

javaJAM
SUPPORTING COLLABORATIVE REVIEW AND IMPROVEMENT OF

OPEN SOURCE SOFTWARE

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE

UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

INFORMATION AND COMPUTER SCIENCES

AUGUST 2000

By

Monir Hodges

Thesis Committee:

Philip M. Johnson, Chairperson

Wesley Peterson

Daniel Suthers

 ii

We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and

quality as a thesis for the degree of Master of Science in Information and Computer Sciences.

THESIS COMMITTEE

Chairperson

 iii

© Copyright 2000

by

Monir Hodges

 iv

To my family, Michael, Emily, and Sarah,

for their continuous moral support

throughout this project.

To my colleagues at

Honolulu Community College who

provided encouragement and freedom to experiment.

 v

Acknowledgements

This research would not have been possible without the help of Philip Johnson, and the

assistance of Robert Brewer. I also would like to thank all the members of the CSDL research

group for providing initial feedback and sitting through several presentations of javaJAM. Your

feedback has been valuable in helping me to provide a better interface.

I would like to thank Ty Kroll for doing the original investigation on enhancing the

standard Javadoc for javaJAM.

 vi

Abstract

Development of Open Source Software is in many cases a collaborative effort, often by

geographically dispersed team members. The problem for members is to efficiently review

documentation and source code and to collect and share comments and annotations that will lead

to improvements in performance, functionality, and quality.

javaJAM is a collaborative tool for assisting with the development of Open Source

Software. It generates integrated documentation and source code presentations to be viewed

over the web. More importantly, javaJAM provides an interactive environment for navigating

documentation and source code and for posting annotations.

javaJAM creates relationships between sections of documentation, source, and related

comments and annotations to provide the necessary cross-referencing to support quick and

efficient reviews.

javaJAM was evaluated in a classroom setting. Student teams posted projects for team

review using javaJAM and found it to be an easy way to review their projects and post their

comments.

 vii

Table of Contents

Acknowledgements... v
Abstract .. vi
Table of Contents ..vii
List of Tables ..x
List of Figures ..xi
1. Introduction ..1

1.1 The Challenge of Open Source Software Development ..1
1.2 Providing a Web-Enabled Collaboration Tool...2
1.3 The javaJAM Implementation ...2
1.4 Two Example Web-Enabled Application Reviews ..4
1.4.1 Manually Publishing Documentation and Source...5
1.4.2 javaJAM Publishing Documentation and Source ..7

1.5 Thesis Statement ..15
1.6 Overview of this Document...16

2. Related Work ...17
2.1 Open Source Initiative..17
2.2 CSRS ...19
2.3 Giant Java Tree...19
2.4 SDM ...22
2.5 Tango Interactive ...23

3. A New Collaboration Tool ..26
3.1 Requirements..26
3.1.1 Documentation and Source Review ...27

3.2 Functionality..27
3.2.1 Documentation Annotation ..27
3.2.2 Source Annotation ..29
3.2.3 Line Numbering ..30
3.2.4 Moderation...30
3.2.5 Actors and Roles ..31

4. Implementation ...32
4.1 Documentation Tools Subsystem ...32
4.1.1 Javadoc Frames Enhancement ...32
4.1.2 Javadoc Source Code Presentation Enhancement ..34
4.1.3 Javadoc Annotations Buttons Enhancement ...35
4.1.4 Javadoc Output Files and Organization..36

 viii

4.2 Site Tools Subsystem ..37
4.2.1 Server Settings Review Tool..37
4.2.2 Server Doclet Interface Tool ...38
4.2.3 Server Host/Rehost Tool ...38

4.3 Review and Annotation Subsystem...39
4.3.1 Authentication and Security Model ...39
4.3.2 Annotation Life Cycle ..40
4.3.3 javaJAM Dialogs ...40

4.4 Site Initialization File..41
4.5 Authentication Rationale ..41
4.6 Client/Server Architecture ..41

5. Case Study ..44
5.1 Design and Goals ..44
5.2 Method ...44
5.3 Results ...45
5.3.1 Instructor Feedback ..45
5.3.2 Student Feedback..45

5.4 Discussion ..46
6. Conclusion ...47

6.1 Contributions of this Research..47
6.2 The Javadoc Advantage ..47
6.3 Observations on Teaching ...48

7. Future Directions ..49
7.1 Improved Support for Collaboration ..49
7.1.1 Scalability Improvements...49
7.1.2 Collaborative Teaching Tool ..49
7.1.3 Moderator Comments ...49
7.1.4 Email Triggers ..51
7.1.5 Voting ..51
7.1.6 Threaded Discussions ...51
7.1.7 Software Distribution ...51

7.2 Improved Support for Application Hosting..51
7.2.1 Flexible Hosting tool..51
7.2.2 Package Version Control...52
7.2.3 Annotation Migration ...52
7.2.4 Automatic Clean Up..52

7.3 Functional Enhancements..52

 ix

7.3.1 New Annotation Status ..52
7.3.2 Extensibility..53
7.3.3 Annotations Reporting...53
7.3.4 Password Encryption ..53

7.4 User Interface Enhancements ..54
7.4.1 Selective Viewing ...54
7.4.2 IDE Integration ...54

Appendix A, Sample Questionnaire..55
Appendix B, Raw Questionnaire Results ..58
Appendix C, Sample javaJAM Sign Up Message ..59
Appendix D, javaJAM Data Structures ..60
Appendix E, Quality Assurance Test Suite..62
Appendix F, Win9x/NT javadoc.exe Shell Script ..65
Appendix G, CstUploadEtcServlet Log ...66
Appendix H, Site Initialization File ..70
Bibliography ...72

 x

List of Tables

Table 1, Raw Survey Results...58
Table 2, Test Suite..62

 xi

List of Figures

Figure 1, Initial javaJAM Screen...7
Figure 2, Sign Up Screen ..9
Figure 3, Welcome Screen ..9
Figure 4, Hosted Applications Screen...10
Figure 5, Annotate Button..11
Figure 6, New Annotation Dialog..11
Figure 7, Add Annotation Confirmation Dialog...12
Figure 8, Proposed Annotation Status ..13
Figure 9, Accept Annotation Dialog ..13
Figure 10, Accepted Annotation Status...14
Figure 11, Giant Java Tree Project Selection Screen...21
Figure 12, Giant Java Tree Sample Project Screen...22
Figure 13, Tango Application Sharing Selection Screen ..24
Figure 14, Tango Generic Tools Selection Screen ..25
Figure 15, Sample Javadoc Class Structure ...28
Figure 16, Line Numbering ..30
Figure 17, Standard Javadoc Frames...33
Figure 18, Enhanced Javadoc Frames ...34
Figure 19, Enhanced Source Code Presentation...35
Figure 20, Site Tools Menu..37
Figure 21, Settings Review Tool ..38
Figure 22, Participant Architecture ...42
Figure 23, Moderator Architecture ..43
Figure 24, Guest Architecture ..43
Figure 25, Post Annotation ..50
Figure 26, Future Post Annotation..50
Figure 27, Survey Results Bar Chart ..58

 1

1. Introduction

1.1 The Challenge of Open Source Software Development

There was a time when a lone software developer could sit in a corner for weeks or

months or even years and quietly hack out a package and hope for some level of success and

recognition. While it is possible for solo developers to create small, niche applications like the

MemMax utility for freeing up RAM that is offered at AnalogX.com [1], much of the software

development in the 21st century will be for large applications.

Applications are usually developed under intense circumstances. These circumstances

have two salient features: competition and complexity. Whether an application is developed as

Open Source, Shareware, or for shrink-wrapping, these two circumstances, competition and

complexity, still apply since the first one to get well known will be the one most likely to gather a

loyal following, find success and gain a competitive advantage.

The pressures of competition can greatly shorten the desired lapse time from product

conception to product delivery. Whether it is a new idea, or just the next product cycle, there is

often a compelling reason to keep the cycle as short as possible while keeping the overall quality

of the software at a reasonable level.

Complexity requires in many cases that software is feature-complete and includes a rich

user interface requiring minimal learning curves. While users may not take advantage of more

than a small portion of the feature set, they are attracted to feature-rich software as can be seen

by the success of PaintShop Pro version 6 [15] and the continual evolution of the Microsoft Office

suite.

In response to competition and complexity, Open Source Software is rapidly gaining

acceptance as a viable alternative model for high quality software development and innovation.

The problem that developers face when working with this model is that they are often members of

a team in which one or more members will have no or little opportunity for face-to-face meetings

with other team members. This presents a hurdle for successful application development.

Reviewing documentation and source code, and collecting and sharing notes and annotations

that will lead to improvements in performance, functionality, and quality becomes the challenge if

it is to be accomplished in a timely fashion.

 2

1.2 Providing a Web-Enabled Collaboration Tool

One solution to supporting Open Source Software development is to create a tool that

facilitates documentation and code review and provides for the collection of annotations as they

relate to the section of documentation and code that the viewer has reviewed and has determined

a need to make a comment or a suggestion. Such a tool would have to work behind the scenes

to establish relationships between sections of documentation and source and also the

annotations as they are posted and accumulated. Additionally, this tool would have to be easy to

learn and use so that it would not get in the way of the overall software development task. This

tool would be very easy to deploy if it could take advantage of the Internet and be accessible

using any web browser.

javaJAM has been designed to accomplish exactly this. To get the most benefit from the

Open Source approach and philosophy javaJAM provides a software collaboration tool that

facilitates under an Open Source model the publication of software packages and the collection of

review comments and notes for application documentation and source. These review comments

are referred to, individually, as annotations. javaJAM relies on Javadoc for the generation of

program documentation, and also incorporates the Java source code into the presentation.

 Javadoc is Sun’s implementation of an extensible documentation generation system that

parses Java source code to extract and publish class, constructor, and method interface

documentation in HTML format for the web. Javadoc does impose conventions in order for useful

documentation to be generated. The Javadoc source code must contain in-line comments that

follow these conventions.

The javaJAM extensions to Javadoc provide additional features for reviewing or creating

annotations while reviewing source code and documentation. For developers already familiar

with Javadoc, javaJAM is a familiar Javadoc environment that has been extended with carefully

placed buttons that make it possible to also review source code and to post annotations.

 Collectively, the annotations accumulated and reviewed for a software package can

strongly influence the implementation of the next version of the software package. Such

influence includes but is not limited to coding practices, accuracy and completeness of

documentation, and software quality, functionality, and efficiency. Collecting and organizing

these annotations is the key to creating a successful collaborative environment.

1.3 The javaJAM Implementation

javaJAM has been implemented to demonstrate that a web-enabled collaboration tool

can improve the process of developing Open Source Software. The “java” portion of the name

reflects the fact that it is a Java tool in part layered over Sun’s Javadoc technology. The “JAM”

 3

portion of the name is loosely based on the idea of “jamming” as musicians say. Jamming is a

form of collaboration. The javaJAM tool is designed with three major parts. The first is the web-

enabled presentation. This is what the user sees when navigating through documentation and

source and creating annotations (see Section 4.3). The second is the javaJAM enhanced

Javadoc that reads Java source and creates a web-enabled presentation of documentation and

source (see Section 4.1). The third is the management tools used by an administrator to maintain

a javaJAM server.

Manually posting Javadoc generated documentation on the web is simple. Simply

reading code into an HTML editor and bracketing the code with <PRE> tags can easily

accomplish posting Java source on the web. Once the code is published, collecting comments

and annotations would require more work. The simplest implementation would be to have a form

and the form would accept comments and annotations and email them to the author. By creating

a hyper-linked page it would be possible to navigate between documentation and source and to

email comments. A fair amount of manual labor is required to set this up, and the comments and

annotations are not easily available for review. It can also be difficult for the reviewer to decide

where exactly comments and annotations relate to documentation or source.

