IMPROVING SOFTWARE QUALITY THROUGH EXTREME COVERAGEWITH
JBLANKET

A THESISSUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI'l IN PARTIAL FULFILLMENT
OF THE REQUIREMENTSFORTHE DEGREEOF

MASTER OF SCIENCE
IN
INFORMATION AND COMPUTERSCIENCES

MAY 2003

By
Joy M. Agustin

ThesisCommittee:

Philip M. JohnsonChairperson
W. Weslg/ Peterson
MarthaE. Crosby

We certify thatwe have readthis thesisandthat,in our opinion, it is satis-
factoryin scopeandquality asa thesisfor the degreeof Masterof Science
in InformationandComputerSciences.

THESISCOMMITTEE

Chairperson

©Copyright 2003

by
Joy M. Agustin

To my mom,dad,andbrotherRobert.

Acknowledgments

This researchlwould not be possiblewithout thefollowing peoplewho have provided me
with guidancesupportandencouragemeralongthe way.

First 1 would like to thankDr. Philip Johnsorfor his patience endlessvordsof encour
agementandletting meusehis ICS 414 class.No matterhow worried or frustrated becameyou
alwaysremindedmethatthingswerenever asbadasl thoughtthey were. Thankyou for bringing
out the bestin me andtaking the chancetwo yearsagoon a studentwho hadno clue aboutwhat
potentialshepossessed.

Next, | wouldliketo thankthefollowing pastandpresenmemberof CSDL: Mik e Staver,
William Albritton, JitenderMiglani, HongbingKou, Aaron Kagawa, Chris Chan,and TakuyaYa-
mashita. You have eachin your own way kept me sanethroughoutthe endinghalf of my college
careerMike, William, JitenderandHongbing—we senedthemosttimetogether| thankyou guys
for alwaysbeingtherewith a readyearto listento anything andeverythingthat ever cameout of
my mouth(bothresearctandnon-researchelated)andalwaysbeingreadytalk story

I would alsolike to thank my committeemembers,Dr. Wes Petersorand Dr. Martha
Croshy for for their time andeffort in evaluatingmy thesisaswell asall the helpthey have given
mealongtheway.

TotheFall 2002,ICS 414classthanksfor participatingin the evaluationof thisresearch.
Without you guys, my life would have beenthat muchmoredifficult. You alsogave me my first
tasteof working with “customers”.

Last,but notleast,| would like to thankmy family: mom,dad,andRobert.Behindevery
greatachi&zementis a loving and supportve family. You have all patientlylistenedto all of my
doubtsandinsecuritiesandturnedtheminto words of encouragemerdand supportno matterhow
earlyin thedayor latein thenightthephonerang. Thankyoufor alwaysbeingtherewhenl needed
youthemost.

Abstract

Unit testingis an importantpart of software testingthat aidsin the discovery of bugs
soonerin the softwaredevelopmentprocess ExtremeProgrammingXP), andits TestFirst Design
techniquereliessoheavily uponunitteststhatthefirst codeimplementeds madeup entirelyof test
cases.Furthermore XP considersa featureto be completelycodedonly whenall of its testcases
pass.However, passingall testcasesloesnot necessarilyneanthetestcasesaregood.

ExtremeCoverage(XC) is anew approachhathelpsto assesandimprove thequality of
softwareby enhancingunit testing.It extendsthe XP requirementhatall testcasesnustpasswith
therequirementhatall defect-prondestablemethodsmustbe invoked by the tests. Furthermore,
a set of flexible rulesare appliedto XC to malke it asattractve and light-weight as unit testing
is in XP. Oneexamplerule is to excludeall methodscontainingoneline of codefrom analysis. |
designedandimplementednew tool, calledJBlanlet, thatautomateshe XC measuremergrocess
similar to the way that JUnit automateaunit testing. JBlanlket producesHTML reportssimilar to
JUnitreportswhich inform the useraboutwhich methodseedto betestednext.

In thisresearchl explorethefeasibility of JBlanket, theamountof effort neededo reach
andmaintainXC, andtheimpactthatknowledgeof XC hason systemimplementatiorthroughde-
ploymentandevaluationin anacademi@rvironment.Resultsshav thatmoststudentdind JBlanket
to beausefultool in developingtheir testcasesandthatknowvledgeof XC did influencethe man-
nerin which studentamplementedheir systems.However, more studiesare neededo conclude
preciselyhow mucheffort is neededo reachandmaintainXC.

This researchays the foundationfor future researchdirections. Onedirectioninvolves
increasingits flexibility andvalue by expandingandrefining the rules of XC. Anotherdirection

involvestrackingXC behaior to find outwhenit is andis notapplicable.

Vi

Table of Contents

Acknowledgments e e e v
ADSIract Vi
Listof Tables e X
Listof Figures. e e Xi
1 Introduction. e 1
1.1 TheProblemwithUnitTesting. 2
1.2 TheExtremeCoverageApproach. 4
1.3 JBlanlet: A Systemfor MeasuringXC 6
1.4 Evaluationof XCandJBlanlet 9
1.5 ThesisStatement. 10
1.6 Structureof theProposal 10
2 RelatedWork e e 11
2.1 Variationsof CoverageCriteria. o i e e 11
2.1.1 StatemenCoverage e 11

2.1.2 BranchCoverage. o i i i it e e e 12

2.1.3 ConditionCoverage v i i i i e e e 12

2.1.4 MethodCoverage. o i i e 13

2.2 CodeCoverageStudies. i i e e 13
2.2.1 TestCasePrioritization. 13

2.2.2 Experimentingwith DifferentCoverageGoals. 14

2.2.3 MeasuringCoveragewith FunctionTesting 15

2.3 Coverag€elools e e e e 16
231 Clover. . . . 16

2.3.2 JCorer™ e 17

2.3.3 OptimizeitCodeCoverage. o v i i i it e e e e 17

234 JUnit-Quilt 18

2.3.5 ConclusionRegardingTool Supportfor ExtremeCoverage 18

2.4 CodeCoverageMisconceptiongandMisuses 19
2.4.1 Misconceptions. e e e e 19

242 MISUSES. . . . o i i e 20

2.4.3 SoWhatisCoverageGoodFor? 20

3 JBlanlet SystemArchitectureandDesign oL 21
3.1 SystemFunctionality e 21
3.2 Architecture. e 22

Vii

3.3 Design. e e 24

3.3.1 Packagecsdl.jblanket. maify 24
3.3.2 Packagecsdl.jblanket. mehodset 24
3.3.3 Packagecsdl.jblanket. report 25
3.3.4 Packagecsdl.jblanket. ant 25
3.3.5 Packagecsdl.jblanket. util .o 25
3.4 BuildingaCoveragelTool e 25
3.4.1 Versionl.0 26
3.4.2 Version2.0 27
3.4.3 Version3.0 27
3.5 UserScenario. 29
Evaluationof ExtremeCaoverage i i i it e e e 34
4.1 Qualitatve DataGatheringProcess v i v i i i 34
4.2 Quantitatve DataGatheringProcess. o 36
4.3 Measurements e e 36
4.3.1 Questionnaires. e e 39
4.3.2 ExtremeCoverage v it e e e 40
4.4 Duration. e 41
Results. e 42
5.1 SupportingExtremeCaverage i e e e e 42
5.1.1 ExperiencenvithCREST 42
5.1.2 ExperiencewithHackystat. 43
5.2 ExtremeCoverage. i e e 44
5.3 LOCandMethodMetrics. a7
5.3.1 ReachindlO0%ExtremeCoverage v v i v i v 47
5.3.2 MaintainingExtremeCoverage v i 51
5.4 Questionnaires. e e e e e e 54
5.4.1 Unit TestsareVerylmportant 54
5.4.2 DesigningUnitTestsisHard 54
543 My UnitTestsareGood, 56
5.4.4 JBlanletisHelpful 56
5.45 My MethodCoverages... i i e 57
54.6 UnitTestProblems. 57
5.4.7 JBlanletinfluencedMy UnitTests. 59
5.4.8 JBlanletNeeddmprovement 60
55 Summary e 61
5.6 Limitations 62
5.7 AdditionalObserations 62
ConclusionsaandFutureDirections e 65
6.1 Evaluationlmprovements. 65
6.1.1 RunTimelmprovement, 65
6.1.2 SetTomcatVersion. 66
6.1.3 DataCollectionProcess 67
6.1.4 Gatheringinformatve DataSamples 67
6.2 FutureDirections L 68

6.2.1 How MuchEffortisaNeeded? 68

6.2.2 RefiningtheRulesof XC 68

6.2.3 ComparisorAgainstStatemenCoverage 70

6.2.4 WhereHastheCoverageGone?. v v v i .. 71

6.2.5 XCandSystemQuality, 71

6.2.6 ExercisingtheTestFirstDesignTheory 72

6.3 FinalThoughts e 73
A ExtremeCoverageEvaluationQuestionnaires. 74
B Questionnair®ata e e 77
B.1 StudentA e 78
B.2 StudenB 79
B.3 StudentC e 80
B.4 StudentD 81
B.5 StudentE e 82
B.6 Studentt 83
B.7 StudentG e 84
B.8 StudentH 85
B.O Student 86
B.10 Studentd. e e 88
B.11StudentK 89
B.12StudentL e e 90
B.13StudentM 91

C JBlanletdata e e e 92
C.1 FAQ . . . o 93
C.2 Login e e e e 94
C.3 Newshulletin 95
C.4 Poll . . e 96
C.5 ReSUME e 97
C.6 Techreports. e 98
C.7 TextboOKS e 99
C.8 Tutor. e 100
Bibliography e e e 105

List of Tables

Table Page
2.1 CoverageloolsSsummary oo i e e e e e e e 18
4.1 Daily XCof CRESTSEIVICES. i i e i e e e e e e e e e e 37
4.2 Dailytotal LOCOf CRESTservices v i i it e e 38
5.1 Summaryof Newshulletinmetrics 45
5.2 SummaryofPollmetrics 46
5.3 Changan Techreportsnetricsfor reachinglO0%coverage. 48
5.4 Changdan FAQ metricsfor reachinglOO%coverage. 49
5.5 Changdn Newshulletin metricsfor reachinglO0%coverage 49
5.6 Changan Login metricsfor reachinglO0%coverage. 50
5.7 Changdn Textbooksmetricsfor maintaininglO0%coverage. 52
5.8 Changan FAQ metricsfor maintaininglO0%coverage. 52
5.9 Changdn Login metricsfor maintaininglO0%coverage 53
5.10 Percenthangdan metricsof CRESTservices 64
C.1 CRESTresults e 101
C.2 CRESTresultscont e 102
C.3 Changdan metricsof CRESTServices v v i v it i 103
C.4 Changdn metricsof CRESTservicescont 104

