
Empirically-Guided Software Effort Guesstimation

Philip M. Johnson Carleton A. Moore
Joseph A. Dane Robert S. Brewer
Collaborative Software Development Laboratory
Information & Computer Sciences Department

University of Hawaii
Honolulu, Hawaii 96822 USA

johnson@hawaii.edu

Abstract
Software project effort estimation is frequently seen as
complex and expensive for individual software engi-
neers. In Project LEAP, we are investigating tools and
methods to support low-cost, empirically-based soft-
ware developer improvement. In a recent case study,
we investigated effort estimation and the relative ac-
curacy of a dozen different analytic estimation proce-
dures. Student programmers could estimate the effort
required using any of the analytic methods, or else pro-
vide their own “guesstimate”. Our study provides evi-
dence that “guesstimates”, when informed by low-cost
analytical methods, may be the most accurate of all.

Keywords: software estimation, software quality,
software planning

1 Introduction
Most software engineers (and their managers) fervently
wish they could get home from the office earlier at
night and come in less on weekends. Typically, escap-
ing the tyranny of crunch mode requires greater control
over the development process, and reasonably accurate
project estimates provide essential support for acquir-
ing this control.

Given the undisputable lifestyle benefits that can re-
sult, it is ironic that many developers continue to view
project estimation as a kind of software engineering
version of the “np-complete problem”. In other words,
some fear that creating an accurate project estimate
might be, in the worst case, as costly as simply building
the system itself.

Appearing in IEEE Software, November 2000

The state of the art in software project estimation does
not deserve this reputation, but the fact remains that
modern methods are time-consuming and complex. Es-
timation methods such as COCOMO II [3] are oriented
toward the needs of large and very large software en-
gineering projects for creating estimates of cost, effort,
and schedule. In COCOMO II, an organization pro-
vides values characterizing organizational factors such
as “precedentedness”, “development flexibility”, “team
cohesion”, and “process maturity” as part of the es-
timation process. On the other hand, methods such
as the Personal Software Process (PSP) [8] support
small/individual project estimation accuracy. In the
PSP, individuals collect personal data concerning soft-
ware size, effort, and defects for their own code-level
work products, then use a regression-based analytic
technique called PROBE to generate effort predictions
for future projects based upon historical data. Although
both of these approaches have demonstrated success
in organizations with the resources necessary to adopt
them, the process overhead involved in their imple-
mentation can often be inconsistent with the resource-
constrained nature of smaller or even startup level de-
velopment organizations.

For several years, we have pursued an initiative called
Project LEAP, whose goal is the improvement of indi-
vidual developers though lightweight, empirical, anti-
measurement dysfunction, and portable software en-
gineering tools and methods [10]. One result of this
project is the LEAP toolkit, a publically available, Java-
based suite of applications for collection and analysis of
an individual’s software engineering data. Among other
things, LEAP contains tools to simplify the collection
of size data (at the level of lines of code, methods, and
classes) and effort data (in developer minutes). The col-
lected size and effort data serves as input to a set of esti-
mation tools that can produce over a dozen different an-
alytical estimates of the effort required for a new project

1



given an estimate of its size, using various estimation
methods such as linear, logarithmic, or exponential re-
gressions. During project planning, the developer can
review and select one of the estimates produced by the
analytical tools, or else substitute their own “guessti-
mate” based upon their own experience and review of
the analytical estimates.

During the Fall of 1999, we performed a case study us-
ing the LEAP toolkit in a graduate software engineer-
ing class. One of the goals of the study was to evaluate
the various analytical estimation methods made avail-
able by the toolkit. We were curious as to whether a
single method would prove most accurate, or whether
the most accurate method would depend upon the type
of project or the specific developer. To our surprise,
we found that, in most cases, the developer-generated
“guesstimates” were more accurate than the analytical
estimates. We also found that the PROBE method of the
Personal Software Process [8], perhaps the most widely
publicized analytical approach to personal effort esti-
mation, was the sixth most accurate method. Finally,
we found that access to a range of analytical estimation
methods appeared to be useful to developers in gener-
ating their guesstimates and improving them over time.

Due to the small number of participants in the case
study, not all of our results are statistically significant.
Replication is necessary to better understand its gener-
ality and applicability. However, our initial findings do
support some provocative conjectures concerning the
research and practice of project estimation. First, much
of the research on project estimation focuses on the
evaluation of a single estimation method. Success is of-
ten demonstrated by increased estimation accuracy over
time. Our study suggests that more research should be
done in which a variety of different estimation meth-
ods are investigated simultaneously, since even subopti-
mal estimation methods may exhibit improvement over
time. Second, our research suggests that a practical ap-
proach to small-project software estimation might be
“empirically guided guesstimation”, whereby a variety
of simple analytical methods inform developer intuition
to create a low-cost yet useful software project esti-
mates.