A better alternative is to automate the presentation of documentation and source; to

provide a user-interface for navigating between the two with additional functionality for posting

comments and annotations; and, most importantly, to create explicit relationships between

sections of source and documentation and any comments and annotations posted in response to

a review of these sections.

javaJAM stores all documentation, source, and annotations in HTML files. Each section

(see Section 4.1.3 for details) contains anchors and hyperlinks. Each posted annotation also

contains anchors and hyperlinks. These anchors and hyperlinks establish the relationships

necessary to navigate from an annotation to the relevant section of document and to the relevant

section of source. These relationships form triangles; from any one point navigating directly to

either of the other two is possible.

The javaJAM interface is designed to look and feel like Javadoc so that it is immediately

and easily accessible to everyone with Java experience. Javadoc is a standard documentation

tool that is widely used because it is freely distributed with Sun's Java Development Kit (JDK)

[18]. Javadoc is also designed to be extensible and javaJAM implements Javadoc classes. This

first implementation of javaJAM is based on the following design goals:

1. Facilitate publication of Java documentation and source.

2. Maintain the standard Javadoc look and feel.

3. Implement linked "computer mediated communication" (CMC) relationships by

establishing logical links between related documentation and source artifacts and

 4

their annotations [7]. javaJAM implements the following types of artifacts: source

overview, class overview, constructor, and method. These artifacts exist for both

documentation and source.

4. Support efficient navigation between related documentation and source artifacts

and their annotations.

5. Facilitate web-enabled asynchronous communications for the collection and

organization of annotations related to documentation and source.

6. Provide for the moderation of annotations. A moderator acting on behalf of a

development team can accept or reject annotations. Accepted annotations are

expected to be implemented on the next or future release of the software.

7. Platform independence.

8. The initial implementation will be kept simple by not relying on a database, such as

MS Access or MySQL for storage.

The scope of this first release of javaJAM does leave some important concepts and

functionality outside of its focus. For example, an annotation's lifecycle is limited to a single

version of the package. When a new version of the software is first published, it is a fresh start;

there are no annotations. The previous version of the software can be visited, but none of the

annotations automatically migrate to the new version. Also not in scope is the automation or

facilitation of processes to assist the software development team with annotation review,

establishment of consensus, acceptance/rejection of annotations and implementation of accepted

annotations. For now it is left to the moderator to represent the team and to coordinate these

activities.

1.4 Two Example Web-Enabled Application Reviews

Publishing on the web is easy. There are many HTML tools available, some free of

charge. But creating a collaborative review environment takes coordination that is not possible

simply by publishing documentation and source on the web and accepting comments by email.

The following two examples illustrate the difference between simply publishing on the web vs.

publishing with javaJAM. These examples demonstrate that javaJAM makes publishing

applications, reviewing documentation and source, and collecting and organizing comments

much simpler and more effective.

The following scenario is for the two examples below: Sophie is publishing the first

iteration of her completed HeapSort project on the web. She hopes to publish her HeapSort

application as Open Source Software , and she would like it to be as fast and as efficient as

possible. She thinks it runs too slow after having tested it against 200 records. She decides to

 5

publish it on the web so that programmers with more experience can review it and give her

advice. She announces it in the newsgroup comp.lang.java.programmer.

1.4.1 Manually Publishing Documentation and Source

Assumptions:

Sophie has downloaded Sun’s JDK and it is correctly installed.

• Sophie has HTML publishing skills.

• Sophie knows how to run Javadoc.

• Sophie has access to a web server for publishing her project.

Steps:

1. Sophie: completes coding and testing the HeapSort Java classes.

2. Sophie: decides to publish the project on the web so that others can review her project and

provide improvement suggestions for the next version.

3. Sophie: runs Javadoc against her source to create the documentation.

4. Sophie: reads each Java source into an HTML editor and brackets the source with the

<PRE> and </PRE> tags to preserve the source indentation and formatting.

5. Sophie: creates a HeapSort main web page with links to the main Javadoc generated

documentation page and also to each of the HTML source pages.

6. Sophie: FTPs the HeapSort web page and related pages to her web site and updates her

web site so that her home page links to her HeapSort page.

7. Sophie: posts a message about the help she needs (improving performance) with her

HeapSort on the newsgroup comp.lang.java.programmer. In her posting she also includes

the URL of the HeapSort web page.

. . . some time goes by . . .

8. Betty: sees Sophie’s posting and visits Sophie’s HeapSort page.

9. Betty: reads Sophie’s HeapSort API and gets a sense of how the classes and methods are

arranged.

10. Betty: decides to review the source related to the heapSort method in the Heap class

because it appears to contain the core sorting logic.

11. Betty: navigates back to the HeapSort main page and selects the link to the Heap class.

12. Betty: scrolls down through the source until she locates the heapSort method and reviews

the code.

 6

13. Betty: returns to the comp.lang.java.programmer newsgroup and posts for Sophie

suggestions on how to improve the heapSort method and also offers some general

comments about the Heap class.

14. June: also sees Sophie's posting, visits Sophie's HeapSort page, and decides she would

like to use the Heap class, but needs one additional feature.

15. June: posts to the comp.lang.java.programmer newsgroup a request for a method that will

return the next 'n' elements starting from a specific element number.

. . . some time goes by . . .

16. Sophie: opens her email, finds Betty’s and June's comments, reads them, and likes them.

Sophie notes that June's comments are identical to one of Betty's.

17. Sophie: includes Betty’s suggestions in the new version of HeapSort that she is working on.

. . . some time goes by . . .

18. Betty: wonders what happened to her suggestions and emails Sophie.

19. Sophie: looks through her old email and locates Betty’s original suggestions.

20. Sophie: opens the Java source in her editor and determines that Betty’s suggestions were

all implemented.

21. Sophie: emails Betty her findings.

. . . some time goes by . . .

22. June: wonders what happened to her suggestions and emails Sophie.

23. Sophie: looks through her old email and locates June’s original suggestions.

24. Sophie: opens the Java source in her editor and determines that June’s suggestion was

implemented.

25. Sophie: emails June her findings.

If Sophie's HeapSort becomes very popular she would have a hard time keeping up with

the correspondence. In the scenario above, Betty and June will probably not know about each

other's postings. They and others will be submitting redundant requests in some cases. Since

Betty and June are probably unaware of each other's comments, the two of them are not in any

sense collaborating. For them and any other contributors, the collaborative relationship is a

simple one-to-one relationship between each contributor and Sophie. If HeapSort draws much

 7

attention, Sophie is going to spend a lot of time managing these one-to-one relationships.

javaJAM is designed to simplify the mechanics of collaboration, and to support a complex many-

to-many relationship between contributors.

1.4.2 javaJAM Publishing Documentation and Source

Assumptions:

• Sophie has access to a javaJAM server, but has never accessed it.

• Sophie has access to WinZip or similar utility.

Steps:

1. Sophie: completes coding and testing the HeapSort Java classes.

2. Sophie: decides to publish the project on the web so that others can review her

project and provide improvement suggestions for the next version.

3. Sophie: signs up on the javaJAM server and supplies her email address and her

full name.

4. Sophie: receives an email from the server that provides her javaJAM password.

5. Sophie: zips her source and emails it as an attachment to the javaJAM server

administrator for publishing on the javaJAM server.

6. Sophie: announces HeapSort on the newsgroup comp.lang.java.programmer. Her

posting includes a request for help to make HeapSort run faster. In her posting she

includes the javaJAM URL where her HeapSort is hosted so that the newsgroup

users can review HeapSort and post suggestions.

. . . some time goes by . . .

7. Betty: sees Sophie’s newsgroup posting and visits the javaJAM server.

Figure 1, Initial javaJAM Screen

 8

 9

8. Betty: signs up on the javaJAM server so that she may post annotations.

Figure 2, Sign Up Screen

9. Betty: receives an email message from the javaJAM server with her javaJAM

password (see Appendix C).

10. Betty: logs on to the javaJAM server.

Figure 3, Welcome Screen

 10

11. Betty: selects Sophie’s HeapSort.

Figure 4, Hosted Applications Screen

12. Betty: reads Sophie’s HeapSort API and gets a sense of how the classes and

methods are arranged.

13. Betty: while at the top of the documentation for class Heap she clicks the Annotate

button and posts her general comments about the class in the popup dialog box

that appears. One of the comments suggests a new method for returning elements

starting from any position.

 11

Figure 5, Annotate Button

Figure 6, New Annotation Dialog

14. Betty: when done creating her class overview suggestions she will press the

Submit button so that her suggestions are posted. A confirmation screen will

appear.

 12

Figure 7, Add Annotation Confirmation Dialog

15. Betty: while reading the documentation for class Heap, method heapSort she

clicks the Source button to review the related source. Betty: after reviewing the

related source she clicks the annotate button and posts suggestions on how to

improve the heapSort method.

. . . some time goes by . . .

16. June: sees Sophie's newsgroup posting, visits the javaJAM server, signs up, and

becomes an active participant so that she can look at HeapSort.

17. June: sees Betty's suggestion for a method that returns elements starting from any

position and uses the "add related annotation" feature to state that she too is

interested in this method.

. . . some time goes by . . .

18. Sophie: logs on to the javaJAM server.

19. Sophie: from the list of available projects chooses HeapSort.

20. Sophie: reads through the annotations and finds Betty’s two annotations with status

Proposed.

 13

Figure 8, Proposed Annotation Status

21. Sophie: for each of the two annotations she presses the Moderate this Annotation

button, reviews the comment, and presses the Accept button to change the

annotation status to Accepted.

Figure 9, Accept Annotation Dialog

22. Sophie: includes Betty’s suggestions in the new version of HeapSort that she is

working on.

23. Sophie: posts the new version of HeapSort with Betty's suggestions.

 14

. . . some time goes by . . .

24. Betty: wonders what happened to her suggestions and logs on to the javaJAM

server.

25. Betty: from the list of available projects chooses HeapSort.

26. Betty: looks through the annotations and locates her original suggestions. She

notes that they each have a status of accepted.

Figure 10, Accepted Annotation Status

. . . some time goes by . . .

27. June: wonders what happened to Betty's suggestion and logs on to the javaJAM

server.

28. June: from the list of available projects chooses HeapSort.

29. June: looks through the annotations and locates Betty's original suggestion. She

also notes that the suggestion for the new method has a status of accepted.

With javaJAM Sophie has accomplished much more than a simple static web page could

offer. Her HeapSort posting on the javaJAM server is the center of activity and establishes a

many-to-many relationship between the various contributors of comments and suggestions. This

presents the opportunity for contributors to asynchronously interact with each other. Where

 15

before there was the potential of many redundant suggestions, now annotations can result in an

evolution of some of the suggestions because everyone can see all annotations.

1.5 Thesis Statement

 The research for this thesis has demonstrated that:

1. Software development can be improved by using collaboration tools.

2. That the Javadoc tool can play an important role facilitating collaborative

software development.

3. The javaJAM study group appreciated being able to easily publish their

projects on the web.

4. The javaJAM study group appreciated being able to easily navigate between

project source and documentation while reviewing their projects.

The statement "Software development can be improved by using collaboration tools"

addresses the fact that a collaborative tool like javaJAM is helpful in some circumstances, but not

others. In the classroom setting for example, a project team may have no interest in a project

once it is completed if it is not a building block for a future assignment. javaJAM provides the

strongest support for collecting reviews at the version level in preparation for the next version of a

software package.

The statement "That the Javadoc tool can play an important role facilitating collaborative

software development" discusses the importance of a documentation generation tool like

Javadoc. Documentation is an important form of communication and is very beneficial to

collaborative efforts. Languages like C and Visual Basic that do not have a standard

documentation generation tool are at a disadvantage when it comes to creating a web-enabled

collaborative environment. Javadoc gives the Java language a distinct advantage in collaborative

software development efforts and makes Java a richer language.