Figure

1.1
1.2
13
1.4

3.1

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

Al
A.2

Cl1
C.z2
C3
C4
C5
Co6
C.7
C.8
C.9
C.10
C.1l1

List of Figures

Page
Summarwiew of JUnitreportfor Hackystatversion2 7
Summarwiew of JBlanletreportfor Hackystatversion2 7
Packageview of JBlanletreportfor Hackystatversion2 8
Classview of JBlanletreportfor Hackystatversion2 8
JBlanletarchitecture 23
Daily XC of CRESTSErIVICES. v i i e e e e e e e e e e 37
Daily LOCOf CRESTSEIVICES. i i i e e e e e e e e e 38
QUESHIONL rESPONSES. .« . . v v v ot e e e e e e 55
QUESHION2 rESPONSES. & . . . v v ot e e e e e e e e e 55
QUESLION3 IrESPONSES. & . . . v v o e e e e e 56
QUESHION IESPONSES. & . . & o o e e e e e e e e e 57
QUESLIONB rESPONSES. & . . & v v o e e e e e 58
Percenthangean metricsof CRESTservices 63
JBlanlet resultsof JBlanket sensopackagen Hackystat3 69
JBlanletresultsof JBlanletSensoclassin Hackystat3 69
Pre-UseQuestionnaire e 75
Post-UsdQuestionnaire. e 76
Extremecoverage- FAQ 93
TotalLOC-FAQ o e 93
Totalone-linemethods FAQ 93
TestLOC-FAQ o o 93
Extremecoverage- Login. L e 94
TotalLOC-Login e e 94
Totalone-linemethods Login 94
TestLOC-Login e e 94
Extremecoverage- Newshulletin 95
TotalLOC- Newbulletin 95
Totalone-linemethods Newshulletin 95

C.12TestLOC - Newshulletin e 95

C.13Extremecoverage-Poll e 96
C.14TotalLOC-Poll e e e 96
C.15Totalone-linemethods Poll 96
C.16TestLOC-Poll e 96
C.17 Extremecoverage- Resume e e 97
C.18TotalLOC-Resume e e e e e 97
C.19 Totalone-linemethods Resume. 97
C.20TestLOC-Resume. e e e e e e 97
C.21 Extremecoverage- Techreports i 98
C.22TotalLOC-Techreports e e e e e e e 98
C.23 Totalone-linemethods Techreports. 98
C.24TestLOC-Techreports. 0 e e e e e e e 98
C.25 Extremecoverage- Textbooks e 99
C.26 Total LOC-TextboOKs e e e e e 99
C.27 Totalone-linemethods Textbooks. 99
C.28TestLOC - Texthooks. e e 99
C.29 Extremecoverage- TULOr o i i e e e e e e e 100
C.30TotalLOC-Tutor e e e e e e 100
C.31Totalone-linemethods Tutor 100
C.32TestLOC-Tutor e e e e e e e 100

Xii

Chapter 1

Intr oduction

Softwaretestingis a crucial elementof Software Engineering. Testingcanaccountfor
approximatelyhalf of thelaborrequiredto produceaworking product[1]. Without properplanning
and effective tests,developmentcostscanincreasedramaticallyduring software developmentas
unexpectedfailuresemege. In mary casesyemoving the errorsthat causedhe failures,or bugs,
becomeghe single largestcostin software development[1]. Error removal requiresdetection,
correction testsdesignedo detectthem,andthe executionof thosetests.

A commonlessonComputerSciencestudentdearnat the beginning of their college ca-
reersis thatthe longera bug remainsundiscaered,the costlierit is to fix. In otherwords,asthe
“age” of a bug increasesmoretime andeffort is requiredto remove it. For example,it costsmore
to fix arequirementsvug foundduringtestingthanit coststo fix acodingbug foundduringtesting
becausdixing a requirementsug requiresfixing the requirementsdesign,andimplementation,
andthenre-testingto ensurethebug is fixed. Fixing a codingbug, on the otherhand,only requires
fixing theimplementatiorandthenre-testingto ensureghebug s fixed[2]. Thereforethe soonera
bugis discarered,the cheapeit is to resole, andtestingcanhelpdiscorer bugssooner

Therearetwo catgyoriesof testingtechniquesusedto find bugs: functionaltestingand
structuraltesting[1]. Functionaltesting(alsoknown asblack-boxtesting[3]) is the verificationof
a systems functionality and featuresas specifiedby its requirements.Implementatiordetailsare
irrelevantasall testingis conductedrom a users perspectie. Onthe otherhand,structuraltesting
(alsoknown aswhite box testing,glassbox testing,or pathtesting[3] [4]) is basedupona systems
implementationBy usingthe structureof a programs sourcecodeto createtestcasesthetesteris
ableto comparehebehaior of testcasedo theintendedbehaior of the sourcecode.

Thetwo testingtechniquesreapplicableduring eachof the threelevels of testingcom-

monly performedduring softwaredevelopment:unit testing,systemesting,andacceptanceéesting

[5]. Unit testing(alsoknowvn asmoduletestingor elementesting[4]) is the exercisingof “a single
programmodule,usuallyin anisolatedernvironment(i.e., isolatedfrom all othermodules)’[6] in
variousway soas*“to shav that[it] doesnot satisfyits functionalspecificationrand/orthatits im-
plementedstructuredoesnot matchtheintendeddesignstructure”[1]. Thislevel of testingcanuse
eithera structuraltestingtechniqueor a functionaltestingtechnique.Systemtesting,a functional
testingtechnigueattemptgo uncover inconsistenciebetweera systemasa whole andits require-
ments[6]. Acceptancdesting,anotherfunctionaltestingtechnique assureshe enduserthat the
softwareis stableandreadyfor deployment[5]. The techniquethatdiscoversbugsearliestin the
developmentcycleis unit testing.

1.1 The Problemwith Unit Testing

Unit testingoften begins assoonasthe corefunctionality of a programis implemented.
After this first phaseof coding,programmersiave sourcecodeto test. The threemain motivations

for unit testingare[7]:

¢ Unit testingimprovesmanagemenf the individual units, or “modules”,or combinationsof

modulesheforethey arecombinedto form the entiresystem;

¢ Unit testingsimplifies finding and correctingbugs, or delugging, sincethe testis already
exercisingthe modulein which the bug originates. Thus, a unit testeliminatestime spent
searchindgor the guilty modulecontainingthe bug; and

o Unit testingallows multiple modulesto betestedn parallel.

A commonresultof not performingunit testingis wastedtime diagnosingthe causeof bugsfirst
found during systemtesting[8]. At this pointin developmenttrying to find the causeof the bug
could be very time consuming.Fixing thesebugs cantake effort away from otherplannedtesting
phaseslik e acceptanceesting.Discoveringa suficient numberof bugsmightleadto adelayin the
delivery dateof a system.

In traditionaldevelopmentsomecodeis developedprior to (or in parallelwith) thedevel-
opmentof thetestcode. Testerseedto have accesso amodules specificationandsourcecodeto
designpropertestcaseskFirst, black-boxtestingtechniqueslerive testcasegrom thespecifications.
Secondwhite-boxtestingtechniquesreappliedto the sourcecodeto verify its logic [7]. To best
ensurghatintimateassociatiorwith a moduledoesnotinfluencetesting,thetesteris oftenrecom-

mendedo bedifferentfrom the programmerHowever, in the caseof unit testing,the programmer

2

andthetesteris typically the sameperson[1] [9], reducingthe costof decidingwhetherbugsare
dueto errorsin themoduleor thetestcase4].

In ExtremeProgramming(XP), unit testcodeis actually developedprior to the system
sourcecode! Then,after somecodeis written, it is exercisedby the unit tests. Furthermorepne
hundredpercentof the unit testsmust passbefore developmentcan proceed. This processthen
repeatsthroughoutthe software developmentlife cycle as eachfeatureis added. Someauthors
claim that this test-firstdesign(TFD) approachactually improves the quality of testingand the
resultingsystem. In a nutshell,using TFD is claimedto have the following impacton software
developmen{10]:

e Thecodedevelopedis easielto testsinceit is beingimplementedpecificallyto satisfyatest;
¢ Themoredifficult task,designingtests,is completedprior to the easiertask,coding;
¢ Thesizeof thecodeis smallersinceno effort is spenton extra featuresand

¢ Theoveralldevelopmenprocesss performedn shorterincrementsallowing for easiemod-

ification/adaptationo changes.

In applicationdomainsthat evolve rapidly, XP provides guidelinesthat help programmersadapt
quickly to new demand$11]. Programmerbegin with implementingunitteststhatarecreatedrom
the currentrequirementsandthenproceedo codeuntil the entiresuite of unit testspass.No time
is wastedon implementinganticipateduture featureghat may never be needed.In the meantime,
programmershouldbe refactoringtheir codecontinuouslyto keepit flexible andadaptable.The
existing unit testshelp programmersluring refactoringby ensuringthatmodificationsdo not break
the systemandthatthey still resultin the correctfunctionality

However, it is possibleduring refactoringfor segmentsof codeto remainin the system
dueto an oversightby the programmer Unit testing cannotdetectthesestagnantines of code
becausehey arenolongerinvoked. Onecouldimaginethatasthesizeof thesystemincreasesvith
eachiteration,the sizeof stagnantodecouldalsoincrease Enoughstagnantodecouldincrease
the cognitive compleity andthe amountof time neededo implementsubsequerfeatures.

