccurate messages, removing unimportant portions of
messages, inserting new text into messages when required
for clarification, and adding new messages to the database
from scratch when that is the best way to explain something.

For this narrow focus on problem solving, we can categorize
each message as either a problem or a solution. Each mes-
sage is annotated with keywords which are actually relevant
to the subject of the message. The result of this process is a
condensed archive, an archive which does not suffer from the
problems of an unabridged searchable one. Since only truly
useful information will be put into the archive, the amount
of data to be searched is smaller which improves the odds of
a search being accurate. Developers also benefit by having
a set of standardized keywords which insure that messages
using different terms but discussing the same topic will be
retrieved by a single search.

3 MCS: A SYSTEM FOR CONDENSATION
To demonstrate the improvements possible through con-
densation, we have constructed a new software system
for condensing mailing list archives. We have named
this system (for lack of imagination) the Mailinglist
Condensation System or MCS (http://csdl.ics.hawaii.edu/
Research/MCS/MCS.html). MCS has two main parts: one
which is dedicated to taking the raw material from the mail-
ing list and condensing it, and another which stores the con-
densed messages and allows developers to access them.

One way to perform the condensation would be to implement
an AI system that reads the messages and then decides what
information to keep, what to throw away, and what keywords
to assign to each. In order to perform this task adequately,
the system would need superb natural language processing
capabilities and an in-depth knowledge of the mailing list
domain. Such a system is currently at or beyond the state of
the art, and would at any rate require a substantial investment
of resources to complete.

A practical alternative to an AI system is the employment
of human editors for condensation, along with extensive tool
support to lower editing overhead to an acceptable level. Hu-
mans are quite good at examining textual information and
determining what is useful and what is not, while computers
are good at queries across structured data [3]. This alter-
native also exploits the presence of mailing list gurus: sub-
scribers who read all messages sent to the list and who are
domain experts. Therefore, in MCS, humans do the editing
using the MCS editing program which makes the process as
efficient as possible. Only the editors need to use the editing
portion; the interface of the end-user portion is simpler and
geared towards ease of use. If AI systems become available
which can replace some or all of the manual effort required
by the editor, they can be added to MCS.

Requirements
MCS was designed to help users of problem-solving mailing
lists by improving the usability of the list archives. Mak-
ing archives more useful not only helps the archive users, it
also helps to improve the quality of the mailing list itself, be-
cause people are less likely to re-request information which
is easily available via the archive. To achieve this goal, the



user community must adopt MCS in preference to the many
existing systems for generating and maintaining searchable
mailing list archives. To encourage users to adopt the sys-
tem, the design of MCS takes into account two issues: an
explicit domain focus, and the existing list community.

Most mailing list archive search engines are designed to
work with any mailing list. Because they must work with any
mailing list, conventional search engines are limited to key-
word searches and simple search results presentation. The
idea of MCS is the exact opposite: mailing list archives can
be enhanced by tailoring the search engine to a particular
mailing list domain. By embracing the details of a partic-
ular kind of mailing list MCS provides greater utility and
efficiency for archive users.

Because MCS receives its input from a mailing list, it is
crucial that MCS be designed with the social structure of a
user-supported mailing list in mind. Specifically, the mail-
ing list and its community should not be adversely affected
by MCS. Any attempt to impose restrictions on how peo-
ple read or participate in the list (like requiring users to use
special software or compose messages in a certain format)
would be met with blistering criticism. MCS must stand
apart from the mailing list itself, limited to using messages
from the list on an as-is basis. MCS also takes into account
the needs of the user community by having very low require-
ments accessing the archive. The archive is accessed using
a web browser which is presumably standard equipment for
most mailing list participants. Furthermore, the web pages
themselves are simple; they contain no images, no Java ap-
plets, and no JavaScript to ensure that users can use older
browsers to access the archive. The omission and editing of
messages is central to MCS, but those actions can reason-
ably arouse suspicion among list members as to the fairness
of the editing. To assuage these fears and to assure context,
MCS provides a link from each edited message to the origi-
nal message maintained in a separate unabridged archive.

