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Abstract 

The Hardware Subroutine Approach is a process for developing a reconfigurable, 

custom co-processor as a direct replacement for a subroutine in a larger program.  The 

approach provides a framework that helps the developer analyze the benefits of using 

hardware acceleration, and a design procedure to guide the implementation process.   

To illustrate the design process a Hardware Subroutine (HWS) implementation of 

a derivative estimation function is described.  In this context, it is shown that key 

performance parameters of the HWS can be estimated well before the design is finished.  

Performance of this example is compared to the software-only implementation and to 

estimates developed during the design process.  Due to limitations in a vendor-supplied 

driver, the performance of this implementation is found to be a factor of 60 slower than 

the target subroutine’s performance.  

A convolution function is analyzed and performance estimates presented as a 

second example.  Analysis of 5 potential designs indicate that two of them would be 

expected to produce better performance than the original software routine.  Convolution 

of a 256x256 element data array and 16x16 kernel is predicted to take 128 milliseconds 

using the HWS system, while the same computation takes 201 milliseconds  in software.   

HWS coprocessors can provide performance improvements for problems which 

are computationally intensive, but the technique is limited by data transfer overhead.  The 

approach also shows potential as a research platform for investigation of 

hardware/software integration issues and novel processing techniques. 
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1.0 Introduction 

Analyses of the performance of large programs used for reduction and analysis of 

scientific data frequently show that a few relatively small program steps consume most of 

the processing time required by the application.  While this is often due to limitations on 

data transfer bandwidth in the processing hardware, the sequential architecture of today’s 

general-purpose computers is not always optimal for implementing the algorithms 

required.  The processing time required by these applications not only impedes obtaining 

research results, but also slows the development and testing of new analysis methods.  

Utilization of custom co-processing hardware designed to more efficiently implement 

resource-intensive areas of the program can substantially improve performance for some 

problems.  

Access to hardware co-processing allows the researcher to consider applying 

alternative computational techniques that are not feasible within the constraints of the 

sequential processor environment.  Examples such as implementing searching using 

content-addressable memory [1] or the substitution of a Discrete Polynomial Transform 

for the normal Fast Fourier Transform (FFT) algorithm illustrate approaches which are 

not reasonable on a general-purpose computer system because they are not 

computationally efficient on a purely sequential architecture.   

The techniques needed to implement a candidate problem as a hardware logic 

array have not, however, been easily accessible to the typical developer of scientific 

analysis programs.  There are two components to this problem.  First, while many 
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approaches to implementing processing problems in discrete hardware have been 

discovered, implementing these circuits generally requires a significant commitment of 

time and resources to developing and testing the detailed designs.  In addition, integrating 

such a processor system with a general-purpose computer requires implementing the 

equivalent of a new peripheral interface for the system, a challenging process.  Before 

committing to an effort of this size, a researcher must be able to determine whether the 

investment in learning the technology and developing an implementation will result in 

sufficient performance improvement.   

1.1 The Hardware Subroutine Approach 

The Hardware Subroutine Approach (HWSA) is a framework and a philosophy 

for constructing custom hardware coprocessors and integrating them with conventional 

computers and software programs.  The approach provides a common architecture and a 

design procedure that will help a developer or scientist wishing to investigate the 

application of reconfigurable computing techniques.  The procedure allows the user to 

develop a hardware-based replacement for a subroutine that can be directly substituted 

into an existing program to provide enhanced performance or alternative processing 

methods.   

The HWSA leverages advances in available programmable logic devices, 

development tools, and software engineering techniques to avoid the need for designers 

to “program down to the transistors” to produce a hardware processor design.  A further 

key component of the HWSA is the use of performance estimation techniques to guide 
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the designer’s implementation decisions from an early stage of a project so that resources 

are not wasted on approaches that are unlikely to be successful.  

To permit consistent estimates of performance across projects, implementations 

must be based on comparable types of design and should be developed with a consistent 

process as well.  To support such consistency, the Hardware Subroutine Approach 

provides a flexible design architecture based on a hierarchy of interfaces and processing 

elements.  A typical HWS architecture, shown in Figure 1, consists of a hardware 

Processing Element (PE) connected to a host computer by a standard bus and to a parent 

program by interface software arranged into hierarchical layers.   

Figure 1.  A Generic Hardware Subroutine Architecture 

High-level program 

Hardware Subroutine interface layer(s) 

API function calls to bus interface driver 

Bus to programmable logic (PE) interface  

Processing kernel controller/interface 

Kernel Kernel 
Kernel 

Kernel 
Kernel 

Kernel 
Kernel 

Kernel 
Kernel 
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1.2 Thesis objectives  

The goal of this work is to develop a coherent process for designing and 

implementing integrated software/hardware computing systems containing novel and 

customized coprocessing elements.  In this paper, I show that complete subroutines from 

a high-level data analysis program can be replaced by hardware implementations of the 

algorithms.  Comparison of the measured performance of the final integrated hardware-

software system with estimates derived from simulation of parts of the system and other 

proxy measures show the value of early performance estimates.  I also show how these 

early estimates can be used to guide design efforts.  Thus, the claims of this thesis are: 

- The Hardware Subroutine Approach represents an improved process for 

designing and evaluating integrated systems of custom hardware and 

software;  

- The Hardware Subroutine is a cost- effective way to implement a custom 

hardware coprocessor; 

- The Hardware Subroutine Approach provides the designer with early 

predictions of a design’s performance that can indicate the probable 

effectiveness of the resulting system. 

1.3 Contributions 

This work provides a bridge between the purely software description of 

computation algorithms and the implementation of those algorithms in application-

specific hardware processing units.  In identifying a set of commercially available tools 
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and a design framework through which a Hardware Subroutine processing element can be 

developed, the HWSA helps the software developer community to utilize current 

hardware design technology.  

The HWSA can also be used to aid research into alternative computational 

techniques by providing an easier way to leverage the capabilities of a conventional 

computer as a development support environment.  By performing such essential but 

mundane tasks as data storage, input/output and user interface display on a host machine 

while isolating the novel computation to a subroutine context the HWSA removes the 

need to create a complete computer and operating system simply to test a computational 

architecture.  This approach allows the researcher to focus their attention on the most 

productive areas and encourages investigation of synergistic combinations of novel 

hardware architectures, software structures, and design techniques.   

1.4 Document structure 

The remainder of this paper will describe the aspects of the HWS Approach in 

detail.  Chapter 2 reviews related work that forms the foundation for the HWS approach.  

Chapter 3 expands on the overall design philosophy behind the HWSA and the 

architectural hierarchy of a Hardware Subroutine implementation.  The characteristics of 

computational problems suitable for successful HWS implementation and the 

requirements imposed on the host processor and software environment will also be 

discussed.  Chapter 4 describes the design process used to progress from a purely 

software source algorithm to the final hardware image and interface code.  The specific 
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tools used at each step will be introduced in the context of implementing a derivative 

estimation algorithm.  Performance of the resulting system is compared to that of the 

original software routine and the preliminary estimates.  Chapter 5 presents a design 

study for a more complex convolution function and compares the predicted performance 

of design alternatives to the software implementation of the function.  Conclusions 

regarding the utility and limitations of the HWS approach are presented in Chapter 6, 

along with some characteristics of the commercial hardware and software that can have a 

significant impact on the results.  Several avenues for further research are suggested in 

Chapter 7.   
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2.0 Related Work 

The development of high-density field reprogrammable logic gate arrays (FPGAs) 

has encouraged the design of custom processors that do not use fixed hardware 

implementations.  While this allows more flexibility in developing and using logic-based 

external computing resources, the techniques for designing and implementing the needed 

hardware circuits have remained significantly different from those of software 

development.  

Research into use of programmable logic has resulted in several approaches to 

connecting high-level algorithms to the detailed register-level logic needed for 

implementation in gate arrays.  Many of these efforts have focused on converting 

complete programs into hardware, as researchers attempted to develop alternatives to von 

Neumann processing architectures that would be able to perform general-purpose 

computations in a more efficient manner by executing simple computations in parallel.  

For some applications, particularly those involving processing streams of data values, 

interfacing, and real-time control, this approach has proven successful and application-

specific processors implemented in FPGAs are widely used in these areas. 

2.1 Instrument control using FPGAs 

FPGA-based hardware acceleration has been applied to problems in the field of 

astronomy in several ways.  The most successful application of the technology has been 
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to interface control and data-formatting problems that are difficult to accomplish on a 

conventional workstation due to real-time event constraints. 

Bennett [2] describes a high-speed data acquisition system designed for use with 

photon-counting detectors to construct images from extremely faint objects.  The 

hardware co-processing board contains a large Xilinx FPGA and 4MB of static RAM and 

is used to control timing and capture of photon events from two types of detectors.  The 

system can buffer and combine data to reduce the event rate, so that a normal workstation 

can be used for supervisory control.  The benefit of the approach is integrating data from 

high-speed detectors and GPS timing sources in real time without relying on a computer 

to capture each event, permitting data capture rates of up to 8 Mbytes/sec with 0.1-

microsecond resolution.  The system’s logic is defined in Handel-C, a compile-to-

hardware system available from Embedded Systems, Ltd [3].  

An application of an FPGA-based coprocessor to controlling an instrument used 

in Solar astronomy is described by Shand [4].  The approach taken to integrate the 

interfaces between external camera hardware and the controlling computer, based on the 

Digital Equipment Corp. (DEC) PAMette reconfigurable processing board [5], focused 

on external logic implementation of only those functions that could not be handled by the 

conventional computing resources.  These functions were primarily data synchronization, 

low-level control signals, data formatting, and real-time sequencing tasks that were not 

compatible with the multi-tasking operating system used on the workstation.  All 

computation was done in the 64-bit ALU of the workstation’s DEC Alpha 

microprocessor.  However, novel bit-packing schemes were used to achieve performance 



 

 9 

goals.  The Alpha chip was thus used as a SIMD parallel processor, requiring some low-

level assembly-language programming of the microprocessor.  Comparison of this system 

to an alternate approach that used a dedicated high-performance image-processing 

subsystem shows that the flexibility of reconfigurable hardware resulted in lower system 

costs and faster development.   

