javaJAM

SUPPORTING COLLABORATIVE REVIEW AND IMPROVEMENT OF
OPEN SOURCE SOFTWARE

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘l IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

INFORMATION AND COMPUTER SCIENCES

AUGUST 2000

By
Monir Hodges

Thesis Committee:
Philip M. Johnson, Chairperson

Wesley Peterson

Daniel Suthers

We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and

quality as a thesis for the degree of Master of Science in Information and Computer Sciences.

THESIS COMMITTEE

Chairperson

© Copyright 2000

by
Monir Hodges

To my family, Michael, Emily, and Sarah,
for their continuous moral support

throughout this project.

To my colleagues at
Honolulu Community College who

provided encouragement and freedom to experiment.

Acknowledgements

This research would not have been possible without the help of Philip Johnson, and the
assistance of Robert Brewer. | also would like to thank all the members of the CSDL research
group for providing initial feedback and sitting through several presentations of javaJAM. Your
feedback has been valuable in helping me to provide a better interface.

I would like to thank Ty Kroll for doing the original investigation on enhancing the

standard Javadoc for javaJAM.

Abstract

Development of Open Source Software is in many cases a collaborative effort, often by
geographically dispersed team members. The problem for members is to efficiently review
documentation and source code and to collect and share comments and annotations that will lead
to improvements in performance, functionality, and quality.

javaJAM is a collaborative tool for assisting with the development of Open Source
Software. It generates integrated documentation and source code presentations to be viewed
over the web. More importantly, javaJAM provides an interactive environment for navigating
documentation and source code and for posting annotations.

javaJAM creates relationships between sections of documentation, source, and related
comments and annotations to provide the necessary cross-referencing to support quick and
efficient reviews.

javaJAM was evaluated in a classroom setting. Student teams posted projects for team
review using javaJAM and found it to be an easy way to review their projects and post their

comments.

Y o1 (gL T =Y Lo =T 4 =T o PP %
F Y o153 = (o PP PT PP RPTRN v
TabBIE Of CONTENTS ...ttt et et et e et e et e e e e eean s vii
LISt Of TADIES ...t et X
LISt Of FIQUIES ..ottt et ettt e e et e Xi
1. 1o o {1 Tod 1T} o 1
1.1 The Challenge of Open Source Software Development...........cccoeeiiiiiiniiiiniiinieieeenne, 1
1.2 Providing a Web-Enabled Collaboration Tool..........ccccoiviiiiiiiiiii e 2
1.3 The javaJAM IMPIemMeENntationo 2
1.4 Two Example Web-Enabled Application REVIEWSccovvviiiiiiiiiiieiec e, 4
1.4.1 Manually Publishing Documentation and SOUICE...........c.cvvviiiiiiiiiiii e eeeeee e 5
1.4.2 javaJAM Publishing Documentation and SOUICEcceuiviniiiieiieiiecineeeeeeeaeeanns 7
1.5 THheSIS StatEMENT ...ouniieii e e e e e 15
1.6 Overview Of thiS DOCUMENTo e e e e e eanes 16

2 RElAIEA WOTK ...t e ettt e e 17
2.1 OPEN SOUICE INIIAIVEttt e e e e e e e e e aaeanaas 17
N O 5 SRR 19
2.3 GHANTE JAVA THBB. ettt ettt et ean s 19
2.4 SDIM it 22

P2 ST - Vg T o TN 101 (T = od 1) 23
3. A New Collaboration TOOIviiiie e e e e 26
T R 1o [0 £=] 0 4 =T 1 TP PRSPPI 26
3.1.1 Documentation and SOUICE REVIEWciuuiiuiiiiiii e eae e 27

G 707 U 1o 1 o T = S 27
3.2.1 Documentation ANNOLALIONc.uuiiiii e e e e 27
3.2.2 SOUICE ANNOTALION ...ttt e e e e e e e eans 29
3.2.3 [T =T AN] =TT Vo 30
3.24 [To [T 2=V o] o PP P PP TUPPTRUPPTRPPPN 30
3.2.5 0] == T T I (] = 31

4, IMPIEMENTALION ...t et 32
4.1 Documentation TOOIS SUDSYSIEMccuuiiiiiiiiiiiii e 32
4.1.1 Javadoc Frames ENNanCEMENT 32
4.1.2 Javadoc Source Code Presentation Enhancement..............cccoiviiiiiiiiiiiinecineeenn, 34
4.1.3 Javadoc Annotations Buttons Enhancementc.ooouviiiiiiiiiniiiiine e, 35
4.1.4 Javadoc Output Files and Organization............ccccuveiiiiiiiii e 36

Table of Contents

Vii

4.2 Site TOOIS SUDSYSIEIM ...t e 37

4.2.1 Server Settings REVIEW TOO.........iiiiiiii e 37
4.2.2 Server Doclet INterface TOOI 38
4.2.3 Server HOSt/RENOSE TOOc.uiiiii e 38
4.3 Review and Annotation SUDSYSIEM.........iiiiii e 39
4.3.1 Authentication and Security MOdelcoouiiiiiiiiii 39
4.3.2 ANNOLAtioN Life CYCIE ..ouiiii e 40
4.3.3 JAVAJAM DIAl00S .. eeneiieiie ettt e 40
4.4 Site INHAlIZAtION FIl@ e e 41
4.5 Authentication RaAtiON@IEcouuiiiiiii e 41
4.6 Client/Server ArChitECIUIEccu.iii e 41

(O T (11 | PP 44
5.1 DeSigN @nd GOalScouiiiiiiiiiii e 44
5.2 MELNOA ... e 44
5.3 RESUIS ottt 45
5.3.1 INSEIUCIOr FEEADACKceviiiiiee e e 45
5.3.2 Student FEEADACK.ii e 45
Lo I 1o U 1] o o 46

10] o[[153 o o L PP a7
6.1 Contributions of thiS RESEAICH.couiii e a7
6.2 The JavadoC AQVANTAGEc.uiiieiiiei et e e e e e e e e e e e e e e eaa e a7
6.3 Observations 0N TEACNINGccuiiuiiii e e e e e e 48

FULUFE DIFECHIONS ...ttt ettt et et e e et e et e e e eeneees 49
7.1 Improved Support for Collaborationovveiiii i 49
7.1.1 Scalability IMPrOVEMENTS.uiii e 49
7.1.2 Collaborative Teaching TOOIcouuiiiiiiiie e 49
7.1.3 MOderator COMMENTSttt et et et e e et e e e eneens 49
7.1.4 oL I T T[T P 51
7.1.5 R0} 113 Vo PPN 51
7.1.6 Threaded DiSCUSSIONSttt ettt e e e et e e e e e eans 51
7.1.7 Software DIStrDULION ... 51
7.2 Improved Support for Application HOStINGcoouiiiiiiiiiii e 51
7.2.1 Flexible HOSHING T0O0].o et 51
7.2.2 Package Version CONIOL...........ivuuiiii et 52
7.2.3 ANNOLALION MIGFatiONiii et 52
7.2.4 AULOMALIC ClEAN U ..ottt e e 52
7.3 Functional ENNANCEMENTS.......iiii e e 52

viii

7.3.1 NEW ANNOTATION STATUS . ..vieieieieiet ittt ettt a et et e et ettt e eanenans 52

7.3.2 EXTENSIDIITY ...t 53
7.3.3 ANNOLALIONS REPOITING ...t eitiieit ettt e 53
7.3.4 PassWord ENCIYPLION ... e e e e e e e aas 53
7.4 User Interface ENhaNCEMENTScouuiiiiiiii e 54
7.4.1 SEIECHVE VIBWING .uiiiiiii i e e et e e 54
7.4.2 1] S) (=T | = L4 [o 54
Appendix A, SamMPpPle QUESTIONNAINE.ciu it et e et r e e e e e eaneeneens 55
Appendix B, Raw QUEeSHIONNAIre RESUILSiiiiiiiiii e 58
Appendix C, Sample javaJAM Sign Up MESSAQE ... ccuuniiriiiiieieiieiei et 59
Appendix D, javaJAM Data STIUCTUIESuiieiiiii et eae s 60
Appendix E, Quality ASSUraNCe TeSE SUITE........oiuiiiiiiii e 62
Appendix F, Win9x/NT javadoc.exe Shell SCript.......cccoooiiiiiiii e, 65
Appendix G, CStUPIOAdELCSEIVIEt LOQ .. .uuiiviiiiieii i e e e e e 66
Appendix H, Site Initialization File ..o 70
(21 0] [To T | =] 1 /2P 72

List of Tables

Table 1, RAW SUIVEY RESUILS.cuiiiii e et e e

Table 2, Test Suite

List of Figures

Figure 1, INitial JAVAJAM SCIEENeu ettt e e e e e e et e e e e e e e e s e e e e eanes 7
1o 8L R Y [o [L o ST od (=T = o 9
[0 (UL ST BT = oo g L= o =YY o 9
Figure 4, Hosted ApPlICAtIONS SCrEENttt 10
FIgure 5, ANNOTAE BULIOMNt ittt e e e e e e e e et e et e ea e eneeenns 11
Figure 6, New ANNOtation DIalOg.......c.uuiiiiiiii e 11
Figure 7, Add Annotation Confirmation Dialog...........couuiiiiiiiii 12
Figure 8, Proposed ANNOtation STAtUSccvuiiiiiii e e a e e aaes 13
Figure 9, Accept ANNOtation Dialogccvuiiuiiiiii e 13
Figure 10, Accepted ANNOtatioN STAtUS.........iieiiiii e e e e anes 14
Figure 11, Giant Java Tree Project SeleCtion SCIreEN........ccuvvuiiii it 21
Figure 12, Giant Java Tree Sample ProjeCt SCreeN.........oovevviiiiiiiiiie e 22
Figure 13, Tango Application Sharing Selection SCreencooovuiiiiiiiiiiiii e 24
Figure 14, Tango Generic TOOIS SeleCtioN SCrEENuiiiiiiiiii e 25
Figure 15, Sample Javadoc Class SIrUCLUIEc.iiuiiiiiiii e e e 28
Figure 16, Line NUMDEIINGoviii e e e e e et e et e eaaes 30
Figure 17, Standard JavadoC FrameS..........oiuuiiiiii et e e e e anns 33
Figure 18, Enhanced JavadoC FIramesc..iiuiiiiiii et e e e e e anns 34
Figure 19, Enhanced Source Code Presentation............oovuuviiiiiiiiineie e e e 35
Figure 20, Site TOOIS MENU... ... et e e e et e e e an e anes 37
Figure 21, SettingS REVIEW TOOIciiiiieiiiii e 38
Figure 22, Participant ArChItECIUNEoeueiiii e 42
Figure 23, Moderator ArChItECIUIEie i e 43
Figure 24, GUESTE ArChItECIUIveiie e e eaaes 43
Figure 25, POSt ANNOLALIONuuiit e e e e e e et e e aans 50
Figure 26, Future POSt ANNOTAtiONciuii e e e e e e anns 50
Figure 27, Survey ResSUItS Bar CRartc..oiiiiiii e e e e e e 58

Xi

1. Introduction

1.1 The Challenge of Open Source Software Development

There was a time when a lone software developer could sit in a corner for weeks or
months or even years and quietly hack out a package and hope for some level of success and
recognition. While it is possible for solo developers to create small, niche applications like the
MemMax utility for freeing up RAM that is offered at AnalogX.com [1], much of the software
development in the 21st century will be for large applications.

Applications are usually developed under intense circumstances. These circumstances
have two salient features: competition and complexity. Whether an application is developed as
Open Source, Shareware, or for shrink-wrapping, these two circumstances, competition and
complexity, still apply since the first one to get well known will be the one most likely to gather a
loyal following, find success and gain a competitive advantage.

The pressures of competition can greatly shorten the desired lapse time from product
conception to product delivery. Whether it is a new idea, or just the next product cycle, there is
often a compelling reason to keep the cycle as short as possible while keeping the overall quality
of the software at a reasonable level.

Complexity requires in many cases that software is feature-complete and includes a rich
user interface requiring minimal learning curves. While users may not take advantage of more
than a small portion of the feature set, they are attracted to feature-rich software as can be seen
by the success of PaintShop Pro version 6 [15] and the continual evolution of the Microsoft Office
suite.

In response to competition and complexity, Open Source Software is rapidly gaining
acceptance as a viable alternative model for high quality software development and innovation.
The problem that developers face when working with this model is that they are often members of
a team in which one or more members will have no or little opportunity for face-to-face meetings
with other team members. This presents a hurdle for successful application development.
Reviewing documentation and source code, and collecting and sharing notes and annotations
that will lead to improvements in performance, functionality, and quality becomes the challenge if

it is to be accomplished in a timely fashion.

1.2 Providing a Web-Enabled Collaboration Tool

One solution to supporting Open Source Software development is to create atool that
facilitates documentation and code review and provides for the collection of annotations as they
relate to the section of documentation and code that the viewer has reviewed and has determined
a need to make a comment or a suggestion. Such a tool would have to work behind the scenes
to establish relationships between sections of documentation and source and also the
annotations as they are posted and accumulated. Additionally, this tool would have to be easy to
learn and use so that it would not get in the way of the overall software development task. This
tool would be very easy to deploy if it could take advantage of the Internet and be accessible
using any web browser.

javaJAM has been designed to accomplish exactly this. To get the most benefit from the
Open Source approach and philosophy javaJAM provides a software collaboration tool that
facilitates under an Open Source model the publication of software packages and the collection of
review comments and notes for application documentation and source. These review comments
are referred to, individually, as annotations. javaJAM relies on Javadoc for the generation of
program documentation, and also incorporates the Java source code into the presentation.

Javadoc is Sun’s implementation d an extensible documentation generation system that
parses Java source code to extract and publish class, constructor, and method interface
documentation in HTML format for the web. Javadoc does impose conventions in order for useful
documentation to be generated. The Javadoc source code must contain in-line comments that
follow these conventions.

The javaJAM extensions to Javadoc provide additional features for reviewing or creating
annotations while reviewing source code and documentation. For developers already familiar
with Javadoc, javaJAM is a familiar Javadoc environment that has been extended with carefully
placed buttons that make it possible to also review source code and to post annotations.

Collectively, the annotations accumulated and reviewed for a software package can
strongly influence the implementation of the next version of the software package. Such
influence includes but is not limited to coding practices, accuracy and completeness of
documentation, and software quality, functionality, and efficiency. Collecting and organizing

these annotations is the key to creating a successful collaborative environment.

1.3 ThejavaJAM Implementation

javaJAM has been implemented to demonstrate that a web-enabled collaboration tool
can improve the process of developing Open Source Software. The fava” portion of the name

reflects the fact that it is a Java tool in part layered over Sun’s Javadoc technology. The “JAM’

portion of the name is loosely based on the idea of “jamming” as musicians say. Jamming is a
form of collaboration. The javaJAM tool is designed with three major parts. The first is the web-
enabled presentation. This is what the user sees when navigating through documentation and
source and creating annotations (see Section 4.3). The second is the javaJAM enhanced
Javadoc that reads Java source and creates a web-enabled presentation of documentation and
source (see Section 4.1). The third is the management tools used by an administrator to maintain
a javaJAM server.