The statement "The javaJAM study group appreciated being able to easily publish their

projects on the web" relates the experiences of students in the study discovering and

appreciating how easy it was to find their projects—documentation and source—published on the

web and available for their team to review. It must be noted that javaJAM currently requires a site

administrator, me in this case, to do the actual publishing of the students’ projects. While some of

the work of publishing can be pushed back to the students, the site administrator would still need

to determine who would have privileges to moderate which packages.

The statement "The javaJAM study group appreciated being able to easily navigate

between project source and documentation while reviewing their projects" relates the experiences

of students in the study group navigating through their projects and creating annotations. The

students with Javadoc experience—one of the two classes in the study—found the interface

 16

intuitive. This experience is made possible because javaJAM creates explicit relationships

between related sections of documentation and source and the annotations that are posted by

reviewers.

It also should be noted that even those students without Javadoc experience who write

Java code without considering Javadoc, still found the generated documentation for their

programs to be useful. Javadoc, without the students’ annotations, is still very capable of

analyzing package layout and program source and generating meaningful documentation.

1.6 Overview of this Document

The rest of this document explains javaJAM in detail and includes a study that was

conducted to evaluate javaJAM. Chapter 2 describes related work such as the collaboration

approach in Open Source environment and the need for tools like javaJAM to facilitate

collaboration. Chapter 3 discusses the functionality of javaJAM and explains how it could facilitate

collaborative software development. Chapter 4 details the implementation of javaJAM. In Chapter

5 the study is presented along with the results. In Chapter 6 javaJAM is compared to other

collaboration tools. Chapter 6 discusses the contributions of this research and includes some

general observations. Chapter 7 lists possible future enhancements and directions.

 17

2. Related Work

The only way to meet the challenges of producing much of the software for the 21st

century will be to collaborate. Assembling a team of software engineers, business analysts, and

others will make it possible to bring a broad range of skills and perspectives to a development

project, and will make it possible to develop portions of a project in parallel in order to shorten the

overall development cycle while maintaining quality and effectiveness.

There are already a number of different tools to assist with team collaboration. There are

project-planning tools to sequence and assign tasks. There are librarian tools to control access

to modules and module versions under development. There are many tools for allowing

geographically dispersed members of a team to communicate face-to-face and to share

information and even desktops, but there are currently no tools to specifically assist with code

and documentation review and the collection of comments.

2.1 Open Source Initiative

The Open Source Initiative (OSI) [20] offers distinct advantages for software

development. With the rapid growth of the Internet collaboration between software engineers and

others is now possible on a scale not previously imagined. There are many systems and much

research related to the Open Source initiative; for example Linux, the Apache Web Server [2],

and the next release of the Netscape browser. These packages are fully developed and

supported by the Open Source initiative. The Open Source initiative also offers OSI Certification

[21]. The OSI Certified mark may be used on software distributions only after an Open Source

license has been obtained for it from the Open Source Organization. In order for the license to be

obtained, the software must comply with the Open Source definition [6]. This definition defines

Open Source software as having the following priorities:

Free Redistribution - there can be no license fees and no restrictions on using

the software as a component of software that is distributed or sold.

Source Code - source code must be included in the distribution and no

restrictions on distribution of binaries.

Derived Works - derived works must be permitted and allowed to be distributed

under the same terms.

Integrity of The Author's Source Code - distribution of modified version may be

prohibited if patch files for the source are permitted.

 18

No Discrimination Against Persons or Groups - license must not discriminate

against persons of groups.

No Discrimination Against Fields of Endeavor - license must not restrict any

field of endeavor; genetic research for example.

Distribution of License - no additional licensing should be required for any

parties.

License Must Not Be Specific to a Product - the license should not be

conditional on the software being distributed with other software.

License Must Not Contaminate Other Software - license should not place

restrictions on the use of other software.

Software that is distributed as Open Source software must be identified as being placed

in the public domain and must contain the following notice:

"This software is OSI Certified Open Source Software.

OSI Certified is a certification mark of the Open Source Initiative."

javaJAM was designed in the spirit of the Open Source initiative and by default supports

most of the above priorities and interferes with none of them. Packages hosted on a javaJAM

server are available to everyone via the World Wide Web. Where the Open Source initiative's

intention is to ensure that software is distributed freely with few if any limitations, javaJAM's

design goes one step further by creating an open environment for collecting comments and

suggestions from anyone that is willing to take the time to provide them.

The Open Source initiative goes beyond the sharing of software by dedicated

programmers that are working for the pleasure of making a good package or for establishing

recognition. The business community is also becoming interested in the initiative because it is a

good way to gain support for open standards. Businesses invest in developing software to

support actual standards so that businesses can cooperate easier. Businesses also benefit from

the initiative by increased security. Open Source software is exposed to extreme scrutiny and the

problems found are reported and fixed, which is unlike proprietary software where problems can

remain unreported and thus be exploited by the wrong person. An additional advantage to the

business community is that Open Source software is "peer review" software. Mature, Open

Source software is as reliable as software can get. Proprietary software does not have this

advantage.

The best example of the success of the Open Source initiative is the Internet's

infrastructure. DNS, sendmail, various TCP/IP stacks and utilities, and scripting languages such

as Perl demonstrate that Open Source Software already plays a valuable role. In his book "The

 19

Cathedral and the Bazaar," Eric S. Raymond compares traditional (Cathedral) software

development methodologies to the methodology used for Open Source projects (Bazaar) such as

Linux and Fetchmail [9].

"Treating your users as co-developers is your least-hassle route to rapid code

improvement and effective debugging."

"Given a large enough beta-tester and co-developer base, almost every problem

will be characterized quickly and the fix obvious to someone."

"If you treat your beta-testers as if they're your most valuable resource, they will

respond by becoming your most valuable resource."

"The next best thing to having good ideas is recognizing good ideas from your

users. Sometimes the latter is better."

"Provided the development coordinator has a medium at least as good as the

Internet, and knows how to lead without coercion, many heads are

inevitably better than one."

javaJAM constructively supports each of these points. javaJAM gives users a voice and

provides them with feedback so that they know their participation has impact. javaJAM makes a

package available to a large base.

2.2 CSRS

CSRS is a computer-supported software review system (CSRS) that enables declarative

definition of review processes and provides instrumented facilities for gathering and analyzing

review data [8]. CSRS provides for formal technical review (FTR), a cornerstone of software

quality assurance, which is typically under-utilized or inefficiently applied because it is generally a

labor-intensive, manual process. CSRS has been implemented for Unix systems with an Emacs

front-end. javaJAM represents a tradeoff between accessibility and formality since the intention is

to appeal to the same general audience using Javadoc.

 20

Figure 11, CSRS Sample Commentary

2.3 Giant Java Tree

The Giant Java Tree [10] is an Open Source project. This project creates a Java source

tree consisting entirely of Open Source and permits browsing of the source. You can sign up as

a developer and have access to participants' source code. It is free in a sense that you can share

your source or use someone else's.

 21

Figure 12, Giant Java Tree Project Selection Screen

Giant Java Tree provides automatic Javadoc generation, similar to javaJAM. For

software engineers, Giant Java Tree provides an extensive source of Java examples and codes

by providing a sharing environment that is strictly a code repository. The javaJAM environment

could be used as a code repository, but it goes one step farther by collecting comments and

suggestions and storing them along with their relationships. This allows participants to not only

view others' source code, but also to communicate ideas towards improving the quality of the

documentation and source. Where Giant Java Tree functions as a catalog, javaJAM functions as

a catalog based collaboration tool.

 22

Figure 13, Giant Java Tree Sample Project Screen

2.4 SDM

SDM (Software Development Manager) [3] is a planned subsystem for supporting Open-

Source Software via the online community. This subsystem will be an extension to the core

ArsDigita Community System. The system will support those who use, extend, and fix bugs in a

collaboratively developed and maintained software environment.

The SDM design contains the following core tables:
• modules: each row represents a collection of related source code; columns

include module name, owner, current version, description, etc.

• module_relationships: each row records which modules interact

significantly and who owns the interface between them.

• module_releases: each row represents a named version of a module, e.g.,

"3.7"; columns include release_date (null until done),

anticipated_release_date, release_name, (just text; SDM doesn't care if 3.7

comes after 4.0) manager (person responsible for this particular release;

typically the module owner).

 23

• module_log: a linear log of dated information about progress on a given

module.

• bugs_and_features: each row is one report from a user of a bug or a

requested new feature; columns include who has been assigned to it, what

priority it has been assigned, when it is expected to be fixed/added, whether

it has in fact been fixed/added and, if so, in which release.

• bug_release_map: there will be a row if a bug is present in a particular

release a module (covers the case where a bug is discovered in version 1.4

and we need the SDM to inform users that it is also present in 1.2 and 1.3).

• tasks: something to be done by a participant in SDM, typically a

programmer. Testing is an example of an appropriate entry for the tasks

table.

• user_interest_map: records the fact that a user of the SDM is interested in

monitoring the progress of a bug, feature, or task.

The SDM design is strongly oriented to the life-cycle of the bug. It tracks the bug across

software versions and identifies who is tasked to fix the bug. Requests for new features are

treated much the same way that bugs are treated. While SDM has features that could be useful

to javaJAM, problem assignment and tracking, it does not address the same situations as

javaJAM. javaJAM is designed to collect comments and suggestions from anyone and

automatically creates relationships between the information collected and the areas of source and

documentation they relate to. Extending javaJAM functionality to include bug and new feature

tracking in a way that makes the information available just as the source and annotations are now

openly available would be beneficial.

The original date for Phase 1 of SDM was March 15, 1999. Development of Phase 2 was

to be completed by August 15, 1999. There are currently no references to indicate that it has

been implemented or is even still being considered for development other than the existence of

the web site reference.

2.5 Tango Interactive

Syracuse University and WebWisdom.com completed Tango version 1 in April of 1998

[19]. The emphasis was to create a fully interactive collaborative tool. Tango was based on

Microsoft's NetMeeting, but with a richer set of features:

• Supports any programming language

• Provides for live, interactive collaboration

 24

• Supports live, application sharing via live desk-tops

• Creates transcriptions of chat sessions

• Supports video conferencing

Figure 14, Tango Application Sharing Selection Screen

 As an interactive collaboration tool Tango is very strong though having a fast Internet

connection is an issue. What Tango lacks is a coordinated means of collecting and maintaining

information that results from collaboration. The ability to create transcripts from chat sessions

does not and probably is not meant to take care of this.

 javaJAM has no live person-to-person interactive functionality at all. Adding this type of

interactive functionality may not be beneficial in javaJAM since interactive functionality would not

easily provide a mechanism to ensure that comments and suggestions are collected and the

proper relations to documentation or source are established. To solve this problem would take

javaJAM into an entirely new level of functionality. javaJAM does have an advantage in being

faster, especially over dialup connections to the Internet than Tango because javaJAM works by

sending only HTML files that are compatible with version 3 browsers. javaJAM is also easier to

access; unlike Tango, no plug-ins are required for javaJAM.

 25

Figure 15, Tango Generic Tools Selection Screen

 While Tango version 1.3 is still available as freeware from Syracuse University,

the company WebWisdom.com sells Tango commercially as an interactive tool for e-businesses.

It supports communication, collaboration, training, and knowledge management. The intent of

Tango is to extend the physical office across Internet space. It is not at all about managing and

distributing Open Source software projects

 26

3. A New Collaboration Tool

javaJAM represents a new category of collaboration tools. It was originally conceived as

an Internet enabled tool to build a community around a software development project for the

exchanging of ideas. The original concept was proposed by Dr. Philip Johnson of the University

of Hawaii at Manoa and evolved from there as I took the idea and worked to develop a tool which

could be used by many different groups in an educational or professional setting [16].