The philosophy guiding Shand’s projects, expressed as “if it can be done on a 

microprocessor, it will be done on a microprocessor,” reflects the reluctance of scientists 

to utilize a technology if it offers only marginal benefits.  Continuing advances in 

workstation speed, and the greater degree of skill required to complete a hardware-based 

processing scheme, combine to make it more difficult to show a compelling benefit in 

using external hardware for computation.   

2.2 FPGAs as data processing elements 

The use of FPGAs to provide expression-processing resources to a conventional 

microprocessor system has also been explored.  Halverson and Lew describe an 

architecture for attaching programmable logic to a microprocessor as a memory-mapped 

peripheral termed Functional Memory (FM) [6, 7].  Consisting of expression-level 

processors attached to a microprocessor as addressable memory locations, a computation 

is triggered by writing a data value to one of these locations.  An FM-based processing 

element appears to the host CPU as a normal memory location.  However, the values read 

back from the location contain processed results of the data written in earlier cycles.  

While constrained by the limited size of FPGAs available at the time, they show that a 
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3x3 convolution engine implemented as an FM processor could outperform a specialized 

signal processing chip by reducing the number of processing steps needed. 

Halverson and Lew also describe a complete processor architecture implemented 

as Functional Memory.  A mechanism for controlling program execution, based on a 

decision table representation developed in an earlier paper [8], is shown to be effective in 

this application as well.  In the complete design, the host microprocessor is only required 

to load and fetch data values from the FPGA system.   

While the application of programmable logic as a computation engine has been 

shown to be advantageous in areas where the characteristics of the problem permit 

parallel data operations, the cost and risk involved in implementing the coprocessor logic 

is an obstacle.  In one case study, Shand explores a searching problem and shows that 

even problems that contain a high degree of parallelism cannot always be solved faster in 

reconfigurable logic-based hardware processors [9].  He describes several techniques for 

speeding up processing of an exhaustive-search problem in hardware, but goes on to 

show that they are equally applicable to an approach that uses the 64-bit ALU in the DEC 

Alpha processor in novel ways.  Despite employing substantial amounts of parallel 

computation, the hardware approach results in performance that is comparable to that of 

the conventional CPU-based system.  The benefit of parallel computation is offset by 

overhead components that are not required by computations performed entirely within the 

processor’s local cache environment.  Given the greater difficulty of developing 

hardware-based processing systems, the author feels the overall cost of the approach is 
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not justifiable in this case.  However, it is not as clear that these specialized ALU 

techniques would be appropriate in other areas. 

2.3 The “compile-to-hardware” approach 

A significant challenge to use of FPGAs as computing resources is that the 

techniques for manually designing efficient hardware logic are quite specialized.  

Scientists and programmers who might find hardware coprocessing useful are generally 

not familiar with this field and thus face a significant barrier to using this technology.  

This need has motivated research into methods for transforming algorithms 

written in common programming languages directly into the low-level descriptions 

required for programming the FPGA.  The high demand for improved hardware design 

tools has pushed this research out into the commercial sector and several companies now 

offer such “compile-to-hardware” systems.  These systems use specialized libraries to 

permit compiling an algorithm written in C or Java directly into FPGA–ready logic 

descriptions.  The drawback to this approach for the experimenter is that the structure of 

the logic executing the algorithm is fixed by the compiler and libraries, restricting the 

kinds of processing architectures that can be expressed.  For example, the A/RT Builder 

(“Algorithm to Register Transfer”) libraries and compiler from Frontier Technologies 

[10] are extensions to the C programming language that permit the user to automatically 

generate a VLIW (Very Large Instruction Word) processor and custom sequencing 

microcode from a C-language program.  While the resulting FPGA processor is 

specialized to execute that particular algorithm, the user is not able to influence the 
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underlying architecture of the implementation.  This limits the benefit of these tools to 

problems which are good fits to the generated architecture, and does not assist the 

investigation of alternative designs. 
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3.0 Hardware Subroutines – A Better Way 

The work described here is an approach to developing custom hardware 

coprocessors and integrating them with high-level programs that avoids the limitations of 

the “compile-to-hardware” techniques and builds on the Functional Memory architecture.  

In the basic design, an FPGA-based reconfigurable coprocessor is attached to a host 

computer’s system bus and is treated as a peer peripheral rather than a memory unit to 

permit transfers of data in multiple-word bursts to and from the host computer.  This 

model supports serial stream-based processing techniques as well as work with entire 

arrays, which can be stored in memory local to the co-processor since the necessary 

addressing logic can be implemented in the FPGA along with the computational 

processing circuitry.  The FPGA processor logic is expressed in the industry-standard 

hardware description language VHDL [11], allowing use of simulation and 

implementation tools supplied by the device vendors, and permitting the design ideas to 

be expressed in a high-level, behavioral manner.   

3.1 The Hardware Subroutine 

A Hardware Subroutine (HWS) is a system consisting of a custom hardware 

coprocessing device and several layers of interface software, designed to directly replace 

a candidate subroutine in a larger computer program.  The objective of the HWS 

approach is to provide the user the ability to “plug-in” a performance improvement or 

novel processing appliance into an existing program with minimum effect on the rest of 
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the system.  By localizing changes in the “parent” program to the subroutine level 

modular design philosophies are respected and debugging the resulting system is 

considerably eased.   

3.1.1 A Functional Memory model 

Of many approaches to hardware-based external processors, the implementation 

of co-processors as Functional Memory offers advantages to the non-specialist wishing to 

develop an attached hardware processor.  This design pattern provides a good model for 

implementing Hardware Subroutines as transformation engines operating on the input 

parameters.  For application to typical scientific problems, however, this technique needs 

to be extended to allow operations on vector and array data types.  The presence of an 

intermediate layer of host processor code in the HWS architecture provides the ability to 

implement these more complex parameter operations, and allows use of a simpler internal 

processing kernel.  The additional overhead cost of such pre- and post processing must be 

carefully considered, however. 

Applying the FM model to the internal organization of the HWS suggests an array 

of identical processing kernels implementing the core algorithm of the application in 

hardware, permitting parallel computation on blocks of input data.  Among the desirable 

features of this model are its regular structure, which permits easy generation of multiple 

kernels using built-in VHDL generation schemes, a modular design which is easier to 

understand and debug, and a “thin” architecture which reduces clock and signal delays 

within the FPGA device.   
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3.1.2 The Functional Memory timing model 

The premise of a Functional Memory architecture is that, as in a spreadsheet, 

computations are triggered by modification of an input value and appear to occur 

instantaneously to the user.  While truly instantaneous computations are impossible to 

achieve, parallel hardware processing elements can be arranged so that their processing 

activity overlaps with writes to succeeding elements.  If the time required to finish a 

computation is short enough that it is completed before the host processor is able to read 

the result, to the host the computation appears to consume no extra time.  Under these 

conditions, which I term the Functional Memory timing model, the computation is 

limited only by the time required to transfer the input data to the external device and to 

read back the results.  Whereas the time required to complete a computation on a 

sequential processor is the sum of write, compute, and read components, the parallel 

hardware elements of a FM model system complete their work while the host computer is 

still busy transferring data to succeeding processing elements.  This time depends on the 

transaction speed of the bus as well as the number of parallel elements.    

3.1.3 The HWS architecture 

The basic architecture for implementing a HWS can be described as a custom 

Processing Element (PE) implemented in an FPGA.  This element is attached to the host 

processor by an interface that maps the input and output of the PE (typically an array of 

32-bit registers) to consecutive memory addresses in the bus-address space of the host.  

The details of this mapping are hidden from the user by the driver software, typically 
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provided at the lowest levels by the hardware board vendor and supplemented by 

customized higher-level interfaces developed as part of the HWS design process.   

The internal structure of the PE is customized to fit the application and can 

include features such as an array of processor kernels as shown in Figure 1, local 

memory, and other functional elements such as address generation logic, FFT engines, or 

content-addressable memory arrays.  Restricting the PE interface addressing to 

consecutive address blocks permits the data transfers to be done in bursts of data words, 

and more importantly allows the internal structures of the PE to be automatically 

generated.   

3.2 Requirements and limitations 

The HWS is not a universal solution to creating a custom computing appliance.  

Restrictions on both the type of problem and host environment suitable for use with the 

HWSA result from limitations in the interface and the HWS system model. 

3.2.1 Appropriate HWS applications 

Application domains and algorithms suitable for conversion to HWS 

implementations share several characteristics, key among them being computational 

parallelism.  Moreover, the complexity of the individual computations is an extremely 

important issue because the slow data transfer rate of commonly available external 

system buses imposes a heavy time cost to moving data out of the host system’s 

CPU/memory space.  Applications that involve simple computations on a few operands at 

a time are poor candidates for HWS conversion even if the operations can be performed 
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in parallel.  The benefit of performing the computation on parallel hardware can be 

significant, however, if the number of operations on a set of data elements is large 

compared to the number of data transfers required to move the operands to and from the 

HWS environment.  Recursive algorithms also are usually poor choices unless the storage 

requirements for their intermediate contexts are known before the program is run. 

Applications which normally would be considered suitable candidates would 

involve processing large arrays or streams of data and include computations which access 

many data elements for a single result.  Examples that have been suggested include image 

convolution, searching using content-addressable memory, FFT-based image processing, 

and data compression. 