Manually posting Javadoc generated documentation on the web is simple. Simply
reading code into an HTML editor and bracketing the code with <PRE> tags can easily
accomplish posting Java source on the web. Once the code is published, collecting comments
and annotations would require more work. The simplest implementation would be to have a form
and the form would accept comments and annotations and email them to the author. By creating
a hyper-linked page it would be possible to navigate between documentation and source and to
email comments. A fair amount of manual labor is required to set this up, and the comments and
annotations are not easily available for review. It can also be difficult for the reviewer to decide
where exactly comments and annotations relate to documentation or source.

A better alternative is to automate the presentation of documentation and source; to
provide a user-interface for navigating between the two with additional functionality for posting
comments and annotations; and, most importantly, to create explicit relationships between
sections of source and documentation and any comments and annotations posted in response to
a review of these sections.

javaJAM stores all documentation, source, and annotations in HTML files. Each section
(see Section 4.1.3 for details) contains anchors and hyperlinks. Each posted annotation also
contains anchors and hyperlinks. These anchors and hyperlinks establish the relationships
necessary to navigate from an annotation to the relevant section of document and to the relevant
section of source. These relationships form triangles; from any one point navigating directly to
either of the other two is possible.

The javaJAM interface is designed to look and feel like Javadoc so that it is immediately
and easily accessible to everyone with Java experience. Javadoc is a standard documentation
tool that is widely used because it is freely distributed with Sun's Java Development Kit (JDK)
[18]. Javadoc is also designed to be extensible and javaJAM implements Javadoc classes. This

first implementation of javaJAM is based on the following design goals:

1. Facilitate publication of Java documentation and source.
2. Maintain the standard Javadoc look and feel.
3. Implement linked "computer mediated communication" (CMC) relationships by

establishing logical links between related documentation and source artifacts and

their annotations [7]. javaJAM implements the following types of artifacts: source
overview, class overview, constructor, and method. These artifacts exist for both
documentation and source.

4, Support efficient navigation between related documentation and source artifacts
and their annotations.

5. Facilitate web-enabled asynchronous communications for the collection and
organization of annotations related to documentation and source.

6. Provide for the moderation of annotations. A moderator acting on behalf of a
development team can accept or reject annotations. Accepted annotations are
expected to be implemented on the next or future release of the software.

7. Platform independence.

8. The initial implementation will be kept simple by not relying on a database, such as

MS Access or MySQL for storage.

The scope of this first release of javaJAM does leave some important concepts and
functionality outside of its focus. For example, an annotation's lifecycle is limited to a single
version of the package. When a new version of the software is first published, it is a fresh start;
there are no annotations. The previous version of the software can be visited, but none of the
annotations automatically migrate to the new version. Also not in scope is the automation or
facilitation of processes to assist the software development team with annotation review,
establishment of consensus, acceptance/rejection of annotations and implementation of accepted
annotations. For now it is left to the moderator to represent the team and to coordinate these

activities.

14 Two Example Web-Enabled Application Reviews

Publishing on the web is easy. There are many HTML tools available, some free of
charge. But creating a collaborative review environment takes coordination that is not possible
simply by publishing documentation and source on the web and accepting comments by email.
The following two examples illustrate the difference between simply publishing on the web vs.
publishing with javaJAM. These examples demonstrate that javaJAM makes publishing
applications, reviewing documentation and source, and collecting and organizing comments
much simpler and more effective.

The following scenario is for the two examples below: Sophie is publishing the first
iteration of her completed HeapSort project on the web. She hopes to publish her HeapSort
application as Open Source Software , and she would like it to be as fast and as efficient as

possible. She thinks it runs too slow after having tested it against 200 records. She decides to

publish it on the web so that programmers with more experience can review it and give her

advice. She announces it in the newsgroup comp.lang.java.programmer.

1.4.1

Manually Publishing Documentation and Source

Assumptions:

Sophie has downloaded Sun’s JDK and it is correctly installed.

Sophie has HTML publishing skills.
Sophie knows how to run Javadoc.

Sophie has access to a web server for publishing her project.

Steps:

1.
2.

10.

11.
12.

Sophie: completes coding and testing the HeapSort Java classes.

Sophie: decides to publish the project on the web so that others can review her project and
provide improvement suggestions for the next version.

Sophie: runs Javadoc against her source to create the documentation.

Sophie: reads each Java source into an HTML editor and brackets the source with the
<PRE> and </PRE> tags to preserve the source indentation and formatting.

Sophie: creates a HeapSort main web page with links to the main Javadoc generated
documentation page and also to each of the HTML source pages.

Sophie: FTPs the HeapSort web page and related pages to her web site and updates her
web site so that her home page links to her HeapSort page.

Sophie: posts a message about the help she needs (improving performance) with her
HeapSort on the newsgroup comp.lang.java.programmer. In her posting she also includes
the URL of the HeapSort web page.

...some time goes by . ..

Betty: sees Sophie’s posting and visits Sophie’s HeapSort page.

Betty: reads Sophie’'s HeapSort APl and gets a sense of how the classes and methods are
arranged.

Betty: decides to review the source related to the heapSort method in the Heap class
because it appears to contain the core sorting logic.

Betty: navigates back to the HeapSort main page and selects the link to the Heap class.
Betty: scrolls down through the source until she locates the heapSort method and reviews

the code.

13. Betty: returns to the comp.lang.java.programmer newsgroup and posts for Sophie
suggestions on how to improve the heapSort method and also offers some general
comments about the Heap class.

14. June: also sees Sophie's posting, visits Sophie's HeapSort page, and decides she would
like to use the Heap class, but needs one additional feature.

15. June: posts to the comp.lang.java.programmer newsgroup a request for a method that will

return the next 'n' elements starting from a specific element number.

... some time goes by . ..

16. Sophie: opens her email, finds Betty’s and June's comments, reads them, and likes them.
Sophie notes that June's comments are identical to one of Betty's.

17. Sophie: includes Betty’s suggestions in the new version of HeapSort that she is working on.

...some time goes by . ..

18. Betty: wonders what happened to her suggestions and emails Sophie.

19. Sophie: looks through her old email and locates Betty’s original suggestions.

20. Sophie: opens the Java source in her editor and determines that Betty’'s suggestions were
all implemented.

21. Sophie: emails Betty her findings.

... some time goes by . ..

22. June: wonders what happened to her suggestions and emails Sophie.

23. Sophie: looks through her old email and locates June’s original suggestions.

24. Sophie: opens the Java source in her editor and determines that June’s suggestion was
implemented.

25. Sophie: emails June her findings.

If Sophie's HeapSort becomes very popular she would have a hard time keeping up with
the correspondence. In the scenario above, Betty and June will probably not know about each
other's postings. They and others will be submitting redundant requests in some cases. Since
Betty and June are probably unaware of each other's comments, the two of them are not in any
sense collaborating. For them and any other contributors, the collaborative relationship is a

simple one-to-one relationship between each contributor and Sophie. If HeapSort draws much

attention, Sophie is going to spend a lot of time managing these one-to-one relationships.

javaJAM is designed to simplify the mechanics of collaboration, and to support a complex many-

to-many relationship between contributors.

1.4.2

javaJAM Publishing Documentation and Source

Assumptions:

Sophie has access to a javaJAM server, but has never accessed it.

Sophie has access to WinZip or similar utility.

Steps:

1.
2.

Sophie: completes coding and testing the HeapSort Java classes.

Sophie: decides to publish the project on the web so that others can review her
project and provide improvement suggestions for the next version.

Sophie: signs up on the javaJAM server and supplies her email address and her
full name.

Sophie: receives an email from the server that provides her javaJAM password.
Sophie: zips her source and emails it as an attachment to the javaJAM server
administrator for publishing on the javaJAM server.

Sophie: announces HeapSort on the newsgroup comp.lang.java.programmer. Her
posting includes a request for help to make HeapSort run faster. In her posting she
includes the javaJAM URL where her HeapSort is hosted so that the newsgroup

users can review HeapSort and post suggestions.

...some time goes by . ..

Betty: sees Sophie’s newsgroup posting and visits the javaJAM server.

Figure 1, Initial javaJAM Screen

Flense bogan If o da el
Tatve & ps sw0ed Fom b
wrveral pplisng

j““'ﬂM“ WW

colabaraiion

vl
= Bulding better spplirations through collaborasion

-- & cellabortive classronm el for seackomg sefbwmre demloponnt
- A weh-erabiled vaal for polbaran develogment 1eams

Pumng javal AW o weoek — cxmmple scemanog

Fame=

o jwib A 15 et ol b n Dheskiop ares of DRBEXTOR pols
s Eriweserd Berd o Il erraml Esplovss 3 ased Hetazuper 47 or bigher segpiied

el ser: Fubde s wvaiabi whiarear o ans this Salp icen, (0]

8. Betty: signs up on the javaJAM server so that she may post annotations.

Sign Up
Sign Uy
i up il bz T

Pt an This braalal
mrent

Sign up and become an active
patticipant o this fava AT

i SEIVEL,
ot dontmn

Ermad

e
[Send] 7

iy paraern] sl b
frserated e maled b2y

Hame: (First Last)
|Betty Ann Srith
Enail:
|beﬁy.smith@univ.edu

send | (7]

Wour password will be
generated and mailed to Fou.

Figure 2, Sign Up Screen

9. Betty: receives an email message from the javaJAM server with her javaJAM
password (see Appendix C).

10. Betty: logs on to the javaJAM server.

H Infomct Ly

Welcome

Please logon. If you do not
have a password you have
several options.

Fleass koo, 17300 0 1t
Tervr i proisvanienl Wi e
T cpta R

S ey

s Email:
e | |betty.sm|th@unw.edu
Lo Fasawn Fasgword:

 SignMeUp |

Figure 3, Welcome Screen

11.

12.

13.

Betty: selects Sophie’s HeapSort.

Hosted Applications

- DLOC gui

e v HeapiBort

oA icg2ll-oroupl 1-car
EOATET] ;

it i) icg2ll-oroupl3-cars
53] mockd ppddil

mockd pplld
mockd ppdl3

] Do

Figure 4, Hosted Applications Screen

Betty: reads Sophie's HeapSort APl and gets a sense of how the classes and
methods are arranged.

Betty: while at the top of the documentation for class Heap she clicks the Annotate
button and posts her general comments about the class in the popup dialog box

that appears. One of the comments suggests a new method for returning elements
starting from any position.

10

-k
Bl e Freim et fep

lﬂ-nm iz Avophee BUEDY coes doctees e e o moc el st drees: hiv-

2 @ | ol Hobweon
Al Cluenes | Clnen [Donincilid et bl :I
I"d: ::'m':‘ﬁb_’idh‘_' g 1al BTl DA | SECETL bl Tedl
g
=
w danoisn | ewsmmstow | Sou |

Jwrn

4 Annotate |

L
i £
Macctutzs # 20000 'gu:'“‘_:i":i:';m"‘"i"ﬂ“'&‘
;s_‘amubr | Bttt om MUNNGET TS —
i
el Hosp Thoe st _J
Aiaa iy, Pty
1 o] e el b9 b sl e DORMIOTOES 1) tmthes ean Tt A U vlasd e feaikle _'_'I
il | ¥
] D [Mtecd maei 5
Figure 5, Annotate Button
New Documentation Annotation
T Gretieral (?las_s Oveﬂfiew Annotation for Class Heap.
Zoutce File is Heap java
Submitted by: Betty Ann Smilth on 2000/06/03 Status: Propesed
Please enter the subject:
zeneral Heap Class suggestions :j
Annotation body:

It would be useful to have several more constructors to make
instantiation of the class more flexible.

For example:

o Passing a delimited string for sorting.

|
Submitl Clearl Cancel |@|

Figure 6, New Annotation Dialog

14. Betty: when done creating her class overview suggestions she will press the

Submit button so that her suggestions are posted. A confirmation screen will
appear.

11

15.

16.

17.

18.
19.
20.

Annotation Added

Thank You! Your annotation has been Added.

Note: after you exit this dialog you must refreshiveload the javalAlM page.

Return |@|

~ a V a A M Building better applications
J through collaboration

Figure 7, Add Annotation Confirmation Dialog

Betty: while reading the documentation for class Heap, method heapSort she
clicks the Source button to review the related source. Betty: after reviewing the
related source she clicks the annotate button and posts suggestions on how to

improve the heapSort method.

... some time goes by . . .

June: sees Sophie's newsgroup posting, visits the javaJAM server, signs up, and
becomes an active participant so that she can look at HeapSort.

June: sees Betty's suggestion for a method that returns elements starting from any
position and uses the "add related annotation" feature to state that she too is

interested in this method.

... some time goes by . . .

Sophie: logs on to the javaJAM server.

Sophie: from the list of available projects chooses HeapSort.

Sophie: reads through the annotations and finds Betty’s two annotations with status

Proposed.

12

-k
B Ll Men P e ep -
AR Classss [T Thesd e Demeceind nde; Hein
e mscam spou
3 massser mves |Dr R R i T i | e e
2]
§ _ancisn Ware Amulakon Sourcs
Jwon. Lang. drjsce
1
#-—Rnap
Status: Proposed
wole e o Blam
[FSE—— e o S Ao T o e

| Sl tr | Bét1x 15 Sl oo 3000MTAL

Moderate this Annotation

o Furmag nobbrited siog 19

Add Falsigol drnoamiins Wodareia this Annohaion

|

[

Figure 8, Proposed Annotation Status

21. Sophie: for each of the two annotations she presses the Moderate this Annotation

button, reviews the comment, and presses the Accept button to change the
annotation status to Accepted.

Moderate Documentation Annotation

Annotation & 2000001 goenme;:lgeasi: g:;ﬂ;;: Annotation for Class Heap.
Submitted by Betty Ann Smilth on 200000603 Status: Proposed
Please enter the subject:

General Heap Class suggestions ﬁ
Annotation hody:

It would bhe useful to have several more constructors to make =

instantiation of the class more flexibhle.

For example:
o Passing a delimited string for sorting. _-|

Accept | Reject | Update | Delete | Cancel |EI

Figure 9, Accept Annotation Dialog

22. Sophie: includes Betty’'s suggestions in the new version of HeapSort that she is

working on.

23. Sophie: posts the new version of HeapSort with Betty's suggestions.

13

... some time goes by . ..

24. Betty: wonders what happened to her suggestions and logs on to the javaJAM
server.

25. Betty: from the list of available projects chooses HeapSort.

26. Betty: looks through the annotations and locates her original suggestions. She

notes that they each have a status of accepted.