Oneapproactio reducingthis problemis to measureestcasecoveragej.e.,ametricthat
measureshe amountof codeexercisedby testcasesWith a coveragemeasuremenprogrammers
will always know how much and which piecesof their code are invoked during testing. Then
they canredesignor designnew teststo thoroughlyexercisethe untestedcode. With this extra

effort, the possibility of the unexercisedcodecontainingerrorsreducesjncreasingconfidencean

3

thecorrectnessf theprogram[9]. Furthermorein the casewhereall testspassandcoverages not
100%,programmersaneasilylocateunneeded¢odeandpromptlyremoveit, reducingthesizeand
cognitive compleity of their code.

Boris Beizerclaimsthat during unit testing100% coverageis necessaryl]. However,
this level of coverageusuallydropsasmodulesarecombinedor if testingis doneon hugesystems.
Ontheotherhand,Brian Marick conducteda studywhereheexaminecdthedifferentgranularitieof
coveragewhichwill bediscussedurtherin Chapter2 [12]. From his study he claimedthat 100%

of “feasiblecoverage”is anacceptabléevel of coverageto achieve.

1.2 The ExtremeCoverageApproach

To further investigate“feasible” levels of caverageand unit testing,| have designeda
methodcalled “Extreme Coverage”(XC). It is anapproachto unit testingthat, like XP, requires
100%conformanceatall times,but appliesaflexible setof rulesthateliminatesuntestabler trivial
methodsrom coverage.ln otherwords,all testablenon-trivial methodseedto beinvoked atleast
onceby the unit teststhroughoutdevelopment.

Of the differentcoveragegranularitiesthat are discussedn Chapter2, the focusof XC
is methodcoveragebecauseat can be calculatedquickly and efficiently, yet still provide useful
feedbaclon the quality of testcasesFor example,during highly volatile periodsof softwaredevel-
opmentwherea systems sourcecodeis continuouslyevolving andrefactoredat a relatvely quick
pace,an unirvoked methodsenesasa warningsignto the programmer It cansignalthatanother
testcaseas neededo invoke themethodor thatanerrorin codingexistsif themethodwassupposed
to beinvoked, or thatthemethodis nolongerneeded.

Interestinglythereis norulein XP statingthatevery methodwritten needgo be executed
duringtesting.However, KentBeck claimsthatwhena systemis developedby closelyfollowing a
Test-DrvenDevelopmentechniquelike XP, theresultshouldyield 100%statementoverage13].
Althoughsourcecodeshouldonly be written to satisfyatestcasejt is impossibleto guarante¢hat
all methodsare coveredas programmersnove further into development,regardlessof the belief
thatcreatingtestcasegrior to codingincreaseshelevel of testcasecoverage[10].

In its “purest” form, 100%methodcoveragerequiresinvoking every methodduringtest-
ing. However, it is not clearwhetherthis approacho coverageis cost-efective. For example,test
casessolelyaimedat exercisingmethodswith only oneline of codecanbe expensve to createand

maintain,yet contrikute little to improving softwarequality sincethe method(in mostcases)s triv-

ial to verify throughvisualinspection.For example,one-linemethodsn a Java classoftenlook as

follows:

public class Foo {
private int foo;

/** Sets new value of Foo instance to foo. */
public Foo(int foo) {
this.foo = foo;

/** Returns the value foo. */
public int getFoo() {
return this.foo;

Both accessoandmodificationmethodscanbe quickly verified by visualinspection.If the above
accessgror “getter”, methodrequiredits own testcase the simplestimplementatiorof a testcase
usingthe JUnit[14] testingframeavork looks somethindike:

public class TestFoo extends TestCase {

public void testGetFoo() {
int foo = (new Foo0(3)).getFoo();

assertEquals(“Checking value of foo”, foo, 3);

First, aninstanceof the Foo classis initialized with aninteger value. Thenthe getFoo method
is invoked. Finally, a testverifieswhetherthe integer valueretrieved is correct. Thesethreesteps
areessentiafor thetestto run successfullyln theworstcasescenariocreatinga testcasefor each

additionalmethodsimilar to getFoo increaseshe amountof work by 4 LOC anda few minutes

for designandimplementatiorpertestcase.ln Hackystat[15], over 400 of the approximately900
methodsn the systemare one-linemethods.Testcasedor thesewould addalmost1600LOC to
thesystem!

From this example, it is clearthat designingandimplementingtestcasedor relatively
trivial methodscanrequirea substantiahmountof work.

In addition,somemethodsareuntestableFor example,abstracimethodsn Javaarenever
invoked. Thus,“pure” methodcoveragecannot only beimpractical,but canalsobe impossibleto
achieve. However, methodcoverageof all “non-trivial” methods,.e., methodsthat containmore
thanoneline of code,andarenotabstractjs notimpractical.

1.3 JBlanket: A Systemfor Measuring XC

JBlanlet [16] is a methodcoveragetool | developedin the Collaboratve Software De-
velopmentLaboratory(CSDL) at the University of Hawai'i (UH). As with otherapplicationsused
with Java programsthe“J” in JBlanlet standsfor Java, which is alsothe programmindanguage
the systemis written in. “Blanket”, a large pieceof fabric usedto cover a bed (asdescribedby
the Merriam-WebsterDictionary), representshe methodcoveragethis systemprovides. Coverage
is measurabldor both stand-alonesystemsandclient-serer systemsamplementingunit testswith
JUnit. Theonly sener usedsofaris ApacheTomcat[17], althoughit shouldbe easilyadaptabldo
otherwebseners.

TheJBlanlet systemhasthreemajorcomponentsonethatcountsthetotal methodspne
that modifiesbyte code, and one that collectsand reportscoveragedata. After a systems byte
codeis modified, the total methoddn the systemarecalculated.Any subsequergxercisingof the
modified systemproducesoutputfrom eachmethodinvoked in XML format. Thenthe coverage
reportingtransformsthe XML outputinto HTML pagessimilar to thosecreatedby JUnit. (See
Figurel.2andFigurel.1.) Fromthe reports,userscanseehow mary of their systems methods
wereinvoked by their testcasesanddrill down to eitherthe packagedevel (Figure 1.3) or class
level (Figurel.4)for moredetailedfeedback The JBlanlket reportuserinterfaceis designedo feel
“intuitive” to usersfamiliar with the JUnitreportinterface.

For example,integrating JBlanlet into the Hackystatbuild systemis a two-stepprocess.
Thefirst stepcountsthe total methodsin Hackystatand modifiesits byte codeafterthe systemis
compiled. The secondstepcollectsandreportsthe coveragedata. The summaryproducedafter
runningJBlanket with Hackystatthatis outputto the screernookslike:

'Bf Unit Test Results, - Mozilla

File Edt Vew Go Bookmarks Tools ‘Window Help
B%Ii - Fu);%:rd v R:%d étc% |4‘Fl\e.J‘UC.J‘cvsJ‘hackystat2)’bulld;‘test_output,ilndex.htm\ j é.Searl:h| P_r:lft.

=
Home j Unit Test Results

Designed for use with JUnit and Ant,
Packages
hackystat.client.cli
hackystat.client.notificatio Summary
hackystat.client.sensor.jun «
4 S Tests Failures Errors Success rate Time

- 79 u] o] 100.00% 180,953

Classes .)
Note: faifures are anticipated and checked for with assertions while errors are unanticipated.
TestactiveFileDailyStatistic
TestactiveFileDailyStatistic Packages
TestactiveldleChartCommar . .
N Name Tests Errors Failures Time(s)
TestactiveTime
Testactivitylog hackystat.client.cli 4 1] 1] 7.547
TestAlertManager hackystat client.notification 7 [u] n] 6.140
TestBadDataEntry
TestBadDatalog hackystat.client.sensar. junit 1 1] o 4.969
TestchartFactor hackystat client.util 1 0 0 0.031
TestComplexity ThresholdAle T—— il 2 7 7 g
ackystat . commaon. uti .

TestComplexity ThresholdAle
TestComplexity Threshold&le hackystat server admin 1 1] 1] 0.078
TestConfigurationCommand hackystat.server. alert 2 [a} i} 30,453
TestConfigurationManager
TestDailyDiarvCommand hackystat.server.analysis.chart 1 0 n] 3.515

-

ﬂ j hackystat.server.analysis.daily 7 1] 1] 6.663 ﬂ

Figurel.1. Summaryiew of JUnitreportfor Hackystatversion2

T8 JBlanket Test Results. - Mozilla

File Edit Wiew Go Bookmarks Tools Window Help

4 h ‘§ file: {ffiC: fovs fhackystat2 fbuildfjblanket finde:, htrnl - 5earch| r':i
Back Forward Reload Stop |& HiCH s ik ! i ! J e Print
N
Home j JBlanket Test Results
Designed for use with JBlanket, JUnit and Ant.
Packages
hackystat.client.ckmetrics
hackystat.client.cli Summary
ackvstat,client.cli.shell X
4 i 2 Methods Methods Subtotal Tested Untested %% COvVEerage Time
= total one-line multi-line multi-line multi-line multi-line
Classes j 1249 510 739 514 225 69.6% Mar 5, 2003
. . . . 12:53:47 PM
ActiveFileDaily Statistics T
ActiveFileDaily Statistics Ce Iltlﬂoti: ds total = (Method i subtotal fi-line)
A ; - ethods total = {Methods one-line + Subtotal multi-line
Act?veFlleDall StatisticsPo Subtotal multi-line = {Tested multi-line + Untested rmulti-lines)
ActiveldleChartCornrmand % coverage multi-line = (Tested multi-line / Subtotal multi-line)
ActiveldleChartData
ActiveTirmne Packages
Activity
o Name Methods Methods Subtotal Tested Untested %
ActivityEntry - = 2 s
. total one-line multi-line multi-line multi-line covered
Activitylo multi-line
Activity ShellCornrmand
ActivityType hackystat.client.ckmetrics 38 17 21 1] 21 0.0%
AdminEmailCammand haclystat.client.cli 47 14 33 2z 11 66.7%
AlertManager . .
5
analvsiscellData hackystat.client.cli.shell 38 11 27 14 13 51.9%
AutosendShellCommand hackystat.client.notification G5 8 27 17 10 63.0%
AutoSendShellCommand X . Lo
ﬂ » hackystat.client.sensaor.junit 15 4 11 [5 54.5% ﬂ

Figurel.2. Summaryiew of JBlanlet reportfor Hackystatversion2

T8 JBlanket Test Results. - Mozilla

=10l x|

hackystat.client.ckmetrics
hackystat.client.cli -

o e

hackystat.client.cli.sh

Classes

Activity ShellCormrmand
&utosendshellCormmand
AutoSendshellCommandTas
JunitShellCommand
LoadshellCommand
CoSizeshellCommand
PingShellCommand
ShellCommandadapter

D

File Edit Wiew Go Bookmarks Tools Window Help

v« . »] — s blarket = 3

Bk hd B hd Reoed Stop L& Files {11 fowsfhackystatz fbuildfiblanket finde:x. html j 2‘5earch| v -
Home ﬂ JBlanket Test Results

Packages Designed for use with JBlanket, JUnit and Ant.

