
Lessons Learned from Teaching Reflective Software Engineering
using the Leap Toolkit

Carleton A. Moore
Collaborative Software Development Laboratory
Information & Computer Sciences Department

University of Hawaii, Manoa
Honolulu, Hawaii 96822 USA

(808) 956-6920
cmoore@hawaii.edu

ABSTRACT
Keywords
Software Developer Education, Process Improvement, Mea-
surement, Personal Software Process

1 Introduction
After using and teaching the Personal Software Process
(PSP)[6] for over four years, we came to appreciate the in-
sights and benefits that it gave us. However, we noticed some
general problems with the PSP.

First, we started to question the quality of the data we
recorded. In 1998, Anne Disney and Dr. Philip Johnson
conducted a study to look at the data quality of the PSP data.
They found that there are significant data quality issues with
the manual PSP[2, 3].

Second, our experiences with industrial partners, manage-
ment practices, and Robert Austin’s book “Measuring and
Managing Performance in Organizations”[1] brought to our
attention the issue of measurement dysfunction in empirical
software process improvement and review data. Essentially,
measurement dysfunction means that an organization’s goals
to improve software development and formal technical re-
view may inadvertently pressure their members to produce
“good” metrics while actually reducing their performance.

These problems led us to begin work on an alternative soft-
ware process improvement method called Reflective Soft-
ware Engineering. Like the PSP, Reflective Software Engi-
neering is based upon a simple idea: people learn best from
their own experience.

Reflective Software Engineering supports experience-based
improvement in developers’ professional activities by help-
ing the developer structure their experience, record it,
and analyze it. Unlike the PSP, Reflective Software
Engineering is designed around the presence of exten-
sive automated support. The support is provided by a

Java-based toolkit called “Leap”<http://csdl.ics.hawaii.edu/
Research/LEAP/LEAP.html>. The kinds of structured in-
sights and experiences users can record with Leap include:
the size of the work product; the time it takes to develop it;
the defects that the user or others find in it; the patterns that
they discover during the development of it; checklists that
they use during or design as a result of the project; estimates
for time or size that they generate during the project; and the
goals, questions, and measures that the user uses to motivate
the data recording.

2 Overview of the Leap toolkit
The Leap toolkit implements the following four design prin-
ciples.

� Light-Weight The first principle is that any tool or pro-
cess used in software developer improvement should be
light-weight. This means that neither tools nor pro-
cesses should create substantial new work for the de-
veloper.

� Empirical The second principle is that the methods for
software developer improvement should be empirical in
nature. The improvements in the development process
should be based upon the developer’s experiences. By
looking at their development empirically the developer
can judge for themselves what is best.

� Anti-measurement dysfunctionThe third principle is
that methods for developer improvement should address
measurement dysfunction. If there is measurement dys-
function, then the data and analyses will not reflect real-
ity. Any insights gained from the data and analyses will
be faulty and may cause the developer to change their
development practices in detrimental ways.

� Portable The fourth principle is that any tool or pro-
cess used in software developer improvement should be
portable. A tool that supports developer improvement
but cannot follow the developer as they move to differ-
ent organizations is not going to help that developer for
very long.

The Leap toolkit is written in Java. Since 1997, we have
made over 30 public releases of the Leap toolkit. As of



Figure 1: The Leap Time Estimation Tool.

January, 2000, the Leap toolkit consisted of 44,000 lines of
code, 2,209 methods, 287 classes, and 14 packages. You can
download the Leap toolkit from<http://csdl.ics.hawaii.edu/
Tools/LEAP/LEAP.html>.

Figures 1 and 2 give a sense of the look and feel of the Leap
toolkit we present . These figures show two of the dozen or
so tools present in the toolkit. Figure 1 shows a screen-shot
of the Leap Time Estimation Tool. The developer can choose
the type of historical data, the trend lines, the size type and
the estimated size to base their time estimate on. Once these
items are selected, the Leap Time Estimation Tool calculates
for the developer an estimated time range for the project.

Figure 2 shows a screen-shot of He’e, the Leap project sum-
mary tool. He’e allows the developer to quickly see an
overview of a project. They can view the size, time and
defect data and other summaries of their project. The de-
veloper can see how accurate their predictions were, their
distribution of time between different development phases,
when they injected and removed defects, and what their pro-
ductivity was.

3 Lessons Learned
We have used the Leap toolkit for over two years in our re-
search group, CSDL<http//csdl.ics.hawaii.edu>. In addi-
tion, we have used it in three software engineering courses
to help teach software engineering principles. Although we

have not actively solicited external usage, several industrial
users have discovered, downloaded, and used it. They have
generally reported favorable reactions to the Leap toolkit.

The following lessons arise from all of these experiences but,
especially, from survey and interview data we collected from
our most recent classroom usage. This class involved 16 stu-
dents who used the Leap toolkit for four months in a graduate
software engineering class.

Lesson 1: Collecting data about software development is
useful
Many of the students felt that just collecting the data about
their software development practice focussed their attention
on the process. One student said “I’m focusing my attention
more on the project. ... [It] makes me think I’m manag-
ing myself.” Another student said “You pay attention to the
project. So, you do [it] quickly.”

By collecting the data and being aware of what phase they are
in, the students started to change their software development
practices. One student noted “I actually predict my phases,
and do it [programming] in different phases. Before, I just
do it together.”