The remainder of this article elaborates on these ideas.
The next section briefly describes how estimation is
performed in the LEAP toolkit. The following section
presents selected results from the case study. The fi-

nal section provides some recommendations for future
research and practice.

2 Estimation using the LEAP toolkit
The LEAP toolkit provides a suite of tools for collect-
ing and analyzing personal software engineering data
(see Sidebar). For the purposes of this article, only the
tools relating to size collection, effort collection, and
project estimation are relevant.

Effort collection in LEAP is straightforward: tools al-
low developers to enter effort data either after the fact
or interactively while they work. Size collection uses a
tool called LOCC [4] that counts non-comment source
lines, methods, and classes for any language for which
a JavaCC-compliant grammar is available. Unlike most
other size counting tools, LOCC also includes a “diff”
facility which allows the developer to count the num-
ber of source lines, methods, and classes thatchanged
between two versions of the system, which is critical
for useful estimation in an evolutionary development
setting. Together, these tools provide cross-platform,
cross-language support for low-cost size and effort col-
lection.

Producing an estimate of the effort required for a new
software project using LEAP involves the following ba-
sic steps:

1. Select the completed projects whose size and ef-
fort data you wish to use as input to the analytical
estimation methods.

2. Generate an estimate of the expected size (in lines,
methods, or classes).

3. Browse the effort estimates produced by the vari-
ous analytical methods.

4. Record an effort estimate to use, either from those
proposed by the analytical methods or by generat-
ing your own “guesstimate”.

Steps three and four are illustrated in the accompany-
ing figures. Figure 1 shows the LEAP interface to the
analytical effort estimation method browser. In the top
panel, the user can indicate the type of historical data to
be used (planned or actual), the trend line (i.e. the type
of analytical model to be applied to the data), and the
size metric (in this case, Java-based lines, methods, and
classes). The displayed graph and the three estimates

2



Figure 1: The LEAP tool interface for effort estimation

in the bottom panel indicate the results of estimating
the effort required to produce an 80 method software
system, based upon eight prior software projects, using
linear regression.

Choosing different trend lines and size metrics enables
the developer to generate and then save a variety of es-
timates. Figure 2 shows one pane in the LEAP project
planning tool. The upper half of the window provides
fields in which the developer enters their planned ef-
fort. The lower half of the window shows a table in
which the developer can collect together for review a
set of estimates generated using the effort estimation
tool. (The “Add to Hee” button in Figure 1 adds the
data currently displayed to the table in Figure 2.) As
you can see in Figure 2, the analytical effort estimates
range in value from 947 minutes to 1304 minutes, yet
the developer has entered a planned effort of 1200 min-
utes, which differs from all of the analytically-derived
estimates.

The LEAP toolkit allows substantial flexibility in the
kinds of work products and size metrics involved in
estimation. While LOCC provides “shrink-wrapped”

support for counting object-oriented programming lan-
guages like Java and C++, LEAP provides a size metric
definition mechanism that allows users to integrate new
measures for new document types. For example, the
size of a high level requirements document might be
counted in pages, while a design specification might be
counted in function points.

The ability of LEAP to support multiple estimation ap-
proaches and represent planned and actual efforts for
projects enabled us to explore an interesting research
question: would users pick the most accurate estimate,
and if so, which estimation technique would it be? The
following case study provides some initial insight into
this question.

3 Results from a case study
To gain some initial data concerning estimation using
the LEAP toolkit, we conducted a case study in a grad-
uate software engineering class of 16 students at the
University of Hawaii. Seven of the 16 students were
“experienced” software developers, with five or more
years of prior programming experience. The 16 stu-
dents developed 8 software projects each for a total of

3



Figure 2: One pane in the LEAP project plan tool. The table in the lower half of the screen lists the estimates used
in coming up with the plan.

128 projects. However, the students used the first three
projects to generate an initial set of historical data, and
then practiced the estimation technique described above
on the remaining five projects. Thus, only the last five
projects by the 16 students, or 80 projects total were
used to generate the following results concerning esti-
mation.

Over the course of this semester, the students improved
in their estimation capabilities in a manner similar to
the results obtained from other small-project empir-
ical methods such as the Personal Software Process
[7, 5, 6, 9]. For example, the average student size esti-
mate was off by approximately 50% on the third project
but decreased to less than 15% by the eighth project.
Similarly, the average effort estimate was off by ap-
proximately 25% on the third project but decreased to
less than 10% on average on the eighth project.