Package hackystat.client.cli.shell

Classes
Name Methods Methods Subtotal Tested Untested %
total one-line multi-line multi-line multi-line covered
multi-line
ActivityShellCormrmand 6 1 5 5 1] 100.0%
AsutoSendshellCommand 3 1 2 2 1] 100.0%
AutoSendShellCommandTask 2 1 1 1 1] 100.0%
JunitshellCommand 4 1 3 3 1] 100.0%
LoadshellComrmand 7 1 6 1 5 16.7%
CoSizeshellCommand 11 3 g 1 7 12.5%
PingShellCommand 3 2 1 1 1] 100.0%
ShellCommandadapter 2 1 1 1] 1 0.0%

Figurel.3. Packageview of JBlanlet reportfor Hackystatversion2

T8 JBlanket Test Results. - Mozilla

hackystat.client.ckmetrics

hackystat.client.cli

|
ackvstat,client.cli.shell i
4 i 3

hackystat.client.cli.sh

Classes

Activity ShellCormrmand
AsutoSendshellCommand
AutoSendshellCommandTas
JunitShellCommand
LoadshellCommand
CoSizeshellCommand
FingShellCommand
ShellCommandadapter

1

File Edit Wiew Go Bookmarks Tools Window Help
ﬁ A ’@i‘“ - file:f1C: hackystatz{build/jblanket findes:. html - S h =%
o . - Relosd S |& il 1 fows thackystat2fbuildfiblanket findes. htm J 2R Searc| | =
N
Home ﬂ JBlanket Test Results
Designed for use with JBlanket, JUnit and Ant.
Packages

Class hackystat.client.cli.shell. AutoSendShellCommandTask

Name Methods Methods Subtotal Tested Untested %
total one-line multi-line multi-line multi-line covered
multi-line
AutoSendshellCommandTask 2 1 1 1 1] 100.0%

Tested Methods
Name

<init={ hackystat.client.cli.Sensorshell)

UnTested Methods

Name

One Line Methods
Name

rung)

Figurel.4. Classview of JBlanlet reportfor Hackystatversion2

[iblanketreport] HAFHRKIIIAKIIHARIIIRKIIIAKIIHALRK *k x PP

[jblanketreport] Method-level Coverage:

[iblanketreport] Al methods: {total=1249 }

[iblanketreport] One line methods: {total=510 }

[iblanketreport] Non-one line methods: {total=739 }

[iblanketreport] Tested methods: {total=514, percent=70% }

[iblanketreport] Untested methods: {total=225, percent=30% }
[iblanketreport] FRFFFIKKIIERRITTITTTTTIFIIF KKK A K Kk kkkkk kkkkk kkkkk

With this summaryprogrammerganeasilyseethereare225methodghatcanstill betested.They
canthenperuseheHTML reportfor furtherdetailsaboutwhichmethodsvereandwerenotinvoked
duringtesting.

By usingJBlanlet, programmerganknow at all timesthe numberof unit teststhatpass
aswell astheirsystems XC. XC datacanhelpthemidentify potentiallyunneedeaode.It canalso
help programmergsestmore efficiently, by designingteststhat exercise(or cover) the mostcode

possible.

1.4 Evaluation of XC and JBlanket

Undegraduatestudentsnrolledin a secondsemesteintroductorySoftware Engineering
courseassistedvith the evaluationof this research.The classconsistedf 13 studentghatimple-
mentedeight web servicesusing Java, JSR anda commonCVS repository They participatedin
threeseparateactvities: a Pre-UseQuestionnaireyseof JBlanlet, anda Post-UseQuestionnaire.

After tenweeksof developmentthe studentdilled out the Pre-UseQuestionnaird¢o as-
sesgheir comfortwith andconfidencean their unit testingskills. | thenpresented brief introduc-
tion on how to invoke JBlanlket on their projects.Beforeclasswith the permissiorof the professar
| integratedJBlanletinto thebuild processesf eachservice.They thenusedthe systentfor approx-
imatelyfive weeks.During thistime, | dowvnloadedthe projectsfrom the commonCVS repository
andinvoked JBlanlet ontheserviceonceevery threedays.At theendof the semestetthestudents
filled outthe Post-Use&Questionnairéo onceagainassestheir comfortwith andconfidencen their
unit testingskills aswell astheir opinionon the usefulnes®f andimprovementsor JBlanlket and
XC.

I comparedandanalyzedhe resultsfrom their Pre-Useand Post-UseQuestionnairage-
sponsego find out how coverageinformationinfluencedtheir unit testing. The coverageresults

wereaggrgatedandplottedon line graphsandbar chartsfor analysis.

1.5 ThesisStatement

Thisresearchinvestigateshe concepiof XC andgathergualitatve andquantitatve data

in orderto assesshefollowing hypotheses:
1. Technologyto supportXC is feasibleandpractical.
2. Theeffort requiredto achieve andmaintainXC is reasonable.
3. Knowledgeof methodcoveragecanhelpwith systemdesignandimplementation.

Thefirst hypothesisclaimsthatit is possibleto implementtechnologysupportfor calculatingXC
thatcanbedeplo/edin amoderndevelopmenternvironmentandprocess.

Thesecondchypothesisaysthatdueto thecoarsegranularityof thecoveragemeasureds
well astheadditionalrulesin XC, the amountof effort requiredto achieze andmaintain100%XC
shouldbe appropriatefor the benefitsobtained.Furthermorejt shouldtake lesseffort to maintain
completecoveragethanto achiere completecoverage.

The third hypothesisconcernsa chainreactionof events. Whenstudentsknow the test
casecoverageof their systemsthey will needto eitherwrite new testcasesr modify existing test
casesf coverages not 100%. Eitherway, they will searchor waysto invoke moremethodsduring
testing. By trying to increasecoverage,studentsshoulddiscover betterwaysto implementtheir

softwaresuchthatit will beeasierto test.

1.6 Structure of the Proposal

Theremaindeof this thesisis asfollows. Chapter2 discussegrevious studieshatinflu-
encedhisresearctandaselectiorof coveraggoolsthatinfluencedheimplementatiorof JBlanlet.
Chapter3 describeghe functionality andarchitectureof the JBlanlet system.The evaluationpro-
ceduresaredescribedn Chapterd andresultsof the above hypothesesirediscussedn Chapters.

Finally, Chapter6 containsthe conclusionsandpossiblefuture directionsof thisresearch.

10

Chapter 2

Related Work

Testcodecoveragehasbeenmeasuredor at leastthreedecadegl]. During this time,
numerouswhite paperstools, and experimentshave beenpublished,touchinguponthe different
granularitiesof coverage. In this chapter commongranularitiesof coverage,previous research,
existing tools,andcaveatsof usingtestcasecoverage(all of which guidedthe designof this study)
will bedescribed.

2.1 Variations of CoverageCriteria

Coveragecriteria(alsoknown aslogic coveragecriteriaor completenesesriteria)refersto
a specificgroupof pathsthrougha programthat canbe executedduringtesting[4]. Beizerclaims
that"Path-testingechniquesrethe oldestof all structuraltesttechniques’1]. He discoveredthat
IBM hasrecordsof its usefor over two decadesSincethatearliestknown referenceo a coverage
analyzermary variationsof coveragecriteriahave evolved. Amongthemostcommonin use(listed

in decreasingranularity)arestatementoverage pranchcoverage andconditioncoverage4].

2.1.1 StatementCoverage

Statementoveragerecordswhich statementsre executedduring testing. Also known
asline coverage segmentcoverage andbasicblock coverage]3], this criteriadoesnot requirethe
presenceof sourcecode. Instead,line numberscan be inserteddirectly into the compiled code
for calculatingcoverage. For example,compile Java programscompiledwith delug turned“on”

includesline numbersvhereagompilingwith detug “off” excludesline numbersHowever, some

11

consideiit to bethewealestgranularityof coverage]4] [7] dueto its insensitvity to arny condition
or multiple conditionstatement.
For example,considerthefollowing Java statements:

line 1. if (@ > b) {
line 2: b =a + b;
line 3. }

line 4. a/ b;

Regardlesof the valueof a or b, executingline 1 atleastcountsit towardsthe coveragemeasure-
ment.If ¢ = 10 andb = 9, thistestcasewill causdines 1-4to be executedsuccessfullyyielding
100%coverage.However, furthertestingwith thecasewherea = 10 andb = —10, valuesthatwill

causdine 4 to fail, will never beconsidered.

2.1.2 Branch Coverage

Branchcoveragechecksfor both true and false evaluationsof all booleanexpressions.
Also known as decisioncoverage,all-edgescoverage,and basispath coverage[3], this criteria
consideramultiple decisionbooleanexpressionseparatedby logical-andor logical-orasa single
booleanexpression.

Considetthis modifiedversionof the above statementoverageexample:

line 1. if (@ >hb) & (b >0) || (b == -3a)) |
line 2: b =a + b;

line 3. }

line 4. a/ b;

Problemsarisein programminglanguageghat useshort-circuitoperators.In Java, lines 1-3 will
be executedaslongasa > b andb > 0. They will not be executedif a <= b. Therefore the
expressiorb == —a will never beinvoked, sothetestemwill never know thatthe expressiorshould

insteadbed! = a until valueslike ¢ = 10 andb = —10 appear

2.1.3 Condition Coverage

Conditioncoverages amorethoroughcaseof branchcoverage Insteadof treatingmulti-

pledecisionboolearexpressionseparatethy local-andor logical-orasasingleboolearexpression,

12

eachsub-epressioncombinationis consideredisseparatdests. Fromthe branchcoverageexam-
ple, therewould be 23 combinationsof testssince eachsub-epressionhaseithera true or false
value andtherearethreesuchsub-epressions.Therefore,the numberof testcasesper multiple

decisionboolearexpressionsncrease®r decreaseby afactorof 2.