Functionality
In addition to condensation MCS provides several novel
features which facilitate user searching. All examples and
screenshots in this section refer to a condensed archive of the
“jcvs” mailing list (http://www.gjt.org/servlets/MailingLists/
ListInfo.html/jcvs). The jcvs mailing list exists for the dis-
cussion of the jCVS system (http://www.trustice.com/java/
jcvs/index.shtml), which is a Java client for the Concurrent
Versions System (CVS) (http://www.sourcegear.com/CVS).
See Section 6 for more information about the archive.

Keywords
Messages in MCS are assigned keywords by the editor. The
keywords are chosen sparingly such that there are only a few
for each message, instead of indexing all the words in each
message. These keywords are organized into a hierarchy of
categories by the editor. Each keyword and category can be
annotated by a description and an URL (Uniform Resource

Locator) when appropriate. The maintenance of the keyword
hierarchy is a major part of the editor’s task. While maintain-
ing keywords is time consuming, having the keywords orga-
nized in this way provides advantages to the archive user. A
frequent problem when using conventional archives is figur-
ing out what keyword has been used for a particular concept.
For example, “freeze”, “hang”, and “lock-up” are all words
which describe the same concept, but a user might have to
try searching for all three in order to retrieve all the problems
related to that concept. With the keyword hierarchy, the syn-
onym problem is all but eliminated. Having a relatively small
number of keywords arranged in a tree also allows users to
browse through the keywords and learn what kinds of topics
are contained in the archive. Keywords can be browsed us-
ing a system similar to the one used at the Yahoo web portal
(http://www.yahoo.com/).

The grouping of keywords into categories enables another
useful option for users. MCS allows users to perform a2D
searchby performing simultaneous searches for pairs of key-
words. The user selects two categories which contain key-
words, and then initiates the 2D search. MCS performs the
cross-product of the two categories, and for each tuple of
keywords it performs an AND search of the database. The
result is a table which shows the co-incidence of the key-
words in the two categories. Figure 1 shows the results of
a 2D search with the categories of “Java Concepts” versus
“jCVS Versions”. The archive this search was performed on
has a limited amount of data, but the results provide some
insight as to which concepts have proven problematic with
which software versions. Note that just because the Java-
Help row has no matches doesn’t mean that no messages
related to JavaHelp are in the database. It just means that
no JavaHelp-related messages refer to a particular version of
jCVS, probably because the version of jCVS was not rele-
vant to the problem or solution.

Message Types
MCS has a very simple schema for the messages it stores.
Each message has a type which currently can is either “prob-
lem” or “solution”. This typing has a profound affect on
MCS. When a developer has a problem, they can search the
archive to see if they can find a message describing a similar
problem. Once they find a relevant problem in the archive,
they can immediately see what solutions have been proposed
for that problem. Figure 2 shows the results of a search for
the keyword “Swing”. Since MCS understands that prob-
lems and solutions are associated with one another, it can
group together the search results so developers can see re-
lated problems and solutions at a glance. The typing of mes-
sages also makes the editor’s job easier because they only
have to worry about messages which are problems or solu-
tions, all other kinds of messages can be discarded.

Searching by Symptom
MCS also provides symptom-based searching. It is common
for a developer to be aware of the symptoms of their prob-



Figure 1: A 2D search of Java Concepts vs. jCVS Versions

Figure 2: Results from a search for keyword “Swing”



lem, but unaware as to what the cause might be. While edit-
ing messages, the editor may notice that a problem message
contains within it a textual pattern which is symptomatic of
the problem. The symptom is usually an error message of
some sort. The editor can convert the symptom into a reg-
ular expression, thereby stripping out all the irrelevant parts
of the symptom. This regular expression symptom is stored
with the message as metadata. Later, when a developer en-
counters a similar problem, they can copy and paste the error
message directly into a text field the symptom search mode
on an MCS web page and initiate a search. MCS will then
attempt to match the given text against all the symptom ex-
pressions in the archive, displaying the results to the user.