+eneratnd Duzuentates [ited] - Moo o Eaken

abaal
B [N Yew Frsin Do b [& |
A Clasws LT s Tnee Demespiod e Helo j
Bl e T e L i et
=
o

Aarciste Ve Amoabors | Souis |

W

Jworn. Lang. dtjsce

i g Status: Accepted !

e slass Blass

- =
i S - T30 il Claas Cvaviee Ancolatios far Clu Buop ,
e : e Pie Ieap jun

st e e

Bubjere:

remnd Heap Tl mogprsilioes

Anrminiine Body:

H o o i b b el v oot rocion b ouhe sefuringos of He ey oo Sexile J
o

Far s
o Parring 4 dekmited s inmg o soiting

Add Pilsiectdmotmins | bioderwie tipAsngmim |

Figure 10, Accepted Annotation Status

... some time goes by . . .

27. June: wonders what happened to Betty's suggestion and logs on to the javaJAM
server.

28. June: from the list of available projects chooses HeapSort.

29. June: looks through the annotations and locates Betty's original suggestion. She

also notes that the suggestion for the new method has a status of accepted.

With javaJAM Sophie has accomplished much more than a simple static web page could
offer. Her HeapSort posting on the javaJAM server is the center of activity and establishes a
many-to-many relationship between the various contributors of comments and suggestions. This

presents the opportunity for contributors to asynchronously interact with each other. Where

14

before there was the potential of many redundant suggestions, now annotations can result in an

evolution of some of the suggestions because everyone can see all annotations.

15 Thesis Statement

The research for this thesis has demonstrated that:
1. Software development can be improved by using collaboration tools.
2. That the Javadoc tool can play an important role facilitating collaborative
software development.
3. The javaJAM study group appreciated being able to easily publish their
projects on the web.
4. The javaJAM study group appreciated being able to easily navigate between

project source and documentation while reviewing their projects.

The statement "Software development can be improved by using collaboration tools"
addresses the fact that a collaborative tool like javaJAM is helpful in some circumstances, but not
others. In the classroom setting for example, a project team may have no interest in a project
once it is completed if it is not a building block for a future assignment. javaJAM provides the
strongest support for collecting reviews at the version level in preparation for the next version of a
software package.

The statement "That the Javadoc tool can play an important role facilitating collaborative
software development” discusses the importance of a documentation generation tool like
Javadoc. Documentation is an important form of communication and is very beneficial to
collaborative efforts. Languages like C and Visual Basic that do not have a standard
documentation generation tool are at a disadvantage when it comes to creating a web-enabled
collaborative environment. Javadoc gives the Java language a distinct advantage in collaborative
software development efforts and makes Java a richer language.

The statement "The javaJAM study group appreciated being able to easily publish their
projects on the web" relates the experiences of students in the study discovering and
appreciating how easy it was to find their projects—documentation and source—published on the
web and available for their team to review. It must be noted that javaJAM currently requires a site
administrator, me in this case, to do the actual publishing of the students’ projects. While some of
the work of publishing can be pushed back to the students, the site administrator would still need
to determine who would have privileges to moderate which packages.

The statement "The javaJAM study group appreciated being able to easily navigate
between project source and documentation while reviewing their projects” relates the experiences
of students in the study group navigating through their projects and creating annotations. The

students with Javadoc experience—one of the two classes in the study—found the interface

15

intuitive. This experience is made possible because javaJAM creates explicit relationships
between related sections of documentation and source and the annotations that are posted by
reviewers.

It also should be noted that even those students without Javadoc experience who write
Java code without considering Javadoc, still found the generated documentation for their
programs to be useful. Javadoc, without the students’ annotations, is still very capable of

analyzing package layout and program source and generating meaningful documentation.

1.6 Overview of this Document

The rest of this document explains javaJAM in detail and includes a study that was
conducted to evaluate javaJAM. Chapter 2 describes related work such as the collaboration
approach in Open Source environment and the need for tools like javaJAM to facilitate
collaboration. Chapter 3 discusses the functionality of javaJAM and explains how it could facilitate
collaborative software development. Chapter 4 details the implementation of javaJAM. In Chapter
5 the study is presented along with the results. In Chapter 6 javaJAM is compared to other
collaboration tools. Chapter 6 discusses the contributions of this research and includes some

general observations. Chapter 7 lists possible future enhancements and directions.

16

2. Related Work

The only way to meet the challenges of producing much of the software for the 21°
century will be to collaborate. Assembling a team of software engineers, business analysts, and
others will make it possible to bring a broad range of skills and perspectives to a development
project, and will make it possible to develop portions of a project in parallel in order to shorten the
overall development cycle while maintaining quality and effectiveness.

There are already a number of different tools to assist with team collaboration. There are
project-planning tools to sequence and assign tasks. There are librarian tools to control access
to modules and module versions under development. There are many tools for allowing
geographically dispersed members of a team to communicate face-to-face and to share
information and even desktops, but there are currently no tools to specifically assist with code

and documentation review and the collection of comments.

2.1 Open Source Initiative

The Open Source Initiative (OSI) [20] offers distinct advantages for software
development. With the rapid growth of the Internet collaboration between software engineers and
others is now possible on a scale not previously imagined. There are many systems and much
research related to the Open Source initiative; for example Linux, the Apache Web Server [2],
and the next release of the Netscape browser. These packages are fully developed and
supported by the Open Source initiative. The Open Source initiative also offers OSI Certification
[21]. The OSI Certified mark may be used on software distributions only after an Open Source
license has been obtained for it from the Open Source Organization. In order for the license to be
obtained, the software must comply with the Open Source definition [6]. This definition defines

Open Source software as having the following priorities:

Free Redistribution - there can be no license fees and no restrictions on using
the software as a component of software that is distributed or sold.

Source Code - source code must be included in the distribution and no
restrictions on distribution of binaries.

Derived Works - derived works must be permitted and allowed to be distributed
under the same terms.

Integrity of The Author's Source Code - distribution of modified version may be

prohibited if patch files for the source are permitted.

17

No Discrimination Against Persons or Groups - license must not discriminate
against persons of groups.

No Discrimination Against Fields of Endeavor - license must not restrict any
field of endeavor; genetic research for example.

Distribution of License - no additional licensing should be required for any
parties.

License Must Not Be Specific to a Product - the license should not be
conditional on the software being distributed with other software.

License Must Not Contaminate Other Software - license should not place

restrictions on the use of other software.

Software that is distributed as Open Source software must be identified as being placed

in the public domain and must contain the following notice:

"This software is OSI Certified Open Source Software.

OSiI Certified is a certification mark of the Open Source Initiative."

javaJAM was designed in the spirit of the Open Source initiative and by default supports
most of the above priorities and interferes with none of them. Packages hosted on a javaJAM
server are available to everyone via the World Wide Web. Where the Open Source initiative's
intention is to ensure that software is distributed freely with few if any limitations, javaJAM's
design goes one step further by creating an open environment for collecting comments and
suggestions from anyone that is willing to take the time to provide them.

The Open Source initiative goes beyond the sharing of software by dedicated
programmers that are working for the pleasure of making a good package or for establishing
recognition. The business community is also becoming interested in the initiative because it is a
good way to gain support for open standards. Businesses invest in developing software to
support actual standards so that businesses can cooperate easier. Businesses also benefit from
the initiative by increased security. Open Source software is exposed to extreme scrutiny and the
problems found are reported and fixed, which is unlike proprietary software where problems can
remain unreported and thus be exploited by the wrong person. An additional advantage to the
business community is that Open Source software is "peer review" software. Mature, Open
Source software is as reliable as software can get. Proprietary software does not have this
advantage.

The best example of the success of the Open Source initiative is the Internet's
infrastructure. DNS, sendmail, various TCP/IP stacks and utilities, and scripting languages such

as Perl demonstrate that Open Source Software already plays a valuable role. In his book "The

18

Cathedral and the Bazaar,” Eric S. Raymond compares traditional (Cathedral) software
development methodologies to the methodology used for Open Source projects (Bazaar) such as

Linux and Fetchmail [9].

"Treating your users as co-developers is your least-hassle route to rapid code
improvement and effective debugging.”

"Given a large enough beta-tester and co-developer base, almost every problem
will be characterized quickly and the fix obvious to someone."

"If you treat your beta-testers as if they're your most valuable resource, they will
respond by becoming your most valuable resource."

"The next best thing to having good ideas is recognizing good ideas from your
users. Sometimes the latter is better.”

"Provided the development coordinator has a medium at least as good as the
Internet, and knows how to lead without coercion, many heads are

inevitably better than one."

javaJAM constructively supports each of these points. javaJAM gives users a voice and
provides them with feedback so that they know their participation has impact. javaJAM makes a

package available to a large base.

22 CSRS

CSRS is a computer-supported software review system (CSRS) that enables declarative
definition of review processes and provides instrumented facilities for gathering and analyzing
review data [8]. CSRS provides for formal technical review (FTR), a cornerstone of software
quality assurance, which is typically under-utilized or inefficiently applied because it is generally a
labor-intensive, manual process. CSRS has been implemented for Unix systems with an Emacs
front-end. javaJAM represents a tradeoff between accessibility and formality since the intention is

to appeal to the same general audience using Javadoc.

19

riEJ Comme ntaryl: Issue#z252 1
CSRS Screens Reviewer
: EY R

D =8| |3<|B|B|=|8| =] i

Subject: Incorrect expression

Category: Coding Incorrect

Criticality: Hi {(Fatal Error}

Source-node: dectonum

Lines: 21

Description:

This expresszion will fail when first = 0, It should have

bheen i » 3},

Consensus: Confirm:l* Disconfirm:Q Meotral:

Related-issues:

[—= [és—similar—ito) Fxtra ‘first' A

Proposed—-actions:

Comments:

——*%x-[5R5: TzsuedH2hZ {text Public-Review Reviewser Filli——-|
l

Figure 11, CSRS Sample Commentary

2.3 Giant Java Tree

The Giant Java Tree [10] is an Open Source project. This project creates a Java source
tree consisting entirely of Open Source and permits browsing of the source. You can sign up as
a developer and have access to participants' source code. It is free in a sense that you can share

your source or use someone else's.

20

FT{EWE Srarvled - Missosoll bpesned Eupleess aial x|

| He Edt Yea Fpeoses [ook Help I-
[= . = @ F &[5 W 4 b a9 3.
I 0 T o o O T B

ik] b gt s et VS bt ncken b o] ePEa | s Hober o

CIANT Jave TrEe

Cantents Giant Java Tree jOVS Servlet

ek
E““'E Thin in Lt Ciund Java Tra'n {002 Bt o puga. Fram this pag, jrau cen biowess e andes socs bes oFthe 00T, s wal e othes soorce s
m Yo ean alen dowmined the [ebsst vermon of parksgss, 35 well 55 crops-Imk o package aod AP docment shon geoemmtsd b fevelloe
Emaul
Covmlpad |
-:I?.r\ljBl!H
Devalopes
G ‘Hanidon Tree
VE * Thrzia tha hant dava Trea prosect
[emen
Hams Pigs ICE ICE Enginenring

* Thanisa dbe com ior oerorciy aufiored by Tio Bodee:

ks films Campliiag
’ Thaz 41 e Tonis Compeanesy oecgct
ACNE The 1055 Home Paze

tl Thamda the boroe pagre for [CFE Tia Ao pags inciudies sk 4o docurmendabion, sourcr codie and dovnloads, s well as o collec o of o far OFE
FeposITorTes presovned oH the el be a0 P Seeler

JEA Bvalebiy Feabaton Applieabies
’ Thaz 13 tha Lowa Lobty 3 Save Foundstion Applicstian: projecr. MOTE The JFA renvar hod maved AT bact: cnbing nowd

s __ : 4 R —

o rip { 3
A1 it @ lraresdordeds

i e [T [b

Figure 12, Giant Java Tree Project Selection Screen

Giant Java Tree provides automatic Javadoc generation, similar to javaJAM. For
software engineers, Giant Java Tree provides an extensive source of Java examples and codes
by providing a sharing environment that is strictly a code repository. The javaJAM environment
could be used as a code repository, but it goes one step farther by collecting comments and
suggestions and storing them along with their relationships. This allows participants to not only
view others' source code, but also to communicate ideas towards improving the quality of the
documentation and source. Where Giant Java Tree functions as a catalog, javaJAM functions as

a catalog based collaboration tool.

21

VS e comfics - Miciosol Inbemed Enploss allzl

G D B L R [=
* @ [k| @ W 3| Es A B

| sk Siap mezh Hone Samch Faemies Helor s Firl Edi

| Augrees @] Fapr e it ot e 00 el e 2l @G | 5 Hothwem

&IANT Javes TeEE

Costents ERME / Eraincts £1CE ¢ com f ice
iy
El:\:i B W Do rsanintiors ' 29 Divienlnad
o File Rew Titestung
Finad O sppotepppluge)
Diovmlond & eofie!
Conplope; 3 oerutly
e
ICVE =L..:
bt o :
Ltz “alla
Homs Fage Ciszey
= jnramail
Eljrest
E1jersiir
i
=5 1)
el
sl
Spaget
Elegidiony!
0 prpalongt
£ prbmd
=T
£ pagiaall
l_lm
(=TT]
C kil
0 e eyl
Clwebtand =
& T e
Figure 13, Giant Java Tree Sample Project Screen
24 SDM

SDM (Software Development Manager) [3] is a planned subsystem for supporting Open-

Source Software via the online community. This subsystem will be an extension to the core

ArsDigita Community System. The system will support those who use, extend, and fix bugs in a

collaboratively developed and maintained software environment.

The SDM design contains the following core tables:

modules: each row represents a collection of related source code; columns
include module name, owner, current version, description, etc.
module_relationships: each row records which modules interact
significantly and who owns the interface between them.

module_releases: each row represents a named version of a module, e.g.,
"3.7"; columns include release_date (null until done),
anticipated_release_date, release_name, (just text; SDM doesn't care if 3.7
comes after 4.0) manager (person responsible for this particular release;

typically the module owner).

22

module_log: a linear log of dated information about progress on a given
module.

bugs_and_features: each row is one report from a user of a bug or a
requested new feature; columns include who has been assigned to it, what
priority it has been assigned, when it is expected to be fixed/added, whether
it has in fact been fixed/added and, if so, in which release.

bug_release_map: there will be a row if a bug is present in a particular
release a module (covers the case where a bug is discovered in version 1.4
and we need the SDM to inform users that it is also present in 1.2 and 1.3).
tasks: something to be done by a participant in SDM, typically a
programmer. Testing is an example of an appropriate entry for the tasks
table.

user_interest_map: records the fact that a user of the SDM is interested in
monitoring the progress of a bug, feature, or task.