What is novel about this case study is not that the stu-
dents became better at estimation, which is by now
a well-established property of curricula of this type.
What is novel is the ability to investigate the relative
accuracy of the estimates chosen relative to the other

estimates that were available. In other words, did the
students pick the right estimate to use amongst those
that were available? To assess this, we calculated the
error in the estimates by subtracting the planned value
from the actual value, and performed an analysis of
variance (ANOVA) test to see if the average error for
one approach was statistically different from another
approach. We interpret the results as statistically sig-
nificant if the results could be due to chance less than
2% of the time (p< .02). More details are available in
[10].

The results from the case study are provocative. First,
over the course of the 80 projects in which estima-
tion was performed, an analytical estimate was used as
the student’s planned effort estimate less than 10% of
the time. Students vastly preferred to enter their own
“guesstimate” rather than use one of the analytical val-
ues, although they typically recorded around three ana-
lytical estimates before entering their guesstimate. For
8 out of 16 students, these “guesstimates” were on av-
erage more accurate (i.e. had the smallest average er-
ror) than any of the analytical estimates. For two of the

4



eight students, the guesstimates were significantly more
accurate than any of the analytical methods (p< .02).
For the other six students, their guesstimates were more
accurate on average but not significantly more accurate
than the next most accurate method from a statistical
point of view. Interestingly, there was only one student
for which an analytical technique (exponential regres-
sion using actual LOC) was the best estimate overall
and significantly better than any other estimation tech-
nique (p< .02).

When the average relative error is computed for each
estimation method over the class as a whole, it reveals
that the student guesstimates were significantly more
accurate than any of the analytical methods (p< 0.001).
The next most accurate estimation technique (which
was also, incidentally, significantly more accurate than
any of the other analytical estimation techniques) was
exponential regression using actual methods.

The PROBE analytical method from the Personal Soft-
ware Process is perhaps the most widely researched
current method for individual effort estimation, and
so we were particularly interested to see how it fared
against the other methods. For one student, the PROBE
method was the most accurate estimation method on av-
erage (although not significantly more accurate than the
next most accurate method from a statistical point of
view). However, for the other 15 students, their own
guesstimates were more accurate on average than the
PROBE estimate. When the class data is viewed as a
whole, the PROBE method was the sixth most accurate
method.

4 Lessons Learned
One must be careful when interpreting these results.
Even though some of our results are statistically sig-
nificant, the teaching method, development environ-
ment, choice of programming projects, and other fac-
tors greatly influence the data and outcomes. There are,
of course, a myriad of differences between an academic
and professional development environment that might
influence such data. That said, we present the follow-
ing as the major lessons we believe can be learned from
our experiences with estimation in the LEAP toolkit:

1. Software process data collection is costly. Even
more automated support than that currently
provided by the LEAP toolkit will be useful.
Collecting effort and size data, even with the ad-

vanced tool support provided by LEAP, is still
viewed by developers as a distraction from the task
at hand, even when the future benefits to them are
clear. As a result, we are currently investigating
“ultra-lightweight” project estimation support, in
which deep integration with a specific develop-
ment environment could provide almost total au-
tomation of effort and size data collection for per-
sonal small-project estimation.

2. Providing multiple estimation techniques and
size measures adds value.Our users found it in-
teresting and useful to “browse” the various esti-
mation methods to look for similarities and dif-
ferences. In some cases, users would “triangu-
late” their estimate by choosing a value midway
between several of the analytical estimates. In ad-
dition, while estimation based upon lines of code
may be best for small projects, estimation based
upon the number of methods may be preferable as
the size of the system increases.

3. Analytical estimation methods need not be
complex. The estimation methods included in
LEAP range from the very simple (such as a
method based upon average, minimum, and max-
imum productivity) to the relatively complicated
(the PROBE method, in which the developer must
choose between three analytical methods based
upon the strength of correlation between planned
and actual data). Our preliminary results sug-
gest that complicated methods may not necessarily
yield a more accurate estimate, particularly when
developers can incorporate their own intuition into
the estimate. During the postmortem interview
on each project, students would often explain that
they decided to deviate from the analytical esti-
mates to account for various idiosyncracies in the
project, their background, or other factors. Au-
tomating the breadth of knowledge brought to bear
on the estimation problem by these users within an
analytical estimation technique will be problem-
atic at best.

4. Empirical data is useful. Although our users
rarely adopted an analytical estimate without
change, it was also clear that they found the data
of tremendous utility as a way of “getting in the
right ballpark.” When a user’s estimate departed
radically from the analytical range of values, they

5



invariably had an excellent rationale for their deci-
sion.