For example, suppose the editor noticed this error text in a
message being edited:

java.lang.NoClassDefFoundError:
javax/swing/DefaultBoundedRangeModel

at com.ice.jcvsii.JCVS.instanceMain(Compiled Code)
at com.ice.jcvsii.JCVS.main(Compiled Code)

From his or her knowledge of the domain, the editor knows
that this is symptomatic of using the wrong version of the
Java Swing class library. So in this case, the relevant portion
of this error in regular expression form would be:

java\.lang\.NoClassDefFoundError: javax/swing/.*

This symptom gets at the core of the error, because the only
two important parts are the type of the error and initial prefix
of the mismatched package. If a developer later pasted in the
following different error message, MCS can still match it to
the correct problem:

java.lang.NoClassDefFoundError:
javax/swing/text/JTextArea

at com.ice.jcvsii.JCVS.instanceMain(JCVS.java:81)
at com.ice.jcvsii.JCVS.main(JCVS.java:63)

4 IMPLEMENTATION
MCS consists of two subsystems: the server side that stores
the archive and provides a World-Wide Web interface to
archive users, and the editing tool that allows editors to sub-
mit edited messages to the archive. MCS has been imple-
mented entirely in Java which means both the server and
editor can be run on a wide variety of platforms. The im-
plementation of MCS consists of 7387 non-comment lines
of Java code, 343 methods, and 55 classes.

The server side consists of several Java servlets and support
classes. Servlets are a way to extend the functionality of
server, particularly web servers. The MCS servlets conform
to version 2.0 of the Sun Servlet API, which means that they
can be used with any of the many web servers which support
servlets. The web server we used was Sun’s Java Web Server.
The servlets are responsible for: storing the condensed mes-
sages in a simple flat file database, accepting user queries,

presenting search results and messages to users. There are
also servlets which interact with the editing tool to allow up-
dates to the database.

The editor side makes use of the fact that the data source
for condensation is email. The messages to be condensed
are stored in normal mailbox folders on an email server.
The Java email client ICEMail (http://www.trustice.com/
java/icemail/) has been extended for use as the MCS editing
tool. Editors use ICEMail to contact the email server using
IMAP (Internet Message Access Protocol), and use the stan-
dard ICEMail interface to read and delete messages from the
list. When the editor encounters a message which needs to
be condensed for inclusion in the archive, he or she accesses
the MCS extensions to ICEMail which allow the editing and
annotation to take place in a separate window. When the con-
densation of the message is complete, the editor can upload
it to the MCS database with the press of a button.

Users of the MCS-condensed archive access it using their
web browser. They go to a particular URL, and the MCS
servlets dynamically produce the HTML which is rendered
by the user’s browser. The servlets produce only standard
HTML to enable almost any browser to use the archive.

5 RELATED WORK
There are a variety of systems and research related to main-
taining and searching collective memory. Here, we exam-
ine several such systems and compare them to MCS. Some
of these systems are somewhat informal (like moderated
mailing lists and FAQ files), and some are formal research
projects. The informal systems are based on the author’s
knowledge of those systems and generally do not have refer-
ences because they evolved from common Internet practices.

Moderated Mailing Lists
Some mailing lists address the signal to noise problem by
having a moderator or a group of moderators. All submis-
sions to the list are forwarded to the moderator(s) who read
the messages and decide whether or not to distribute them
to the list. On most lists, the moderator(s) do not edit the
messages submitted. They just choose whether or not to dis-
tribute the message. Also, to allay fears of censorship on
the part of the subscribers, usually the criteria used to decide
whether to distribute a message are rather liberal, e.g., the
message is related to the topic of the mailing list and not an
advertisement [10].

While moderation can be useful for maintaining a high signal
to noise ratio, it suffers from several problems addressed in
the design of MCS. Moderation requires a substantial com-
mitment on the part of the moderator(s) to review submis-
sions in a timely manner. Failure to do so halts all traffic
on the mailing list and annoys subscribers who have come to
expect the short turnaround time that digital media can pro-
vide. Moderators also tend to face continual concerns from
subscribers as to whether they are moderating in a fair and
consistent manner. Since MCS does not affect the list distri-



bution itself at all, most concerns about censorship should be
eliminated. MCS provides a link from each edited message
to the original unabridged message so users can easily see
what was edited out or changed in any particular message.

Frequently-Asked Question Files
Most frequently-asked question (FAQ) documents attempt to
provide a similar service to MCS: a condensed version of
important and useful information that came from a mailing
list or newsgroup. There are several important differences
between the two systems. FAQ files are usually maintained
without specific tool support so they require extensive effort
on the part of the maintainer to create and update. FAQ files
are generally created with the intention of easy distribution
either as plain text or HTML. Because of this requirement,
FAQ files are mostly limited in size to a few hundred kilo-
bytes and they are laid-out to be easy for humans to read.
Since FAQs cannot be of arbitrary size and complexity, they
must omit useful information.