3.2.2 Host system language and hardware requirements 

Implementation of the HWS requires that the programming language of the high-

level system provide mechanisms for accessing external system resources on the host 

computer as well as a suitably general hardware co-processor peripheral device.  Most 

commonly used languages do provide such facilities, often in the form of packages for 

implementing Remote Procedure Calls (RPC) to access processing resources on separate 

machines.  In fact, the HWS approach can be viewed as a form of RPC, although the 

remote processor would typically be located on a bus within the local computer.  Similar 

operations to prepare and transport data to and from the HWS are required, and many of 

the drawbacks of the RPC approach are common to HWS as well.  In particular, the 

overhead of transporting the procedure data outside of the processor-memory context is a 

significant issue. 
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The ultimate performance of a HWS depends on components of program 

overhead, data transfer requirements, and hardware computation speed.  The key to a 

successful HWS implementation is minimizing the time required to transfer data across 

the system bus to the external hardware device.  This is limited by bus setup time and 

basic bus clock speed.   

3.2.3 Programmable logic hardware  

The resources available on the external board constrain the applications that can 

be executed successfully on the system.  A typically available FPGA today can contain 

more than 150,000 equivalent gates, and 4-million-gate FPGAs have been announced 

[12].  Complex functional elements such as internal memory arrays and flexible routing 

structures are also commonly available.  This level of resources, combined with access to 

large amounts of inexpensive memory, permits the implementation of complete 

processing systems capable of handling multi-megabyte data arrays and complex 

functionality. 

3.3 Evaluation of potential performance 

The feasibility of using HWS in a given application rests on demonstrating that a 

suitably complex processing engine can be implemented within the constraints of 

available hardware platforms, and that the performance of such a device will be 

significantly better than performing the same computations on a conventional computer. 

Development of a sufficiently detailed model to allow accurate functional 

simulations is not a trivial task, as it requires generation of a complete behavioral 
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description of the system and bus interface as well as the actual processing logic.  If such 

a VHDL model of the interface is available, combining this model with the PE logic into 

a complete model can produce very accurate performance and timing data.  However, 

reasonable estimates of the eventual performance of the system can be made without such 

detailed simulation by utilizing performance data measured on the target system and 

proxy measures for the size and speed of a single processing element.  The system’s 

overall performance can then be approximated by adding the external call overhead of the 

high-level program, the time needed to transfer data to and from the external processor, 

and the cycle time of the hardware computation.  

3.3.1 Proxy measurements 

Some aspects of the overhead involved in accessing external resources are 

independent of the particular algorithm implementation.  The time involved in making 

the external call from the high-level language can be measured for various “stubbed” 

calls to determine the base cost of making the context switch as well as dependence of the 

call overhead on parameter type and size.  These measurements are straightforward and 

can be expected to scale with the characteristics of the computer, allowing, for example, 

estimation of the impact of increasing base processor clock speed.  For most common 

problems, however, this source of overhead is insignificant compared to the time required 

to transfer data between the HWS and the host processor. 

Parameter conversion and reformatting costs are also measurable independent of 

the hardware implementation.  The time required to transform floating-point values into 

an integer representation, for example, is a cost that depends primarily on the amount of 



 

 20

data passed to the subroutine and can be extrapolated from a basic set of measurements.  

Given specific hardware platform characteristics such as bus interface and FPGA type, 

standard values for data throughput to and from the board as well as configuration and 

setup time can be determined.  A standard test program can be designed to measure these 

types of overhead components and provide a set of proxy estimates, parameterized by 

data type and array size, describing the external call performance of that host system.  

3.3.2 Simulations 

From a standard representation of the logic in the subroutine to be translated into 

hardware, a base implementation description can be generated in VHDL.  Simulation of 

this hardware description using the characteristics of the FPGA device to be used 

provides confirmation of the correct operation of the logic as well as timing information.  

It is neither practical nor necessary to simulate processing of an entire input array to 

obtain performance data for a single processing kernel as value would be expected to 

scale directly with array size.  

3.3.3 Performance comparison 

Combining these values with the characteristics of the data to be processed allows 

the user to determine the relative benefit of translating the subroutine into hardware by 

directly comparing the actual performance of the software-only implementation with the 

estimates.  It is expected that these estimates can be made lower bounds on the HWS 

performance, as hand-optimization of the hardware design can yield further 
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improvement.  The main objective at this point, however, is determining whether 

continuing with the translation is reasonable.   

3.4 Design support framework 

Design and testing of a HWS system is supported by a framework of interfaces, 

drivers, and implementation tools.  These tools can be seen as a development 

environment supporting the researcher in the design and test of the implementation.  

Integrating a complete set of such tools into a single development environment is difficult 

due to the inconsistent nature of their interfaces, however efforts to utilize scripting and 

project management tools to automate some of the processing have been successful.  

Several of the vendors provide “design flow” tools that allow configuration of processing 

steps and tool options to occur in a single high-level shell.  Similarly, makefiles can be 

used to record and standardize options for a particular device or configuration.   

3.5  The HWS design process 

The design of a HWS begins with a functioning software algorithm, expressed as 

a high-level subroutine, and proceeds through iterative cycles of estimation, 

implementation, and evaluation to arrive at a fully functional hardware replacement for 

the original routine.  Estimates are used to determine the potential performance resulting 

from the characteristics of a proposed implementation before committing effort to the 

detailed design.  Various software tools are used in a series of design stages to translate a 

behavioral description of the computational algorithm into a gate-level logic image 
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defining the internal configuration of the FPGA.  Simulation of the design description, 

using a commercial VHDL simulation package, can be used to verify the operation and 

performance of the design before trying to test it in the combined system, reducing 

debugging requirements.   

A modified version of the original subroutine software is written to prepare input 

data and call the HWS version of the routine.  This new routine maintains the same 

interface signature and parameters as the original version but contains code to parse the 

input parameters, make any needed conversions, and issue calls to the external hardware 

interface API.  This permits the HWS to be directly linked into programs using the 

original software subroutine. 

Finally, the hardware implementation is tested by direct comparison with the 

original software routine for both accuracy and performance.  Results of these tests can 

be used to drive further iterations of the design if needed. 
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4.0 Hardware Subroutine Design  

The following sections detail the progression of steps that are taken to design, 

implement, and evaluate a HWS instance.  Several key decision nodes are identified at 

points in the process where the designer has access to data that can help focus following 

efforts in the most productive direction.  The process is not intrinsically limited to any 

specific vendor’s tools or hardware components, and several choices are available for 

most of the elements including the hardware card.  To provide a clearer illustration of the 

design process an example implementation in terms of specific tools and hardware is 

presented.   

4.1  HWS development environment 

The tools and components required to implement a HWS instance are identified in 

the following sections, and the specific elements chosen for this project are described. 

4.1.1 FPGA hardware 

A suitable hardware peripheral is essential to successfully implementing a HWS 

is.  In addition to a large programmable logic array, a standard, high-speed interface such 

as PCI or CardBus is needed, and a host system driver library implementing a basic 

Application Programming Interface (API) must be obtained or developed.  Additional 

resources that can be useful depending on the application include local memory and 
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external input/output ports.  While it is possible to construct such a device from scratch, 

many commercial alternatives are available.  

The hardware chosen for this project is the WildCard FPGA prototyping system 

available from Annapolis Micro Systems [13].  The internal architecture of the card is 

shown in Figure 2, below, as it might be configured for a typical HWS application.  The 

card contains a single Xilinx Virtex XCV300E FPGA, two 256KB memory arrays, and a 

CardBus interface controller to interface it with the host computer.  The system provides 

a software driver library to support C program calls through the bus interface and a 

VHDL model of the interface controller and the pad-to-bus interface of the card.   

 

Figure 2.  Block Diagram of the Annapolis Micro Systems WildCard 
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4.1.2 Implementation tools 

The process of turning a hardware description into an FPGA programming image 

requires several specialized software tools.  Most fundamental is the vendor-supplied 

“fitter” or place-and-route tools that map a logic netlist into a programming bit-stream for 

the FPGA.  Xilinx provides a free toolset for implementing designs in the XCV300E chip 

that includes a design manager, timing analysis program, and place-and-route program 

[14].  This chip is also supported by their more complete Alliance series of tools.  Most 

major EDA vendors, including Xilinx, Synopsis, Mentor Graphics, and Synplicity 

provide tools for synthesis of the detailed logic network description from high-level 

VHDL code;  the Synplify Pro package from Synplicity was used for this project [15].  

Finally, VHDL simulation tools can be used to validate the high-level logic and verify 

system timing; the Active-HDL4.2 program from Aldec is an example [16]; similar 

products are available from other vendors including Mentor Graphics.  Unfortunately, the 

highest quality (and in some cases the only) options are usually expensive commercial 

products.  It is possible, however, to obtain several of the software tools as evaluation or 

university program versions at significant discounts. 

4.1.3 Operating system and host processor environment 

The unique configuration of the WildCard in a PC-Card (PC_MCIA) format made 

it especially advantageous for this project.  While Linux drivers are available for the card, 

the Windows 98 environment was (reluctantly) chosen for compatibility with the other 

tools required.  Source editing and program builds were done with GNU EMACS and 
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Visual C++6.0.  This project was implemented on a 333MHz Pentium II Compaq 

Armada laptop.  The 32-bit CardBus interface used in this laptop PC specifies a 33 MHz 

bus clock and the WildCard vendor provides timing information indicating the setup 

requirements and transfer timing in terms of bus cycles.   

4.2 Example subroutine description 

The HWS design process begins with a working software program that contains 

one or more subroutines that are candidates for acceleration.  Selection of these 

subroutines is made through use of conventional performance profiling techniques to 

identify program elements that consume significant amounts of processing time 

performing computations.   

The test case chosen is a subroutine found in a large data analysis program for 

deriving magnetic field maps from spectrographic images of the sun.  This program was 

written by scientists at the University of Hawaii Institute for Astronomy using the 

Interactive Data Language (IDL), a high-level data analysis language developed by 

Research Systems, Inc for use in analyzing large image, remote-sensing, and 

astronomical data sets [17].   