The importance of empirical data is highlighted by
an analysis of estimation accuracy between two
groups in the case study: the “experienced” de-
velopers (those with five or more years of expe-
rience) and the “inexperienced” developers (those
with less than five years of experience). To our
surprise, we discovered that experienced devel-
opers substantially underestimated the effort re-
quired for their projects at the beginning of the
study. Their guesstimates were so far off that they
were not only worse than the analytic estimates,
they were even less accurate than those of the in-
experienced developers! It seems as though inex-
perienced developers appear to “trust” the empir-
ical data and let it guide their guesstimates from
the beginning, while experienced developers ini-
tially ignored the empirical data. However, this
effect was temporary. By the end of the study, ex-
perienced developers seemed to rely more on the
empirical data in forming their guesstimates, and
their estimation accuracy improved to a level sim-
ilar to that of the inexperienced developers.

5 Acknowledgements
This research was supported in part by a grant from the
National Science Foundation (CCR-9804010).

6 Sidebar: The LEAP toolkit
“LEAP” is an acronym for four of the fun-
damental design principles underlying the toolkit.
Lightweight, Empirical, Anti-measurement dysfunc-
tion, and Portable.Lightweightmeans that the tool does
not force you (or force the colleagues that work with
you) to conform to its own highly structured and/or
constrained development process.Empirical means
that the toolkit helps you to collect and analyze a variety
of numerical measures which can help give you insight
into your strengths and weaknesses. (Non-numerical,
qualitative insight is also supported in the toolkit.)Anti-
measurement dysfunction[1] means that the toolkit is
designed with a recognition that attaching numbers to
people can be a social or professional liability in cer-
tain organizations, and so the tool is designed to support
privacy concerns. Finally,portable acknowledges the
highly mobile nature of current software professionals
both within and across company boundaries, and thus
the need for personal data collection and analysis soft-

ware that can move with the professional into different
platforms, organizations, and application development
domains.

LEAP consists of over a dozen integrated tools, sup-
porting collection of defect data, effort data, size data,
checklists, and patterns. LEAP also allows definition
of work product types, defect types, severity levels,
development phases, and size measures. The project
planning tool supports size and effort estimation, GQM
(goal-question-metric) [2] documentation about the na-
ture and use of the data collected, and various analyses
concerning productivity, defect rates, and so forth.

The Leap toolkit is written in Java. Since 1997, we
have made over 30 public releases of the Leap toolkit.
As of January, 2000, the Leap toolkit consisted of
44,000 lines of code, 2,209 methods, 287 classes, and
14 packages. You can download the latest version
of the Leap toolkit from<http://csdl.ics.hawaii.edu/
Tools/LEAP/LEAP.html>. The LOCC toolkit is also
publically available, and
can be downloaded from<http://csdl.ics.hawaii.edu/
Tools/LOCC/LOCC.html>.

REFERENCES

[1] R. D. Austin. Measuring and Managing Perfor-
mance in Organizations. Dorset House Publish-
ing, 1996.

[2] V. Basili and D. Weiss. A methodology for col-
lecting valid software engineering data.IEEE
Transactions on Software Engineering, SE-10(6),
November 1984.

[3] B. Boehm, B. Clark, E. Horowitz, R. Madachy,
R. Selby, and C. Westland. Cost models for future
software lifecycles: COCOMO 2.0. InAnnals of
Software Engineering. 1995.

[4] J. A. Dane. Modular program size counting. M.S.
thesis, University of Hawaii, December 1999.

[5] K. E. Emam, B. Shostak, and N. Madhavji. Im-
plementing concepts from the Personal Software
Process in an industrial setting. InProceedings
of the Fourth International Conference on the
Software Process, Brighton, England, December
1996.

[6] P. Ferguson, W. S. Humphrey, S. Khajenoori,
S. Macke, and A. Matvya. Introducing the Per-

6



sonal Software Process: Three industry cases.
IEEE Computer, 30(5):24–31, May 1997.

[7] W. Hayes and J. W. Over. The Personal Software
Process (PSP): An empirical study of the impact
of PSP on individual engineers. Technical Report
CMU/SEI-97-TR-001, Software Engineering In-
stitute, Pittsburgh, PA., 1997.

[8] W. S. Humphrey.A Discipline for Software Engi-
neering. Addison-Wesley, New York, 1995.

[9] P. M. Johnson and A. M. Disney. A critical analy-
sis of PSP data quality: Results from a case study.
Journal of Empirical Software Engineering, De-
cember 1999.

[10] C. A. Moore. Investigating Individual Software
Development: An Evaluation of the Leap Toolkit.
PhD thesis, University of Hawaii, Department
of Information and Computer Sciences, August
2000.

7