MCS does not have these limitations. Since the system is not
intended to be distributed by FTP or by posting to a mailing
list or newsgroup, it can be as large as necessary. A sophis-
ticated query system is an integral part of MCS, so it is not
necessary that the underlying data be structured in an eas-
ily understandable human format. Because MCS lacks these
two restrictions, it need not limit the archives it creates to
merely frequently-asked topics, it can contain any informa-
tion that would be useful regardless of how broad its appeal.

FAQ FINDER

FAQ FINDER allows users to quickly find answers to ques-
tions by searching a database made up of FAQ documents
posted to Usenet [4]. The user enters his or her question
into the system in natural language. First the system uses
standard information retrieval techniques to determine which
FAQs in the database are most likely to contain the answer
to the question. It presents the top five FAQs to the user,
who can select the most likely candidate. Then the system
uses a combination of lexical and semantic similarity checks
between the asked question and the question-answer pairs
in the FAQ file. It then presents the five most likely pairs for
user consideration. A live version of the system can be found
on the web (http://faqfinder.ics.uci.edu:8001/).

While FAQ FINDER is an interesting system, it is attempt-
ing to solve a different problem than MCS. FAQ FINDER

assumes that there exists a large number of FAQ files which
are already organized in question-answer format, and from
those files it attempts to help users find the answer to their
questions. The designers of FAQ FINDER explicitly chose
not to implement any domain-specific knowledge into their
system because their intended dataset is a large number of
unrelated FAQ files. MCS attempts to create a FAQ-like
body of knowledge from a mailing list, and then present the
condensed information in useful, possibly domain-specific
ways. In this way MCS attempts to solve the problem of

getting the information into an FAQ-like state, which is al-
ready presupposed in FAQ FINDER. It might be possible to
create a “stub” FAQ which FAQ FINDER could index, and if
the user’s question is a good match, FAQ FINDER would just
send the user to the MCS-created archive.

Answer Garden and Answer Garden 2
The Answer Garden system is designed to provide an or-
ganically growing database of answers to questions by end-
users [1]. Users interact with the system by answering a se-
ries of diagnostic multiple-choice questions which lead them
through the tree of answers already in the system. If users
find that their questions are not answered in the database,
they can enter their questions into the system and it will be
forwarded to an appropriate expert via email. When the ex-
pert answers, the result is sent back to the original question-
poser and also inserted into the tree for future retrieval.

Answer Garden’s goal in life is to answer questions. Like
MCS, it uses human input to decide what questions and an-
swers should be in the database. However, Answer Garden is
really only suited to the task of answering questions. A user
who just wants to browse information either has to answer
the diagnostic questions or guess where on the tree the infor-
mation might be located. It also requires a group of experts
to be responsible for answering the questions posed by users.
MCS does not require users to use any special software to
continue participation in the mailing list, while Answer Gar-
den assumes that all users will use the Answer Garden tool
when they have a question. In addition, MCS provides the
symptom search method which allows a user to use an error
message to find the solution to a problem immediately. An-
swer Garden requires users to answer a series of diagnostic
questions, with no way to short circuit the process.

Answer Garden 2 is a refinement of the Answer Garden
system. It improves on Answer Garden by adding a sys-
tem of gradual escalation for questions input into the system
(thereby providing more context to the person answering the
question), and a subsystem for collaboratively “refining” the
information in the database [2]. All of this is built on a set of
versatile and configurable components which allow the sys-
tem to be tuned for a particular environment.

Although Answer Garden 2 appears much closer to MCS in
its goals, the two systems appear to differ in implementation
and user interaction. Answer Garden 2 does not implement
features such as 2D or symptom search. In addition, MCS
has been field tested as discussed in Section 6.

Faq-O-Matic
Faq-O-Matic was created to solve some of the same prob-
lems MCS addresses: the difficulty in finding answers in
mailing list archives, and the substantial effort required
to maintain an FAQ (http://www.dartmouth.edu/�jonh/ff-
serve/cache/1.html). Faq-O-Matic addresses these issues by
creating a dynamic WWW-based FAQ which and member
of a user community can contribute to. Any user can browse



through the web pages and make additions as necessary. This
provides an easy way to maintain an FAQ since any member
of the community can volunteer to help. However, there is
no centralized authority in charge of the FAQ, so pieces of
potentially incorrect or mutually conflicting information can
be posted. Furthermore, new additions have to be written
from scratch by contributors, unlike MCS.