The function computes an estimate of the first and second spatial derivatives of an 

image, using a simple shift-and-difference method.  For historical reasons, the sign of the 

resulting derivatives is reversed from the strict mathematical definition.  This algorithm, 

while simple, requires numerous array copies (12 total), and accounts for significant 
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processing overhead in the larger program as it is repeatedly called during iterative curve-

fitting procedures at several points in the analysis.  The code is shown below:  

;+  

; calculates first and second spatial derivatives, for IVM seeing-pol 

; correction, Simple shift-and-difference method. 

 

FUNCTION IDERIV, I , nterms=nterms 

; 

; INPUT PARAMETERS  

; I = image to compute derivatives from 

; 

; OPTIONAL INPUT KEYWORDS 

;  nterms = number of derivative terms to compute, default is 5. Other choice is 3. 

;- 

;calculate derivatives 

didx = (SHIFT(I,-1,0) – SHIFT(I,1,0) ) / 2 

didy = (SHIFT(I,0,-1) – SHIFT(I,0,1) ) / 2 

 

dixx = (SHIFT(didx,-1,0) – SHIFT(didx,1,0) ) / 2 

diyy = (SHIFT(didy,0,-1) – SHIFT(didy,0,1) ) / 2 

 

dixy = (SHIFT(I,-1,-1) + SHIFT(I,1,1) – SHIFT(I,-1,1) – SHIFT(I,1,-1) ) / 4 

 

IF KEYWORD_SET(nterms) THEN BEGIN 

 IF( nterms EQ 3) THEN $ 

  derv = [[[didx]],[[didy]],[[dixx + diyy]]] 

 IF( nterms EQ 5) THEN $ 

  derv = [[[didx]],[[didy]],[[dixy]],[[dixx]],[[diyy]]] 

 IF( nterms NE 3 AND nterms NE 5) THEN $  

  MESSAGE, ‘Ideriv: nterms must be 3 or 5.’ 

ENDIF ELSE BEGIN  

 Derv = [[[didx]],[[didy]],[[dixy]],[[dixx]],[[diyy]]] 

ENDELSE 

RETURN, derv 

END 
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This subroutine is called against an image array at several points during the 

reduction of a typical magnetogram data set.  These images are typically 512 x 512 pixels 

in size and are manipulated in floating point variables for convenience though the 

original data is 16-bit unsigned, containing approximately 10-12 significant bits of 

information.  A complete image set contains up to 100 pairs of images and requires 

512KB per image, a total of up to 100 MB per set.  While the workstation used for 

reducing this data has ample memory to contain the entire image set at one time, the 

individual images are large enough that they exceed processor cache sizes and will result 

in main memory access during processing.  

The subroutine computes the first and second spatial derivative terms in each axis 

and the first cross derivative of an image array, thus the minimum data transfer for this 

function is one NxN input array and five NxN output arrays.  The core computation is the 

derivative estimate in a given axis (row or column). The second and cross terms can be 

obtained by repeating the estimation on corresponding outputs of the first derivative 

computation.   

The most basic approach to design of a processing kernel would implement the 

computation of a single derivative term, and require a call for each derivative term or five 

iterations total.  Since there is little difference between this and the sequential software-

only computation, one would not expect any significant benefit from this implementation.  

An improved implementation might use two parallel processing elements to produce both 

the first and second derivatives from the same stream of input data, and obtain the xy 
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cross derivative by processing the first result array again after transposition, eliminating 

one array write for each pair of derivatives.   

4.3 Preliminary evaluation  

Before committing effort to a complete design cycle for a HWS, the potential 

performance should be determined by a combination of measurement and estimation.  

Time requirements due to the overhead of making the external call can be measured with 

a specialized program, while the delay components involved in processing the 

computation can be approximated from the complexity of the logic required and 

performance of similar functional components.  By decomposing the core algorithm into 

its functional processing steps, the delay requirements can be obtained for each and a 

total delay estimated based on clock cycle requirements for standard functions. Alternate 

implementation approaches can be compared in this manner as well. 

4.3.1 Measurements 

For the specific case described in this paper I have written a test shell in IDL that 

automates measurement of the execution time required by a candidate routine as well as 

other overhead components.  A similar program would be written in C, for example, if 

that language were used for the main program.  Characteristics of the host system 

measured in this way include the basic subroutine call overhead, data access time 

(measured as a per-element time for a large array), and the actual time taken to process 

test data using the original candidate software subroutine.  Performance measurements 

are also made on the hardware peripheral to determine the data transfer rates achievable 
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with the available driver software and interface.  Because maximum theoretical rates are 

not often attainable in practice, these measurements are critical to preparing accurate 

predictive estimates.  

4.3.2 Hardware performance parameters 

The main overhead components consist of data conversions, data transfer, and 

subroutine setup times.  In most cases, the initialization and configuration of the card can 

be performed in parallel with other processing tasks by calling a routine to initialize the 

device in advance of its use, and thus does not impact the performance comparison.  

However, if several configurations for the processing element were used in a single 

program the time required to reconfigure the HWS might become an issue.  Program 

download time for this card is measured at ~65 milliseconds, and the entire configuration 

and reset cycle takes 230 milliseconds including reading the FPGA image file from disk.  

Data throughput is measured using a utility program which performs a burst write and 

read of a 256KByte (65535 word) data block to the onboard memory of the WildCard in 

programmed and DMA modes.  As shown in Table 1, DMA transfers are approximately 

3 to 7 times faster than programmed-I/O mode transfers but require a complex internal 

address generator to be programmed into the WildCard PE.  For purpose of this work, 

however, this type of circuit is considered to be beyond the level of complexity likely to 

be implemented by the non-specialist.  

While the ultimate throughput of a PCI or CardBus interface is theoretically 

32MB/sec, measured rates of only ~20MB/s are typically seen, implying a minimum 

transfer time of roughly 190ns per 32-bit word, in or out of the accelerator board, using 
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DMA transfers.  Under program-controlled register read or write accesses the transfer 

time is significantly slower, typically only 3 to 6 MB/sec (corresponding to 625 nS to 

write and 1.3 uS to read a 32-bit word to or from the external device).  Modern FPGA 

chips are capable of operating with a clock speed of more than 100Mhz, or less than 10ns 

/ cycle, and while one can expect there to be several levels of logic delay in the device 

circuits, this delay will still be much less than the data transfer overhead from the host 

system.  While there is some extra overhead required in an external subroutine call 

compared to a standard function call, the context-switching overhead is comparable and 

would not be expected to result in a noticeable penalty.   
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Table 1.  Performance test report, Annapolis Micro Systems WildCard/E 

WILDCARD(tm) Performance Test 
Setting the repetition value to 50 
TESTING USING PARAMETERS: 
Clock Frequency = 100.000000 
# of Iterations = 50 
Device Number   = 0 
 
***************************************************** 
*             Configuration Information                   * 
***************************************************** 
Processing Element Information: 
PeXilinxType  = XCV300E 
PePackageType = PKG_BG352 
SpeedGrade    = 6 
 
Memory Information: 
Bank 0: 
SizeDwords = 65536 (262144 bytes), Speed = 10ns RAM 
Bank 1: 
SizeDwords = 65536 (262144 bytes), Speed = 10ns RAM 
 
Version Information: 
API 1.6, Driver 1.1, Firmware 2.4 
 
******************************************************************** 
* TEST RESULT SUMMARY:                                           * 
*                                                                * 
*  Non-Burst PIO Performance:                                    * 
*      Read Elapsed time   =   4.340 sec ( 86.8 ms/Iteration) * 
*      Read Transfer Rate  =   3.0 MB/s                          * 
*      Write Elapsed time  =   2.090 sec ( 41.8 ms/Iteration) * 
*      Write Transfer Rate =   6.4 MB/s                          * 
*                                                                * 
*  DMA Read (Board-to-Host) Performance:                   * 
*      Elapsed time  =   1.200 sec ( 24.0 ms per Iteration)   * 
*      Transfer Rate =  21.8 MB/s                                * 
*                                                                * 
*  DMA Write (Host-to-Board) Performance:                    * 
*      Elapsed time  =   0.220 sec (  4.4 ms per Iteration) * 
*      Transfer Rate = 119.2 MB/s                                * 
*                                                                * 
*  Processing Element Programming Performance:            * 
*      Avg. Time per PE Program =  64.8 milliseconds       * 
*        Total Time for PE Prog. Test  =   3.240 sec * 
******************************************************************** 
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4.3.3 Baseline subroutine performance 

The target performance of the original subroutine is measured using a test 

program to exercise the routine with a generic input set.  Results parameterized by input 

sample size show both the small base call overhead as well as the per-element processing 

time (Figure 3).  In addition, results for a version of the code that computes only a single 

derivative is shown in Figure 4 as a comparison for the kernel processing element’s 

performance. 