2.1.4 Method Coverage

The coveragecriteria investigatedn this researchs methodcoverage. Also known as
function coverage,call coverage,and method-leel coverage[18], this criteria usesmethodsto
form pathsthroughthe systemand measureshe percentagef methodsinvoked during testing.
Method coverageis particularly usefulduring the beaginning stagesof testingsinceit hasa much
broaderscopethanthe previous criteriamentionedandis thereforecheapeto implementandless
expensve to measureFurthermoregxercisingevery methodin asystematleastonceduringtesting
canincreaseconfidencdn the systems correctnes$9] beforemoving on to more specifictesting
techniques.

In addition, it obviously requireslesseffort for programmergo achieze higherlevels of
methodcoveragethanstatementoverage pneof the simplestmeasurement® calculatg19] [20].
The only way to exerciseevery statements to exerciseevery methodthat containsthoselines of
code. (The exception,of course|s abstracimethodsn Java). Moreover, thereis no proof thatthe
time spenttrying to increasdevels of statementoverageyields substantiallyhigherbenefitsthan
spendindesstime trying to increasdevels of a coarsegrainedcoveragelike methodcoverage.

2.2 CodeCoverageStudies

Variousstudieshave beenconductedn large andsmallscaleswith thedifferentcoverage
granularitiego discorer theideallevel for testcodecaveragesandthepossibleémpactsthey have on
the quality of software. However, only a limited numberof themhave includedmethodcoverage.
Thethreeexperimentsgdescribedshav thatmethodcoverageis a useful,albeitlimited, criteriathat
is acceptabl@uringinitial stage®f softwaretesting.

2.2.1 TestCasePrioritization

In [21], Elbaumet. al presented studycomparingthe effectivenesof usingeitherstate-
mentcoverageor methodcoveragefor prioritizing testcasesduring regressiontesting. Eachcov-
eragetype wasmeasuredn four differentways: total coverage additionalelementsnvoked, total

13

fault-exposingpotential(FEP),andadditionalFEP potential. Theseeighttypesof coveragesvere
executedon eight C programswith sizesrangingfrom 138to 6218lines of code(LOC), seven of
whichwereunder520LOC.

They foundthatwhile statementoverageperformedbetterthanmethodcoverage there
weresereral casesn which the differencebetweencoverageswerenot significant,andtwo cases
in which a methodmeasurememerformedbetterthanits statementounterpart.Furthermorepn
theaverage thevariousmethodcoveragemeasurementgerformedsimilarly to statementoverage
measurements.The ranking for both typeswere: 1) additional FEP potential, 2) total FER 3)
total coverage,and4) additionalelementsnvoked. The authorsalsonotedthat, while someloss
of effectivenesscanbe expecteddueto its coarsergranularity their findings suggesthat benefits
of methodcaoverageshouldbe further investigatedsinceit is the “less costly andlessintrusive”
approach21].

This study relatesto the usefulnes®f methodcoverage. If it canperformsimilarly to
a finer granularityduring regressiontesting, perhapst canbe usedduring unit testingto obtain

helpful dataaboutthe quality of thetestcasesandto provide suggestion$or futuretestcases.

2.2.2 Experimenting with Differ ent CoverageGoals

An experimentconductedoy Marick [12] suggestedhat high levels of coverageareac-
ceptablegoalswith variousgranularitiesof testcasecoverage. He measuredhe costof reaching
near100% coveragewith branchcoverage,loop coverage,multi-condition coverage,and weak-
mutationcoverage.Costwasdeterminedn termsof the amountof coverageattained the number
of testcasesdocumentedthe amountof time neededo designthe testcasesandthe numberof
conditionsarguedto not be feasibleto test. Infeasibleconditionsincludedconditionswhich are
eitherimpossibleto testor arenot worthwhiletesting.

Theresultsof this single personexperimentshaved that aftertwo tries, branchcoverage
reached®5% usingblack-boxtestingtechniquesa level notedto be higherthanthosereachedn
previous studies.In addition,whenbothloop andmulti-conditioncoverageresultswerecombined,
their total reache®2%. To exercisethe remaining8% would have required*3% of total time, 2%
of total testconditions,and3% of thetotal testcases[12]. By usingthesevariousgranularitiesof
coveragethe experimenteiconcludedhat“100% feasiblecoverageis areasonableestinggoalfor
unit testing”[12].

However, this experimentwasconductedn an extremelysmall scale. The experimenter
wasthe only personconductingthe experiment(i.e., creatingmissingspecificationsgesigningtest

14

casescalculatingthe amountof time useddesigningthe testcasesgtc.). The systemaneasured
were C programsconsistingof 30 to 272 LOC. Resultsfrom suchsmall experimentscannotbe

generalizedo includelarger systemg22] or begeneralizedo othergranularitiesof coveragesince

eachcoveragetype hasdifferentweaknessef3].

Therefore thesefindings cannotbe generalizedo methodcoverage. So, the amountof
effort neededo reach100% methodcoverageremainsunknavn. In this researcheffort will be
measuredn termsof the total LOC, total testLOC, andthe amountof coverageobtainedfor the
systemmeasured.To ensurethe measuremenf only “feasible coverage”,rulespertainingto the

typesof methodsncludedin coveragewill beapplied.

2.2.3 Measuring Coveragewith Function Testing

Piwowarski et. al studiedthe benefitsof statementoverageon a large scalesoftware
systemat IBM [23]. They measuredtatementoverageduring unit testing,functiontesting,and
systemtesting. Initially, they obsered thattestersoverestimatedheir coveragewhenthey did not
know their actualcoverage.For example,someestimatedachiazing coverageof 90%or above, but
actuallyreachednly 50%to 60%. However, after measuringcoverage they foundthatproblems
suchasunreachableodeor unexecutablecodeprevented100%coverage For example,codeman-
agingunlikely errorsduringnormalexecutionis notreachedindemormalcircumstancesr special
hardwarecommandsannotbe executedduringtesting[23].

Theauthorsconcludedhat“70% statementoverages thecritical pointfor our function
test”, “50% statementoverageis generallyinsufiicient”, and“beyonda certainrange(70%-80%),
increasingstatementoveragebecomedifficult andis notcosteffective” [23]. They alsofoundthat
with coverageinformation,improvementsto testcasescould increasecoverageby 10%. Further
more,while 100% statementoverageis not feasibleduring function testing,it is feasibleduring
unit testing.

From their experiment,it is clearthat knowledgeof statementoverageinfluencedthe
implementationof test caseswhile trying to increasecoverage. This is probablythe casewith
methodcoveragealso. However, in what waysarethe testcasesnodified? For example,doesit
requiresignificantlymorecode,or minor adjustments$o currenttestcasego increasecoverage?

Thesethreecasestudieshave influencedthe designof the evaluationof the usefulnes®f
XC. The next sectiondescribegxisting coveragetoolsthatinfluencedthe designandimplementa-
tion of JBlanlet, the systemusedto gatherdatafor this research.

15

2.3 CoverageTools

Numerouscommercialand non-commerciatools currently availableinclude morethan
onetype of coveragemeasuremerdandreportingfunctionality All of theminstrumenta systems
codein differentways. However, noneof themwereconsideredappropriatdor this research Al-
thoughthetools may or may not have offeredmethodcoverage the mainreasongehindthis deci-
sionarethatmajority wereClosedSourceprojectsand/orwould have beenprohibitively expensve
to obtainanddeplgy.

With ClosedSourceprojects,they eitherdid or did not offer methodcoverage. When
methodcoveragewasnot included,the tool could not be extendedto includethe neededcoverage
measurementWhenmethodcoveragewasincluded,obtainingthemrequiredeitherspendingnore
than a hundreddollarsto purchasea single license,or usingtrial versionsfor at most 30-days.
Sinceundegraduatecollege studentsverethe evaluators, requiringthemto purchasehe licenses
for this researctor be constrainedy the lifespanof trial versionsdid not seemfeasible. Either
actionwould mostlikely have frustratedthe evaluatorpopulationandhave neggative influenceson
theresearchiesults.

Therefore the coveragemeasuremertbol usedin this researcmeededo be accessible
andavailablefor useunderary situation.Hence to avoid re-davnloadingexpiredtrial versionsthe
ohviouschoicewasto try to usean OpenSourceProject.

Furthermorethe coveragetool neededo be extendible. For example,this researchex-
cludedone-linemethodsfrom coverage. Sincethis is not a typical rule appliedwhenmeasuring
coveragethe chosentool would needto be alteredsuchthat one-linemethodswerenot included
in coveragecalculations.Sincethis is not possiblewith CloseSourceprojects the useof anOpen
Sourceprojectbecamanoreessential.

The coveragetools reviewed hereappearto be amongthe mostpopular(i.e., appeared
higherup in the Google[24] ranking)for Java programs.

2.3.1 Clover

Clover [25] is animpressie codecoveragetool that determinesvhich sectionsof code
arenot executedduring testing. The currentversionof Clover, version0.6b,comeswith two JAR
files andcanmeasurenethod,statementandbranchcoverage.With the sourcecode,it produces
byte codethatinclude both the original programand Clover’'s methodsto recordtracedata. This
automaticadditionensureghatthe userdoesnot needto manuallyaltertheir sourcecode.Clover’s

16

outputis viewableaseitherXML, HTML, or througha Swing GUI. Any unexecutedcodeis high-
lightedfor quick identification.

Usersneedto have accesso the sourcecodeof the systembeingtestedbecauseClover
recompilesthe entire systemto includeits “coveragegatheringmechanismi. While this approach
restrictsthe tool from systemsn which only byte codeis available, it allows usersto include or
excludespecificchunksof codefrom coverageby addingClover specificcommandgo the source
code.

In addition,this is a ClosedSourcesystemandit is not clearwhetherit canbe usedwith
client-serer systemsThe projectsusedfor this evaluationuseTomcatasthe sener.