Vector-Based Text Searching and Summarization
The standard technique for search and retrieval from large
text databases is the vector method. Each document or seg-
ment is decomposed into a vector of terms which is assigned
a weight which is proportional to the frequency of the term
on the document, but inversely proportional to the frequency
of the term in the whole collection of documents. Using this
technique, searches can be conducted by comparing the vec-
tor of the query, to the vector of each document in the collec-
tion, and a summary of a document can be generated by se-
lecting segments of the document which are computed to be
most relevant [13]. However, this work is not directly appli-
cable to MCS. The domain of MCS is relatively short email
message, unlike the domain of automatic text summarization
which typically deals with larger documents like news sto-
ries or encyclopedia entries. The vector-based approach is
problematic for MCS, because the descriptions of problems
and solutions are so small that there is insufficient data for
such statistical methods. The summarization techniques are
not relevant since they work on the paragraph level. Summa-
rizing an encyclopedia entry by selecting paragraphs makes
sense, but for a 200 word message it makes little sense.

Other Work
W. B. Frakes and B. A. Nejmeh developed a system for soft-
ware reuse based on searchable archives of annotated source
code [8]. This research is similar to MCS in the use of human
annotation of the documents in the database. However, it ap-
pears that the metadata in the CATALOG system was created
by the author of the source code module, while in MCS the
metadata is added by the editor after the fact. Rub´en Prieto-
Dı́az has also done work on software reuse search systems
using a system calledfaceted classification[11]. Faceted
classification involves creating a set of categories and a con-
trolled vocabulary of terms for each category. Each docu-
ment is then assigned one term from each category. This type
of classification scheme could be used in MCS to ease the
burden of maintaining the keyword hierarchy, but it would
make it difficult to perform meaningful 2D searches since
each category would contain many terms.

The LaSSIE system attacks the problem of disseminating ar-
chitectural knowledge about a large software system to all
developers working on the system [5]. In LaSSIE, a “reverse
knowledge engineer” manually creates entries in a knowl-
edge base which permits natural language queries and se-
mantic retrieval. MCS is like LaSSIE in that it requires
a manual process to generate the metadata required for re-
trieval. While LaSSIE has the semantic retrieval mechanism,

it is unclear whether that system could be applied to the far
less structured domain of mailing list content.

The MediaDoc system also addresses the problem of ex-
plaining software systems to users [6]. MediaDoc employs
a complicated model of the user, including the user’s goals
and plans. While this approach may be able to provide bet-
ter responses to user queries, it will incur even more editor
overhead than already present in MCS.

The Knowledge Depot system provides a group memory
repository, and a project awareness system to a workgroup
using standard email distribution lists [9]. Messages are cat-
egorized in the repository by the workgroup members using
keywords in the subject lines of the messages. The project
awareness subsystem allows users to be sent periodic sum-
maries of recent activity in categories they are interested in.
While having users perform the categorization may work in a
small workgroup, it would not be feasible in MCS, because it
requires additional effort on the part of all users and assumes
that all users are equally qualified to perform the categoriza-
tion.

6 EVALUATION
To evaluate the research hypothesis that MCS is an improve-
ment over existing archives, we designed a case study of
MCS. The case study involved creating a condensed archive
of a mailing list, releasing the archive to the list subscribers,
and collecting qualitative and quantitative data on the users
of the archive. The goal of the case study was to answer
three research questions: can messages be condensed in a
reasonable amount of time, will subscribers of the mailing
list adopt the condensed archive, and will the archive users
prefer the condensed archive to an existing archive?

Target Mailing List
As mentioned in Section 3, we selected the jcvs mailing list
as the target for the case study. As a trial run, we also con-
densed the “icemail” mailing list which exists for the discus-
sion of the ICEMail program mentioned in Section 4. This
mailing list had many fewer subscribers, and while the con-
densed archive was announced to the subscribers, no data
was collected on their usage of the archive. Both the jcvs
condensed archive (http://csdl.ics.hawaii.edu:8100/) and the
icemail condensed archive (http://csdl.ics.hawaii.edu:8090/)
are online and publicly accessible.