Runtime vs Array size for 5 derivatives 

 

Figure 3. Computation time for complete ideriv.pro (5 derivative terms) 



 

 34

Runtime vs Array size for single derivative 

 

Figure 4.  Run time vs. data array size for a single derivative term 

The performance of the base subroutine can be computed from curves fitted to these 

measured values as shown below.  Note that this is parameterized as a function of the 

array dimension N rather than the total number of elements in the data array. 

t(derivative function) = 1.31e-006 * N2.015 + 0.002 seconds 

 t(call_overhead) = 1.4e-007 *N1.96 - 0.0006 seconds 

The program used to make these tests called a function that made a simple 

assignment of every array element, thus the second equation includes both call overhead 

and minimum processing cost.  At roughly 140 nS per data element, this value includes 

the time to pass a data element into any external routine, and is significantly less than the 

time to transfer data to the external hardware. 
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4.3.4 Feasibility determination 

At this point, a basic feasibility assessment can be made.  An estimate of the 

performance of the HWS combines the additional external-call overhead measured by the 

test shell, any data formatting or type conversion needed, and an estimate of the time 

required to transfer data to and from the HWS processing elements based on optimum use 

of the data bus.  If the actual HWS computation can be accomplished within the time 

needed to transfer an input data block to the PE, the Function Memory timing model will 

apply, and the total HWS performance will be limited by data transfer overhead.  If the 

time required to execute one element’s computation using the base software routine is 

less than the transfer time for an equivalent input dataset, one immediately can conclude 

that the HWS implementation of this subroutine will not result in any performance 

benefit.  An extension of this comparison parameterizes the result in terms of the input 

data set size.  In general, the HWS approach becomes more beneficial as data size 

increases since the call overhead components are a smaller fixed percentage of the total 

for a larger input set, while the transfer overhead is a constant factor. 

In typical situations, the overhead of additional subroutine context switches and 

slow data transfer speeds limit usefulness of the HWSA to applications whose processing 

time is very large, so that the fixed overhead components are averaged over a large 

number of elemental computations.  In comparing potential applications, these overhead 

components have a much greater impact on a calculation involving a 400-point data set 

than for the 1 million elements in a 1024 x 1024 image array.  Parameterization of the 

timing estimates in terms of input size will illustrate this effect, if it is significant. 
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4.3.5 Initial performance estimate  

To make a complete estimate of the HWS performance, we must decompose the 

processing cycle into its basic components and measure or approximate them.  The 

overall processing time required to complete a computation can then be determined by 

summing the elements that are determined to have a significant impact.  Until a design is 

complete, estimated performance must be based on some assumed data I/O model.  Three 

modes are available for this platform, of which two, the faster register mode and the 

programmed input-output (PIO) mode measured by the performance program are useable 

in this type of application.  We can estimate that the register-mode data transfer timing 

would be 250 nS for either read or write based on bus cycle data provided for the 

WildCard peripheral, and the time to complete a PIO read or write can be computed using 

the measured throughput values from Table 1.  Some additional overhead may be 

accumulated in the driver software calls, however this will not be determined until the 

system can be tested.  The cycle time required for each mode is summarized below.  

Table 2.  Data transfer timing for WildCard/E IO modes 

Mode T(write) T(read) T(total) 

Register 250 nS 250 nS 500 nS 

PIO 625 nS 1.33 uS 1.96 uS 
 

A basic computation core circuit for this algorithm would take no more than 3 bus 

clock cycles to complete, so we can estimate the longest per-element processing time, 



 

 37

assuming a single element is computed between each data transfer and the PE clock is 

bus synchronous at 33 MHz (30.3 nS period), to be 91 nS.   

The total processing time is estimated as the sum of the data transfer time (read 

plus write) and any processing time which does not overlap these transfers.  In the case of 

a FM timing model system, the computations are faster than the transfer, and the 

processing time can be ignored unless there are significant setup requirements.  For the 

core described above, computation time is much shorter than data transfer time even for 

register-mode transfers, and the total time will be dominated by transfer and setup 

requirements.  Note that the card initialization is not included as this can be done ahead 

of time.  

The ultimate performance that can be obtained for this function would require 

buffering the entire array on the card, thus permitting only one array write and five array 

reads, and would use block DMA to speed the transfers.  The processing time in this case 

will be somewhat larger as the complexity of the processing is greater and will require 

transferring data from the onboard memory in addition to computations.  It will require at 

least two additional clock cycles per pixel to transfer data to and from the memory buffer, 

as well as some additional overhead to set up the block transfers.  Since the amount of 

memory on the card is not enough to store a whole 1024x1024 array, the computation 

would have to be done in eight blocks, adding to the complexity and processing time 

required in the calling software.  In addition, it is probably not feasible to overlap data 

readout with processing because of memory access conflicts.  The total time estimate 
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would then be the sum of the data transfer time (at DMA rates) plus the element 

processing required for the five derivatives.  

Table 3 summarizes these performance estimates by design, identifying the 

original subroutine (“Software”), the performance of basic core which does meet the FM 

timing model using register-mode (“Core reg”) and programmed-IO mode (“Core PIO”) 

data transfers, a design which computes both first and second derivative terms at once 

(“2-deriv”), and the optimum hardware design discussed above (“Optimum”). 

Table 3. Summary of timing estimates for derivative estimator 

Design T(write) T(compute) T(read) T(total) T(sec) 

Software  - - - 1.3e-06*N^(2.015)+0.002 1.53 

Core reg 5 *X*t(wr) 91 nS/point  5*N*t(rd) 5*X*[t(wr)+t(rd)] (reg) 2.62 

Core PIO 5*X*t(wr) 91 nS/point 5*N*t(rd) 5*X*[t(wr)+t(rd)] (PIO) 10.25 

2-deriv 3*X*t(wr) 91 nS/point 5*N*t(rd) X*[3*t(wr)+5*t(rd)] (reg) 2.09 

Optimum X*t(wdma) 5*N*(150 
nS) X*t(rdma) X*[t(w_dma)+t(r_dma)] 

    + t(proc) 1.25 

Note: X is total input pixels, N is array width, total time est. for 1024x1024 input image, 

t(wdma) = 67nS/pt, t(rdma) =360ns/pt,  30nS PE clock assumed. 

In the best-case assumption, in which two derivatives can be computed for each 

write to the processing element, this implies that the HWS will not quite equal the speed 

of the software version of the code.  This is a key result and indicates that in a real 

situation, the conversion of this function into a HWS should not be pursued further with 

this architecture.  In this example case, the results also indicate that this function is 

effectively a lower bound on the complexity of a function that can be successfully 
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converted into a HWS.  Despite these performance implications, by completing the 

implementation and comparing the actual HWS performance with this estimate, we will 

obtain a useful validation of the prediction and a demonstration of the design process. 

The estimates indicate that, if realizable, the optimum hardware design would 

result in performance which is about 20% faster than the original software.  However, 

implementing the function in this way would require a significant effort to develop the 

hardware design, as an on-board memory controller and multiple line stores would be 

needed.  For smaller array sizes, the benefit of the approach is reduced as well.  

In the event that register-mode transfers cannot be implemented, we must use the 

programmed I/O speeds reported by the performance testing to estimate the data 

throughput.  In this case, the data transfer time will dominate the total, and as shown, the 

results clearly indicate that the HWS would not be useful under these circumstances.  

4.4 Processing Element development 

The next step in the process is the design of a suitable hardware computation 

kernel or Processing Element (PE).  The computations of the candidate subroutine should 

be broken down into the core-processing algorithm required to produce a single element 

of output data.  This unit is then expressed in VHDL as a behavioral description of the 

algorithm, which will be synthesized into a hardware representation following a 

verification step.  The design of this core element is constrained by the bus interface of 

the chosen system and the resources available on the co-processor card.   



 

 40

At the same time, a bus-to-PE interface design is written to instantiate an array of 

PE cores and connect them to the system bus signals.  This code can be parameterized 

with VHDL generic structures to permit adjusting the size of the PE array as needed.  The 

Functional Memory model of the HWS guides the design of this interface into a 

straightforward address and data connection design. 

The core algorithm for the derivative estimator can be expressed as a processing 

pipeline, as shown in Figure 5.  Input data elements are written into the pipe registers in 

sequence along a row or down a column, and for each input value, an output is read back.  

Parallelism can be exploited in two ways in this case: since row (or column) processing is 

independent, several can be computed in parallel, allowing burst writes and reads to be 

used, and by computing the second derivative directly from the outputs of the first kernel 

using a second processing kernel.  In order to correctly compute the second derivative 

values, however, care must be taken to correctly pre-load the input data values as the 

registers are not directly accessible.  A further development not undertaken here would 

provide direct-load access to these registers. 
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Figure 5.  Kernel logic for approximating a derivative 

This PE/kernel is expressed in about 120 lines of VHDL code and contains three 

32-bit registers, a signed adder, and a Finite State Machine to control data transfer and 

processing.  Another instance of the same PE could be connected to the output of the first 

to provide the second derivative computation.  Alternatively, the input data can simply be 

run through the processor again, which is the approach taken here. 

The PE interface layer provides connection of the kernels and automates 

generation of the kernel array.  The VHDL fragment shown in Figure 6 illustrates this 

technique, in which a set of instances of a predefined component (here called 

deriv_est_krnl) are created and connected to sets of input and output signal ports.  
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Individual members of the sets are denoted by their indexes, for example the internal 

new_data register of the second kernel element will be connected to the register 

dk_new_data(2) in the generated context.  Specifications of type and size for all of the 

referenced items are defined earlier in the VHDL file.   

begin  -- de_fm1 

 -- create the array of processing elements 

 dk_gen : for i in 0 to (proc_els -1) generate  

  dk: deriv_est_krnl 

   port map ( 

    l_reset =>  dk_resets, 

    p_clk =>  PE_clk,   

    data_ready => dk_data_ready(i),  -- done flag reg 

    new_data =>  dk_new_data(i), 

    Data_in =>  dk_data_in(i), 

    Data_out =>  dk_data_out(i), 

    Data_rb0 =>  open,   -- dk_rb0(i), 

    Data_rb1 =>  open,   -- dk_rb1(i), 

    Data_rb2 =>  open);   -- dk_rb2(i)    

 end generate dk_gen; 

Figure 6.  Example VHDL code for generating a set of  kernel components 

4.5 Design verification 

A VHDL simulation tool is used to verify correct functioning of the processing 

kernel by preparing a VHDL driver program or  “testbench” which provides inputs and 

outputs to the PE core.  At this point, no system bus elements need be considered, and the 

element is tested as a stand-alone processor.  The simulator program provides the ability 

to probe the model at the bit/waveform level as well as at higher levels of abstraction, so 

that both control signal timing and data values can be stimulated and checked.  
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If a complete behavioral model of the hardware peripheral is available (as it is for 

the WildCard system), a further design verification step can be carried out to test the 

function of the entire HWS system.  By writing a high-level testbench using VHDL 

implementations of the host API system calls, the HWS can be exercised at the system 

level, including the bus interface, and proper operation verified.  