The SDM design is strongly oriented to the life-cycle of the bug. It tracks the bug across
software versions and identifies who is tasked to fix the bug. Requests for new features are
treated much the same way that bugs are treated. While SDM has features that could be useful
to javaJAM, problem assignment and tracking, it does not address the same situations as
javaJAM. javaJAM is designed to collect comments and suggestions from anyone and
automatically creates relationships between the information collected and the areas of source and
documentation they relate to. Extending javaJAM functionality to include bug and new feature
tracking in a way that makes the information available just as the source and annotations are now
openly available would be beneficial.

The original date for Phase 1 of SDM was March 15, 1999. Development of Phase 2 was
to be completed by August 15, 1999. There are currently no references to indicate that it has
been implemented or is even still being considered for development other than the existence of

the web site reference.

25 Tango Interactive

Syracuse University and WebWisdom.com completed Tango version 1 in April of 1998
[19]. The emphasis was to create a fully interactive collaborative tool. Tango was based on

Microsoft's NetMeeting, but with a richer set of features:

Supports any programming language

Provides for live, interactive collaboration

23

Supports live, application sharing via live desk-tops

Creates transcriptions of chat sessions

Supports video conferencing

ANGO Interactive - Session Manager - Netscape

- TAMGO USER: Monir | SERVER: Kopernik.npac.syr.edu |

Collaboratory Tools i Usersl MaiIEln}{! Conﬂguratinnl Helpl

Generic Tools | Interactive Garnes Microsoft Applications |

222N

S Ward | S Excel ‘MSPowerH‘ S VisC++

Session type Master Participants

|| Remote close |

Becorm® aster Gt asher

Figure 14, Tango Application Sharing Selection Screen

As an interactive collaboration tool Tango is very strong though having a fast Internet
connection is an issue. What Tango lacks is a coordinated means of collecting and maintaining
information that results from collaboration. The ability to create transcripts from chat sessions
does not and probably is not meant to take care of this.

javaJAM has no live person-to-person interactive functionality at all. Adding this type of
interactive functionality may not be beneficial in javaJAM since interactive functionality would not
easily provide a mechanism to ensure that comments and suggestions are collected and the
proper relations to documentation or source are established. To solve this problem would take
javaJAM into an entirely new level of functionality. javaJAM does have an advantage in being
faster, especially over dialup connections to the Internet than Tango because javaJAM works by
sending only HTML files that are compatible with version 3 browsers. javaJAM is also easier to

access; unlike Tango, no plug-ins are required for javaJAM.

24

TANGO Interactive - Session Manager - Netscape

EXIT el nns Lol RS USER: Monir | SERVER: kepernik.npac.syr.edu |

Collaboratory Tools | Users' MaiIEln}{i Conﬂguratinni Helpl

Generic Tools | Interactive Garnes | MicrosoﬂApplicatinns|

g | —
E Aoz [+
R AT (R N

SimpleChat

o | o [Ed

Buenalista

Chat | 240Chat | FaintBrush

ithiteboard

Browser | Telnet | TourEuide

Jain session | [] A Session type Master Participants

Become master |

Figure 15, Tango Generic Tools Selection Screen

While Tango version 1.3 is still available as freeware from Syracuse University,
the company WebWisdom.com sells Tango commercially as an interactive tool for ebusinesses.
It supports communication, collaboration, training, and knowledge management. The intent of
Tango is to extend the physical office across Internet space. It is not at all about managing and

distributing Open Source software projects

25

3. A New Collaboration Tool

javaJAM represents a new category of collaboration tools. It was originally conceived as
an Internet enabled tool to build a community around a software development project for the
exchanging of ideas. The original concept was proposed by Dr. Philip Johnson of the University
of Hawaii at Manoa and evolved from there as | took the idea and worked to develop a tool which
could be used by many different groups in an educational or professional setting [16].

The design goal for javaJAM was to assist with code and documentation review and the
collection of comments. javaJAM was designed to provide a means to address this need for
collaboration over the Internet between groups of software engineers or student programmers
who work in a team to develop software.

javaJAM takes Sun’s Javadoc standard and extends it to make it interactive. More than
just providing for the Javadoc publication, javaJAM goes several steps farther to include the
sharing of Java source and documentation in an Open Source environment and to also include
the collection of annotations by reviewers.

javaJAM relies on HTML files to store the annotations it accumulates. javaJAM also
partially implements the concept of HyperCode [13] and generates HTML versions of source files
to facilitate code review. HyperCode is source code rendered in HTML with each line of source
treated as a hyperlink and artifact. javaJAM manages relationships that make it possible to
hyperlink specific artifacts (sections of source, documentation and comments) to each other for
quick navigation. These relationships are formed by creating hyperlinks and bookmarks and
embedding them throughout the documentation, source code, and comments. A scaleable
alternative to relying on text files would be to mplement javaJAM storage of annotations in a

relational database using JDBC. This would greatly improve performance as well.

3.1 Requirements

The Open Source Software initiative brings with it new methodologies for software
development. The Apache Software Foundation and sourceXchange [17] are two of a growing
number of examples of new approaches to software development and collaboration. Both of
these initiatives involve teams that work together to produce software without having to meet
physically. The Apache web server is one of the most widely installed and widely used servers in
the world. Existing and new tools will be developed to help these as well as more traditional team
collaborate more effectively and more efficiently.

26

3.1.1 Documentation and Source Review

javaJAM has been designed to provide an application development team with a tool that
makes it easy for members to review software documentation and source and to annotate
specific portions of the documentation and source. Team members, no matter where they work
or what hours they work, can contribute these annotations as long as they have Internet access.

A team that intends to use javaJAM must standardize on Sun's Javadoc for
documentation. javaJAM extends Javadoc and therefore assumes that both documentation and
source are to be made available for review. For teams that have already standardized on
Javadoc, there is a distinct advantage. The javaJAM interface maintains nearly the same look
and feel as the Javadoc documentation. This makes introducing and learning to use javaJAMin
the collaborative environment much easier to accomplish. Access to javaJAM is browser-based

to ensure that there are no barriers to access.

3.2 Functionality

javaJAM's primary function is to accept annotations and store a relationship between the
annotation and the section of documentation or source to which it belongs. This is accomplished
through the javaJAM extensions to the standard Javadoc. There are several major extensions to
Javadoc. The first is the inclusion of annotation buttons throughout the standard Javadoc
generated documentation. The second major extension to Javadoc is the generation of Java

source rendered in HTML with annotation buttons throughout the source.

3.2.1 Documentation Annotation

Documentation annotation buttons occur throughout the Javadoc generated
documentation. Javadoc generates one HTML file per class (and inner class). The structure of
each Javadoc generated class documentation is as follows:

1. Package Navigation Bar

Package Tree Diagram
Class Documentation
Field Summary
Constructor Summary
Methods Summary
Field Detall
Constructor Detail
Methods Detail

© © N o g~ w D

10. Package Navigation Bar

27

Clatd Trew Degiacated ladex Halp
PREVCLACT NEXTCLALE i

SUNMNAEY: MR FIELL:| COHETRI METHOL: TETAL: BELL:| ¢ OHS TR METHOD:

Aot | view swoietions | Sauce |

vl ABTakie Tuals
Jaua. lang. fnjece 2

|
+--JavadiEM, siteToals, Cetipplication

probbie luzs Cedtnpplbcaton 3
exteinds jave lag Object .

Aprpboation osteng object fof bosteng und eehosting epplications on the javeal A0 serner

Field Smmmary 4.

SeewH. riveTeslr. EnIniTLLY ek Ind

Cparkane priveccl | g dppliane

Joma. Loy, Brirs

Constructor Summsary 5.

Cetaplicating|)
Constnact & newr appbicadinn abyjsrt

Method Summary 6.

boclbn | s emediae) |)
Cherkio pes o the new ppplirabon pare is akends asad,

ecdnan g Hare Yl 1 |
Hara of hiortsd applicatiom in Initad 1o specific chareclars 1o ensurs portstdily scross op icsting, ey ame

Field Detail 7

‘Constructor Detail .

o [Annoies || wiew snnoisionz || Souice’

puolic Cethgplication: |

Cometnact a new wppbcstion objact.

Method Detail - B

W | Amnate || iewbnnoteions || Baures |

public boolean sgmlbamelieed ()

Chieck Lo B4 iFhe £ applic itsod fudse 9 ol ueed Update the peapey el ppEih,
BRetwrms;
emsle Trae o the piame iz vsed on e jov o A6 serrar

 _Ammme | viewamotenons | Saurce |

prablic oo lean apg lidoameyali|

tegne of hostad spphicalion s lomitvdd o epectic chamctere to spmge pockab iy seross oparaing ayatans
Returmnsi
wilid Trw AF ik fes aprplieatioe ciirmi de 7l otbatsie fake
Claw Tree Degrecated ndex Help

PRIVILASE HEXT CLAZE
SULELARY: HVRE | FTELD | £ QTR DETHOL TETAL: L ZOHTTR HETIECD:

Figure 16, Sample Javadoc Class Structure

28

javaJAM imposes on this layout annotation buttons. These buttons appear as a triad in a

single row and are imposed at the following locations:

Annotate Wigw Annotations | { Source |

Just before the Package Navigation Bar (java.lang.object) above: the
annotation button in this location provides for the creation of a "class
overview" annotation.

For each Constructor Detail above: there will be an annotation button leading
each constructor. All annotations created here will be related to that
constructor.

For each Method Detail above: there will be an annotation button leading
each method and method overload. All annotations created here will be

related to that method or method overload.

These buttons are not only explicitly related to the annotations that they are used to
create, but also to the source code that is specifically relevant to the section of documentation
and related annotations. The "Source" button is an anchored hyperlink to the section of source
related to the documentation. This makes it very easy to review a section of documentation and

to quickly access related annotations and source.

3.2.2 Source Annotation

Javadoc has been extended to also render source in HTML. Source annotation buttons
occur throughout the HTML rendered source. Javadoc generates one HTML file per class (and
inner class). javaJAM does not change the layout of the source, but does insert annotation
buttons at the following locations.

At the top of the source to provide a place for source-overview annotations.

2. Just before the class statement to provide a place for class-overview
annotations.
Before each constructor definition.

4. Before each method and each method overload definition.

Similar to the documentation buttons, source buttons are not only explicitly related to the
annotations that they are used to create, but also to the documentation that is specifically relevant
to the section of source and related annotations. The "Doc's" button is a hyperlink to a bookmark
in the section of documentation related to the source. Moving between source and related

annotations and then on to related documentation and annotations is quick.

29

3.2.3 Line Numbering

javaJAM optionally inserts line numbers before each line. The intent of this is to make it
easier to discuss source code by providing additional information for referencing. Line numbering
can be enabled or disabled. Line numbering is added when a package is first hosted if the line
number option is turned on (the default). Turning off the line numbering feature after a package

has been hosted has no effect on the already hosted packages.

Qo0 protected woid generateContents(Character unicode, List memberlist) {
ao0da anchor (" _" + unicode + ™ ") ;

oe0a7 h2i):

oooas bold{unicode, Co3tringi)) ;

Roa9 hZEndi):

el dL{):

Qoeel for (int i = 0; i1 < memberlist.size():; i++) {
o092 Doc element = (Doc)menberlist.get(il:

Qa0 if (element instanceof MemberDoc) |

Qopod printhescriptioni (MemberDoc)element) ;
QOO0 V else if [element instanceof ClassDoc) |
Ga09a printhescription((Classhoc)element) !
QOQ97 V else if (element instanceof PackageDoc) !
o098 printhescription((Packageloc)elenent) ;
Qa0e9 1

QoLao 1

faial dlEnd{):

oaiaz hri):

ooLas 1

Figure 17, Line Numbering

3.2.4 Moderation
Documentation and source is published on a javaJAM server as a package. None, one,
or many moderators can be assigned to each package. Moderators can manage the package's
annotations. The following annotation moderation functions are available to a moderator:
Accept
When an annotation is first posted its status is proposed. This status
indicates that the annotation has not been reviewed. The moderator can
accept an annotation to indicate that the annotation will be incorporated into
a future implementation of the package.
Reject
Rejecting an annotation changes its status to rejected, but the annotation

remains available for review.

30

3.2.5 Actors and Roles
javaJAM is designed to be simple. There are only four categories of javaJAM
participants. The four categories are listed below:

Guest: Guests are not required to supply any information. Guests cannot
participate however. They can only view the information available; source,
documentation and related annotations.

Participant: A participant is one who has signed up on the javaJAM server.
Participants can post annotations. Sign up is required so that the author of an
annotation can be authenticated and contacted should there be any follow-up
necessary for an annotation.

Moderator: Application moderators have responsibility for the applications
hosted on a javaJAM server. Usually one moderator is assigned to one
hosted application. It is possible to assign more than one moderator to a
single application and to assign a moderator to more than one application.
Administrator: The role of the administrator is to set up the hosted

applications and provide access for moderators.

31

4. Implementation

javaJAM consists of three subsystems and has client and server components. The client
component is implemented in HTML and works from any frames-capable, browser. The server
component is implemented in Java and uses servlets according to version 2.0 of the Sun Servlet
API [14]. The server piece can run on any platform that supports servlets.

javaJAM was developed with Sun's Java Web Server version 1.1.3 and later 2.0 on the
server and with JDK 1.1.1 and later 1.2.2. javaJAM has been extensively tested with
JavaWebServer 2.0, JDK 1.2.2, Internet Explorer 5.x and Netscape 4.x. (see Appendix F for the

Quality Assurance Test Suite).

4.1 Documentation Tools Subsystem

The first javaJAM subsystem contains the extensions to Javadoc. It is used to generate
all of the HTML source including the annotations buttons and also creates the four
directories/folders (see Section 4.1.4) into which the HTML source for a published application
resides. javaJAM is written in Java. This subsystem has 15 classes, 196 methods, and 2170
lines of code not including comments and blank lines.

It is necessary to execute javadoc.exe in order to generate the Javadoc documentation
along with the javaJAM extensions. This requires a shell script (see appendix E for sample shell

scripts).

4.1.1 Javadoc Frames Enhancement
javaJAM extensions to Javadoc contain several major enhancements. The first is that
while the Javadoc look and feel has been maintained, there is an additional frame. This frame is

placed at the bottom of the traditional two horizontal frames.

32

(g i Fakaze [EEEY Cee Tres Depreosied Index Hebp fewa™ 2 Flotfars
FREY Claks HEXT GLRAE EENME: WD FRiBES el SR
RN O AR | B ORSTE | (ETRED BETALL AL EOMETR | AT

THrwed Knswn Sabelumes
1Bt en, JBLenutten, [TopghButlan

i dstrect cless Al e (H e

wriends IC ceng anand,

plararte Humfslactabis, S Cunsbart s

Doeclierwt 5 Ehet o oebarens, KerToicvicer o the JBatiow, JT ogaleButton, Tk, enil the: JRaRoBbin dlassss.