The design goal for javaJAM was to assist with code and documentation review and the

collection of comments. javaJAM was designed to provide a means to address this need for

collaboration over the Internet between groups of software engineers or student programmers

who work in a team to develop software.

javaJAM takes Sun’s Javadoc standard and extends it to make it interactive. More than

just providing for the Javadoc publication, javaJAM goes several steps farther to include the

sharing of Java source and documentation in an Open Source environment and to also include

the collection of annotations by reviewers.

javaJAM relies on HTML files to store the annotations it accumulates. javaJAM also

partially implements the concept of HyperCode [13] and generates HTML versions of source files

to facilitate code review. HyperCode is source code rendered in HTML with each line of source

treated as a hyperlink and artifact. javaJAM manages relationships that make it possible to

hyperlink specific artifacts (sections of source, documentation and comments) to each other for

quick navigation. These relationships are formed by creating hyperlinks and bookmarks and

embedding them throughout the documentation, source code, and comments. A scaleable

alternative to relying on text files would be to implement javaJAM storage of annotations in a

relational database using JDBC. This would greatly improve performance as well.

3.1 Requirements

 The Open Source Software initiative brings with it new methodologies for software

development. The Apache Software Foundation and sourceXchange [17] are two of a growing

number of examples of new approaches to software development and collaboration. Both of

these initiatives involve teams that work together to produce software without having to meet

physically. The Apache web server is one of the most widely installed and widely used servers in

the world. Existing and new tools will be developed to help these as well as more traditional team

collaborate more effectively and more efficiently.

 27

3.1.1 Documentation and Source Review

javaJAM has been designed to provide an application development team with a tool that

makes it easy for members to review software documentation and source and to annotate

specific portions of the documentation and source. Team members, no matter where they work

or what hours they work, can contribute these annotations as long as they have Internet access.

A team that intends to use javaJAM must standardize on Sun's Javadoc for

documentation. javaJAM extends Javadoc and therefore assumes that both documentation and

source are to be made available for review. For teams that have already standardized on

Javadoc, there is a distinct advantage. The javaJAM interface maintains nearly the same look

and feel as the Javadoc documentation. This makes introducing and learning to use javaJAM in

the collaborative environment much easier to accomplish. Access to javaJAM is browser-based

to ensure that there are no barriers to access.

3.2 Functionality

javaJAM's primary function is to accept annotations and store a relationship between the

annotation and the section of documentation or source to which it belongs. This is accomplished

through the javaJAM extensions to the standard Javadoc. There are several major extensions to

Javadoc. The first is the inclusion of annotation buttons throughout the standard Javadoc

generated documentation. The second major extension to Javadoc is the generation of Java

source rendered in HTML with annotation buttons throughout the source.

3.2.1 Documentation Annotation

Documentation annotation buttons occur throughout the Javadoc generated

documentation. Javadoc generates one HTML file per class (and inner class). The structure of

each Javadoc generated class documentation is as follows:

1. Package Navigation Bar

2. Package Tree Diagram

3. Class Documentation

4. Field Summary

5. Constructor Summary

6. Methods Summary

7. Field Detail

8. Constructor Detail

9. Methods Detail

10. Package Navigation Bar

 28

Figure 16, Sample Javadoc Class Structure

 29

javaJAM imposes on this layout annotation buttons. These buttons appear as a triad in a

single row and are imposed at the following locations:

• Just before the Package Navigation Bar (java.lang.object) above: the

annotation button in this location provides for the creation of a "class

overview" annotation.

• For each Constructor Detail above: there will be an annotation button leading

each constructor. All annotations created here will be related to that

constructor.

• For each Method Detail above: there will be an annotation button leading

each method and method overload. All annotations created here will be

related to that method or method overload.

These buttons are not only explicitly related to the annotations that they are used to

create, but also to the source code that is specifically relevant to the section of documentation

and related annotations. The "Source" button is an anchored hyperlink to the section of source

related to the documentation. This makes it very easy to review a section of documentation and

to quickly access related annotations and source.

3.2.2 Source Annotation

Javadoc has been extended to also render source in HTML. Source annotation buttons

occur throughout the HTML rendered source. Javadoc generates one HTML file per class (and

inner class). javaJAM does not change the layout of the source, but does insert annotation

buttons at the following locations.

1. At the top of the source to provide a place for source-overview annotations.

2. Just before the class statement to provide a place for class-overview

annotations.

3. Before each constructor definition.

4. Before each method and each method overload definition.

Similar to the documentation buttons, source buttons are not only explicitly related to the

annotations that they are used to create, but also to the documentation that is specifically relevant

to the section of source and related annotations. The "Doc's" button is a hyperlink to a bookmark

in the section of documentation related to the source. Moving between source and related

annotations and then on to related documentation and annotations is quick.

 30

3.2.3 Line Numbering

javaJAM optionally inserts line numbers before each line. The intent of this is to make it

easier to discuss source code by providing additional information for referencing. Line numbering

can be enabled or disabled. Line numbering is added when a package is first hosted if the line

number option is turned on (the default). Turning off the line numbering feature after a package

has been hosted has no effect on the already hosted packages.

Figure 17, Line Numbering

3.2.4 Moderation
Documentation and source is published on a javaJAM server as a package. None, one,

or many moderators can be assigned to each package. Moderators can manage the package's

annotations. The following annotation moderation functions are available to a moderator:

• Accept

When an annotation is first posted its status is proposed. This status

indicates that the annotation has not been reviewed. The moderator can

accept an annotation to indicate that the annotation will be incorporated into

a future implementation of the package.

• Reject

Rejecting an annotation changes its status to rejected, but the annotation

remains available for review.

 31

3.2.5 Actors and Roles

javaJAM is designed to be simple. There are only four categories of javaJAM

participants. The four categories are listed below:

• Guest: Guests are not required to supply any information. Guests cannot

participate however. They can only view the information available; source,

documentation and related annotations.

• Participant: A participant is one who has signed up on the javaJAM server.

Participants can post annotations. Sign up is required so that the author of an

annotation can be authenticated and contacted should there be any follow-up

necessary for an annotation.

• Moderator: Application moderators have responsibility for the applications

hosted on a javaJAM server. Usually one moderator is assigned to one

hosted application. It is possible to assign more than one moderator to a

single application and to assign a moderator to more than one application.

• Administrator: The role of the administrator is to set up the hosted

applications and provide access for moderators.

 32

4. Implementation

javaJAM consists of three subsystems and has client and server components. The client

component is implemented in HTML and works from any frames-capable, browser. The server

component is implemented in Java and uses servlets according to version 2.0 of the Sun Servlet

API [14]. The server piece can run on any platform that supports servlets.

javaJAM was developed with Sun's Java Web Server version 1.1.3 and later 2.0 on the

server and with JDK 1.1.1 and later 1.2.2. javaJAM has been extensively tested with

JavaWebServer 2.0, JDK 1.2.2, Internet Explorer 5.x and Netscape 4.x. (see Appendix F for the

Quality Assurance Test Suite).

4.1 Documentation Tools Subsystem

The first javaJAM subsystem contains the extensions to Javadoc. It is used to generate

all of the HTML source including the annotations buttons and also creates the four

directories/folders (see Section 4.1.4) into which the HTML source for a published application

resides. javaJAM is written in Java. This subsystem has 15 classes, 196 methods, and 2170

lines of code not including comments and blank lines.

It is necessary to execute javadoc.exe in order to generate the Javadoc documentation

along with the javaJAM extensions. This requires a shell script (see appendix E for sample shell

scripts).

4.1.1 Javadoc Frames Enhancement

javaJAM extensions to Javadoc contain several major enhancements. The first is that

while the Javadoc look and feel has been maintained, there is an additional frame. This frame is

placed at the bottom of the traditional two horizontal frames.

 33

Figure 18, Standard Javadoc Frames

 34

Figure 19, Enhanced Javadoc Frames

 The new frame at the bottom is where javaJAM displays the annotations for

documentation and for source. Using JavaScript the bottom frame is kept synchronized with the

top-right frame. If the top-right frame is displaying documentation, as in the figure above, the

bottom frame will show the related annotations. If the top-right frame is displaying source code,

the bottom frame will show the annotations related to the source code. In the event that a

browser does not support the JavaScript that makes this synchronization possible, the View

Annotations button is another way to bring into view the correct annotations.

4.1.2 Javadoc Source Code Presentation Enhancement

 If javaJAM is going to be a useful tool for the Open Source initiative it will have to include

source code as well in the Javadoc generated documentation. The upper-right frame (see figure

14 above) by default displays Javadoc documentation to be consistent with the standard Javadoc

behavior, but there is a Source button that can refresh the frame with the related source code for

the class being displayed. When displaying source it is also possible to switch back to viewing

documentation.

 35

 javaJAM by default inserts red line numbers into the source code presentation. The

purpose of the line numbers is to ensure that it is simple to reference a particular line in the

source when creating an annotation.

Figure 20, Enhanced Source Code Presentation

4.1.3 Javadoc Annotations Buttons Enhancement

 There are a number of new buttons provided to assist with viewing source and creating

and reviewing annotations. These buttons are dispersed throughout the documentation and

source. The following types of buttons have been introduced:

• Create Annotation

• View Annotations

• View Source

• View Documentation

• Help

The Help buttons features context sensitive help. The on-line help appears in its own

dialog box as a new instance of the browser. When help is invoked an anchor identifier is also

passed. This anchor identifier is used by most browsers to position to a specific location inside

 36

the file specified by the URL. Using this anchor identifier javaJAM provides context sensitive

help.

4.1.4 Javadoc Output Files and Organization

 Standard Javadoc output generates documentation to a folder named documentation.

JavaJAM extends this by adding three more folders. One for the HTML rendered source and two

for the annotations, documentation and source:

• documentation

• source

• doc_comments

• src_comments

All these folders contain HTML source files. Hierarchically, these folders are underneath

the folder that is named to uniquely identify the hosted package. The structure of a collection of

hosted applications might look like:

• public_html

o cosst_doctrees

§ LLOCv1-10

• documents

• doc_comments

• source

• src_comments

§ javaJAMv0-80

• documents

• doc_comments

• source

• src_comments

The references to "cosst" and "comments" reflect an earlier design stage when javaJAM

was referred to as the Collaborative Open Source Software Tool and when the term "annotations"

was introduced in place of "comments" to refer to the information being collected.

 37

4.2 Site Tools Subsystem

The second subsystem contains the javaJAM site tools. These tools assist the javaJAM

administrator with tasks such as reviewing the installation and setup, reviewing the errors log,

and, most importantly, with hosting and rehosting applications. Hosting an application requires

generating the Javadoc HTML files and moving them into the public directory of Java Web Server

1.1.3 or higher. Those tools can be remotely accessed so that administration does not have to be

performed from the server. This subsystem has 4 classes of which 3 are servlets, 27 methods,

and 747 lines of code that are neither comment lines or blank lines. It also relies on a shell script

to execute javadoc.exe.

Figure 21, Site Tools Menu

4.2.1 Server Settings Review Tool

The Server Settings Review tool is implemented as a servlet. This tool presents an

HTML page that displays all of the javaJAM settings. These settings include the internal and also

those stored in the javaJAM.ini file that is used for site-specific initializations. Of the internal

settings that are displayed, the critical one is the javaJAM version number, which is stored in the

class CstGlobal. The version identification appears as v11.22.33 where '11' is the major version,

'22' is the minor version, and '33' is the version build. At the time of this writing javaJAM is at

v00.80.60.

 38

Figure 22, Settings Review Tool

4.2.2 Server Doclet Interface Tool

The Doclet Interface tool is implemented as a servlet and generates all of the directories

and files necessary for hosting a package on a javaJAM web server. From the Site Tools menu

the Doclet Interface tool is invoked from the option "File Upload and javaJAMdi Execute Tool."

This option provides for uploading a .zip file to the javaJAM server, unzipping it using Classes in

java.util.zip, and running the javaJAM doclet interface that generate Javadoc. The results of

executing this tool are logged into a separate instance of the browse. See appendix G for a

sample log.