Timing analysis can be carried out at this level to determine whether the logic 

design will operate at the desired clock speed to support the burst data transfer model 

assumed in the feasibility estimates.  Timing data based on assumptions about the target 

FPGA can be added into the simulation to provide detailed results.  Alternatively, this 

step can be deferred or skipped if the PE complexity is low, since more accurate timing 

information will be developed during the next phase of the process.  

4.6 Netlist synthesis  

The hierarchical VHDL description of the processing elements and interface are 

next synthesized into register-transfer-level (RTL) logic based on the resources of the 

specific FPGA to be used.  The goals of this step are to obtain a complete representation 

of the HWS processing element that meets the timing requirements for maintaining 

synchronism with the host system bus and fits within the available resources of the 

FPGA.  The input and output pins which connect to the bus and internal control circuits 

of the system and the critical timing paths associated with the external interface are 

specified in a constraints file supplied by the vendor as part of the interface package.   
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The synthesis tool (Synplify Pro) used in this project provides reports detailing 

the results of the synthesis run as well as RTL and device-native views of the circuits.  

The timing report shows the user critical timing path information about the design.  Paths 

that do not meet the required latency constraints are clearly indicated, allowing the user 

to modify the VHDL design or apply specific timing constraints to the path to bring it 

into compliance.   

An iterative process is pursued to find the largest set of PE kernels that will fit in 

the FPGA, while still meeting the timing and routing constraints.  The architecture of the 

HWSA generally makes it easy to meet timing constraints because of its bus-synchronous 

characteristics.  The 30.3 nS bus clock period implies a mean delay path of approximately 

10 gate levels for signals that must meet single clock latency.  As the number of PE 

kernels is increased, the number of clock cycles between data input (host write) and 

output (host read) increase correspondingly.  Thus, for the 15-element design 

implemented in the current system, there is a minimum delay of 15 clock edges between 

read and write, allowing complex sequential circuits to be implemented.  At some point, 

of course, available FPGA resources will limit the number of elements and thus one 

cannot implement an arbitrarily large array in order to gain more cycle time. 

Coverage reports showing device resource utilization are generated during the 

synthesis process based on the target device specified during synthesis setup.  The design 

shown here is the result of three design / synthesis cycles and uses approximately 50% of 

the available FPGA resources.  Additional kernel sections could be added with a design 

change to provide a larger status register  
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4.7 Device place-and-route 

A program image for use with the FPGA hardware can now be produced by 

translating the netlist produced by the synthesis tool into a bit-stream for the FPGA.  

Programs supplied by the chip vendor assign logic elements of the synthesized design to 

specific locations in the FPGA and define the interconnections between these elements.  

During this process design rules are checked to ensure that the design is physically 

realizable and detailed timing and resource assignment reports are generated.  The 

procedure is automated with a makefile and the user is only required to intervene in the 

event of an error.  The final routing report shows the FPGA resources used (Table 4).  A 

timing report is automatically generated and in this case showed that all timing 

constraints were met easily. 
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Table 4.  Mapping report summary for derivative estimator design 

Xilinx Mapping Report File 
Copyright (c) 1995-2000 Xilinx, Inc.  All rights reserved. 
 
Design Information 
------------------ 
Command Line   : map -p xcv300e-6-bg352 -o map.ncd 
pe_deriv_est.ngd 
pe_deriv_est.pcf  
Target Device  : xv300e 
Target Package : bg352 
Target Speed   : -6 
Mapper Version : virtexe -- D.19 
Mapped Date    : Sun Feb 25 20:04:58 2001 
 
Design Summary 
-------------- 
   Number of errors:      0 
   Number of warnings:  172 
   Number of Slices:              1,596 out of  3,072   51% 
   Number of Slices containing 
      unrelated logic:                0 out of  1,596    0% 
   Number of Slice Flip Flops:    2,628 out of  6,144   42% 
   Number of 4 input LUTs:        2,505 out of  6,144   40% 
   Number of bonded IOBs:            54 out of    260   20% 
      IOB Flip Flops:                             108 
   Number of GCLKs:                   4 out of      4  100% 
   Number of GCLKIOBs:                3 out of      4   75% 
   Number of DLLs:                    3 out of      8   37% 
   Number of Startups:                1 out of      1  100% 
Total equivalent gate count for design:  61,074 
Additional JTAG gate count for IOBs:  2,736 
 … 
 

The final output of this step is a binary file containing a configuration image for 

the FPGA.  This 229KB file is stored on the host computer hard disk and loaded onto the 

FPGA processor card under host control during the HWS/PE initialization process. 
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4.8 Integration 

Several steps must be performed to prepare higher-level interface programs for 

replacing the original subroutine.  A new version of the subroutine must be written in the 

high-level language used (IDL in this example).  This routine is basically a shell which 

parses the subroutine parameters, prepares the input data, calls the external HWS driver, 

and performs any needed transformations on the output data before returning it.  The 

external HWS driver is a C program which extracts the parameter data and actually issues 

the API calls to read and write data to the hardware.  This small program is compiled into 

a shared object library and is dynamically linked when the IDL call is made.   

In this example, the original IDL subroutine computes five derivative terms while 

the HWS estimator as built returns only one.  Therefore, the replacement subroutine 

requires some additional code to transpose the input array and make five calls to the 

hardware PE.  This can be done at either the IDL or C interface level, and in fact I have 

used IDL array operations to transpose the data for the cross derivatives while calling the 

hardware processor twice in the C interface code to obtain the second derivative, 

illustrating the flexibility of the layered HWS approach. 

The result of the implementation process is a set of files containing the HWS 

processing element image, the C interface wrapper dynamic-link library file, and a 

replacement for the original IDL (or other high-level program) subroutine. 
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4.9 Test and evaluation 

The final step in the process is to evaluate the HWS performance and accuracy as 

a replacement for the original subroutine.  In most cases the test shell program used to 

evaluate the original subroutine can also be used to measure the performance of the 

hybrid HWS, providing a simple and direct comparison of results.  The accuracy of the 

HWS output can be directly compared with the original routine for the same input.  

Satisfactory results indicate that the HWS can be used directly in the context of the 

original program by simply replacing the original software instance with the version that 

calls the HWS and re-linking the program.  In the dynamically compiled IDL 

environment, no additional re-linking step is necessary, and the necessary files can 

simply be copied into the appropriate location for use with the original program. 

Derivative estimates, computed with the base software and the hardware 

coprocessor, are shown in the images below (Figure 7).  Differences in the output images 

are at the quantization threshold of the display program (brightness variations are a 

display artifact). 

 

Figure 7.  Comparison of column derivative (di/dy) of an image 
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In some cases, this comparison might be inadequate and direct subtraction of the 

result, for example, could be used to determine the level of compliance, as shown below.  

The differences are single-bit integer truncation errors; in some applications, this would 

be a problem and would require a different design for the PE kernel or input pre-

processing to scale the data. 

 

Figure 8.  Comparison of a single row of the images shown in Figure 7 

4.10 Performance results 

HWS performance is determined by measuring the processing time required by 

the hardware version of the subroutine using the original test program.  At this point, a 

design which does not meet expectations can be revised and a new estimation and design 

iteration begun.  Comparison of real performance with the original estimates is important 
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to validating the estimation assumptions as well as helping to determine whether any 

performance problem is due to a HWS design flaw or a system level problem.   

During the implementation process for the example case, it was found that the 

vendor-supplied low-level interface was being incorrectly optimized during the synthesis 

step, preventing use of the burst-mode register-access I/O mode of the WildCard API.  As 

the initial estimates show, use of this fast access mode is crucial to obtaining useful 

performance from the HWS design, because the alternative programmed IO mode 

transfer rates are an order of magnitude slower.  Despite continuing to work with the 

vendor, no solution to this problem has been found, and the results shown here reflect use 

of the slower protocol. 

Performance of the HWS derivative estimator implementation is compared to the 

measured run-times for the IDL base code in Figure 9.  The impact of slow data transfer 

resulting from driver overhead is clear.  
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Figure 9. Performance of software and hardware versions of the derivative estimator 

The upper line plots hardware-processed data.  Stars plot software-processed data.   

Diamonds denote t(software) multiplied by 55 for comparison with hardware results. 

The performance that could be obtained from use of the expected data transfer 

protocol can be estimated by compensating the measured results by a factor reflecting the 

difference in write performance.  The factor is estimated from measurements of data 

transfer speeds using another PE image and program provided as an example file by the 

card vendor.  

4.11 Hardware design alternatives 

There are several other design approaches which could further improve the 

performance of this implementation.  The decision to pursue these efforts should be 
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guided by performance estimates.  Since the input data for which this program is 

designed is fundamentally 16-bit unsigned intensities and the PCI bus (and the processor) 

are 32 bit architectures, it would be straightforward to pack two pixels into each read and 

write and implement two sets of 16-bit pipelines in the hardware, one connected to the 

low two bytes and one to the high bytes.  This would permit processing two rows or 

columns simultaneously in each bus transaction, reducing the data transfer overhead time 

immediately by a factor of two.  However, this would complicate the interface software 

layer, and might pose underflow problems in the case of large operands.   