2.3.2 JCover ™

With JCover [26], userscanwork with a programs sourcecode,classfiles, or both to
calculatestatementpranch,method,class,file, or packagecoverage. It can conductclient and
senerside testingwith ary “standards-complidnJVM.” An additionalJava API is includedthat
allows the userto “programmaticallycontrol JCover’s coverageagentat runtime” [26]. This API
mustbeintegratedinto the users testframavork. All coveragedatais archivedfor futureanalysis.
The datacollectedcanalsoaid in optimizing testsby including whethercoveragesoverlapor are
disjoint. Thereportsareformattedin HTML, XML, CSV, andMDB.

JCorer is not an OpenSourceproject, but a fully functional 15-dayevaluationcopy is
available. This tool’'s web pagedoesnot clearly statewhat its the procesof datacollectionis or

whatsenersit canbeusedwith.

2.3.3 Optimizeit Code Coverage

Optimizeit CodeCoverage[27] is a part of Borlands Optimizeit Suite,which alsocon-
tains two other tools, Optimizeit Profiler and Optimizeit Thread Delugger It measure<lass,
method,and statementoverage. Dependinguponthe type of measurementf cancalculatethe
numberof timesa class,method,or line of codeis executedin real-time. A GUI is alsoavailable
for quick identificationof results.The sourcecodeis notrequiredfor this coveragetool. Classand
JAR files aresufiicientto receive anaccurataneasurementt alsoworkswith applicationseners.

While thisis notanOpenSourceproject,it alsooffersa 15-daytrial version.In addition,
OptimizeitCodeCoverageseemdo shav coveragefor every classin anapplication.Theuserdoes

notappeato have the optionto focuson a specificsubsebf classes.

17

2.3.4 JUnit-Quilt

JUnit-Quilt [28], or Quilt, is an OpenSourceprojectcreatedby David Dixon-Peughand
Tom Copeland Currentlyit offers statementbranch,andpathcoverage. Throughbyte codeinstru-
mentationclassesareloadedby a ClassLoadespecificallydesignedor Quilt beforethey areloaded
into the JVM. Statisticsare kept, from which coverageis calculated.Resultscanbe displayedin
HTML or XML usingits reportingfunctionality

Quilt is releasedunderthe ApachelLicense[29]. Therefore someonetherthanthe au-
thorscanextendor improve thesystem However, while theirlicensingmakesQuilt availablefor use
free of chage, | wasunableto modify it to includemethodcoverageandintegrateit with Tomcat.

2.3.5 ConclusionsRegarding Tool Support for ExtremeCoverage

From the coveragetools reviewed, both Clover and Quilt were consideredas possible
candidatesn this research.However, its price aswell asits trial versionperiod hinderedaccess
to Clover. It would be detrimentalto this studyif the evaluatorswererequiredto obtainnew trial
versionsafterthe old trial versionsexpired. Furthermorejf they would not be ableto run Clover
with Tomcat,the evaluatorswould not be ableto useit to measurdgheir systems(SeeChapter4.)
Finally, asa CloseSourceproject,Clover is not extendibleto includethe non-traditionakule(s) of
XC.

With respecto Quilt, while it is an OpenSourcesystemthat canbe modifiedto include
the methodcoveragemeasurementhe useof a ClassLoadekvasfound to inhibit integration of
Quilt with Tomcat.Therefore] madethedecisionto createJBlanlet.

Table2.1. Coveragetoolssummary

Tool Coverage(s) Source

Clover method statementbranch sourcecode

JCover file, classmethod statementbranch| sourcecode,byte code,both
OptimizeitCodeCoverage| class,method statement bytecode

Quilt statementbranch path bytecode

JBlanlet method bytecode

However, finding theright tool to usefor measuringKC wasnot enough.Therearealso
mary caveatsto usingtestcodecoverageto measurdghe quality of testing. Theseinclude known

misconceptionsandmisusef codecoverage.

18

2.4 CodeCoverageMisconceptionsand Misuses

Ensuringsoftwarequality is animportanttask,a smallportionof which is measuringest
codecoverage. Companieghat producesoftware areresponsiblaundernegligencelaw to ensure
that the productsthey releasedo not “pose an unreasonableisk of personalinjury or property
damage’[20]. Thereforetheintensityof testingasystemendurewvariesdependingiponthenature
of thesystem Misinterpretingandmisusingvarioustestingresultscanpotentiallyleadto hazardous

conditions.

2.4.1 Misconceptions

Whentestcodecoverages usedduringthe beginning stagef softwareimplementation,
usingphrasedik e “completecoverage”or “100% coverage”to describetestingresultscanbe mis-
leading[20]. Inexperiencedesteramightinfer thattesting,in generalwasthoroughandcomplete.
They maynotimmediatelyunderstandhatthe phrase®nly describehe completionof a particular
coveragecriterion.

Furthermoreknowing a coveragemeasuremendoesnot imply thatthe testcaseswvere
distributeduniformly [19]. For example,70%methodcoverageof asystendoesnotindicatethatall
classe®r packagesveretestedequally However, by breakingdown thetotal coverageaccordingo
packagestesterscanmake up the deficienciesn packagesvith lower levels of coverageby either
creatingnew testcasesor modifying existing testcases.

Calculatingonly onetype of coveragemeasuremeris not enoughwhenmeasuringest
casequality with coveragedata[30]. By trying to increaseqjuality with highlevelsof coveragdevel
with asingletype of coveragecannotfind all failuresbecausémarny coveragemodelsareill suited
to dealwith mary commonproblems”[31]. For example,statementoveragecannotdetecterrors
in the multi-conditionalif-statemenin Section2.1.1.

Coveragemeasurementare not extendibleto include the other variationsof coverage
criteriaor ary othertestingtechnigques.Ohviously; it is incorrectto concludethatreachingl00%
statementoveragempliessimultaneoushachiering 100%conditioncoverage.Onthe otherhand,
it maynotbeasobviousthat100%conditioncoveragedoesnot meanall boundaryconditionswere
tested.

Tools usedto measurecoveragecannotdetectfaultsof omission[19] andare subjectto
programmindanguagerules. In the statementoverageexamplein Section2.1.1,coverageresults

do not reportthatthe conditiond! = —a is neededo male theif-statementconditionvalid. From

19

thebranchcoverageexample,its coverageresultswill notreportthatb == —a is wrong,andwill,

in fact,erroneoushcausdine 2 to execute.

2.4.2 Misuses

Mostmisuse®f coveragedataarebaseduponpressurgercevedby testerghatareeither
self-imposedor imposedby higher management.When specific coveragecriteria is requiredto
reacha certainlevel beforethe developmenibf the softwarecanproceediendenciesnayemegeto
createsimpleteststo make up ary deficiencieg19].

Furthermore’designing[the] initial testsuiteto achieve 100%coverages anevenworse
idea” [19]. Thesetypesof testscorruptthe testingprocessecausdhey areno longercreatedto
find errorsin the program.Insteadtheirimplementatiorandexecutionwastesvaluabletime.

ManagementanalsomisusecoveragemeasurementdVhenasoftwares quality is mea-
suredby its testcodecoveragealone,workers may chooseto implementthe easiesand mostob-
vioustests[19]. Clearly, this approachto testingwill resultin problemslaterin the development
processwherefaultsthat are more obscurecanemege. Evenworse,an obscurefault canbe de-
tectedbeforethe softwareis distributed,or anothemoreobscuregault thatcausedhefirst obscure
faultis detectedafterdistribution.

2.4.3 SoWhat is CoverageGood For?

An interestingparadigmof testcasecoveragebehaior is that achiezing high levels of
coveragedoesnot guarantedhat the quality of testingis also high, but low levels of coverage
almostcertainlyguaranteethe quality of testingis low. Therefore coveragecanprovide guidance

for focusingtestingefforts, but cannotprovide a catchallfor testingefforts.

20

Chapter 3

JBlanket SystemAr chitecture and
Design

| createdIBlanlketto gather‘ExtremeCoverage”(XC) datafor thisresearchlt usesJUnit
testcasedo calculatethe percentof methodsn a systeminvoked during testing. Baseduponmy
researcton variouscoveragetoolsthatwere previously described| designedlBlanlet to combine
desirablefeaturesrom the differentsystemsso thatit would be a feasibletool for research.This
meanghatfrom a researctstandpointjt is readily available,easyto use,easyto understandand
haslow runtime overhead.

Creatinga readily available tool allows othersto gain accesgo the tool and be ableto
integrateit into their own research.With easeof use,peoplewill not be discouragedrom using
thetool insideandoutsideof their research With coverageresultspresentedn a comprehensible
manner peoplewill be ableto easilyunderstandhow to apply the results. At this time, both the
JBlanlet sourcecodeandbyte codehave beenreleasedo the public underthe GNU GeneralPublic
License[32] sothatuserswill beableto usethe systemandmodify it to suittheir needs.

In this chapter | will discussits goals,its functions,its architecturejts design,andim-

plementatiorhistory | concludewith a scenaridllustratingits use.

3.1 SystemFunctionality

JBlanlet canmeasureoverageof both stand-alon@ndclient-serer systems Currently
it hasonly beenappliedto client-serer systemghat use Tomcatasthe web sener. To calculate

coverageusersneedto have accesgo a systems byte code. With this sourceof input, four setsof

21

dataarecreatedandstored: (1) the total methodsmeasuredn the system(total), (2) the methods
thatcannotbe invoked during testing(untestable)(3) the methodsnvoked duringtesting(tested),
and(4) theremainingmethodshat are notinvoked during testing(untested).Method coverageis
calculatedwith thefollowing formula:

% coverage = tested [/ subtotal
where
subtotal = total - untestable

To measureXC, usershave the option of excluding methodsthat containoneline of code. These
“one-line methods”form an optionalfifth outputset(one-line). The percentcoveragefor this ap-
proachis calculatedwith

% coverage = (tested - one-line) / subtotal
where
subtotal = (total - untestable) - one-line

To furtherimprove the versatility of JBlanket, specificclassfiles caneitherbe excludedfrom or
includedin coveragedata. This featureallows separateneasurementsf combinationsof multiple
sub-packagesyhichis usefulfor tamgetingpartsof a system.