Warninz; Sapakrad chjeciz af this cles will nolbe competible with foias Swing releases. The cument ssmalzation sapport 3= sppropneis for
shori teme stamege or BB bebraen sppliorhons panning the seme wersion of Sy & B reboase of Seing oal promde suppart Far Jomg tems,
Jeaisdsbene.

Sen Alre:

Figure 18, Standard Javadoc Frames

33

1 Epenesateed Cinpsrontation flistitis _alzixl
|.h--¢.di‘lﬁril-ﬂf_i.!=w_-'1'_iﬂ,

Back = Fowad = Sop, Pakech Home || Swech Fwoise Hitop | Ma Pt Ed
([Agets] b i e i e s 050 coee-coctmesine: ool o umentation nds s hivd o e

All Classes 0 Chass Trge Depaegateil bealex Help j
P FEETCLASS WENT LLAST

Al SIVPLARE: HHER| FELD| CETA | BETEIE DENL L1 CETRI METHTR:

bt ub Witz ke e e S - wir

it e o e

] v Fropiba Corment || viawCommans” || WiewScuice |

il churt

EatFhstaeiar

e ot JanbA Mo e Tools

Eancutsbiahd srmb erfiut @it

Praicfub# s JeewadBi, doo et Teads . St act Tndeodfvl ber

FrumaiCastpoe W b

SanalFald®u o

Banalbatiza b Pink o

B

e pebolic cluse AkractindsWriier
T

i

Dararats ez ox adl tha WMamber Hames maith Indeorg o Unic s Crder. Thus <l e n baes clers For Sicglafndesfcitar sd
SplikIndeacitac. H ures tha Amcticnadiy from B 185cends cdlica e snd Catinilzitec ba gararss the [ndez Conbacks

Sen Al

Darand Clars Ohrercw Camrart far Clase Absiracifnde W risr
‘Bowrca Fih in Alwiracilndey Wi r fre

tetio tedln on 00016

Cpevgnend 1k 230 DOD0S

[0L

'&wnmw

Hubgecis
Teslieng
Camaeri B edn

Stz Fropesed

Tasticog prapoes commuant for ovares

FrdiFekosd Comment | naderatettis Commeni |

] pore

I T

Figure 19, Enhanced Javadoc Frames

The new frame at the bottom is where javaJAM displays the annotations for

documentation and for source. Using JavaScript the bottom frame is kept synchronized with the
top-right frame. If the top-right frame is displaying documentation, as in the figure above, the

bottom frame will show the related annotations. If the top-right frame is displaying source code,

the bottom frame will show the annotations related to the source code. In the event that a
browser does not support the JavaScript that makes this synchronization possible, the View

Annotations button is another way to bring into view the correct annotations.

4.1.2 Javadoc Source Code Presentation Enhancement

If javaJAM is going to be a useful tool for the Open Source initiative it will have to include
source code as well in the Javadoc generated documentation. The upper-right frame (see figure
14 above) by default displays Javadoc documentation to be consistent with the standard Javadoc
behavior, but there is a Source button that can refresh the frame with the related source code for

the class being displayed. When displaying source it is also possible to switch back to vewing
documentation.

34

javaJAM by default inserts red line numbers into the source code presentation. The
purpose of the line numbers is to ensure that it is simple to reference a particular line in the

source when creating an annotation.

#lienaratnd Dsaunentatios Hintitied) - Micosnstt imesnet Expinrer sl x|

| Fa Ed Mew Focim Tack ek

&-? -2 A 8@ u 36 3 o .
Beck - Hoe | Gearth Hioy | Wad Rt

| R Frae Gtp Fsfresh Faepatm Edt.
!*-LH"“H T s sl ko bl edhuc BV DVC o s ckoohs e recch A pgd] 1 Mdooumen il orwindest himl j o
=
All Classas E 3 ¥ Froposs Cless Cheerass Comment. e Cormments ey Dincumes nhshan 1
bt Al
A5 B e B
i T 10012 public class AhrtractTndsxUritsc sxtsnds HeslSescdaroNTiter {
Clangiu a7 dapis
ClauBFilar aa07 jex
ColCommeni@iter 0TS * Tha dnder of mll the mesbars wich unicods characos:.
Collilclsart a0id .
mﬂmﬂ aaerw protacted Irdachullder drdmsbudldac;
Cstimupceldriier aa5d
i A Aa05E jer
Ll 10 Jama * Thim esanrtructac will he veed by [lick SplicindexWritex). Initislizes
S L ETTILE LTS Adpdi * path Ta chis file and relarive pach frow chiz fils,
e L L 33042 v
e L LITTOEITE ddda * ppares path Fark co the fils whoch i3 perting penepated.
Aekad 29044 * fparea filemmc: Hews 0f the file idch 13 petTing penzeted
ol 3002 * fgacem celpath Pelwtive path Eram thiz £ils to the cuccsnc dicectocy.
Ad0ds * Bpares irdexballéer Unioed:s based Indes trom (@liek TedexBuilgex)
AamdT "
Proocse ConsmuckrCorwmat | ViewComments | viewDocorenstion | fll
; | Barsanl Clasrs O enrrimne Corammand for Class Absrtracdinde o Wrider
J oA | Boerce Fila in AsrailodeaWeiier
Subwmtted by !H_-;g.h_li-uiu_zm NS [?".hlus Fropesed
Commen Subjart:
| Clasifyping the aode
Comnani Body:
[T ol pom s wiewing e Aboteaslnde W ater whad will gereate Inde fier off fhe Do od er Hasmes with Lo oo Vsaoods O
Plenss pneer this ilase wnd Lot ki £yoa e oy gasiin
Propose Ralsied Conrnant | bodersiathis Commant |
& Dons | rllmm

Figure 20, Enhanced Source Code Presentation

4.1.3 Javadoc Annotations Buttons Enhancement
There are a number of new buttons provided to assist with viewing source and creating
and reviewing annotations. These buttons are dispersed throughout the documentation and
source. The following types of buttons have been introduced:
Create Annotation
View Annotations
View Source
View Documentation
Help
The Help buttons features context sensitive help. The on-line help appears in its own
dialog box as a new instance of the browser. When help is invoked an anchor identifier is also

passed. This anchor identifier is used by most browsers to position to a specific location inside

35

the file specified by the URL. Using this anchor identifier javaJAM provides context sensitive

help.

4.1.4 Javadoc Output Files and Organization
Standard Javadoc output generates documentation to a folder named documentation.
JavaJAM extends this by adding three more folders. One for the HTML rendered source and two

for the annotations, documentation and source:

documentation
source
doc_comments

src_comments

All these folders contain HTML source files. Hierarchically, these folders are underneath
the folder that is named to uniquely identify the hosted package. The structure of a collection of

hosted applications might look like:

public_html
0 cosst_doctrees

= LLOCv1-10
documents
doc_comments
source
src_comments

= javaJAMv0-80
documents
doc_comments
source

src_comments
The references to "cosst” and "comments” reflect an earlier design stage when javaJAM

was referred to as the Collaborative Open Source Software Tool and when the term "annotations”

was introduced in place of "comments" to refer to the information being collected.

36

4.2 Site Tools Subsystem

The second subsystem contains the javaJAM site tools. These tools assist the javaJAM
administrator with tasks such as reviewing the installation and setup, reviewing the errors log,
and, most importantly, with hosting and rehosting applications. Hosting an application requires
generating the Javadoc HTML files and moving them into the public directory of Java Web Server
1.1.3 or higher. Those tools can be remotely accessed so that administration does not have to be
performed from the server. This subsystem has 4 classes of which 3 are servlets, 27 methods,
and 747 lines of code that are neither comment lines or blank lines. It also relies on a shell script

to execute javadoc.exe.

javadAM Site Tools

Server Bettings Review Tool

Enter | File Upload and javal AN di Execute Tool

Browse. . I

This onlp works correctly with zip files = 2Mb.
ke the file name ifihere are imbedded spaces.

Enter | Application Publishing and Rehosting Toal

Access javaJAM
View Exrror Log

View Participanis Guide

Figure 21, Site Tools Menu

4.2.1 Server Settings Review Tool

The Server Settings Review tool is implemented as a servlet. This tool presents an
HTML page that displays all of the javaJAM settings. These settings include the internal and also
those stored in the javaJAM.ini file that is used for site-specific initializations. Of the internal
settings that are displayed, the critical one is the javaJAM version number, which is stored in the
class CstGlobal. The version identification appears as v11.22.33 where '11' is the major version,
'22' is the minor version, and '33' is the version build. At the time of this writing javaJAM is at

v00.80.60.

37

javaJAM Settings Review Tool

JavaJARM Server

UEL: httpeffursulaics hawai echy 8080

javaJAM CsiGlobal Settings

Wersion: v .80.60

Home Page: cosst_ index biml

Initialization File: jasral A ind

Logo File: cosst banner.gif
| Public Root: cosst-doctrees

Work Area; Chjaval AN

javaJAM.ini Settings

Ahsolute Path: ChlavaWebServerd Dipublic_htimdcosst-doctrees
Errot Log: CJavaWebBerverd Mpublic_htmlcosst-doctreesicozst errorlog himl
Admitdstrator's Email: monit@hawrad.e du

javal AN Host Server: ursulaics hawai eduws080
| JDE: Chjdkl 2 20ibtools jar

Soutce Line Numbeting Feature: true

SMTE Setver: mail hawai edu

Done | Return to menu of toals.

Figure 22, Settings Review Tool

4.2.2 Server Doclet Interface Tool

The Doclet Interface tool is implemented as a servlet and generates all of the directories
and files necessary for hosting a package on a javaJAM web server. From the Site Tools menu
the Doclet Interface tool is invoked from the option "File Upload and javaJAMdi Execute Tool."
This option provides for uploading a .zip file to the javaJAM server, unzipping it using Classes in
java.util.zip, and running the javaJAM doclet interface that generate Javadoc. The results of
executing this tool are logged into a separate instance of the browse. See appendix G for a
sample log.

4.2.3 Server Host/Rehost Tool
After the Doclet Interface Tool is executed against a package it is nearly ready to be

hosted on any javaJAM server. The final stage of hosting involves a few steps:

1. Update all of the files' links to correctly reference the server and b also
correctly reference the package's root directory.

2. Create a new package root on the javaJAM server.

3. Move the resulting output files and their folders to the javaJAM server so that

they are available.

38

If it ever a hosted package must be moved to another server, it would be necessary to
update all of the files' links in all of the HTML files, including the annotations. The Host/Rehost
Tool can take care of this. |If ever a hosted package must be renamed, to add version
identification so that a package can be hosted more than once, the Host/Rehost Tool can take

care of this too.

43 Review and Annotation Subsystem

The review and annotation subsystem presents applications for review and collects the
annotations as they are posted. This is the core of javaJAM. This subsystem is written in Java
and contains 12 classes of which 3 are servlets, 177 methods, and 2386 lines of code that are not
in-line comments or blank lines. It also contains some static HTML pages and dynamically
generates additional pages that include a minimal amount of JavaScript [12] to ensure that
frames displaying source or documentation stay synchronized with their related annotations,

which appear in the lower frame.

4.3.1 Authentication and Security Model

The security model implemented in javaJAM is mainly intended to ensure that the author
of an annotation is authenticated. It helps to establish credibility and also makes it possible to
communicate directly with the author by email where necessary. Authentication is handled by a
combination of author's email address and password. The email address is assumed to be
unique to the author. To acquire a password requires signing up on a javaJAM server and
supplying a username (known as Participant name), and an email address. If the javaJAM server
does not recognize the email address it is stored and a password is generated. This password is
emailed to the new participant.

Passwords are a necessary evil. If authorship of annotations is misused or doubted, the
collaborative environment can be compromised. Passwords help ensure authentication of
authorship. To make it easier to remember javaJAM passwords, they are only five characters
long and designed to be pronounceable. To help make them a little more secure, they also
include several digits and an uppercase letter. Typical passwords might look like; cAt34 and
22Wit. Some effort has been made to help prevent naughty passwords.

The worst part about passwords is forgetting them. javaJAM includes a reminder feature
that allows a participant to request that her email address be again emailed to the participant.
Moderators are also authenticated using the same mechanisms. Guests are not authenticated
because it is not necessary. They cannot participate in any way. They can only review

documentation, source, and annotations.

39

4.3.2 Annotation Life Cycle
Annotations are the reason javaJAM exists. The life of an individual annotation begins

with the Annotate action. A participant posts an annotation and the new annotation is stored.

The annotation life cycle:

1. Participant posts annotation - status is proposed.

2. Annotation is reviewed by moderator and accepted, rejected, or deleted -
status is accepted or rejected.
Moderator forwards collection of accepted annotations to development team.

Team incorporates annotation into next release of application.

As an annotation move through its life cycle its status changes. The status of the
annotation helps reviewers who post annotations to understand how their annotation might

impact the package.

Annotations can have one of the following statuses:
proposed - hew annotation
accepted - reviewed by moderator and accepted

rejected - rejected by moderator

Annotations can be managed with the following options:
Post Annotation - new annotation with status Proposed
Accept Annotation - change status to Accepted
Edit Annotation - edit annotation subject and body
Reject Annotation - change status to Rejected

Delete Annotation - annotation is deleted and no longer exists

When a moderator reviews an annotation the moderator has the privilege of either
Accepting or Rejecting the annotation. Accepted annotations can be subsequently collected and
passed on to the development team for review and action during the next product development
cycle. Rejected annotations are retained. They may lead to additional annotations or they may
be accepted at some point in the future. The moderator also has the capability of deleting

annotations that are not appropriate at all.
4.3.3 javaJAM Dialogs

There are a number of dialogs that appear as new instances of the browser. These

dialogs make it possible to perform related work in separate windows so that the review process

40

is not interrupted or the reviewers place lost. The following dialog instances of the browser are
available:

Help

Create Annotation

Annotation Creation Confirmation

Maintain Annotation (for Moderators only)

Annotation Maintenance Confirmation

4.4 Site Initialization File

The site initialization file (see sample in Appendix H) must exist in the javaJAM folder and
be named javaJAM.ini. This file contains site-specific information that ensures that javaJAM can

be easily ported from one site to the next without the need for source code modifications.

45 Authentication Rationale

Authentication of participants is important for establishing trust and open communication.
All annotations are posted with the email addresses and names of the participant. This makes it
possible for discussions related to the annotation to be followed up on by email or off-line if
necessary.

javaJAM authenticates all active participants. Authentication is established by providing
an email address for user identification, a user name (first and last) to associate with the email
address, and a javaJAM assigned password. Passwords (see Section 4.3.1 for more on
authentication) are obtained by signing up on a javaJAM server. After signing up, the password

is sent to the email address the user provided when signing up.

4.6 Client/Server Architecture

javaJAM contains client and server components. Some the client components are static
HTML pages and others HTML pages that are dynamically generated by servlets on the server.
The client components do all of the presentation. The server components do authentication and

reading and writing of annotations to disk.