4.2.3 Server Host/Rehost Tool

After the Doclet Interface Tool is executed against a package it is nearly ready to be

hosted on any javaJAM server. The final stage of hosting involves a few steps:

1. Update all of the files' links to correctly reference the server and to also

correctly reference the package's root directory.

2. Create a new package root on the javaJAM server.

3. Move the resulting output files and their folders to the javaJAM server so that

they are available.

 39

If it ever a hosted package must be moved to another server, it would be necessary to

update all of the files' links in all of the HTML files, including the annotations. The Host/Rehost

Tool can take care of this. If ever a hosted package must be renamed, to add version

identification so that a package can be hosted more than once, the Host/Rehost Tool can take

care of this too.

4.3 Review and Annotation Subsystem

The review and annotation subsystem presents applications for review and collects the

annotations as they are posted. This is the core of javaJAM. This subsystem is written in Java

and contains 12 classes of which 3 are servlets, 177 methods, and 2386 lines of code that are not

in-line comments or blank lines. It also contains some static HTML pages and dynamically

generates additional pages that include a minimal amount of JavaScript [12] to ensure that

frames displaying source or documentation stay synchronized with their related annotations,

which appear in the lower frame.

4.3.1 Authentication and Security Model

The security model implemented in javaJAM is mainly intended to ensure that the author

of an annotation is authenticated. It helps to establish credibility and also makes it possible to

communicate directly with the author by email where necessary. Authentication is handled by a

combination of author's email address and password. The email address is assumed to be

unique to the author. To acquire a password requires signing up on a javaJAM server and

supplying a username (known as Participant name), and an email address. If the javaJAM server

does not recognize the email address it is stored and a password is generated. This password is

emailed to the new participant.

Passwords are a necessary evil. If authorship of annotations is misused or doubted, the

collaborative environment can be compromised. Passwords help ensure authentication of

authorship. To make it easier to remember javaJAM passwords, they are only five characters

long and designed to be pronounceable. To help make them a little more secure, they also

include several digits and an uppercase letter. Typical passwords might look like; cAt34 and

22Wit. Some effort has been made to help prevent naughty passwords.

The worst part about passwords is forgetting them. javaJAM includes a reminder feature

that allows a participant to request that her email address be again emailed to the participant.

Moderators are also authenticated using the same mechanisms. Guests are not authenticated

because it is not necessary. They cannot participate in any way. They can only review

documentation, source, and annotations.

 40

4.3.2 Annotation Life Cycle

Annotations are the reason javaJAM exists. The life of an individual annotation begins

with the Annotate action. A participant posts an annotation and the new annotation is stored.

The annotation life cycle:

1. Participant posts annotation - status is proposed.

2. Annotation is reviewed by moderator and accepted, rejected, or deleted -

status is accepted or rejected.

3. Moderator forwards collection of accepted annotations to development team.

4. Team incorporates annotation into next release of application.

 As an annotation move through its life cycle its status changes. The status of the

annotation helps reviewers who post annotations to understand how their annotation might

impact the package.

Annotations can have one of the following statuses:

• proposed - new annotation

• accepted - reviewed by moderator and accepted

• rejected - rejected by moderator

Annotations can be managed with the following options:

• Post Annotation - new annotation with status Proposed

• Accept Annotation - change status to Accepted

• Edit Annotation - edit annotation subject and body

• Reject Annotation - change status to Rejected

• Delete Annotation - annotation is deleted and no longer exists

When a moderator reviews an annotation the moderator has the privilege of either

Accepting or Rejecting the annotation. Accepted annotations can be subsequently collected and

passed on to the development team for review and action during the next product development

cycle. Rejected annotations are retained. They may lead to additional annotations or they may

be accepted at some point in the future. The moderator also has the capability of deleting

annotations that are not appropriate at all.

4.3.3 javaJAM Dialogs

 There are a number of dialogs that appear as new instances of the browser. These

dialogs make it possible to perform related work in separate windows so that the review process

 41

is not interrupted or the reviewers place lost. The following dialog instances of the browser are

available:

• Help

• Create Annotation

• Annotation Creation Confirmation

• Maintain Annotation (for Moderators only)

• Annotation Maintenance Confirmation

4.4 Site Initialization File

The site initialization file (see sample in Appendix H) must exist in the javaJAM folder and

be named javaJAM.ini. This file contains site-specific information that ensures that javaJAM can

be easily ported from one site to the next without the need for source code modifications.

4.5 Authentication Rationale

 Authentication of participants is important for establishing trust and open communication.

All annotations are posted with the email addresses and names of the participant. This makes it

possible for discussions related to the annotation to be followed up on by email or off-line if

necessary.

javaJAM authenticates all active participants. Authentication is established by providing

an email address for user identification, a user name (first and last) to associate with the email

address, and a javaJAM assigned password. Passwords (see Section 4.3.1 for more on

authentication) are obtained by signing up on a javaJAM server. After signing up, the password

is sent to the email address the user provided when signing up.

4.6 Client/Server Architecture

javaJAM contains client and server components. Some the client components are static

HTML pages and others HTML pages that are dynamically generated by servlets on the server.

The client components do all of the presentation. The server components do authentication and

reading and writing of annotations to disk.

 42

Participant Client Browser javaJAM Server

Internet

CstMaintServlet

CstComment

Check
security

Perform annotation
read or maint

action

Update
annotations

file

Action: add annotation

COSST doc tree

CstListTreesServletcosst_index.html

Browser,
select a doc tree

html output

Security

Check
security

Security

Browser,
review package

Select a package

view doc/source
view annotation provide source, documentation & annotations

Post annotation

Browser,
Post annotation dialog

CstMaintServlet

Action: propose

send html

Check
security

Security

CstCommentFile

Authenticate
participant and list

available packages.

Figure 23, Participant Architecture

 43

The moderator support design is nearly the same as that of the participant. The

difference is that the moderator is able to perform more actions on annotations where the

participant can only review and post.

Browser,
select a doc tree

Browser,
review package

Select a package

view doc/source
view annotation

Post annotation

Accept, Reject,
Edit, Delete
annotation

Figure 24, Moderator Architecture

The guest support design is nearly the same as that of the participant. The difference is

that the guest cannot actively participate. The guest is only able to review annotations.

Browser,
select a doc tree

Browser,
review package

Select a package

view doc/source
view annotation

Figure 25, Guest Architecture

 44

5. Case Study

5.1 Design and Goals

To evaluate the research hypothesis that javaJAM improves software quality through

collaboration in a web-enabled environment, I designed a case study on the use of javaJAM and

the effect of collaboration to improve software quality. The goal of the study was to answer the

following research questions:

• Can students collaborate effectively and improve the quality of their code as

a result of computer-mediated communication?

• Will javaJAM provide an effective environment to share source and

collaborate?

• Will students find the annotation process of the javaJAM easily accessible

and preferable to existing collaboration methods they might use such as

email?

• If students are not familiar with collaborative tools, will they find them helpful?

5.2 Method

The study was implemented in the classroom environment since that was the easiest way

to set up a study with many people involved. The study involved two ICS 211 (Introduction to

Computer Science II) classes, one at the University of Hawaii at Manoa and one at Honolulu

Community College. 50 students participated. The students were teamed in groups of three or

four students. There were 13 groups and 37 projects were hosted. The students' backgrounds

included two semesters of introductory programming in Java.

Instructors and students both supplied valuable information to help assess this thesis and

the effectiveness of the javaJAM implementation. Student feedback was obtained by

administering a questionnaire (see Appendix A) on the last day of class.

• April 10, 2000: javaJAM was introduced to the two instructors, Blanca Lopez

and Samuel Rhoads. While both instructors responded favorably to the

concepts, one of them required immediate changes. In order for the students

to participate in a group project using javaJAM for collaboration, there would

have to be a way to prevent student groups who were working on the same

assignment to review code from other groups. javaJAM did not have

provisions for restricting access by group identification. This feature had to

 45

be implemented quickly so one of the instructors would permit the study to

proceed.

• April 11, 2000: students were introduced on April 11th to javaJAM with a

short PowerPoint presentation and a demonstration.

• April 15, 2000: javaJAM software was revised to accommodate for the

controlled group interaction. This was accomplished by introducing the

concept of team. If a package is assigned to team members then only those

members will see the package listed on the javaJAM server.

• April 18, 2000: students signed up for a javaJAM password. Once they got

their password they could be a participant and post annotations on their

group's hosted application.

• April 19, 2000: the students began to send their Java source after the first

clean compile to the javaJAM administrator to be hosted and assigned to

their team. Each group could then see their project on the server and could

participate in project review and annotation.

• April 22, 2000: javaJAM was revised in the process to allow for private

methods. Javadoc by default does not include private methods in its

processing. This required an additional setting to be specified on the

command line used to execute javadoc.exe.

• May 3, 2000: the students are done hosting and reviewing applications.

• May 6, 2000: a questionnaire (see Appendix A) was distributed in both

classes to a total of 50 students. The instructors encouraged the students to

participate in the evaluation of the javaJAM. 38 students responded.

5.3 Results

5.3.1 Instructor Feedback

One of the instructors indicated that the students could not share program source

between groups. In the ICS 211 course, students are graded based on their Java code and style

of programming. Because of this, the sharing of source code as done in an open environment

was not encouraged. javaJAM was quickly modified to also incorporate features for restricting

packages to assigned teams.

5.3.2 Student Feedback

The student feedback (see figure 27 in Appendix B) indicated that the students found

value in using javaJAM and could see it’s potential. They found the javaJAM interface to be fairly

 46

self-explanatory and easy to understand and navigate with some students finding it difficult and

some finding it very easy to use.

 From the results of the survey, students found javaJAM to have an intuitive layout

(question #2), to be easy to use for reviewing projects (question #6), to be easy to use for finding

related source and annotations (#7), and to be easy to use for adding related annotations (#8).

javaJAM was moderately successful as an easy tool for navigation (#3) and for publishing

(question #5). The on-line help was not well received (#1) and the perceived response time,

while not found lacking by a third of the students, still managed to draw the most criticism.

5.4 Discussion

Student’s expectations varied according to their programming skills. Those with less skill

expected javaJAM to assist with debugging code for syntax errors. One of the two courses in the

study required Javadoc, and the other did not. Some of the students with no Javadoc experience

preferred to go back to the way they were comfortable communicating, email and face-to-face. In

the course that did require Javadoc, the students were very comfortable with javaJAM.

Students complained about the javaJAM problems. One was the password mailing issue

and the second was the delay caused by the manual process for hosting team projects. The

email problem seems to be specific to the University of Hawaii mail servers. Testing from home

using cable and dialup connections showed that RoadRunner and Lava.Net were compatible with

javaJAM. Students also indicated that they would have preferred an automated process for

hosting their projects. They wanted to host their own and have them published immediately. The

students' desire for an automated process for hosting packages is very important. javaJAM will

need to better embrace a self-service model if it is to facilitate and not interfere with or slow down

collaboration. javaJAM requires a flexible hosting tool (see Section 8.2.1).

There was one other situation where the javaJAM application itself contributed to

perceived performance problems. When a classroom full of students attempted to simultaneously

authenticate on the javaJAM server, performance got very slow. This is because javaJAM data

files are currently stored as sequential files and javaJAM uses a token to let only one user at a

time access the authentication file. Implementing javaJAM data on a relational database will

solve this as well as make javaJAM more easily scalable (see Section 8.1.1, Scalability

Improvements).

From reading the student responses, impatience with javaJAM was aggravated by the

end of the semester time pressures.

 47

6. Conclusion

 The goal of this research was to determine whether collaborative software development

in the Open Source environment would be significantly facilitated by a web-enabled tool that

provides for the collection of annotations and the creation of relationships between annotations

and their corresponding sections of documentation and source code. To reach this goal the

javaJAM tool was developed for collecting comments and suggestions and creating relationships

between them and the sections of source and documentation that inspired them. This new web-

enabled, collaborative tool was tested to determine whether new tools such as javaJAM could

assist with collaborative software development in the Open Source environment. The case

studies indicate that javaJAM if further developed could be a valuable tool.