Study Implementation
The case study was implemented in several stages:

1. The trial run condensation of the icemail list was per-
formed.

2. The MCS software was revised from the lessons learned
in the trial run.

3. The jcvs archive was condensed over several weeks.

4. The jcvs archive was announced to the mailing list on



January 24, 2000.

5. Users were able to use the condensed archive at their
leisure.

6. On February 10, 2000, an online questionnaire was
made available via the top page of the MCS archive. An
announcement was made to the mailing list informing
users of the questionnaire’s existence and encouraging
them to fill it out.

7. On February 23, 2000, I ceased collecting data from the
questionnaire, thus ending the case study.

Results
Editor Overhead
Even if condensed archives are deemed by users to be more
useful than conventional archives, the system will not be
adopted if the condensation process requires too much effort
by the editor. The editing task must be feasible to perform,
and it must not require too much time spent per message.
We assessed this measure by collecting time data from the
editing tool as the archive was condensed.

As we condensed the two archives, we recorded how much
time was spent editing. We recorded time spent reading mes-
sages, condensing them, and any external reading required
to condense the messages. We did not record time spent fix-
ing any critical defects in the MCS software, as they were
discovered as that time is not relevant to determining the ex-
pected time required to condense future archives. Table 1
shows the time data for both archives.

As you can see, it took substantially less time per message
examined when condensing the jcvs archive compared to the
icemail archive. We attribute this to two factors: tool im-
provement, and editor improvement. The editing tool had
a variety of quirks and defects when the first archive was
condensed, so the condensation required substantial manual
effort. After we condensed the first archive, we made many
improvements to the editing tool which increased the speed
with which messages could be condensed. In addition, we
learned more about how to condense from the experience of
condensing the first archive. The increased knowledge al-
lowed us to spend less time thinking about those issues when
condensing the second archive. With more practice and en-
hancements to the editing tool, it should be entirely possible
to bring the amount of time spent per message to one minute
or lower. For a medium to low traffic mailing lists, this seems
like an entirely acceptable amount of time to spend editing,
particularly since this includes the time required to read the
email for the first time, which an editor would presumably
be doing anyway.

Table 2 shows a summary of the contents of the archives.
As you can see, the archives contain only a fraction of the
messages examined (23% for icemail, 12% for jcvs). This

is to be expected because one of the goals of MCS is re-
moving unnecessary messages. The jcvs list had a smaller
percentage retained than the icemail list, presumably due to
the heavier traffic of the jcvs list. For both lists, the number
of keywords is fairly close to the number of archived mes-
sages. Because most messages contain multiple keywords,
this indicates that many messages used the same keywords,
otherwise the number of keywords would be larger than the
number of archived messages. Symptoms were also fairly
common on both lists: 21% of icemail problems had symp-
toms, 30% of jcvs problems had symptoms. The relatively
high incidence of problems with symptoms indicates that the
symptom search can be a useful search technique.

Adoption
We define adoption as a significant fraction of the subscribers
of the targeted mailing list using the condensed archive ei-
ther in addition to or instead of the traditional archives. We
have used the number of list subscribers as an estimate of the
number of potential condensed archive users. The adoption
percentage is then the number of condensed archive users
divided by the number of list subscribers, expressed as a per-
centage. To decide what adoption percentage would be in-
dicative of success, we consulted Everett’s work on the the
diffusion of innovations [12]. He divides adopters into five
categories based on the rate at which they adopt innovations.
The two categories containing the most rapid adopters are
the Innovators(consisting of 2.5% of the population), and
Early Adopters(consisting of 13.5% of the population). We
decided to target both these categories, so our target adoption
percentage is the sum of the category sizes: 16%.

To measure the adoption percentage, we needed two pieces
of information: the number of list subscribers and the num-
ber of users of the condensed archive. The list maintainer
provided the number of list subscribers from the subscrip-
tion list. An estimate for the number of users of the con-
densed archive was obtained by analysis of web server log
data from the condensed archive. Note that the adoption per-
centage, as we have defined it, is an imperfect measure since
we cannot positively determine whether the users of the con-
densed jcvs archive are actually subscribers of the mailing
list.