41

Participant Client Browser

cosst_index.html

B

javaJAM Server

CstListTreesServlet

Browser,
select a doc tree

A

html output—

Select a package

Browser,
review package

view doc/source
view annotation

Post annotation

I<t+——provide source, documentation & annotations————

Action: proposeﬁ

CstMaintServlet

/

Browser,

Post annotation dialog

send html

Action: add annotation

18UJa1U|

| CstMaintServlet

NG

COSST doc tree

i«

l—

Authenticate
participant and list
available packages.

Check
security,

Check
security,

-

Check
security

<

. Update
Perform annotation anngtations
read or maint file
action !
CstComment
CstCommentFile /

Figure 23, Participant Architecture

42

The moderator support design is nearly the same as that of the participant.

The

difference is that the moderator is able to perform more actions on annotations where the

participant can only review and post.

Browser,

select a doc tree

Select a package

Browser,

review package

view doc/source
view annotation

Post annotation

Figure 24, Moderator Architecture

Accept, Reject,
Edit, Delete
annotation

The guest support design is nearly the same as that of the participant. The difference is

that the guest cannot actively participate. The guest is only able to review annotations.

Browser,

select a doc tree

Select a package

A 4

Browser,

review package

view doc/source
view annotation

Figure 25, Guest Architecture

43

5. Case Study

5.1 Design and Goals

To evaluate the research hypothesis that javaJAM improves software quality through
collaboration in a web-enabled environment, | designed a case study on the use of javaJAM and
the effect of collaboration to improve software quality. The goal of the study was to answer the
following research questions:

Can students collaborate effectively and improve the quality of their code as
a result of computer-mediated communication?

Will javaJAM provide an effective environment to share source and
collaborate?

Will students find the annotation process of the javaJAM easily accessible
and preferable to existing collaboration methods they might use such as
email?

If students are not familiar with collaborative tools, will they find them helpful?

5.2 Method

The study was implemented in the classroom environment since that was the easiest way
to set up a study with many people involved. The study involved two ICS 211 (Introduction to
Computer Science Il) classes, one at the University of Hawaii at Manoa and one at Honolulu
Community College. 50 students participated. The students were teamed in groups of three or
four students. There were 13 groups and 37 projects were hosted. The students' backgrounds
included two semesters of introductory programming in Java.

Instructors and students both supplied valuable information to help assess this thesis and
the effectiveness of the javaJAM implementation. Student feedback was obtained by

administering a questionnaire (see Appendix A) on the last day of class.

April 10, 2000: javaJAM was introduced to the two instructors, Blanca Lopez
and Samuel Rhoads. While both instructors responded favorably to the
concepts, one of them required immediate changes. In order for the students
to participate in a group project using javaJAM for collaboration, there would
have to be a way to prevent student groups who were working on the same
assignment to review code from other groups. javaJAM did not have

provisions for restricting access by group identification. This feature had to

44

be implemented quickly so one of the instructors would permit the study to
proceed.

April 11, 2000: students were introduced on April 11" to javaJAM with a
short PowerPoint presentation and a demonstration.

April 15, 2000: javaJAM software was revised to accommodate for the
controlled group interaction. This was accomplished by introducing the
concept of team. If a package is assigned to team members then only those
members will see the package listed on the javaJAM server.

April 18, 2000: students signed p for a javaJAM password. Once they got
their password they could be a participant and post annotations on their
group's hosted application.

April 19, 2000: the students began to send their Java source after the first
clean compile to the javaJAM administrator to be hosted and assigned to
their team. Each group could then see their project on the server and could
participate in project review and annotation.

April 22, 2000: javaJAM was revised in the process to allow for private
methods. Javadoc by default does not include private methods in its
processing. This required an additional setting to be specified on the
command line used to execute javadoc.exe.

May 3, 2000: the students are done hosting and reviewing applications.

May 6, 2000: a questionnaire (see Appendix A) was distributed in both
classes to a total of 50 students. The instructors encouraged the students to

participate in the evaluation of the javaJAM. 38 students responded.

5.3 Results

5.3.1 Instructor Feedback

One of the instructors indicated that the students could not share program source
between groups. In the ICS 211 course, students are graded based on their Java code and style
of programming. Because of this, the sharing of source code as done in an open environment
was not encouraged. javaJAM was quickly modified to also incorporate features for restricting

packages to assigned teams.
5.3.2 Student Feedback

The student feedback (see figure 27 in Appendix B) indicated that the students found

value in using javaJAM and could see it's potential. They found the javaJAM interface to be fairly

45

self-explanatory and easy to understand and navigate with some students finding it difficult and
some finding it very easy to use.

From the results of the survey, students found javaJAM to have an intuitive layout
(question #2), to be easy to use for reviewing projects (question #6), to be easy to use for finding
related source and annotations (#7), and to be easy to use for adding related annotations (#8).
javaJAM was moderately successful as an easy tool for navigation (#3) and for publishing
(question #5). The on-line help was not well received (#1) and the perceived response time,

while not found lacking by a third of the students, still managed to draw the most criticism.

54 Discussion

Student’s expectations varied according to their programming skills. Those with less skill
expected javaJAM to assist with debugging code for syntax errors. One of the two courses in the
study required Javadoc, and the other did not. Some of the students with no Javadoc experience
preferred to go back to the way they were comfortable communicating, email and face-to-face. In
the course that did require Javadoc, the students were very comfortable with javaJAM.

Students complained about the javaJAM problems. One was the password mailing issue
and the second was the delay caused by the manual process for hosting team projects. The
email problem seems to be specific to the University of Hawaii mail servers. Testing from home
using cable and dialup connections showed that RoadRunner and Lava.Net were compatible with
javaJAM. Students also indicated that they would have preferred an automated process for
hosting their projects. They wanted to host their own and have them published immediately. The
students' desire for an automated process for hosting packages is very important. javaJAM will
need to better embrace a self-service model if it is to facilitate and not interfere with or slow down
collaboration. javaJAM requires a flexible hosting tool (see Section 8.2.1).

There was one other situation where the javaJAM application itself contributed to
perceived performance problems. When a classroom full of students attempted to simultaneously
authenticate on the javaJAM server, performance got very slow. This is because javaJAM data
files are currently stored as sequential files and javaJAM uses a token to let only one user at a
time access the authentication file. Implementing javaJAM data on a relational database will
solve this as well as make javaJAM more easily scalable (see Section 8.1.1, Scalability
Improvements).

From reading the student responses, impatience with javaJAM was aggravated by the

end of the semester time pressures.

46

6. Conclusion

The goal of this research was to determine whether collaborative software development
in the Open Source environment would be significantly facilitated by a web-enabled tool that
provides for the collection of annotations and the creation of relationships between annotations
and their corresponding sections of documentation and source code. To reach this goal the
javaJAM tool was developed for collecting comments and suggestions and creating relationships
between them and the sections of source and documentation that inspired them. This new web-
enabled, collaborative tool was tested to determine whether new tools such as javaJAM could
assist with collaborative software development in the Open Source environment. The case

studies indicate that javaJAM if further developed could be a valuable tool.

6.1 Contributions of this Research

The primary contribution of this research is a web-enabled collaborative tool for software
review and annotation. The strength of this tool is that it creates relationships between sections
of documentation, source and posted annotations. These relationships facilitate software review
and feedback. The purpose of this collaborative tool is to help teams improve software quality.

This tool works towards that goal.

6.2 The Javadoc Advantage

The design of a web-enabled collaborative tool for software review and annotation
requires the consideration of three fundamental elements: documentation, source, and review
annotations. Fortunately, because the design assumed that Java would be the supported
software language, it was obvious that Javadoc could play an important role, which it did.
Javadoc proved to be a powerful tool. It was also not too difficult to extend Javadoc so that it not
only rendered documentation in HTML, but also the source. With Javadoc not too much effort
was required to quickly envision a solution for two of the three fundamental elements of this
project.

Javadoc is unique to Java and provides for the Java language a unique advantage over
other languages. Application development in Java is inherently richer than application
development in other languages as a result of Javadoc. The study done for this thesis

demonstrated that even students who did not annotate their programs to take advantage of the

47

capabilities of Javadoc nonetheless found the resultant documentation produced by Javadoc to
be helpful for reviewing their projects.

Though Javadoc is extensible, only some of its source code has been made available.
Members of the Open Source Initiative community have called upon Sun to publish Javadoc as
Open Source Software. If that were to happen, maybe Javadoc functionality would be ported to
other languages making it easier to provide tools like javaJAM for other languages too. Javadoc
presents important technology and emphasizes the role of documentation. Greater consideration
should be given to ensuring that all student assignments in Java require Javadoc generating

documentation as being equally important to producing Java source code.

6.3 Observations on Teaching

javaJAM emphasizes the relationship between an annotation and the related areas of
source and documentation. For example, if the third overload method of a specific class inspires
annotations, it is easy to review those annotations and also to view the related documentation
and the related source to quickly get a fuller picture of the discussion. Feedback from the study
indicates that even second year students with no training or exposure to collaborative software
development grasp the potential this offers as a learning tool and a tool tat can improve the
quality of the software that they develop.

It is interesting to observe that the art of teaching skills like drawing and painting have
evolved over the last three centuries or more and have become very rigorous. Aspiring artists
copy the works of the masters to learn and practice technique. The art of teaching programming
is still very young. The methodology of teaching students does not emphasis collaboration or the
studying of the practices and techniques of skilled programmers. Here too javaJAM can
contribute, both by the sharing of well-written code and by the sharing of annotations that explain

why it is well written.

48

7. Future Directions

7.1 Improved Support for Collaboration

7.1.1 Scalability Improvements

javaJAM was designed and implemented as a research and evaluation tool for the
concepts that it proposes. Many design decisions were made in favor of speed and ease of
implementation in order to test the thesis that a tool like javaJAM would be beneficial to the Open
Source Software initiative. In order for javaJAM to successfully support large communities of
software engineers, javaJAM storage of annotations will have to be redesigned. Currently,
javaJAM uses a sequential flat-file storage structure. The advantage of the flat-file structure is
that it is already in HTML format and so it is immediately available for browsing. To make
javaJAM scalable will require that annotations be stored in a relational database. This would

require changing several methods in the maintenance servlet.

7.1.2 Collaborative Teaching Tool

The requirements of the classroom can be much different than the requirements for
producing Open Source software. In the classroom the teacher may want teams to learn to
collaborate, but because multiple teams are working on the same assignment, it might be
necessary to prevent teams from reviewing each other’s work. Without imposing some security
the entire class would probably function somewhat like a single team rather than as multiple
teams as the teacher intended.

javaJAM has limited support for hosting the work of teams and hiding team projects from
other teams, but the initial design for javaJAM did not fully embrace this requirement. To extend
the security features would require functionality that would prevent teams from even being able to
guess the URL's of other teams. Currently, javaJAM only hides the work of other teams when it
lists the available projects.

In the new security model for javaJAM access to all hosted packages will need to be
controlled. Also, the moderator, a teacher in this case, will have to be able to assign participants

(students) to teams and assign teams to packages.

7.1.3 Moderator Comments

Annotations are mostly one-way communications. The annotation status provides some
feedback. Since it is possible to create threads with annotations, that helps also to make
discussion by annotation a richer experience, but the addition of moderator comments would also

be very helpful in some scenarios. When an annotation is accepted or rejected there is currently

49

no accompanying explanation.

would provide for an additional way to communicate.

The current annotation layout only provides for annotation subject and body:

If the moderator were able to comment on an annotation, this

e General Class Overview Ammotation for Class AbsDispatcher.
i Source File iz AbsDispatcherjava

Submitted by Mlomr Hodges on 2000/05/19

Status: Proposed

Please enter the suhject:

Hore inline documentation needed.

Annotation hody:
Some of the code is hard to understand. MNaybe more inline ﬂ
documentation
would make it easier.
[

Figure 26, Post Annotation

The future annotation layout would also show moderator comments on the annotation if

any exist:
; : General Class Overiew Annotation for Class AbsDispatcher.
Snobton g Source File 1z AbhsDispatcherjava
Submitted by Wonr Hodges on 2000/05/19 Status: Proposed

Please enter the suhject:

More inline documentation needed.

Annotation body:

Zome of the code iz hard to understand.
docuwentation

would make it easier.

Mavbe more inline ;'

Moderator Feedhack:

There are standards to help prewvent this.

Will work to ensure that _‘l
they are followed in the future.

Thiz Claszs will be reviewed.

Figure 27, Future Post Annotation

50

7.1.4 Email Triggers

Some annotations may be considered extra sensitive or high priority by the author. An
email trigger function would provide the author a way of automatically being informed that the
status of the annotations has been changed. The updated annotation could be sent by email to

the author at the time that the moderator changes the annotation status, or makes other changes.

7.1.5 Voting

Not all annotations should have the same weight. Some will have more support than
others. Some annotations may even have detractors. Voting would help a developer to prioritize
annotations. Unlike voting for politicians, it should be possible to vote against a particular
annotation too. For example, it should be possible for three people to vote for a particular
annotation and eight people © vote against it. To make this voting model collaborative, it would

be necessary to thread a discussion for a particular annotation.

7.1.6 Threaded Discussions
Some annotations may benefit from having a related discussion thread. This would
better organize the collaboration by reflecting the original annotation as the root of the threaded

discussion. This would facilitate discussions related to annotation voting too.

7.1.7 Software Distribution

To more fully support the Open Source software development environment, javaJAM
should also facilitate the distribution of source. This would not be difficult to implement since
javaJAM already requires that a zip archive sent for hosting. By saving the archive and creating a
link to it, it would be possible to make a hosted application's source available for download from a

javaJAM server.

7.2 Improved Support for Application Hosting

7.2.1 Flexible Hosting tool

At this point the hosting tool is only available to the administrator. javaJAM would be
much more flexible if the mechanism for authenticating moderators was much more flexible. The
current mechanism requires the administrator to manually identify which applications a moderator
can host and to manually host them for the moderator. The current tools support remote hosting
of applications, so that simplifies the task of automation.

For the hosting tool to be flexible it would need to be changed to allow any authenticated
moderator the option to host new packages on the javaJAM server. It would need to; 1) confirm
that the package name is unique and able to be posted, 2) update the moderator record to

indicate that the instructor owns the package, and 3) post the application on the server. If the

51

moderator is allowed to host packages without any intervention from the administrator, then it will
be necessary to allow the moderator to also remove packages from the server once the package
as hosted is no longer relevant. It would also be reasonable to allow the moderator to freeze the
package before later removing it since the frozen version may help by providing a point of

reference.

7.2.2 Package Version Control

Under some circumstances multiple versions of a package may be hosted at once and
different versions may or may not be available for review or for annotating. This could be the
case when an older version is kept as a reference version only and so should be only viewable,
or it might be possible that a moderator would want to migrate specific annotations from one
version to the next since they might represent ideas that will not appear in the next version, but

are worth saving for some future version of the package.