6.1 Contributions of this Research

The primary contribution of this research is a web-enabled collaborative tool for software

review and annotation. The strength of this tool is that it creates relationships between sections

of documentation, source and posted annotations. These relationships facilitate software review

and feedback. The purpose of this collaborative tool is to help teams improve software quality.

This tool works towards that goal.

6.2 The Javadoc Advantage

The design of a web-enabled collaborative tool for software review and annotation

requires the consideration of three fundamental elements: documentation, source, and review

annotations. Fortunately, because the design assumed that Java would be the supported

software language, it was obvious that Javadoc could play an important role, which it did.

Javadoc proved to be a powerful tool. It was also not too difficult to extend Javadoc so that it not

only rendered documentation in HTML, but also the source. With Javadoc not too much effort

was required to quickly envision a solution for two of the three fundamental elements of this

project.

Javadoc is unique to Java and provides for the Java language a unique advantage over

other languages. Application development in Java is inherently richer than application

development in other languages as a result of Javadoc. The study done for this thesis

demonstrated that even students who did not annotate their programs to take advantage of the

 48

capabilities of Javadoc nonetheless found the resultant documentation produced by Javadoc to

be helpful for reviewing their projects.

Though Javadoc is extensible, only some of its source code has been made available.

Members of the Open Source Initiative community have called upon Sun to publish Javadoc as

Open Source Software. If that were to happen, maybe Javadoc functionality would be ported to

other languages making it easier to provide tools like javaJAM for other languages too. Javadoc

presents important technology and emphasizes the role of documentation. Greater consideration

should be given to ensuring that all student assignments in Java require Javadoc generating

documentation as being equally important to producing Java source code.

6.3 Observations on Teaching

javaJAM emphasizes the relationship between an annotation and the related areas of

source and documentation. For example, if the third overload method of a specific class inspires

annotations, it is easy to review those annotations and also to view the related documentation

and the related source to quickly get a fuller picture of the discussion. Feedback from the study

indicates that even second year students with no training or exposure to collaborative software

development grasp the potential this offers as a learning tool and a tool that can improve the

quality of the software that they develop.

It is interesting to observe that the art of teaching skills like drawing and painting have

evolved over the last three centuries or more and have become very rigorous. Aspiring artists

copy the works of the masters to learn and practice technique. The art of teaching programming

is still very young. The methodology of teaching students does not emphasis collaboration or the

studying of the practices and techniques of skilled programmers. Here too javaJAM can

contribute, both by the sharing of well-written code and by the sharing of annotations that explain

why it is well written.

 49

7. Future Directions

7.1 Improved Support for Collaboration

7.1.1 Scalability Improvements

javaJAM was designed and implemented as a research and evaluation tool for the

concepts that it proposes. Many design decisions were made in favor of speed and ease of

implementation in order to test the thesis that a tool like javaJAM would be beneficial to the Open

Source Software initiative. In order for javaJAM to successfully support large communities of

software engineers, javaJAM storage of annotations will have to be redesigned. Currently,

javaJAM uses a sequential flat-file storage structure. The advantage of the flat-file structure is

that it is already in HTML format and so it is immediately available for browsing. To make

javaJAM scalable will require that annotations be stored in a relational database. This would

require changing several methods in the maintenance servlet.

7.1.2 Collaborative Teaching Tool

The requirements of the classroom can be much different than the requirements for

producing Open Source software. In the classroom the teacher may want teams to learn to

collaborate, but because multiple teams are working on the same assignment, it might be

necessary to prevent teams from reviewing each other’s work. Without imposing some security

the entire class would probably function somewhat like a single team rather than as multiple

teams as the teacher intended.

javaJAM has limited support for hosting the work of teams and hiding team projects from

other teams, but the initial design for javaJAM did not fully embrace this requirement. To extend

the security features would require functionality that would prevent teams from even being able to

guess the URL's of other teams. Currently, javaJAM only hides the work of other teams when it

lists the available projects.

In the new security model for javaJAM access to all hosted packages will need to be

controlled. Also, the moderator, a teacher in this case, will have to be able to assign participants

(students) to teams and assign teams to packages.

7.1.3 Moderator Comments

Annotations are mostly one-way communications. The annotation status provides some

feedback. Since it is possible to create threads with annotations, that helps also to make

discussion by annotation a richer experience, but the addition of moderator comments would also

be very helpful in some scenarios. When an annotation is accepted or rejected there is currently

 50

no accompanying explanation. If the moderator were able to comment on an annotation, this

would provide for an additional way to communicate.

The current annotation layout only provides for annotation subject and body:

Figure 26, Post Annotation

The future annotation layout would also show moderator comments on the annotation if

any exist:

Figure 27, Future Post Annotation

 51

7.1.4 Email Triggers

 Some annotations may be considered extra sensitive or high priority by the author. An

email trigger function would provide the author a way of automatically being informed that the

status of the annotations has been changed. The updated annotation could be sent by email to

the author at the time that the moderator changes the annotation status, or makes other changes.

7.1.5 Voting

 Not all annotations should have the same weight. Some will have more support than

others. Some annotations may even have detractors. Voting would help a developer to prioritize

annotations. Unlike voting for politicians, it should be possible to vote against a particular

annotation too. For example, it should be possible for three people to vote for a particular

annotation and eight people to vote against it. To make this voting model collaborative, it would

be necessary to thread a discussion for a particular annotation.

7.1.6 Threaded Discussions

 Some annotations may benefit from having a related discussion thread. This would

better organize the collaboration by reflecting the original annotation as the root of the threaded

discussion. This would facilitate discussions related to annotation voting too.

7.1.7 Software Distribution

 To more fully support the Open Source software development environment, javaJAM

should also facilitate the distribution of source. This would not be difficult to implement since

javaJAM already requires that a zip archive sent for hosting. By saving the archive and creating a

link to it, it would be possible to make a hosted application's source available for download from a

javaJAM server.

7.2 Improved Support for Application Hosting

7.2.1 Flexible Hosting tool

At this point the hosting tool is only available to the administrator. javaJAM would be

much more flexible if the mechanism for authenticating moderators was much more flexible. The

current mechanism requires the administrator to manually identify which applications a moderator

can host and to manually host them for the moderator. The current tools support remote hosting

of applications, so that simplifies the task of automation.

For the hosting tool to be flexible it would need to be changed to allow any authenticated

moderator the option to host new packages on the javaJAM server. It would need to; 1) confirm

that the package name is unique and able to be posted, 2) update the moderator record to

indicate that the instructor owns the package, and 3) post the application on the server. If the

 52

moderator is allowed to host packages without any intervention from the administrator, then it will

be necessary to allow the moderator to also remove packages from the server once the package

as hosted is no longer relevant. It would also be reasonable to allow the moderator to freeze the

package before later removing it since the frozen version may help by providing a point of

reference.

7.2.2 Package Version Control

 Under some circumstances multiple versions of a package may be hosted at once and

different versions may or may not be available for review or for annotating. This could be the

case when an older version is kept as a reference version only and so should be only viewable,

or it might be possible that a moderator would want to migrate specific annotations from one

version to the next since they might represent ideas that will not appear in the next version, but

are worth saving for some future version of the package.

7.2.3 Annotation Migration

 Currently, the moderator can only change an annotation's status, or delete it. But

annotations are valuable and may need to outlive a particular version of a hosted package.

Functionality to provide for migrating annotations from one package or version to another

package or version would provide great flexibility. If the annotations and their associated

relationships were considered as the most valuable asset, then this function would protect that

asset.

7.2.4 Automatic Clean Up

In order to simplify maintenance and prevent the accumulation of unused packages,

teams, etc., javaJAM should use aging logic. The moderator could specify aging logic at the time

the package is created. An "end-of-life" date could be specified for the package so that it would

automatically be frozen or deleted, or both. Also, aging logic could be specified to determine how

long a package could go without being accessed before being considered at the end of its life. A

mechanism to provide the moderator an advanced email warning could help prevent an

unintended deleting of a package.

7.3 Functional Enhancements

7.3.1 New Annotation Status

 Individual annotations may have a complex life cycle. Additional statuses would help a

moderator to move an annotation through its life cycle.

 53

• Deferred

Currently, annotations are either accepted or reject by the moderator. It is

also possible for the moderator to simply ignore a newly posted annotation,

but that would not communicate a clear intention. A new "deferred" status

would represent the situation where an annotation is beneficial, but cannot

be implemented in the near future. Deferred annotations might possibly be

migrated to some future version of the package.

• Hidden

In some circumstances it may be necessary to hide, temporarily or

permanently, an annotation. This should not be a normal practice, but short

of deleting a comment, this is a useful, nonpermanent alternative.

• Implemented

Some annotations will be suggestions for changes to documentation, source,

or functionality. Having a status that indicates that annotation is

implemented provides additional communication.

7.3.2 Extensibility

Besides supporting a range of standard statuses, also allowing a moderator to invent new

status for a project or a site would create the most flexibility.

7.3.3 Annotations Reporting

Currently there is only one way to review annotations. Working with and managing

annotations would be greatly enhanced by providing new ways to organize and review them.

Annotations should be selectable and sort-able by a number of criteria including date posted,

status, and author. The result would be a "collection" of annotations. Once a collection of

annotations is created, it should be possible to manage a collection: accept, reject, delete, or

migrate for example. Also functionality to allow these collections to be printed, emailed or even

saved for future reference might help make javaJAM a powerful communication tool.

7.3.4 Password Encryption

 The security model (Section 4.3.1) would be stronger if passwords were stored

encrypted. Encryption could be done with a one-way hash function such as the Secure Hash

Algorithm (SHA) developed by the NSA [5]. Java classes for SHA are available on the web.

 One-way hashes are ideal for authentication. For authentication of a participant, the

participant's password can be hashed and the hash compared against the database for a

matching hash. Storing the hashed password for authentication has an additional advantage.

Should someone obtain access to the data and the hashed passwords, having the password

 54

hash is not the same as having the password itself. Also, password hashes are design to be

irreversible. Discovering the original password from the hash requires cracking the SHA

algorithm. This is not a casual activity.

7.4 User Interface Enhancements

7.4.1 Selective Viewing

 While Javadoc already provides selective viewing of the entire package via the Index link

at the top of each class and also selective viewing within a class in the summary section near the

top of each class, additional selective viewing options would add more flexibility. The left frame

currently lists the package’s classes. If in front of the class name was a small plus sign, clicking

on it could expand the class—like nested subfolders—so that links to constructors and methods

would be presented for clicking.

7.4.2 IDE Integration

 javaJAM would be a very strong and dynamic collaboration tool if it were integrated into

an Integrated Development Environment (IDE) like Borland’s JBuilder. After a project completes

a successful compile an option to update the javaJAM hosted information is provided. If selected

the updated documentation and source are replicated on javaJAM and all annotations with the

status Accepted for the next version are updated to reflect the fact that they have been

implemented in the current version. This status change would be automated and specific only to

sections of the source that were modified. Annotations for areas of source that were not changed

would not have their statuses change.

 55

Appendix A, Sample Questionnaire

The following survey is being conducted in order to evaluate javaJAM. I am hoping that during

the short time you have used this software tool, you have gathered enough insight to discuss

javaJAM. Your insights and answers to the following questions will help me to find out if tools like

javaJAM can help students to improve the quality of the software that they collaboratively

develop.

Your completed survey will not be shared with your instructor.

Please answer each question by drawing a circle around your selection. For the essay questions

please be as concise as possible. If the space provided is not enough, use the back of the

survey sheet.