A more complex approach to implementing the function would involve 

processing the data from host to card memory using a PE design similar to the present 

example, followed by reprogramming the FPGA and using DMA transfers to move the 

data back to the host in a large block of data.  While significant time is required to re-

program the PE image, the increased data write speed might compensate by reducing the 

largest component of overhead in the present design, reading back the computation 

results.  For data arrays of up to 256x256 elements, the hybrid design described could 

accumulate the entire result for two derivatives in on-board memory, resulting in a 

processing time approximately equal to the time to write the data plus the time to 

program and DMA the memory array back.  Potential performance in this case would be 

estimated (using the parameters established in section 4.3) at 520 mS to compute each 

pair of derivatives for a 256x256 image.  However, the measured software-only 

performance for this array size is only 25 mS – clearly, the effort required by this more 

complex approach will not be justifiable. 
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Finally, the ultimate speed depends on the hardware - if a system supporting the 

66MHz PCI bus is available, and faster gate arrays utilized, additional reductions in both 

transfer time and computation time are possible. 
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5.0 Example II - Convolution 

The convolution operation is commonly used for filtering communications signals 

as well as images and provides an input recovery tool in situations where there is useful 

prior knowledge about either the signal disturbance or input.  In astronomy, an image 

taken through an imperfect optical system is often processed by convolving the sampled 

data with a conjugate model of the optical system to remove fixed distortion components.  

Convolution has been proposed as an application which would be suitable for 

implementation on a Functional Memory processor and its characteristics suggest that a 

HWS realization would also be advantageous [7]. 

The 2 dimensional convolution operation for an input image A and an l x l kernel 

K is defined by the equation  
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A direct implementation of the function involves summing the products of each of the 

kernel elements with each of the input array elements, an order O(N2) operation.  An 

alternative approach uses Fast Fourier Transform (FFT) techniques to convert the 

function to a multiplication in the transform domain, leveraging the O(N log(N)) 

behavior of the FFT to improve performance [19].  An implementation using the HWS 

approach can also take advantage of parallelism in the computations to provide a 

performance improvement.  
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5.1 Performance estimation 

The performance of a conventional convolution function depends strongly on the 

size of the filter kernel array, and for moderately sized kernels measured processing time 

on a 256 x 256 image begins to exceed the transfer time that would be required to pass 

the same data to the HWS over the system bus.  The implementation goal is a HWS 

which satisfies the FM model of having essentially no additional computation time above 

the time required for data transfer.  In this case, computation of a result will be completed 

in less time than is required to read back the previous result, and the HWS computation 

will be O(n) with respect to kernel size (where n is the total number of data elements in 

the kernel; expressed as a function of the kernel dimension for an NxN array, it is O(N2)).  

Even though the data transfer rate is severely limited, this will result in a performance 

advantage for the HWS above some data array size.  Figure 10 compares predicted and 

measured subroutine runtimes as a function of kernel size, and shows that for a 256x256 

image this crossover occurs at a kernel size of 13x13. 



 

 56

 

Figure 10.  Comparison of convolution for ideal HWS and software-only (h(x)) 

Given that it is possible for an ideal HWS to perform better than a purely software 

implementation, we must next find an internal architecture which supports the Functional 

Memory timing constraint and can be physically realized with the available hardware 

resources.  Again, estimates of potential performance are used to evaluate whether an 

implementation can achieve the primary FM timing requirement.  

5.2 Design alternatives  

There are two basic approaches which could be implemented, an FFT-based 

transform solution and direct computation of the convolution terms, and several 

architectural options for both designs.  The FFT approach is based on a two-dimensional 

implementation of the standard “block convolution” technique used in signal processing, 

and would use a pre-designed FFT module available from Xilinx.  The direct 
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computation approach would use a large array of multiplier circuits to compute the 

products in parallel and a cascade of adders to combine the products into the final sum.  

In either case the host will alternate between writing blocks of input data to the HWS and 

reading back blocks of results.  For the purposes of the example, the problem can be 

constrained to use a 16x16 kernel (a convenient indexing size) and a 256 x 256 element 

array of 16-bit input data.  The timing constraints for both approaches will first be 

discussed,  and then the implementation risks compared for the cases which could be 

used. 

5.2.1 FFT-based design 

The block-convolution process requires a two-dimensional forward FFT of a 

block of data, a point by point complex multiplication with the transform of the kernel, 

and an inverse transform to provide a block of results.  The transform block size is 

usually chosen as an even power of two to take advantage of internal symmetries in the 

FFT algorithm.  In this case a 64-bit FFT core available from Xilinx [20] can be used for 

both of the transforms.  Since a two-dimensional transform is required, a pair of cores can 

be used to process the row transform in parallel with the column computations; each core 

will consume 1161 logic slices, or about 15% of the total available.  A pair of 64x16 

memory buffers, implemented with internal Virtex structures, are needed for each to 

permit overlapping read and write operations.  Alternatively, a single core can be used to 

perform the FFT on the array twice with a row-to-column transpose between the passes, 

at the cost of twice the computation time.   
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To arrive at a timing estimate, the approximate timing for the parts of the 

computation can be added. This circuit will not require any setup other than preloading 

the kernel data, which will be forward transformed off-line and the result stored as part of 

the configuration. Alternatively, to permit changing the kernel dynamically, the transform 

could be computed by the host system and the result written to a register array.  The small 

size of the kernel would make the time required to complete this insignificant.  The 

transform computation is specified to take 192 clock cycles per 64 element row to 

complete. Each block of data will need 64 FFT computations in each axis, and an 

additional 4 clocks would be required for multiplying the 64 x 64 sets of row and column 

results into the full FFT.  The transformed block and the kernel are multiplied by a 

further parallel set of multipliers, and the same 64*(192) + 4 clocks is needed for the 

inverse transform.  Assuming that a 50MHz clock (20 nS period) is achievable with the 

logic complexity required, the time required to compute an entire data block will be 

approximately 490 uS. 

For a 64 point FFT using a 16 x16 kernel, the data block size will be 47 x 47 

points, and 30 blocks will be needed to complete the computation.  At the measured PIO 

rates of t(write) = 625 nS and t(read) = 1.3 us, transfer times will be 1.4 mS to write each 

block and 2.9 mS to read the result.  The ~.5 mS computation time is therefore small 

compared to the time required to transfer the data block, indicating that the FM timing 

model can be used.  Total process time will be dominated by data transfer, with some 

additional overhead to initialize and complete the first computation.   
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5.2.2 Direct computation design 

Direct computation architectures compatible with the HWS interfaces might take 

several forms, noted DC-1 to DC-4 for reference to Table 5.  The simplest internal logic 

would result from directly addressing a 16 x 16 array of multiply/add circuits to compute 

a single output, requiring explicitly writing each 16x16 sub-image to the HWS (DC-1).  

This would mean 256 writes for each result element, obviously an enormously high 

overhead.  A second possibility would implement an entire column of cross-connected 

add/multiply webs, allowing writing a column of data and reading a column of results 

sequentially (DC-2).  The timing requirements for this circuit are not aggressive because 

an entire column will take 256 x t(write) to transfer, giving the first output approximately 

160uS to complete.  The large number of adders will result in increased combinatorial 

logic delays, slowing this circuit more than the FFT architecture, so a slower 33MHz 

clock is assumed.  In this case, the 7 levels of adders and the multiply will take only 

about 1 uS to complete, assuming the parallel multiply requires 4 clocks and 4-clock 

pipelined adders are used.  However, this circuit would need 4096 16-bit registers (an 

array of 16 x 256) just to hold the data, as well as internal registers in the multiplier 

circuits, exceeding the available number of flip-flops on the device. 

An architecture which uses the same 16x16 web of the first option but buffers the 

input data in a local RAM would require more complexity in the form of an address 

controller for the memory but would eliminate the redundant writes which limit the 

performance of the DC-1 approach (shown as DC-3).  Data would again be written a 

column at a time, however in this case data already in the compute array would be shifted 
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up one row and the empty row filled with the new element, along with 15 previous row 

elements from the RAM buffer.  The resulting output would be written to a 256x1 buffer, 

to be read back in a burst after the column is completed.  Some additional overhead 

would be needed to pre-load the proper data into the RAM buffer before the first array 

could be processed, however this is necessary in all of the cases.  

A final possibility might leverage the reconfiguration ability of the HWS to copy 

the entire image array to the RAM in a single DMA operation (DC-4). The processing 

element would then be loaded with the processing logic, and the data moved back from 

RAM into the PE, and results read back into the host.  Here reprogramming time 

becomes a limiting factor, as the 65mS to load the program and ~40 mS to reset the card 

will equal most of the processing time required by the competing options.   

5.3 Design analysis - complexity and other risks 

The expected performance of these alternative designs is summarized in Table 5.  

In order to make a direct comparison with the measured performance of the software 

implementation the total time required to compute the convolution of a 256 x 256 data 

array of 32-bit data with a 16 x 16 element kernel is listed in the right-hand column. 
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Table 5.  Summary of timing estimates for convolution  architectures 

Design T(write) T(compute) T(read) T(total)  Total 

Base - - - .0003 X^2.038 + .0203 201mS 

FFT N*t(wr) 4 uS/block N*t(rd) N*[t(wr)+t(rd)] 128mS 

DC-1* N*16*t(wr) ~1uS/ point N*t(rd) N*[16*t(wr)+1uS +t(rd)] 808mS 

DC-2 N*t(wr) ~1uS/ point N*t(rd) N*[t(wr)+t(rd)] 128mS 

DC-3 N*t(wr) ~1.1uS/point N*t(rd) N*[t(wr)+t(rd)] 128mS 

DC-4 N*t(dma)+120mS ~1.1uS/point N*t(rd) N*[t(dma)+t(rd)]+120mS 211mS 

Note:  t(wr) = 625nS, t(rd) = 1.33uS, t(dma) = .067uS; time computed for 16x16 kernel, 256x256 data 

all except DC-1 overlap compute with T(read), base software-only time measured with test program. 