7.2.3 Annotation Migration

Currently, the moderator can only change an annotation's status, or delete it. But
annotations are valuable and may need to outlive a particular version of a hosted package.
Functionality to provide for migrating annotations from one package or version to another
package or version would provide great flexibility. If the annotations and their associated
relationships were considered as the most valuable asset, then this function would protect that

asset.

7.2.4 Automatic Clean Up

In order to simplify maintenance and prevent the accumulation of unused packages,
teams, etc., javaJAM should use aging logic. The moderator could specify aging logic at the time
the package is created. An "end-of-life" date could be specified for the package so that it would
automatically be frozen or deleted, or both. Also, aging logic could be specified to determine how
long a package could go without being accessed before being considered at the end of its life. A
mechanism to provide the moderator an advanced email warning could help prevent an

unintended deleting of a package.

7.3 Functional Enhancements

7.3.1 New Annotation Status
Individual annotations may have a complex life cycle. Additional statuses would help a
moderator to move an annotation through its life cycle.

52

Deferred

Currently, annotations are either accepted or reject by the moderator. It is
also possible for the moderator to simply ignore a newly posted annotation,
but that would not communicate a clear intention. A new "deferred" status
would represent the situation where an annotation is beneficial, but cannot
be implemented in the near future. Deferred annotations might possibly be
migrated to some future version of the package.

Hidden

In some circumstances it may be necessary to hide, temporarily or
permanently, an annotation. This should not be a normal practice, but short
of deleting a comment, this is a useful, nonpermanent alternative.
Implemented

Some annotations will be suggestions for changes to documentation, source,
or functionality. Having a status that indicates that annotation is

implemented provides additional communication.

7.3.2 Extensibility
Besides supporting a range of standard statuses, also allowing a moderator to invent new

status for a project or a site would create the most flexibility.

7.3.3 Annotations Reporting

Currently there is only one way to review annotations. Working with and managing
annotations would be greatly enhanced by providing new ways to organize and review them.
Annotations should be selectable and sort-able by a number of criteria including date posted,
status, and author. The result would be a "collection" of annotations. Once a collection of
annotations is created, it should be possible to manage a collection: accept, reject, delete, or
migrate for example. Also functionality to allow these collections to be printed, emailed or even

saved for future reference might help make javaJAM a powerful communication tool.

7.3.4 Password Encryption
The security model (Section 4.3.1) would be stronger if passwords were stored
encrypted. Encryption could be done with a one-way hash function such as the Secure Hash
Algorithm (SHA) developed by the NSA [5]. Java classes for SHA are available on the web.
One-way hashes are ideal for authentication. For authentication of a participant, the
participant's password can be hashed and the hash compared against the database for a
matching hash. Storing the hashed password for authentication has an additional advantage.

Should someone obtain access to the data and the hashed passwords, having the password

53

hash is not the same as having the password itself. Also, password hashes are design to be
irreversible. Discovering the original password from the hash requires cracking the SHA
algorithm. This is not a casual activity.

7.4 User Interface Enhancements

7.4.1 Selective Viewing

While Javadoc already provides selective viewing of the entire package via the Index link
at the top of each class and also selective viewing within a class in the summary section near the
top of each class, additional selective viewing options would add more flexibility. The left frame
currently lists the package’s classes. If in front of the class name was a small plus sign, clicking
on it could expand the class—like nested subfolders—so that links to constructors and methods
would be presented for clicking.

7.4.2 IDE Integration

javaJAM would be a very strong and dynamic collaboration tool if it were integrated into
an Integrated Development Environment (IDE) like Borland’'s JBuilder. After a project completes
a successful compile an option to update the javaJAM hosted information is provided. If selected
the updated documentation and source are replicated on javaJAM and all annotations with the
status Accepted for the next version are updated to reflect the fact that they have been
implemented in the current version. This status change would be automated and specific only to
sections of the source that were modified. Annotations for areas of source that were not changed

would not have their statuses change.

54

Appendix A, Sample Questionnaire

The following survey is being conducted in order to evaluate javaJAM.
the short time you have used this software tool, you have gathered enough insight to discuss
javaJAM. Your insights and answers to the following questions will help me to find out if tools like

javaJAM can help students to improve the quality of the software that they collaboratively

develop.

Your completed survey will not be shared with your instructor.

Please answer each question by drawing a circle around your selection. For the essay questions

please be as concise as possible.

survey sheet.

If the space provided is not enough, use the back of the

Thank you for taking the time to complete this survey.

javaJAM's on-line help was easy to use.
Strongly agree

Agree

Neutral

Disagree

Strongly disagree

The layout and presentation of your
documentation, source, and the posted
comments/annotations easy to follow.
Strongly agree

Agree

Neutral

Disagree

Strongly disagree

It was easy to move around the different parts
of javaJAM.

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

javaJAM's response time was reasonable?
Strongly agree

Agree

Neutral

Disagree

Strongly disagree

javaJAM is an effective tool for publishing java
program and generating javadoc on the Web.
Strongly agree

Agree

Neutral

Disagree

Strongly disagree

It is easy to review the source and
documentation of projects posted for your
group.

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

55

I am hoping that during

When viewing documentation it is easy to find
the related source and comments/annotations.
(For example: viewing the documentation for a
method, you could easily find the source.)
Agree

Neutral

Disagree

Strongly disagree

When reading comments it is easy to add
related comments/annotations.

Strongly agree

Agree

Neutral

Disagree

Strongly disagree

Did javaJAM allow you sufficient flexibility to work in the way you wanted? If not how would you

improve it?

Was the feedback posted by your team members helpful in improving the quality of your code?

If NO, please explain why.
YES
NO

Do you think javaJAM could be used as a good teaching/training tool?
(For example: To host sample projects that illustrate good programming style and practices.)

If NO, please explain why.
YES
NO

What problems did you have while using javaJAM?

56

What did you most like about javaJAM?

What did you least like about javaJAM?

Would you consider javaJAM suitable for sharing java source applications? Why?
YES
NO

Would you recommend using javaJAM in java programming classes as a review tool in team
projects? Why?

YES

NO

57

Appendix B, Raw Questionnaire Results

Table 1, Raw Survey Results

Strongly Agree Neutral Disagree Strong
Agree Disagree

Q#1 7 15 11

Q#2 1 15 7 9 1

Q#3 10 9 11 3

Q#4 1 10 5 9 4

Q#5 2 8 8 12 3

Q#6 1 16 10 5 1

Q#7 14 14 10

Q#8 1 14 10 8

CHi 2 3 G QRS QE6 CWY

O SA

mA

ON

oA

g SDA

QH8

Figure 28, Survey Results Bar Chart

58

Appendix C, Sample javaJAM Sign Up Message

From "Monir Hodges" <hodges@awaii.edu>
To: <nonir@awaii.rr.conmp

Subj ect: requested javaJAM rem nder (fwd)
Dat e: Sunday, April 16, 2000 5:41 PM

Date: Sun, 16 Apr 2000 17:33:29 -1000 (HST)
From hodges@awaii.edu

To: nonir@awaii.rr.com

Subj ect: requested javaJAM rem nder

Hell o Monir Hodges,
Thank you for your request. Your javaJAM information:
Email...: nmonir@awaii.rr.com

Passwor d: hi D84
User name: Monir Hodges

NEW USERS:
Wel come to javaJAM You have indicated that you would |ike
participate in a javaJAM server. You will need the password

and emnil| address |isted above to access this javaJAM server.

Pl ease, never share your password. Should you forgot your
password, use the [Lost Password] button on the opening
j avaJAM page.

EXI STI NG USERS:

Thi s message is being sent because of a request to send a
| ost password. The request was made for the password
associated with your emnil address. This request can only
be generated fromjavaJAM by entering an enmnil address
that is knowmn to javaJAM and pressing the [Lost Password]
butt on.

Al oha!

59

Appendix D, javaJAM Data Structures

The supporting data structures are sequential files stored in C:\javaJAM on Win9x/NT
systems. Records are stored one per line with fields and data stored as tuples. A sample record
would look like: fldl=vall&fld2=val2&fld3=val3. It is possible that a field has no value, for
example, field two has no value: fld1=val1&fld2=&fld3=val3

participant.jjd

Participants are authenticated against this file.

Layout:

email Email address (participant ID).

password Assigned password.

username Name (First Last).

lastlogon Last logon (yyyy/mm/dd). {not yet fully functional, shows date entry was added.

doctree Packages that can be moderated. Delimit lists with "/". <all> permits moderation
of all packages. <none> prevents moderation of all packages.

Example:

email=hodges@univ.edu&password=25nlc&username=Monir hodges&lastlogon=2000/05/04&doctree=<all>

team.jjd
Packages that appear here will be not be treated as Open Source. They will only be
listed for participants assigned to the team that is allowed to review the package. This file was

introduced during the Case Study to accommodate the classroom environment.

Layout:

doctree Package that is assigned to a team.
emalil Participant ID.

Example:

doctree=HeapSort-v01-00&email=hodges@univ.edu

userentry.jjd

60

This file works like a server-side cookie file. It provides persistent information during a

javaJAM session. Entries expire automatically after 45 minutes of inactivity.

Layout:

clientlP Participant's IP. Browser supplies this when it connects to the javaJAM server.

username Name (First Last).

doctree Package currently being reviewed.

status This is set during initial authentication. "0" indicates unknown status, "1" indicates
verified as participant. "2" indicates verified as moderator. "3" indicates guest.

email Participant's ID.

timestamp Timestamp. Updated during authentication and every time an annotation is
posted or maintained.

Example:

clientlP=166.23.23.3&username=Monir Hodges&doctree=HeapSort-v01-00&status=2
&email=hodges@univ.edu×tamp=958874789230

61

Appendix E, Quality Assurance Test Suite

After each major revision of javaJAM a series of tests were performed to ensure that new
features worked properly and that existing features were not broken. This series of tests is called
a test suite. The table below illustrates the results of testing javaJAM version 0.80 with the test

suite. The purpose of test suite is to help ensure quality software.

Table 2, Test Suite

Version 0.80
Servlet
Environment
Description Result Final
Result

Programmer enters username, but not email pass
Programmer enters email, but not username pass
CstListTreesServlet lists all available doc trees, and nothing else pass
Programmer is given many chances to enter email and username pass

Selecting a doc tree correctly begins access to a cosst hosted doc tree pass

First comment adds correctly to new comment file. pass

Propose a new comment where comment seq num 001 already exists pass

Class overview comments properly inserted and positioned pass

File overview comments properly inserted and positioned. pass

Class constructor comments properly inserted and positioned. pass
Class/Method comments properly inserted and positioned. pass

Class overview comments properly added to the end pass

File overview comments properly added to the end pass
Class/Method comments properly added to the end pass

Insert new method comment between existing method comments. pass

Insert new class comment between file and class comments. pass

Insert new file comment in front of class and method comments. pass

Insert method overload, second occurrence pass

Adding a comment with no subject or text is not accepted pass

Second Method sorts properly against first Method's comments. pass

Only comment purges correctly from comment file. pass

Deleting File comment deletes correct comment from comment file. pass

Deleting class comment deletes correct comment from comment file. pass

Deleting method comment deletes correct comment from comment file. pass

Deleting last comment leaves correct counter pass

Correct method comment purges from comment file. pass

File comment accept without edits replaces comment with status change. pass

Class comment accept without edits replaces comment with status change. pass

Method comment accept without edits replaces comment with status change. |pass
Comment accept with edits replaces comment along with status change. pass
Comments buttons change appropriately when a comment is accepted. Obsolete
Comment buttons appear properly for proposed comments. Obsolete

62

Two or more users can propose comments without problem. pass
Comment text, paragraphs are changed to
 tags for storage. pass
Comment text, paragraphs are changed to end of lines for editing. pass
Adding comments leaves accurate counter at bottom of comment file. pass
Accepting comments leaves accurate counter at bottom of comment file. pass
Rejecting comments leaves accurate counter at bottom of comment file. pass
Rejecting comment changes status to rejected pass
Updating an existing comment does not increment counter at bottom. pass
Updated comment replaces previous comment on disk. pass
Updating a non-existant comment does not crash. Obsolete
Deleting a non-existant comment does not crash. Obsolete
Moderating a non-existant comment does not crash. pass
File comment hyperlink correctly referenced from source. pass
Class comment hyperlink correctly referenced from source. pass
File comment hyperlink correctly referenced from source. pass
Create first userEntry with all fields pass
Add new userentry to empty list pass
Insert new userentry at top reserving rest of list pass
Update userEntry timestamp, in first position pass
Update userEntry timestamp, in middle position pass
Update userEntry timestamp, in last position pass
Read moderator from empty file pass
Read moderator from top of file pass
Read moderator from middle of file pass
Read moderator from end of file pass
Programmer cannot moderate, status changes to 2 pass
Moderation privilege automatically stops when the user entry becomes pass
expired.

Remove expired userentries pass
autosizing/positioning of dialogs pass
Help button appears in logon and reprompt forms and works pass
Help button appears in dialogs, and works pass
javaJAM buttons appear for source overview for all java source files pass
javaJAM buttons appear for class overview for all java source files pass
javaJAM buttons appear for class overview for all JavaDoc files pass
javaJAM buttons appear for all constructors for each java source file pass
javaJAM buttons appear for all constructors for each JavaDoc file pass
javaJAM buttons appear for all methods for each java source file pass
javaJAM buttons appear for all methods for each JavaDoc file pass
javaJAM cst_index assignments match between JavaDoc and source files pass
javaJAM hyperlink assignments match between JavaDoc and source files pass
javaJAM buttons have correct HIDDEN statements pass
New signups are stored in participants pass
New signups receive email fall fail
Participants cannot sign up more than once fail pass
Source comments code and line numbering presented in different color pass
Error trap and log email send failures pass
Team Security Tools

Assign packages to team members pass

63

Restrict designated packages to team members pass
Moderator Tools

upload zip file to javaJAM server pass
unzip uploaded files pass
execute javaJAM doclet interface to create javaJAM javadocs pass
host javaJAM javadocs pass
rehost javaJAM javadocs pass
Browser Tests

All tests pass in IE 4x pass
All tests pass in IE 5x pass
All tests pass in Netscape 4x pass

All tests pass in Netscape 5x

64

Appendix F, Win9x/NT javadoc.exe Shell Script

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

title javaJAM Host/ Rehost Too

javadoc !'is run fromdirectory containing the java source files.
-docl et <docl et package/ conponent/cl ass>

-docletpath (full path to doclet package root>

-d <application package root>

-classpath <full path to application package>

*

java lapplication source files

---- javadoc executes relative to the current default directory

(0]

(o]

For NT the first line, the title line, does not have to be
suppressed.

For DOS the cd commuand is Iimted to C drive. Seems that this
is a security feature inposed when command. comis executed as a
child process.