Thank you for taking the time to complete this survey.

javaJAM’s on-line help was easy to use.
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

The layout and presentation of your
documentation, source, and the posted
comments/annotations easy to follow.
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

It was easy to move around the different parts
of javaJAM.
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

javaJAM’s response time was reasonable?
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

javaJAM is an effective tool for publishing java
program and generating javadoc on the Web.
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

It is easy to review the source and
documentation of projects posted for your
group.
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

 56

When viewing documentation it is easy to find
the related source and comments/annotations.
(For example: viewing the documentation for a
method, you could easily find the source.)
Agree
Neutral
Disagree
Strongly disagree

When reading comments it is easy to add
related comments/annotations.
Strongly agree
Agree
Neutral
Disagree
Strongly disagree

Did javaJAM allow you sufficient flexibility to work in the way you wanted? If not how would you
improve it?

Was the feedback posted by your team members helpful in improving the quality of your code?
If NO, please explain why.
YES
NO

Do you think javaJAM could be used as a good teaching/training tool?
(For example: To host sample projects that illustrate good programming style and practices.)

If NO, please explain why.
YES
NO

What problems did you have while using javaJAM?

 57

What did you most like about javaJAM?

What did you least like about javaJAM?

Would you consider javaJAM suitable for sharing java source applications? Why?
YES
NO

Would you recommend using javaJAM in java programming classes as a review tool in team
projects? Why?
YES
NO

 58

Appendix B, Raw Questionnaire Results

Table 1, Raw Survey Results

 Strongly

Agree

Agree Neutral Disagree Strong

Disagree

Q#1 7 15 11

Q#2 1 15 7 9 1

Q#3 10 9 11 3

Q#4 1 10 5 9 4

Q#5 2 8 8 12 3

Q#6 1 16 10 5 1

Q#7 14 14 10

Q#8 1 14 10 8

Figure 28, Survey Results Bar Chart

 59

Appendix C, Sample javaJAM Sign Up Message

From: "Monir Hodges" <hodges@hawaii.edu>
To: <monir@hawaii.rr.com>
Subject: requested javaJAM reminder (fwd)
Date: Sunday, April 16, 2000 5:41 PM

Date: Sun, 16 Apr 2000 17:33:29 -1000 (HST)
From: hodges@hawaii.edu
To: monir@hawaii.rr.com
Subject: requested javaJAM reminder

Hello Monir Hodges,

Thank you for your request. Your javaJAM information:

 Email...: monir@hawaii.rr.com
 Password: hiD84
 Username: Monir Hodges

NEW USERS:
Welcome to javaJAM. You have indicated that you would like
participate in a javaJAM server. You will need the password
and email address listed above to access this javaJAM server.

Please, never share your password. Should you forgot your
password, use the [Lost Password] button on the opening
javaJAM page.

EXISTING USERS:
This message is being sent because of a request to send a
lost password. The request was made for the password
associated with your email address. This request can only
be generated from javaJAM by entering an email address
that is known to javaJAM and pressing the [Lost Password]
button.

Aloha!

 60

Appendix D, javaJAM Data Structures

The supporting data structures are sequential files stored in C:\javaJAM on Win9x/NT

systems. Records are stored one per line with fields and data stored as tuples. A sample record

would look like: fld1=val1&fld2=val2&fld3=val3. It is possible that a field has no value, for

example, field two has no value: fld1=val1&fld2=&fld3=val3

participant.jjd
Participants are authenticated against this file.

Layout:

email Email address (participant ID).

password Assigned password.

username Name (First Last).

lastlogon Last logon (yyyy/mm/dd). {not yet fully functional, shows date entry was added.

doctree Packages that can be moderated. Delimit lists with "/". <all> permits moderation

of all packages. <none> prevents moderation of all packages.

Example:

email=hodges@univ.edu&password=25nIc&username=Monir hodges&lastlogon=2000/05/04&doctree=<all>

team.jjd
Packages that appear here will be not be treated as Open Source. They will only be

listed for participants assigned to the team that is allowed to review the package. This file was

introduced during the Case Study to accommodate the classroom environment.

Layout:

doctree Package that is assigned to a team.

email Participant ID.

Example:

doctree=HeapSort-v01-00&email=hodges@univ.edu

userentry.jjd

 61

This file works like a server-side cookie file. It provides persistent information during a

javaJAM session. Entries expire automatically after 45 minutes of inactivity.

Layout:

clientIP Participant's IP. Browser supplies this when it connects to the javaJAM server.

username Name (First Last).

doctree Package currently being reviewed.

status This is set during initial authentication. "0" indicates unknown status, "1" indicates

verified as participant. "2" indicates verified as moderator. "3" indicates guest.

email Participant's ID.

timestamp Timestamp. Updated during authentication and every time an annotation is

posted or maintained.

Example:

clientIP=166.23.23.3&username=Monir Hodges&doctree=HeapSort-v01-00&status=2

&email=hodges@univ.edu×tamp=958874789230

 62

Appendix E, Quality Assurance Test Suite

 After each major revision of javaJAM a series of tests were performed to ensure that new

features worked properly and that existing features were not broken. This series of tests is called

a test suite. The table below illustrates the results of testing javaJAM version 0.80 with the test

suite. The purpose of test suite is to help ensure quality software.

Table 2, Test Suite

Version 0.80
Servlet

Environment
Description Result Final

Result
Programmer enters username, but not email pass
Programmer enters email, but not username pass
CstListTreesServlet lists all available doc trees, and nothing else pass
Programmer is given many chances to enter email and username pass
Selecting a doc tree correctly begins access to a cosst hosted doc tree pass
First comment adds correctly to new comment file. pass
Propose a new comment where comment seq num 001 already exists pass
Class overview comments properly inserted and positioned pass
File overview comments properly inserted and positioned. pass
Class constructor comments properly inserted and positioned. pass
Class/Method comments properly inserted and positioned. pass
Class overview comments properly added to the end pass
File overview comments properly added to the end pass
Class/Method comments properly added to the end pass
Insert new method comment between existing method comments. pass
Insert new class comment between file and class comments. pass
Insert new file comment in front of class and method comments. pass
Insert method overload, second occurrence pass
Adding a comment with no subject or text is not accepted pass
Second Method sorts properly against first Method's comments. pass
Only comment purges correctly from comment file. pass
Deleting File comment deletes correct comment from comment file. pass
Deleting class comment deletes correct comment from comment file. pass
Deleting method comment deletes correct comment from comment file. pass
Deleting last comment leaves correct counter pass
Correct method comment purges from comment file. pass
File comment accept without edits replaces comment with status change. pass
Class comment accept without edits replaces comment with status change. pass
Method comment accept without edits replaces comment with status change. pass
Comment accept with edits replaces comment along with status change. pass
Comments buttons change appropriately when a comment is accepted. Obsolete
Comment buttons appear properly for proposed comments. Obsolete

 63

Two or more users can propose comments without problem. pass
Comment text, paragraphs are changed to
 tags for storage. pass
Comment text, paragraphs are changed to end of lines for editing. pass
Adding comments leaves accurate counter at bottom of comment file. pass
Accepting comments leaves accurate counter at bottom of comment file. pass
Rejecting comments leaves accurate counter at bottom of comment file. pass
Rejecting comment changes status to rejected pass
Updating an existing comment does not increment counter at bottom. pass
Updated comment replaces previous comment on disk. pass
Updating a non-existant comment does not crash. Obsolete
Deleting a non-existant comment does not crash. Obsolete
Moderating a non-existant comment does not crash. pass
File comment hyperlink correctly referenced from source. pass
Class comment hyperlink correctly referenced from source. pass
File comment hyperlink correctly referenced from source. pass
Create first userEntry with all fields pass
Add new userentry to empty list pass
Insert new userentry at top reserving rest of list pass
Update userEntry timestamp, in first position pass
Update userEntry timestamp, in middle position pass
Update userEntry timestamp, in last position pass
Read moderator from empty file pass
Read moderator from top of file pass
Read moderator from middle of file pass
Read moderator from end of file pass
Programmer cannot moderate, status changes to 2 pass
Moderation privilege automatically stops when the user entry becomes
expired.

pass

Remove expired userentries pass
autosizing/positioning of dialogs pass
Help button appears in logon and reprompt forms and works pass
Help button appears in dialogs, and works pass
javaJAM buttons appear for source overview for all java source files pass
javaJAM buttons appear for class overview for all java source files pass
javaJAM buttons appear for class overview for all JavaDoc files pass
javaJAM buttons appear for all constructors for each java source file pass
javaJAM buttons appear for all constructors for each JavaDoc file pass
javaJAM buttons appear for all methods for each java source file pass
javaJAM buttons appear for all methods for each JavaDoc file pass
javaJAM cst_index assignments match between JavaDoc and source files pass
javaJAM hyperlink assignments match between JavaDoc and source files pass
javaJAM buttons have correct HIDDEN statements pass
New signups are stored in participants pass
New signups receive email fail fail
Participants cannot sign up more than once fail pass
Source comments code and line numbering presented in different color pass
Error trap and log email send failures pass

Team Security Tools
Assign packages to team members pass

 64

Restrict designated packages to team members pass

Moderator Tools
upload zip file to javaJAM server pass
unzip uploaded files pass
execute javaJAM doclet interface to create javaJAM javadocs pass
host javaJAM javadocs pass
rehost javaJAM javadocs pass

Browser Tests
All tests pass in IE 4x pass
All tests pass in IE 5x pass
All tests pass in Netscape 4x pass
All tests pass in Netscape 5x

 65

Appendix F, Win9x/NT javadoc.exe Shell Script

rem title javaJAM Host/Rehost Tool
rem javadoc !is run from directory containing the java source files.
rem -doclet <doclet package/component/class>
rem -docletpath (full path to doclet package root>
rem -d <application package root>
rem -classpath <full path to application package>
rem *.java !application source files
rem ---- javadoc executes relative to the current default directory
rem o For NT the first line, the title line, does not have to be
rem suppressed.
rem o For DOS the cd command is limited to C: drive. Seems that this
rem is a security feature imposed when command.com is executed as a
rem child process.
rem o The javaJAM host/rehost tool is also assuming that the default
rem directory will be the javaJAM workarea, which is
rem c:\javaJAM\tohost.
rem o The path statement is required if the jdk is not already
rem defined.
rem o Javadoc requires the -private tag to prevent the private
rem methods from being omitted from the documentation and the
rem javaJAM button omitted from the source.
rem o The final echo statement is required to work around a jdk bug
rem that prevents a DOS child process from exiting properly. The
rem work around is to look for the echo and then to kill the child
rem process.
cd c:\javaJAM\tohost
path c:\jdk1.2.2\bin;%path%
javadoc -private -doclet javaJAM/docletTools/Standard -docletpath
c:\JavaWebServer2.0\servlets\javaJAM.jar -d .\documentation *.java
echo BATCH DONE

 66

Appendix G, CstUploadEtcServlet Log

Cleanup:

C:\JavaWebServer2.0>rem Clean up work area by removing previous
application entirely.

C:\JavaWebServer2.0>cd c:\javaJAM\tohost

C:\javaJAM\tohost>deltree /y *.*
Deleting documentation...
Deleting upload.zip...
Deleting AbsDispatcher.java...
Deleting AbstractTag.java...
Deleting LOCcli.java...
Deleting DLOCabsReader.java...
Deleting JavaAbstract.java...
Deleting DLOCcli.java...
Deleting LOCabsReader.java...
Deleting FileListFilter.java...
Deleting TextAbstract.java...
Deleting source...
Deleting src_comment...
Deleting doc_comment...

C:\javaJAM\tohost>rem Standard doclet needs the \documentation
directory in order to run.

C:\javaJAM\tohost>mkdir documentation

C:\javaJAM\tohost>echo BATCH DONE
BATCH DONE

 67

Unzip:
Filename: \\Sophie\syswin98\javaJAM\tohost\upload.zip
Content-Type: application/x-zip-compressed
Contents:
File: AbsDispatcher.java Size: 6583
File: AbstractTag.java Size: 2363
File: LOCcli.java Size: 18317
File: DLOCabsReader.java Size: 12572
File: JavaAbstract.java Size: 17831
File: DLOCcli.java Size: 17816
File: LOCabsReader.java Size: 16674
File: FileListFilter.java Size: 1838
File: TextAbstract.java Size: 4525

javaJAMdi:

C:\JavaWebServer2.0>title javaJAMdi -- Doclet Interface: Generate html
for hosting

C:\JavaWebServer2.0>rem

C:\JavaWebServer2.0>rem javadoc !is run from directory containing the
java source files.