From the design estimates, it is clear that options DC-1 and DC-4 cannot meet the 

timing requirements, and DC-2 can not be implemented, therefore they should be 

eliminated from further consideration.  Either the FFT implementation or the memory-

buffered direct computation (DC-3) will meet the O(n) performance goal if it can be 

implemented according to the estimates.  Further analysis regarding complexity, data 

formatting requirements and complexity should be considered to determine the most 

promising approach to pursue. 

The choice between two implementation alternatives can be approached from a 

risk-benefit perspective and the decision based not only on ultimate performance but also 

on the expected amount of effort, which is a strong function of internal complexity.  In 

this case, either of the two approaches selected requires a more complicated internal 

structure than the derivative estimator example, making their implementation non-trivial. 

The core FFT function is a tested component which should be trouble-free, 

however this application’s requirement of a 2-dimensional complex multiplication as well 
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as the application of the linear FFT to a two dimensional array are untested innovations.  

Timing issues which could be a problem include synchronizing the faster processing 

element with the system bus interface and successfully interleaving access to the input 

data array during simultaneous cross transforms.   

A direct computation (DC) processing element must synchronize the system bus 

to the PE compute array as well as to the memory buffer; and in addition sequencing 

logic to control shifting of data between array elements and memory is required.  

Generation of the large number of product and sum terms can be done programmatically 

using VHDL generate structures.   

Data scaling to avoid internal overflows is a concern with both implementation 

approaches, however the Xilinx FFT core is designed to handle this issue.  The DC 

version will require the designer to explicitly handle scaling and possibly implement a 

block-floating-point normalization scheme.   

Based on the timing constraints, internal structural complex multiplier, and 

integration uncertainties surrounding the unfamiliar FFT core modules, I consider the risk 

of that approach greater than the direct computation model.  Completion and testing of a 

design with this level of complexity will require a considerable amount of time and 

effort, however, based on the successful implementation of the simpler derivative 

estimation example there is no indication that the process can not be successfully applied 

to this design.  



 

 63

6.0 Conclusions 

This paper has illustrated an improved approach to designing and integrating a 

hardware coprocessor system.  By constraining the implementation to replace a 

subroutine in a larger program context, the HWSA leverages the capabilities of the host 

computer and provides a well-defined interface to the coprocessor.  Two example cases 

were explored to demonstrate the design process and the potential performance of this 

technique.   

6.1 HWS examples 

A Hardware Subroutine replacement for a simple derivative estimation function 

was successfully implemented and tested.  While a theoretical design with better 

performance than the original subroutine was found, a physically realizable design 

showed much poorer performance because of limitations in the data transfer functions of 

the card vendor’s driver software.  While this implementation did not produce any useful 

performance improvement, the design process illustrated by this example is repeatable 

and can be followed to implement other more complex functions. 

Analysis of several designs for a HWS implementing a convolution function 

showed that the estimated performance of the HWS would be faster than a software-only 

version of the function for sufficiently large data and kernel arrays.  The characteristics of 

the convolution function make the HWS coprocessor increasingly advantageous as the 

size of the kernel increases, and calculations show that, for the hardware and computer 
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used, the hardware approach would provide a 35% performance improvement for a 

16x16 kernel and 256x256 data array.  Larger kernel sized would realize greater benefits 

providing the required logic can be fit into the FPGA.  

6.2  Advantages of the HWS approach 

The cost-effectiveness of this type of hardware acceleration can be evaluated on 

several levels.  In strict comparison to the obvious alternative of simply buying a faster 

computer, the roughly $2500 (discounted) cost of hardware and software added to 

development time might be difficult to justify only in terms of improving computational 

performance.  However, as a platform for exploring the development of alternative 

computing resources and hardware/software co-development, I believe this approach to 

be very cost effective in both direct expenditure as well as development effort required as 

compared to the traditional approach to creating a hardware coprocessing system.  The 

flexible yet powerful Functional Memory architecture and the clearly defined interfaces 

of the HWS model permit the developer to focus their efforts on implementing the core 

logic of their algorithm.   

The estimation approach I outline here provides the designer a means to evaluate 

the likely outcome of a project before committing large amounts of effort.  As seen in the 

derivative estimator case study, preliminary estimates indicated that successfully 

achieving a large performance improvement with this approach was not likely, as 

experience confirmed.  The estimation technique was also shown to be useful in selecting 

among design options based on their potential performance.  
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6.3 Limitations and other concerns 

Accurate performance estimation depends on reliable prediction of the 

performance of the individual components making up the system.  If any one element 

deviates significantly from expectations, the effects can be quite significant.  The heavy 

reliance of the HWS design methodology on commercial software tools exposes the user 

to the risk that problems with these tools can seriously limit the performance of the 

design and thus success of the project.  In the first case studied here, actual performance 

of the system was an order of magnitude worse than expected due to several problems 

that combined to prevent host writes from completing in the predicted time.  This could 

have a tremendous cost impact on a project if such an erroneous prediction leads to 

significant effort being misdirected into developing a system that cannot work.  

The speed of the FPGA device has an impact on the performance of a HWS 

implementation by limiting the depth of the logic which can meet the FM timing 

constraint. For the examples treated here this has minimal effect due to the extremely 

high data transfer overhead and low internal complexity in the PE core logic.  More 

complex functions, possibly including the convolution example might be limited by 

computation delays as the techniques used to reduce computation delays require 

additional logic in the form of pipeline registers and additional computation blocks.  

However, the base speed of the XCV300E chip is sufficient to permit 100+ MHz internal 

clock speeds, which should be sufficient to implement many applications.  

Design of complex PE cores will increase the risk and effort involved in 

completing the implementation.  While the same estimation process described here would 
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provide a rough indication of whether the result will be useful, more detailed analysis to 

determine the system’s potential performance would be justified by the greater potential 

cost of the effort.  Such analysis and estimation cycles might be performed at several 

points during the design process to confirm that further effort is warranted as the design 

becomes more complete and estimates that are more accurate can be obtained.  

As the internal complexity of a design increases, device resource limitations may 

also become a concern.  While an arbitrarily complex design can be written and 

simulated, finite numbers of internal device elements and routing resources can make 

completing the translation of the design into an FPGA image impossible.  The designer’s 

only recourse in this situation is revising the design to reduce its complexity or use of 

specific features, or obtaining a hardware device better suited to the application.   

The relative benefit of implementing a HWS coprocessor will continue to depend 

on the capabilities of the host computer against which it is compared.  However, as 

conventional computer capabilities continue to increase, concurrent improvements in 

programmable logic devices, driven by the same fundamental technology advances, 

should permit the Hardware Subroutine to continue to be a competitive approach to 

performance improvement as well as a viable platform for research into novel 

computational techniques. 
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7.0 Further work 

While I have shown that the HWS approach is feasible, the implementation 

procedure is still somewhat complicated and use of the technique at this point requires the 

developer to invest some effort in learning both the environments and the languages.  

Widespread use of the approach would require more integration in the design flow and 

standardization of interfaces.  Other areas of investigation that might be considered 

include further work to expand and integrate the tools available to the HWS developer 

and effort to explore and define the domain of problems to which the HWS approach is 

suited.  A complete framework for supporting the development of HWS might also 

provide tools for transforming the high-level code of the selected subroutine into a 

configuration for the PE kernel elements, generation of interface code to connect the data 

structures of the high-level program with the co-processor, and test facilities to validate 

that the alternate subsystem functions correctly. 

7.1 Tools for automated production of HWS interface programs 

The interface programs which connect the HWS processing elements to the parent 

program are similar in many ways to the “stubs” which are used to implement a Remote 

Procedure Call access to a network connected computing resource.  Scripts could be 

developed to produce the parameter checking, conversion and marshalling routines 

needed to convert a base software routine into a HWS.  This would simplify an aspect of 

developing a HWS implementation and reduce the chance of defect introduction. 
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7.2 Characterization of the useful problem domain 

The limitations of data transfer overhead impose severe restrictions on the set of 

problems for which the HWS approach is useful and continuing advances in conventional 

microprocessor speed compete with much slower advances in interface technology.  A 

more complete understanding of how to choose suitable problems and techniques for 

optimizing HWS performance would increase the utility of the technique. 

7.3 Other applications for the HWS approach 

This work establishes a foundation for developing hardware coprocessing systems 

that also can be viewed as an environment for research into the use of novel computing 

technologies.  In addition to exploring application of the HWS to other performance 

accelerator applications, the HWSA can assist investigations into alternative processor 

architectures and parallel processing by providing a development environment and 

debugging support for these non-standard processors.   

7.3.1 Comparison of alternate coprocessor architectures 

The convenience of arbitrarily changing the internal functional logic of the HWS 

processing elements suggests that the HWS approach could provide a useful testing 

environment for evaluating novel processor architectures.  In contrast to a conventional 

development environment, the flexibility of the host system to manage data I/O, store 

large amounts of test data and results, execute complex setup and analysis processing, 

and provide helpful debugging and user interface displays can enhance the testing and 
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evaluation process.  The results presented in this paper themselves benefited substantially 

from the capability of combining analysis processing with actual testing programs, 

providing comparative plots of performance results and fitting of predictive equations as 

outputs of the test software. 

7.3.2 Investigation of an optimized DT processor architecture 

Description of algorithm logic in Decision Table format provides a common 

language that can be expressed both in sequential software and directly in hardware.  A 

specially designed Decision Table Processor could be implemented as a HWS processing 

element, and permit the direct execution of DT programs on a custom hardware platform.  

The capability of simulating a VHDL description of the HWS processing element before 

completing the design cycle permits detailed evaluation of the characteristics of such a 

processor even if hardware resources are not immediately available, and encourages 

comparison of various design approaches.  The HWS provides a design methodology for 

creating such a processor and can provide a supporting environment for testing and 

analysis of its performance.  
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