Lesson 2: Leap enables users to accurately estimate size
and time in a known domain
The 16 students were able to accurately predict the size and



Figure 2: He’e, the Leap project summary tool showing the time summary.

effort required for their programming assignments. For pro-
gram #3, only four students’ time estimates were within 20%
of their actual times. By program # 8, 12 students’ time es-
timates were within 20% of their actual times. For their size
estimates, only two students were within 20% accuracy for
their fourth program. By the last program, seven students
were within 20% for their size estimates. Tables 1 and 2
show the class’ average estimation error for time and size.
The size estimate is in methods. The last four projects were

Table 1: Class’ average time estimation error
Project

3 4 5 6 7 8
-14.83 -17.45 -15.24 -19.40 -7.80 0.43

Table 2: Class’ average size estimation error
Project

3 4 5 6 7 8
-38.44 -24.58 -31.47 -34.570 -25.57 7.00

very similar, building and extending a GUI interface. The
class’ ability to estimate both size and time dramatically im-
proved over the last four projects.

Lesson 3: Many users feel their programming skills im-
prove primarily due to practice, not their method
Many of the students said that using the Leap toolkit did
not directly improve their programming skills. One student,
when asked how their programming skills improved said, “I
don’t think it is because of Leap.” But, when I asked them
what is the most important thing they learned from the class
they said “I have an idea how to estimate time, although not
too accurately, but I can get a range.” This knowledge came
from Leap, not practice.

Many other students also reported that their programming
skills improved primarily due to practicing programming and
not because of the Leap toolkit. But, when asked what they
learned from the class most said they learned how to estimate
and plan their projects. It seems that many students do not
consider project estimation a programming skill. Yet, many
of them felt that the ability to plan their projects and manage
their time was extremely important.

Lesson 4: To reduce measurement dysfunction, make the
results less visible
The problem of measurement dysfunction in software pro-
cess improvement is very important. It is even more impor-
tant in a classroom setting. To teach students how to improve
their own software development process without having the
students fake their data is difficult.

In this class, none of the students reported sharing their Leap



data with other students. They did not compare their produc-
tivity or estimation abilities. In a previous class that I taught
using the Leap toolkit, the students were actively comparing
their productivity and estimating abilities. The major differ-
ence between the two classes was that in the previous class
the students printed out their Leap data, while in the cur-
rent course the students turned in their Leap data on floppy
disks. With paper copies of their data the students could eas-
ily compare their process data and compete with each other.
This competition may lead to measurement dysfunction.

Lesson 5: Partial defect collection and analysis is still use-
ful
Many students felt that recording their important defects was
very valuable. One student said, “I think collecting defects
is good. You find out what mistakes you make.” Another
student said, “I still have a chance to go back look at them
[defects] sometimes... So when I look at it ... the chance it
will happen is kinda less.” Students felt this way even though
recording every single defect is not required for Reflective
Software Engineering, unlike the PSP.

Lesson 6: Tool support should require few machine re-
sources
Most of the students complained that the Leap toolkit was
too slow and that it took up too much memory when it
was running. Any tool supporting empirical software devel-
oper improvement should not adversely affect the develop-
ers environment. One student remarked “I think it’s not very
convenient” and that they would probably not use the Leap
toolkit in the future.

Lesson 7: Experience may lead to overconfidence
Looking at the estimation accuracy data for the students in
the class, I noticed that there was a difference between the
estimation accuracy for students who reported more than five
years of programming experience and students with less than
five years experience. I divided the class into two groups,
students who reported less than five years of programming
experience and students with at least five years of program-
ming experience. I compared their size and time estimation
accuracies.

First, I looked at the students’ size estimation accuracies.
The experienced students, on average underestimated their
program size by 32.5%. The less experienced students un-
derestimated their program size by 8%. I found a significant
difference between the two groups (F= 11.3, P< 0.01).

Second, I compared their time estimation accuracies. The
experienced students had an average estimation error of -
17%. The less experienced students had an average estima-
tion error of -7%. Again, I found a significant difference
between the two groups (F= 3.94, P= 0.05).

It appears that the more experienced students tended to un-
derestimate the size and effort required for the programming
assignment. This could be due to overconfidence in their

programming skills and disbelieving the data that the Leap
toolkit was giving them. By the eighth project, the experi-
enced students were as accurate as the less experienced stu-
dents.

4 Future Directions
Our current development effort focuses on providing a
database backend for the Leap toolkit to support scaling of
data storage. A single individual database repository will
simplify data storage in the Leap toolkit.

Another major direction for this research is autonomous
agents to help reduce the overhead for the user. These agents
could help collect and analyze the user’s data automatically
and inform the user when they detect interesting patterns.

This research is supported in part by a grant from the Na-
tional Science Foundation CCR 98-04010.

REFERENCES

[1] R. D. Austin.Measuring and Managing Performance in
Organizations. Dorset House Publishing, 1996.

[2] A. M. Disney. Data quality problems in the Personal
Software Process. M.S. thesis, University of Hawaii,
August 1998.

[3] A. M. Disney and P. M. Johnson. Investigating data qual-
ity problems in the PSP. InProceedings of the ACM
SIGSOFT Sixth International Symposium on the Foun-
dations of Software Engineering, pages 143–152, Lake
Buena Vista, FL, November 1998.

[4] K. E. Emam, B. Shostak, and N. Madhavji. Implement-
ing concepts from the Personal Software Process in an
industrial setting. InProceedings of the Fourth Inter-
national Conference on the Software Process, Brighton,
England, December 1996.

[5] P. Ferguson, W. S. Humphrey, S. Khajenoori, S. Macke,
and A. Matvya. Introducing the Personal Software Pro-
cess: Three industry cases.IEEE Computer, 30(5):24–
31, May 1997.

[6] W. S. Humphrey.A Discipline for Software Engineering.
Addison-Wesley, New York, 1995.

[7] B. Shostak. Adapting the Personal Software Process to
industry.Software Process Newsletter #5, Winter 1996.