The javaJAM host/rehost tool is also assum ng that the default
directory will be the javaJAM wor karea, which is
c:\javaJAM t ohost.

The path statenment is required if the jdk is not already

defi ned.

Javadoc requires the -private tag to prevent the private

nmet hods from being omtted fromthe docunentation and the
javaJAM button omitted fromthe source

The final echo statenent is required to work around a jdk bug
that prevents a DOS child process fromexiting properly. The
work around is to |l ook for the echo and then to kill the child
process.

cd c:\javaJAMt ohost
path c:\jdkl. 2. 2\ bi n; %at h%

j avadoc

-private -doclet j avaJAM docl et Tool s/ Standard -docl et path

c:\JavaWbServer2.0\servl ets\javaJAM jar -d .\docunentation *.java
echo BATCH DONE

65

Appendix G, CstUploadEtcServlet Log

Cl eanup:

C.\JavaWebServer2. 0>rem Cl ean up work area by renovi ng previous
application entirely.

C:\JavaWbServer 2. 0>cd c:\javaJAMt ohost

C:\javaJAM tohost >deltree /y *.*
Del eti ng docunentation. ..

Del eti ng upl oad. zi p. ..

Del eti ng AbsDi spat cher.java...
Del eting AbstractTag.java...
Del eting LOCcli.java...

Del eti ng DLOCabsReader. j ava. . .
Del eting JavaAbstract.java...
Del eting DLOCcli.java...

Del eti ng LOCabsReader.j ava. ..
Deleting FileListFilter.java...
Del eting Text Abstract.java...
Del eting source...

Del eting src_conment. ..

Del eti ng doc_conment. ..

C:\javaJAM tohost >rem St andard docl et needs the \docunentation
directory in order to run.

C.\javaJAM t ohost >nkdi r docunent ati on

C.\javaJAM t ohost >echo BATCH DONE
BATCH DONE

66

Unzi p:

Fi |l ename: \\ Sophi e\ syswi n98\j avaJAM t ohost\ upl oad. zi p
Cont ent - Type: application/x-zip-conpressed

Cont ent s:

File: AbsDi spatcher.java ||Size: 6583

File: AbstractTag.java Si ze: 2363

File: LOCcli.java Si ze: 18317

Fil e: DLOCabsReader.java ||Size: 12572

File: JavaAbstract.java Si ze: 17831

File: DLOCcli.java Size: 17816

File: LOCabsReader.java Si ze: 16674

File: FileListFilter.javal||Size: 1838

File: TextAbstract.java Si ze: 4525

j avaJAMIi :

C.\JavaWbServer2.0>title javaJAMli -- Doclet Interface: Generate htm
for hosting

C:\JavaWebServer 2. 0>rem

C.\JavaWebServer2.0>rem javadoc !is run fromdirectory containing the
java source files.

C:\ JavaWebServer 2. 0>rem - docl et

C:\JavaWbServer2. 0>rem -docl etpath (full path to doclet package root>
C:\JavaVWebServer 2. 0>rem -d

C.\JavaWebServer 2. 0>rem -cl asspath

C.\JavaWebServer2.0>rem *.java !application source files

C:\JavaWbServer2.0>rem ---- javadoc executes relative to the current
default directory

C:\ JavaWebServer 2. 0>rem
C.\JavaWebServer 2. 0>cd c:\javaJAMt ohost

C.\javaJAMt ohost >path

c:\jdkl. 2.2\ bin; C\JAVAWEBSERVER2. O\ BI N\ . . \ j r e\ bi n; C: \ JAVAWEBSERVER2. 0\
BIN\..\lib; CC\JAVAWEBSERVER2. O\ BI N\. . \ native_lib; C:\ W NDOAS; c: \ wi ndows;
c: \ wi ndows\ COMVAND

C.\javaJAM t ohost >j avadoc -private -doclet javaJAM docl et Tool s/ St andard
-docl etpath c:\JavaWwebServer2.0\servl ets\javaJAM jar -d .\docunentation
* java

Loadi ng source file AbsDi spatcher.java...

Loadi ng source file AbstractTag.java...

Loadi ng source fil e DLOCabsReader.java.. .

67

Loadi ng source file DLOCcli.java.. .

Loadi ng source file FileListFilter.java...
Loadi ng source file JavaAbstract.java...
Loadi ng source file LOCabsReader.java...
Loadi ng source file LOCcli.java...

Loadi ng source file TextAbstract.java...

Constructing Javadoc i nformation...

Building tree for all the packages and cl asses. ..

Bui l ding index for all the packages and cl asses...

Generating .\documentation\overviewtree.htm ...

Generating .\docunmentation\index-all.htm ...

Generating .\docunentation\deprecated-list.htm ...

Bui l ding index for all classes...

Generating .\docunmentation\allclasses-frane. htnl ...

Generating .\docunentati on\ AAA- Mai nFranme. htm . ..

Generating .\docunmentation\index.htm ...

Generating .\docunentation\packages. htm ...

Generating .\docunmentation\../source\AbsDi spatcher.htnm ...
javaJAM generating AbsDi spatcher.html to ../source

Generating .\docunentation\../src_conment\ AbsDi spatcher.html ...
javaJAM generating AbsDi spatcher.htm to ../src_comrent
Cenerating .\docunentation\../doc_coment\ AbsDi spatcher. htm ...
javaJAM generating AbsDi spatcher.html to ../doc_coment
Generating .\docunmentation\.\AbsDi spatcher.htm ...

Generating .\documentation\../source\AbstractTag. htm ...
javaJAM generating AbstractTag.html to ../source

Generating .\documentation\../src_coment\Abstract Tag. htm ...
javaJAM generating AbstractTag. html to ../src_comrent
Generating .\docunentation\../doc_coment\AbstractTag. htm ...
javaJAM generating AbstractTag. html to ../doc_comrent
Cenerating .\docunentation\.\AbstractTag. html ...

Generating .\docunmentation\../source\DLOCabsReader. htm ...
javaJAM generating DLOCabsReader.html to ../source

Generating .\documentation\../src_coment\DLOCabsReader. htm ...
javaJAM generating DLOCabsReader.html to ../src_coment
Generating .\documentation\../doc_coment\DLOCabsReader. htm ...
javaJAM generating DLOCabsReader.htnml to ../doc_comrent

Generating .\docunentation\.
Generating .\docunmentation\.
javaJAM generating DLOCcli .
Generating .\docunmentation\.
javaJAM generating DLOCcli .
Generating .\docunentation\.
javaJAM generating DLOCcli .
Generating .\docunentation\.
Generating .\docunentation\.
Generating .\docunentation\.
javaJAM generating DLOCcli .
Cenerating .\docunentation\.
javaJAM generating DLOCcli .
Generating .\docunentation\.

Generating .\docunmentation\

\ DLOCabsReader. htm . ..
./ source\DLCCcli.htm ...
htm to ../source
./src_conmment\ DLOCcl i .
htm to ../src_coment
./ doc_conment\DLOCcli.htm ...

htm to ../doc_comrent
\DLCCcli.htm ...

./ source\DLCCcli.ButtonEvent.htnm ...
./src_coment\ DLOCcl i .
ButtonEvent.htm to ../src_comrent
./ doc_coment\ DLOCcl i .
ButtonEvent. html to ../doc_comment
\DLOCcl i . ButtonEvent. htm ...
../source\FileListFilter.htm ...

htm ...

to ../source

Butt onEvent. htnl ...

ButtonEvent. htnl ...

javaJAM generating FileListFilter.htm
Generating .\documentation\../src_coment\FileListFilter.htm ...
javaJAM generating FileListFilter.htm to ../src_comment
Generating .\documentation\../doc_coment\FileListFilter.htm ...
javaJAM generating FileListFilter.htm to ../doc_coment

68

Generating .\docunmentation\.\FileListFilter.htm ...

Generating .\documentation\../source\JavaAbstract.htm ...
javaJAM generating JavaAbstract.htm to ../source

Cenerating .\docunentation\../src_coment\JavaAbstract. htnml ...
javaJAM generating JavaAbstract.htm to ../src_comment
Generating .\docunentation\../doc_conment\JavaAbstract.htm ...
javaJAM generating JavaAbstract.htm to ../doc_comment
Generating .\docunmentation\.\JavaAbstract.html ...

Generating .\documentation\../source\LOCabsReader.htm ...
javaJAM generating LOCabsReader.htm to ../source

Generating .\docunmentation\../src_conment\LOCabsReader. htm ...
javaJAM generating LOCabsReader.htm to ../src_coment
Cenerating .\docunentation\../doc_coment\LOCabsReader. htnl ...
javaJAM generating LOCabsReader.htm to ../doc_comment
Generating .\docunmentation\.\LOCabsReader.html ...

Generating .\docunmentation\../source\LOCcli.htm ...

javaJAM generating LOCcli.htm to ../source

Generating .\documentation\../src_coment\LOCcli.htm ...
javaJAM generating LOCcli.htm to ../src_coment

Generating .\documentation\../doc_coment\LOCcli.htm ...
javaJAM generating LOCcli.htm to ../doc_coment

Cenerating .\docunentation\.\LOCcli.htm...

Generating .\documentation\../source\LOCcli.ButtonEvent.htm ...
Generating .\documentation\../src_coment\LOCcli.ButtonEvent.html ...
javaJAM generating LOCcli.ButtonEvent.htm to ../src_coment
Generating .\docunmentation\../doc_coment\LOCcli.ButtonEvent.html ...
javaJAM generating LOCcli.ButtonEvent.htm to ../doc_coment
Generating .\docunentation\.\LOCcli.ButtonEvent.html ...
Generating .\documentation\../source\TextAbstract.htm ...
javaJAM generating TextAbstract.htm to ../source

Cenerating .\docunentation\../src_coment\ Text Abstract. htnml ...
javaJAM generating TextAbstract.htm to ../src_comment
Generating .\docunentation\../doc_conment\ Text Abstract. htnm ...
javaJAM generating TextAbstract.htm to ../doc_comment
Generating .\docunmentation\.\TextAbstract.html ...

Generating .\documentation\serialized-formhtm ...

Generating .\docunentati on\ package-1list...

Generating .\docunentation\hel p-doc. htm ...

Generating .\docunentation\styl esheet.css...

C.\javaJAMt ohost >rem echo ...warni ng nmessages are ok
C.\javaJAMtohost>remdir/S c:\javaJAM upl oad > c:\javaJAMdir.tnp
C.\javaJAMtohost>rem type c:\javaJAMdir.tnp

C:\javaJAMt ohost >echo BATCH DONE
BATCH DONE

69

Appendix H, Site Initialization File

Sample file with explanations for each line:

10.

[server]

This is a section label. It is for readability only and is ignored.
hostname=ursula.ics.hawaii.edu:8080

This is the host portion of the URL. It is used when generating new packages for
hosting. It is also used when creating new annotations.
jdkTools=c:\jdk1.2.2\lib\tools.jar

The path to the JDK is required for accessing javadoc.exe while generating a new
package for hosting.

jwsPath=c:\JavaWebServer2.0\public_html

The path to the root of the public area on the web server is used when generating
new packages for hosting. It is also used when creating new annotations.

linnum=on

When generating a new package for hosting, by default the source is generated with
line numbers. Setting this to "off" will suppress the line numbers. For best results
this should be left on.

mailserver=smtp.hawaii.edu

javaJAM needs to communicate to a friendly SMTP server so that it can send new
participants their passwords and help old participants remember forgotten
passwords.

[scripts]

This is a section label. It is for readability only and is ignored.
cleanup=_cleanup.bat

This is name of the shell script stored in the javaJAM folder that cleans up the
remote hosting work area at the start of a new remote hosting action. This script
can be eliminated in a future enhancement.

doclet=_javaJAMdi.bat

This is the name of the shell script stored in the javaJAM folder that executes
javadoc.exe. Javadoc 1.2.2 could not be run directly from Java which seems
unreasonable.

[admin]

This is a section label. It is for readability only and is ignored.

70

11. admin=Monir Hodges
The name of the javaJAM administrator is included in any email sent by javaJAM.

12. email=monir@hawaii.edu
The email address of the javaJAM administrator is included in any email sent by
javaJAM.

Any line can be commented out by placing a semicolon in front of it. Lines that contain

invalid keywords are ignored. The line numbering is for illustration only and should not be

included in the initialization file.

71

[1]

(2]
3]

[4]

5]

[6]

[7]

9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Bibliography

AnalogX web site.

<http://www.analogx.com/contents/download/system/maxmem.htm>.

Apache Software Foundation web site. <http://www.apache.org>.

Ben Adida and Philip Greenspun. Supporting Open-Source Software via Online
Community. <http://photo.net/wtr/acs/open-source.html>.

Ben Shneiderman. Designing the User Interface, Strategies for Effective Human Computer
Interaction. Chapter 4: Usability Testing, Surveys, and Continuing Assessments. Addison-
Wesley Press, 1998, Third Edition.

Bruce Schneier, Applied Cryptography, Section 18.13: Choosing a One-Way Hash
Function. John Wiley & Sons, Inc., 1996, Second Edition.

Bruce Perens. The Open Source Definition, June 1997.
<http://www.opensource.org/osd.html>.

Dan Suthers. Artifact-Centered Discussion Forum.
<http://lilt.ics.hawaii.edu/lilt/opportunities/students/linked-cmc.htmI>

Danu Tjahjono, CSRS Research Summary.
<http://csdl.ics.hawaii.edu/Research/CSRS/CSRS.html>.

Eric S. Raymond. The Cathedral and the Bazaar, May 2000.
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html>.

Giant Java Tree web site. <http://gjt.org>.

James C. Luh. Open For Business. Internet World, September 15, 1999
<http://lwww.internetworld.com/print/1999/09/15/website/19990915-business.htmI>

Jason Manger. JavaScript Essentials. Chapter 8: Manipulating Windows with JavaScript.
McGraw-Hill, 1996.

Jeremy Brown, et al. HyperCode, September 1994.
<http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/brown/hypercode/hypercode.html
>,

Karl Moss. Java Servlets. Chapter 6: Server-Side Includes. McGraw-Hill Press, 1998.
Paint Shop Pro 6.0 web site. <http://www.jasc.com>.

Phillip Johnson, OpenJavaDoc: An Open Source Browser for Java.
<http://csdl.ics.hawaii.edu/FAQ/FAQ/opportunities.html>.

sourceXchange web site. <http://www.sourcexchange.com>.

Sun Microsystems, Inc. Javadoc Tool Home Page.
<http://java.sun.com/products/jdk/javadoc>.

Tango Interactive web site. <http://www.webwisdom.com/tangointeractive>.

72

[20] The Open Source Initiative web site. <http://www.opensource.org>.
[21] The Open Source Initiative, The OSI Certification Mark and Program.

<http://www.opensource.org/certification-mark.html>.

73