The Java Web Server, like most web servers, records a log
of all HTTP [7] requests made to it. Each log entry con-
tains the request made, the IP address of the requester, and
a timestamp. At this level, the data provides mere hit count
information which is a poor indicator of the number of actual
users of the system. There are a variety of ways to track users
more closely, but they generally require the user to either reg-
ister and log on or acceptcookies, which many people con-
sider intrusive. Since the major goal for MCS is adoption,
annoying users is to be avoided at all costs.

Using only the raw request data, there are two ways to esti-
mate the number of users of the archive: unique IP address



Mailing List Messages Examined Condensing Time Average Time Per Message

icemail 166 481 2.90
jcvs 1428 2165 1.52

Table 1: Editing time results for two condensed archives (all times in minutes)

Mailing List Messages Examined Messages Archived Problems Keywords Symptoms

icemail 166 39 19 40 4
jcvs 1428 177 82 120 26

Table 2: Statistics on the composition of two condensed archives

counting, and organizational analysis. The first method in-
volves simply counting the number of unique IP addresses
which have made requests. This technique, however, has
problems because of dynamic IP addressing and the use of
public access computers (such as in a University lab). In the
case of dynamic IP addressing, a user may access the archive
from the same computer but over the course of a day that
computer’s IP address might change which would cause this
user to be counted more than once. In the case of a public ac-
cess computer, multiple people may use the same computer
to access the archive. Since the computer only has one IP
address, the multiple users will only be counted once. Dy-
namic IP addressing is expected to be more prevalent than
shared computers among jcvs subscribers, so we expect the
unique IP address count to be an overestimate of the adoption
rate.

The other method for estimating the number of users of
the archive is organizational analysis. Organizational anal-
ysis attempts to collate the number of distinct organizations
that issued requests to the web server. While requests are
recorded in the log by IP address, the Domain Name Sys-
tem (DNS) can be used to map the IP address into a domain
name. Domain names can be more useful than raw IP ad-
dresses as they indicate what organization an IP address be-
longs to. Of course this method has its own problems: mul-
tiple users at the same organization are only counted once,
and some IP addresses cannot be resolved to a domain name.
However these problems should make the size organization
list an underestimate of the number of users of the archive.

Using a program calledAnalog(http://www.analog.cx/), we
analyzed the log file. Since the web logs were used to as-
sess adoption of the MCS archive, we removed any requests
which originated from any of the researchers’ workstations.
According to the analysis by Analog, the web server received
requests from 99 distinct IP addresses during the case study.
As mentioned earlier, this value is almost certainly an over-
estimate of the actual users since some users probably ac-
cessed the archive from different computers. However, this

value is probably an upper bound on the number of users of
the archive.

Analog also generated what it calls an organization report
which uses the organizational analysis technique. There
were 70 entries in the organizational report. Some of the
entries are not actual users such as the googlebot.com en-
try which is presumably a spider which collects data for the
Google search engine (http://www.google.com/). The last
nine entries have only one request which indicates that they
didn’t really do anything meaningful with the archive. On
the other hand, however, there were 176 requests from IP
addresses which could not be mapped into domain names
which would presumably raise the organization count if they
could have been resolved. The organization list also counts
multiple users coming from the same organization as one,
which could cause an underestimation of the number of
users. On balance, the value of 70 is a better and more con-
servative estimate of the number of actual users than the 99
distinct IP addresses value.

Given this estimate of the number of users of the archive, we
can now estimate the percentage of list subscribers that used
the archive. The list had approximately 401 subscribers at
the start of the case study. Using the figure 70 as the estimate
of the number of archive users, we find that this accounts for
roughly 17% of the list membership. This exceeds the 16%
goal which we set as the measure of whether or not the list
subscribers had adopted the condensed archive.

Preference
Assessment of the users’ preference of the condensed archive
over traditional archives was determined in a qualitative way
through a user survey administered using a web form on the
archive site. The survey included the question: “Since the
new problem-solving archive has been available, do you find
yourself using it instead of the old archive?”. All the ques-
tions were multiple choice except for two open-ended feed-
back questions.

A total of six questionnaires were filled out. We classified the



six questionnaires returned into three different groups: those
who had used neither the old archive nor MCS, those who
had only used MCS, and those who had used both the old
archive and the MCS archive. Each group had two question-
naire results which fit the characteristics. Due to the small
number of questionnaires returned, we limit our analysis to
qualitative trends that we noticed in the data.