Coveragereportsarepresentedn anHTML formatsimilarto thatof JUnitreports.Since
usersarerequiredto implementlUnittestcaseseforerunningJBlanlet, mimicking JUnit’s reports
shouldincreasehe degreeof familiarity with JBlanlet reportsfor first-time usersby reducingthe
amountof time they would needto understan@ndinterprettheresultsandlearnto navigatebetween
reports.

3.2 Architecture

JBlanlet usesfour mainstepsto calculateXC. (SeeFigure3.1) Thefirst stepis counting
the total methodsto include in the coveragemeasurementgountingthe untestablemethods,and
countingthe methodsthat containoneline of code(optional). The secondstepis modifying the
systems byte code. Thethird stepis the userrunningthetestcasesver the systemthusexecuting
themethods.Thelaststepis creatinganHTML formattedreportfrom all of the outputthattheuser

canreview with ary webbrowser

22

Modified
byte code

byte code

Oneline |
methods |

Untest -
able |
methods |

Tested

methods .
methods |

Figure3.1. JBlanlet architecture

23

3.3 Design

JBlanlet wasimplementedwith Suns Java 2 Platform, Standardedition (J2SE)(which
includesthe Java 2 StandardDevelopmentKit version1.3)). By usingJaa, | was ableto use
existing packagedik e the ApacheByte CodeEngineeringd.ibrary (BCEL) [33] for modifying byte
code,Xerces[34] for creatingreportswith XSL TransformationgXSLT) [35], andDOM [36] and
JDOM [37] for manipulatingXML files. | wasalsoableto usethe existing JUnit frameawvork for
unit testing.Final reportsarein HTML formatto easenavigationbetweerreports.

To implementthethreemainstepsmentionedn the previoussection thesystemcontains
these five packages: csdl.jblanket. modf y, csdl.jblanket. meho dset ,

csdl.jblanket.r epor t,csdl.jblanket.an t ,andcsdl.jblanket.u til.

3.3.1 Packagecsdl.jblanket.modify

This packagecontainsthe classeaisedin the first and secondmain steps. Methodsare
modifiedto includea staticmethodcall to the MethodCollector .S to re Metho dTypeSig -
nature method. With this modification,a methods type signature(the fully qualified hnameof
the classit belongsto, the nameof the method,andits fully qualified parametettypes)can be
recordedn “intermediate”JBlanlet files thefirst time it is invoked by a JUnittestcase.Thenames
of theseintermediatdfiles are of the form “COVER-*.xml”, where* is the nameof the testclass
thatinvoked the method.(However, whenTomcatis used,* is the nameof thefirst modifiedclass
thatwasinvoked on Tomcat.)

In additionto modifying the byte code,a collection of all the includedmethodsin the
systema collectionof all the methodsn classeghatarespecificallyexcluded,anda collectionof
all the untestablanethodshatwill never be modifiedby JBlanlet are stored. Untestablanethods
areeitherabstrac{methodghathave no contentsandcannotbeinvoked) or native (methodsvhose
contentsare of a programminglanguagedifferentfrom Java). The optional third collection of
methodswhosecontentis oneline of sourcecodeis alsostoredhere. Theseresultingoutputfiles

arereferredto as“essential’JBlanletfiles.

3.3.2 Packagecsdl.jblanket.methodset

This packageontaingheclassesisedio managanethoddatacollectedoy JBlanlet. The
mainclass,MethodSet , is implementedisingthe Singletondesignpatternandsynchronization.

24

Thisis to ensurghatevery methodtype signatures storedin the correctoutputXML file andthat

no outputfile is overwritten during JUnittestexecutions.

3.3.3 Packagecsdl.jblanket.report

This packages usedin the last main step, creatingthe final reportfor JBlanlet. The
AggregateTransf or mea classmimicsthe behaior of the Ant AggregateTransf or me
class— combiningall of the intermediatdiles into one aggregatefile, “COVER-MethodSets.xml”
andtransformghe XML file into anHTML report. The aggr@atefile containsthe methodssorted
by the classthey belongto andtheir classificationtested untestedpne-line). The JBlanketRe-
port classcalculatesandstoresthe methodsinvoked duringtestingandthe methodsnot invoked
duringtesting. The“COVER-MethodSets.xmlfile is arealsoconsideredo bean“essential”JBlan-
ketfile.

3.3.4 Packagecsdl.jblanket.ant

This packagecontainedthe Ant taskdefinitionsfor the jblanket (JBlanketModify -
Task) andjblanketreport(JBlanketReportT ~ ask) Ant tasks.

3.3.5 Packagecsdl.jblanket.util

ThispackageontaingheSysinfo classwhich providesversioninformationaboutthis
systemlt alsocontaingheJarFactory classwhichincludesthejar andunjar methodsused
for packagingor extracting JAR files. This utility is usedto extendthe applicationof JBlanlet to
includesystemghatrely heavily on JAR files to containtheir functionality The JBlanketCon-

stants classcontainsconstantwaluesthatareusedthroughouthe system.

3.4 Building a CoverageTool
A tool to collectcoveragedatacanbebuild in threeways[28]:

e SourceCodelnstrumentatiorr Changehe sourcecodebeforethe softwareis compiled.
¢ Byte Codelnstrumentation Changehebinarybeforeit is run.

o ProfilerMonitoring - Monitor a profiler andreportbaseduponits results.

25

Thedecisionto useary particularapproachdependsipona developers preference.
Priorto its releaseo the ICS 414 classduring evaluation,JBlanlet evolved throughtwo
previousimplementationshoth usingprofiler monitoring,beforesettlingon its currentimplemen-

tationusingbyte codeinstrumentationSourcecodeimplementatiorwasnever considered.

3.4.1 Versionl.0

The initial designof JBlanlet utilized the Java Delug Interface (JDI) provided by Sun
andwasfirst designedor stand-alonesystems.A new Java Virtual Machine(JVM) waslaunched
every time JUnit testingwas conducted.A secondJVM wasthenlaunchedto run the testsuite.
TheadditionalJVM tracedthroughatestcaseduring executionandrecordedhetype signatureof
eachmethodinvoked, including default methodsnot implementeddy the programmerlik e default
constructors.The resultsfrom testingwere storedin a “testedmethods”XML file. LOCC [39],
aline of codecountertool for Java alsodevelopedin CSDL, wasthenrun over the entire system
to recordevery methods type signatureandstoredthemin a “total methods”XML file. Thenthe
two files were comparedandthe differencerecordedn a “untestedmethods”XML file. With the
3 XML files, coveragestatisticscould easilybe calculatedasthe percentof methodgested.Users
neededo look throughthe XML files to find out which methodsweretestedandwhich methods
werenot.

Executingthis versionona500MHz Pentiumlll processotook approximatel\2 minutes
to run on aprogramthatcontained?0 lines of codewith 4 methods With the beliefthatthelength
of executiontime for stand-alongorogramscould be overlooled, the systemwasthenextendedto
includeclient-serer systemsSuddenlythe executiontime couldno longerbe overlooked.

To extend the systemto client-serer systems,Tomcatrequiredits own separate]VM
running the JDI. Without the separatelVM, i.e., normallaunchingof Tomcatwith the “startup”
script, methodsexecutedon Tomcatcould not be recorded. For example,methodscalledby JSP
pagesduringHTTPUnittestingwerenot recorded.

During normalexecutionona512MHz dualprocessqipreparinglomcatfor testingtook
anaverageof 7 secondsHowever, preparingTomcatusingJDI took approximately7 minutes,60
timesthe normalexecutiontime! Furthermorethe speedf runningthetestsaftertheinitialization
appearedo have the samerelative run-timeascomparedo testingwith the stand-aloneystem.

Methodsinvoked by Tomcatwererecordedn a “tomcat methods"XML file. Thesere-

sults were combinedwith the testedmethodsfile to calculatethe percentagef methodstested.

26

Overall, a client-serer programwith 330 lines of codeand 33 methodstook approximately28
minutesto testonthe512MHz dualprocessomachine.

Dueto thelimitationsintroducedby the executiontime of JBlanlet, a differentapproach
wasrequired. As the sizeandcompleity of systemsgrew, theincreasean executiontime wasno
longeracceptableThereforeinsteadof usingthe JDI, loadingthe byte codethroughmorenormal
meansappearedo beamoredesirablesolution. In theory thenext executionof thetestcaseshould
take approximateljthe sameamountof time asa normalexecutionof thetestcasesThereforethe
searchheganfor anOpenSourceprojectthateitheralreadycontainednethodcoverage or couldbe
extendedto includemethodcoverage.

3.4.2 Version2.0

After searchindghelnternetwith Google,l discoreredJUnit-Quilt (Quilt). As discussedh
the previous chaptemunderCoverageTools, Quilt doesnotincludemethodcoverage.Thereforethe
JBlanletClassLoaderandextensionof the Java ClassLoadecreatedspecificallyfor JBlanlet, was
implementedo accomplistthis goal. With the JBlanletClassLoadea methods typesignaturenvas
accessiblandthusstoredeverytimethemethodwasinvokedduringtesting.With this profiling-like
capability the numberof timesa methodwasinvoked couldalsobe counted.

Unfortunately usingthe ClassLoadeapproackcreatedinacceptablémitations. It could
be usedwith simpleandcomple stand-alonesystemshut could not be usedwith Tomcat. From
my limited knowledgeof Java, | wasnot ableto usemy JBlanletClassLoadeto load the systems
classe®onthesenersideinsteadof Tomcats ClassLoaderFacedwith thisfailure,| movedonto a

third approach.

3.4.3 Version3.0

The currentversionof JBlanlet usesbyte codeinstrumentationlt canbe executedfrom
the command-lineor integratedwith Ant. Four main stepsneedto be completedo calculatecov-
erage.Thefirst stepgenerates setcontainingthe total methodsncludedin the coveragemeasure-
ment,a setcontainingthe total untestablanethodsa setcontainingthe total methodsto exclude
from coverage,and a setcontainingall methodswith oneline of code. Thesesetsare storedto

essentiaKML files. Usersseethis stepperformedsimultaneouslyith the secondstep.

27

The secondstepin JBlanlet modifiesthe byte codecreatedby compiling the systems
sourcecode. BCEL methodsalter eachmethodsuchthat when one of the modified methodsis
executedfor thefirst time duringthe executionof a unit testcasejts type-signatures stored.