C:\JavaWebServer2.0>rem -doclet

C:\JavaWebServer2.0>rem -docletpath (full path to doclet package root>

C:\JavaWebServer2.0>rem -d

C:\JavaWebServer2.0>rem -classpath

C:\JavaWebServer2.0>rem *.java !application source files

C:\JavaWebServer2.0>rem ---- javadoc executes relative to the current
default directory

C:\JavaWebServer2.0>rem

C:\JavaWebServer2.0>cd c:\javaJAM\tohost

C:\javaJAM\tohost>path
c:\jdk1.2.2\bin;C:\JAVAWEBSERVER2.0\BIN\..\jre\bin;C:\JAVAWEBSERVER2.0\
BIN\..\lib;C:\JAVAWEBSERVER2.0\BIN\..\native_lib;C:\WINDOWS;c:\windows;
c:\windows\COMMAND

C:\javaJAM\tohost>javadoc -private -doclet javaJAM/docletTools/Standard
-docletpath c:\JavaWebServer2.0\servlets\javaJAM.jar -d .\documentation
*.java
Loading source file AbsDispatcher.java...
Loading source file AbstractTag.java...
Loading source file DLOCabsReader.java...

 68

Loading source file DLOCcli.java...
Loading source file FileListFilter.java...
Loading source file JavaAbstract.java...
Loading source file LOCabsReader.java...
Loading source file LOCcli.java...
Loading source file TextAbstract.java...
Constructing Javadoc information...
Building tree for all the packages and classes...
Building index for all the packages and classes...
Generating .\documentation\overview-tree.html...
Generating .\documentation\index-all.html...
Generating .\documentation\deprecated-list.html...
Building index for all classes...
Generating .\documentation\allclasses-frame.html...
Generating .\documentation\AAA-MainFrame.html...
Generating .\documentation\index.html...
Generating .\documentation\packages.html...
Generating .\documentation\../source\AbsDispatcher.html...
javaJAM: generating AbsDispatcher.html to ../source
Generating .\documentation\../src_comment\AbsDispatcher.html...
javaJAM: generating AbsDispatcher.html to ../src_comment
Generating .\documentation\../doc_comment\AbsDispatcher.html...
javaJAM: generating AbsDispatcher.html to ../doc_comment
Generating .\documentation\.\AbsDispatcher.html...
Generating .\documentation\../source\AbstractTag.html...
javaJAM: generating AbstractTag.html to ../source
Generating .\documentation\../src_comment\AbstractTag.html...
javaJAM: generating AbstractTag.html to ../src_comment
Generating .\documentation\../doc_comment\AbstractTag.html...
javaJAM: generating AbstractTag.html to ../doc_comment
Generating .\documentation\.\AbstractTag.html...
Generating .\documentation\../source\DLOCabsReader.html...
javaJAM: generating DLOCabsReader.html to ../source
Generating .\documentation\../src_comment\DLOCabsReader.html...
javaJAM: generating DLOCabsReader.html to ../src_comment
Generating .\documentation\../doc_comment\DLOCabsReader.html...
javaJAM: generating DLOCabsReader.html to ../doc_comment
Generating .\documentation\.\DLOCabsReader.html...
Generating .\documentation\../source\DLOCcli.html...
javaJAM: generating DLOCcli.html to ../source
Generating .\documentation\../src_comment\DLOCcli.html...
javaJAM: generating DLOCcli.html to ../src_comment
Generating .\documentation\../doc_comment\DLOCcli.html...
javaJAM: generating DLOCcli.html to ../doc_comment
Generating .\documentation\.\DLOCcli.html...
Generating .\documentation\../source\DLOCcli.ButtonEvent.html...
Generating .\documentation\../src_comment\DLOCcli.ButtonEvent.html...
javaJAM: generating DLOCcli.ButtonEvent.html to ../src_comment
Generating .\documentation\../doc_comment\DLOCcli.ButtonEvent.html...
javaJAM: generating DLOCcli.ButtonEvent.html to ../doc_comment
Generating .\documentation\.\DLOCcli.ButtonEvent.html...
Generating .\documentation\../source\FileListFilter.html...
javaJAM: generating FileListFilter.html to ../source
Generating .\documentation\../src_comment\FileListFilter.html...
javaJAM: generating FileListFilter.html to ../src_comment
Generating .\documentation\../doc_comment\FileListFilter.html...
javaJAM: generating FileListFilter.html to ../doc_comment

 69

Generating .\documentation\.\FileListFilter.html...
Generating .\documentation\../source\JavaAbstract.html...
javaJAM: generating JavaAbstract.html to ../source
Generating .\documentation\../src_comment\JavaAbstract.html...
javaJAM: generating JavaAbstract.html to ../src_comment
Generating .\documentation\../doc_comment\JavaAbstract.html...
javaJAM: generating JavaAbstract.html to ../doc_comment
Generating .\documentation\.\JavaAbstract.html...
Generating .\documentation\../source\LOCabsReader.html...
javaJAM: generating LOCabsReader.html to ../source
Generating .\documentation\../src_comment\LOCabsReader.html...
javaJAM: generating LOCabsReader.html to ../src_comment
Generating .\documentation\../doc_comment\LOCabsReader.html...
javaJAM: generating LOCabsReader.html to ../doc_comment
Generating .\documentation\.\LOCabsReader.html...
Generating .\documentation\../source\LOCcli.html...
javaJAM: generating LOCcli.html to ../source
Generating .\documentation\../src_comment\LOCcli.html...
javaJAM: generating LOCcli.html to ../src_comment
Generating .\documentation\../doc_comment\LOCcli.html...
javaJAM: generating LOCcli.html to ../doc_comment
Generating .\documentation\.\LOCcli.html...
Generating .\documentation\../source\LOCcli.ButtonEvent.html...
Generating .\documentation\../src_comment\LOCcli.ButtonEvent.html...
javaJAM: generating LOCcli.ButtonEvent.html to ../src_comment
Generating .\documentation\../doc_comment\LOCcli.ButtonEvent.html...
javaJAM: generating LOCcli.ButtonEvent.html to ../doc_comment
Generating .\documentation\.\LOCcli.ButtonEvent.html...
Generating .\documentation\../source\TextAbstract.html...
javaJAM: generating TextAbstract.html to ../source
Generating .\documentation\../src_comment\TextAbstract.html...
javaJAM: generating TextAbstract.html to ../src_comment
Generating .\documentation\../doc_comment\TextAbstract.html...
javaJAM: generating TextAbstract.html to ../doc_comment
Generating .\documentation\.\TextAbstract.html...
Generating .\documentation\serialized-form.html...
Generating .\documentation\package-list...
Generating .\documentation\help-doc.html...
Generating .\documentation\stylesheet.css...

C:\javaJAM\tohost>rem echo ...warning messages are ok

C:\javaJAM\tohost>rem dir/S c:\javaJAM\upload > c:\javaJAM\dir.tmp

C:\javaJAM\tohost>rem type c:\javaJAM\dir.tmp

C:\javaJAM\tohost>echo BATCH DONE
BATCH DONE

 70

Appendix H, Site Initialization File

Sample file with explanations for each line:

1. [server]

This is a section label. It is for readability only and is ignored.

2. hostname=ursula.ics.hawaii.edu:8080

This is the host portion of the URL. It is used when generating new packages for

hosting. It is also used when creating new annotations.

3. jdkTools=c:\jdk1.2.2\lib\tools.jar

The path to the JDK is required for accessing javadoc.exe while generating a new

package for hosting.

4. jwsPath=c:\JavaWebServer2.0\public_html

The path to the root of the public area on the web server is used when generating

new packages for hosting. It is also used when creating new annotations.

5. linnum=on

When generating a new package for hosting, by default the source is generated with

line numbers. Setting this to "off" will suppress the line numbers. For best results

this should be left on.

6. mailserver=sm tp.hawaii.edu

javaJAM needs to communicate to a friendly SMTP server so that it can send new

participants their passwords and help old participants remember forgotten

passwords.

7. [scripts]

This is a section label. It is for readability only and is ignored.

8. cleanup=_cleanup.bat

This is name of the shell script stored in the javaJAM folder that cleans up the

remote hosting work area at the start of a new remote hosting action. This script

can be eliminated in a future enhancement.

9. doclet=_javaJAMdi.bat

This is the name of the shell script stored in the javaJAM folder that executes

javadoc.exe. Javadoc 1.2.2 could not be run directly from Java which seems

unreasonable.

10. [admin]

This is a section label. It is for readability only and is ignored.

 71

11. admin=Monir Hodges

The name of the javaJAM administrator is included in any email sent by javaJAM.

12. email=monir@hawaii.edu

The email address of the javaJAM administrator is included in any email sent by

javaJAM.

Any line can be commented out by placing a semicolon in front of it. Lines that contain

invalid keywords are ignored. The line numbering is for illustration only and should not be

included in the initialization file.

 72

Bibliography

[1] AnalogX web site.

<http://www.analogx.com/contents/download/system/maxmem.htm>.

[2] Apache Software Foundation web site. <http://www.apache.org>.

[3] Ben Adida and Philip Greenspun. Supporting Open-Source Software via Online

Community. <http://photo.net/wtr/acs/open-source.html>.

[4] Ben Shneiderman. Designing the User Interface, Strategies for Effective Human Computer

Interaction. Chapter 4: Usability Testing, Surveys, and Continuing Assessments. Addison-

Wesley Press, 1998, Third Edition.

[5] Bruce Schneier, Applied Cryptography, Section 18.13: Choosing a One-Way Hash

Function. John Wiley & Sons, Inc., 1996, Second Edition.

[6] Bruce Perens. The Open Source Definition, June 1997.

<http://www.opensource.org/osd.html>.

[7] Dan Suthers. Artifact-Centered Discussion Forum.

<http://lilt.ics.hawaii.edu/lilt/opportunities/students/linked-cmc.html>

[8] Danu Tjahjono, CSRS Research Summary.

<http://csdl.ics.hawaii.edu/Research/CSRS/CSRS.html>.

[9] Eric S. Raymond. The Cathedral and the Bazaar, May 2000.

<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html>.

[10] Giant Java Tree web site. <http://gjt.org>.

[11] James C. Luh. Open For Business. Internet World, September 15, 1999

<http://www.internetworld.com/print/1999/09/15/website/19990915-business.html>

[12] Jason Manger. JavaScript Essentials. Chapter 8: Manipulating Windows with JavaScript.

McGraw-Hill, 1996.

[13] Jeremy Brown, et al. HyperCode, September 1994.

<http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/brown/hypercode/hypercode.html

>.

[14] Karl Moss. Java Servlets. Chapter 6: Server-Side Includes. McGraw-Hill Press, 1998.

[15] Paint Shop Pro 6.0 web site. <http://www.jasc.com>.

[16] Phillip Johnson, OpenJavaDoc: An Open Source Browser for Java.

<http://csdl.ics.hawaii.edu/FAQ/FAQ/opportunities.html>.

[17] sourceXchange web site. <http://www.sourcexchange.com>.

[18] Sun Microsystems, Inc. Javadoc Tool Home Page.

<http://java.sun.com/products/jdk/javadoc>.

[19] Tango Interactive web site. <http://www.webwisdom.com/tangointeractive>.

 73

[20] The Open Source Initiative web site. <http://www.opensource.org>.

[21] The Open Source Initiative, The OSI Certification Mark and Program.

<http://www.opensource.org/certification-mark.html>.