The two users who did use both archives reported that: they
always found what they were looking for in the MCS archive,
they were completely satisfied with the MCS archive, and
that they were willing to volunteer as editors. This makes
some sense: in order to fully appreciate MCS you need to
have used traditional mailing list archives. The willingness
of respondents to consider volunteering to be editors is en-
couraging, and provides some hope that the burden of editing
could be spread out among multiple editors. All four users
that had used the MCS archives rated the archive as satisfac-
tory or completely satisfactory.

7 FUTURE WORK
Scalability Improvements
MCS was designed as a research system, and as such, many
decisions were made in favor of speed and ease of imple-
mentation. However, if MCS grows to serve large archives,
work will be required on its scalability. MCS uses a flat-file
storage structured rather than a backend database, so some
slow down will occur when there are many users and many
condensed messages. MCS also assumes that there is only a
single editor for an archive, which obviously does not scale
well to high-traffic lists where editors will want to share the
daily workload.

Adoption by Other Mailing Lists
Convincing other mailing lists to use the software for their
archives would be the final stage in moving the software out
into general use. This adoption process may be more difficult
because it requires the mailing list’s community to embrace
the system and it also requires recruitment of one or more
editors from the mailing list.

Expansion into Technical Support Market
Mailing lists are used extensively both internally and exter-
nally by those who provide technical support. In this kind of
environment, MCS could be used to do a sort of “data min-
ing” on old email archives, turning them into valuable knowl-
edge bases which can in turn reduce support costs. With the
potential of lowered costs, it would make sense for corpora-
tions to support editors either within their company or even
external editors.

ACKNOWLEDGMENTS
This research would not have been possible without the help
of Philip Johnson, and all the members of the CSDL re-
search group. Your encouragement is very much appreci-
ated. Thanks also to Yuka Nagashima for her steadfast sup-
port throughout. This research is supported by the National
Science Foundation under Contract NumberCCR-98-04010.

REFERENCES

[1] M. S. Ackerman and T. W. Malone. Answer garden: A
tool for growing organizational memory. InOIS90, Fil-
tering, Querying, and Navigating, pages 31–39. ACM
Press, 1990.

[2] M. S. Ackerman and D. W. McDonald. Answer garden
2: Merging organizational memory with collaborative
help. InProceedings of the ACM 1996 Conference on
Computer Supported Work, pages 97–105, New York,
Nov.16–20 1996. ACM Press.

[3] F. P. Brooks, Jr. The computer scientist as toolsmith II.
Communications of the ACM, 39(3):61–68, Mar. 1996.

[4] R. D. Burke, K. J. Hammond, V. A. Kulyukin, S. L.
Lytinen, N. Tomuro, and S. Schoenberg. Question an-
swering from frequently asked question files: Experi-
ences with the FAQ finder system. Technical Report
TR-97-05, Department of Computer Science, Univer-
sity of Chicago, June 20 1997.

[5] P. Devanbu, R. J. Brachman, P. G. Selfridge, and
B. W. Ballard. LaSSIE: A knowledge-based software
information system. Communications of the ACM,
34(5):35–49, May 1991.

[6] A. Erdem, W. Johnson, and S. Marsella. Task oriented
software understanding. InThirteenth International
Conference on Automated Software Engineering, pages
230–239. IEEE Computer Society Press, 1998.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. RFC 2068, Internet Engineering Task
Force, Jan. 1997.

[8] W. Frakes and B. Nejmeh. Software reuse through in-
formation retrieval. InProceedings of the Twentieth
Annual Hawaii International Conference on Systems
Sciences, pages 530–535, Jan. 1987.

[9] M. Kantor, B. Zimmermann, and D. Redmiles. From
group memory to project awareness through use of the
knowledge depot. InCalifornia Software Symposium,
1997.

[10] R. C. Pedersen. Reviewing Internet mailing lists.The
Serials Librarian, 30(2):27–33, 1996.

[11] R. Prieto-D´ıaz. Implementing faceted classification
for software reuse. Communications of the ACM,
34(5):89–97, May 1991.

[12] E. M. Rogers.Diffusion of Innovations, chapter 7. The
Free Press, fourth edition, 1995.

[13] G. Salton, A. Singhal, C. Buckley, and M. Mitra. Auto-
matic text decomposition using text segments and text
themes. InHypertext ’96, pages 53–65, 1996.