Before eachmethodis modified, it is checled againsttwo separateonditions. The first
conditionis if the methodis invokableor shouldbe includedin coverage.If a methoddoenot fall
into eithercateory, it is not modifiedandplacedin the untestabler excludedoutputset. The other
conditionrelieson thenumberof linesof codethe methodcontains.If methodscontainingasingle
line of codeareto be excludedfrom coverage thenone-linemethodsarenot modifiedandrecorded
in the optional one-lineoutputset. The untestableand excludedoutput setsare immediatelyre-
moved from the total methodsoutputset, creatinga modifiedtotal methodsoutputset,andso not
includedin the coveragemeasurement.

The third stepis the executionof the JUnit testcases.Prerequisitesetupstepsmay be
neededdependingupon how the systemis tested. For example, the modified classfiles can be
packagednto JAR files beforerunningthe JUnit tests. A WAR file canbe createdfor Tomcator
themodifiedclassfiles canbe copiedto oneof the“classes subdirectoriesn the Tomcatdirectory
ThenTomcatcanbe launchedfor client-serer systems.This third stepoutputsthe intermediate
JBlanlet outputfiles.

After the executionof the JUnit tests,the final stepis performed.This reportstepinter
pretsall of theaccumulatedesults.First a “testedmethodsoutputset” is createdrom the combi-
nationof the intermediatdiles. Thenan “untestedmethodsset” is createdfrom the differenceof
the modified set, the testedmethodsoutput set, and the optionalone-lineset. Thenthesesetsof
raw coveragedataareaggrgatedinto one XML file, whereeachmethodis storedaccordingto the
fully qualifiednameof its class.Eachfully qualifiedclasscontainsat mostthreedifferentmethod
classificationgtesteduntestedpne-line)underwhichthecorrespondindgype-signaturearestored.
Thisfile is thentransformednto HTML throughXSLT.

For successfuliseof JBlanlet, thejavac “debug” optionmustbeturnedon whencompil-
ing the sourcecode.Thedehug optionensureghatline numberdrom the sourcecodeareincluded
in the byte code.Withoutline numbersseveral JBlanket stepsemplagying BCEL will fail. Thefirst
setof total methodswill beinaccuratebecausdine numbersareusedto decidewhenconstructors
areimplementedn the sourcecodeor aredefault constructorsFurthermorethe numberof linesof
codein amethod,cannotbe calculatedor determiningmethodswith oneline of code.

In addition,to ensurehatthe Java ClassLoadeloadsthe correctclass,| recommendhat

only onecopy of the classfiles bereferencedn the classpathThis meansexcluding JAR files that

28

may containunmodifiedversionsof theclassfiles. If multiple referenceso thesefiles exist, thereis
no guarante¢hatthe ClassLoadewill find thecorrectmodifiedclassfiles. Invoking methodsrom
unmodifiedclassesannotproducecoveragedata.

Finally, for coveragedatato bereliable,all testcasesieedto pass.lt is possibl€for JBlan-
ketto calculatecoveragewhensometestcasesucceedndothersfail. However, thismeasurement

will notreflectthetrue coverageof the system.

3.5 UserScenario

Sally is a studentin ComputerScienceworking on a classassignment.The problemis
implementinga stackthat is accessibleover the Internet. The requirementsspecify useof Java
v1.4,JSRJBlanlet, Ant, andTomcatasthewebsener. Beingaconscientioustudent Sally begins
working on the assignmentight away. Sheis working ona PC runningWindows 2000. All of the
toolshave beenpreviously installed,exceptfor JBlanlet.

After completingher first attemptat the program,shedecidesto createunit testsusing
JUnitandHTTPUnitto ensurghatherprogramworkscorrectly Shedesignsaandimplements3 test
casespneperstackfunction (push,pop,andclear),andplaceshemin onetestclass.

After thefirst run of hertests,Sally findsthatherclear functiontestdoesnot pass.She
views the JUnit reportto find out what happenedThe stackdid not clear Therewasoneelement
remainingin the stack. Therefore,shechecksher codefor clearingthe stackandfinds that she
doesnot pop off the lastelement. Feelingrelieved to have found the error so quickly, sheaddsa
commando popoff anotherelementandrunshertestsagain.

100%success!

Knowing that all her testsmust passbeforeary meaningfuldatacan be gainedfrom
coverage,Sally is now ableto integrateJBlanlet into her project. Shedownloadsthe jblanket.zip
file from the CSDL web site and readsthe README.html file. Underthe “Invocation” section,
thereareinstructionson how to addJBlanlet to a project!

Openingher build file, shefinds the Ant tamget that compilesher program. As statedin

thedirections,shemodifiesto herbuild file to look like thefollowing:

<taskdef = name="jblanket"
classname="csdl.jblanket.ant.JBlanket Modif yTask" />
<target name="compile"

! The procesof integratingJBlanlet into a systemhasevolved from the previous processusedwith CREST

29

description="Compiles code and run JBlanket over byte code.">

<javac srcdir="$ {basedir }/src/edu/hawai i/sta ck"
debug="on"/>

<mkdir dir="$ {jblanket_dir 1>

<l-- Run JBlanket over class files. -->
<jblanket testgrammar="Test*.class"
enable="true"
totalfile="totalMethods.xml"
onelinefile="onelineMethods.xml"
untestablefile="untestableMethods.xml ">
<fileset dir="$ {basedir }/src">
<include name="**/stack/**/*.class"/>
<[fileset>
</jblanket>
</target>

Thenshescangthroughthe build file to find the Ant target that runsher unit tests. To createthe
reportfor JBlanlet, Sally changeserbuild file to:

<taskdef = name="junit"
classname="org.apache.tools.ant.ta skdefs .opti onal. junit. JUnit Task" />
<taskdef = name="junitreport"
classname="org.apache.tools.ant.taskde fs.op tiona ljuni t.
XMLResultAggregator” />
<taskdef = name="jblanketreport"
classname="csdl.jblanket.ant.JBlanketR eport Task" />
<target name="test" depends="init"
description="Run JUnit tests and generate reports.">
<mkdir dir="$ {basedir }/test_output'/>

<l-- Run the tests, all classes whose name starts with 'Test'. -->
<junit printsummary="withOutAndErr" fork="yes">

<sysproperty key="jblanket_dir" value="$ {jblanket_dir 1>
<sysproperty key="test_host" value="http://localhost:8080/"/>

30

<classpath>
<pathelement path="$ {java.class.path >
<pathelement path="$ {basedir }/src"/>
<fileset dir="% {lib.dir ">

<include name="*jar"/>

<[fileset>

</classpath>

<formatter type="xml" />

<batchtest todir="$ {basedir }/test_output">
<fileset dir="$ {basedir }/src">

<include name="**/stack/**/Test*.java" />
<[fileset>
</batchtest>
</junit>
<l-- Generate JUnit report on the results. -->
<junitreport todir="$ {basedir }/test_output">

<fileset dir="$ {basedir }/test_output">
<include name="TEST-*.xml"/>
</fileset>
<report format="frames" todir="$ {basedir }/test_output" />
</junitreport>

<echo message="JUnit results in ${basedir }/test_output/index.html" />
<l-- Generate JBlanket report on the results. -->
<jblanketreport totalfile="totalMethods.xml"

testfile="testMethods.xml"
difffile="diffMethods.xml"
onelinefile="onelineMethods.xml"
reportformat="frames"
enable="true">
</jblanketreport>
<echo message="JBlanket results in ${jblanket_dir Hindex.html" 1>
</target>

Finally, shecreategshe JBLANKET _DIR environmentvariableandcopiesthe setEw.batfile to her

project.

31

Anxiousto try outthenew tool, Sally opensanothercommandoromptwindow andnavi-
gatedo herprojectdirectory Shesetstheernvironmentwith thebatchfile, andimmediatelyre-kuilds
herprojectandrunsthetestcases.Thefollowing outputis displayedon thescreen:

[jblanketreport] * Fkdkkkokk * e * ** * R
[blanketreport] Method-level Coverage:

[iblanketreport] Al methods: {total=18 }

[iblanketreport] One line methods: {total=10 }

[iblanketreport] Non-one line methods: {total=8 }

[iblanketreport] Tested methods: {total=8, percent=100% }
[iblanketreport] Untested methods: {total=0, percent=0% }
[jblanketreport] * Fkdkkkokk * e * ** * i

Happy thatshereceved 100% coverageon thefirst try, Sally decideso attemptthe extra credit—
implementingacommandhatdoubleghe contentsof a stack— sincetheres still lots of time before
the duedate. Before proceedingary further sheturnsJBlanlet off beforeimplementingthe new
feature changingboth“enable”attributesin thejblanket andjblanketreporttasksto “false”.

After severaltries, Sally is ableto play with the stackon herMozilla webbrowser Now
shehasto createthetestcase Within 2 minutes,sheimplementghetestcase.Sally is amazedhat
afterthefirst run, thetestcasepasses.

Rememberindo checkher coverageagain,sheturnsJBlanket backon by changingthe
“enable”attributesbackto “true”. Shethenre-kuilds herassignmenandrunsthetestcasesJBlan-
ket produceghefollowing output:

[jblanketreport] * * e * Hkdkkkokk ** * R
[blanketreport] Method-level Coverage:

[iblanketreport] Al methods: {total=20 }

[iblanketreport] One line methods: {total=10 }

[iblanketreport] Non-one line methods: {total=10 }

[iblanketreport] Tested methods: {total=8, percent=80% }

[iblanketreport] Untested methods: {total=2, percent=20% }
[jblanketreport] * Fkdkkkokk * e * ** * R

Sally is shocled to find out that shedid not get 100% coverage. So, sheimmediatelyopensthe
JBlanlet reportin Mozilla and searchedor the uninvoked methods. She quickly finds that the

32

double methodshewrote wasnot invoked. Confusedshelooks for the other methodthat was
notinvoked. It isthetstDouble method.RememberinghatJUnitrequiresestmethodgo begin
with “test”, shequickly correctsthenameof the methodandrunshertestcasesgain.

Coverageis backto 100%.However, Sally containsherexcitementaboutthe coverageof
herassignmenivhenshenoticesthatthereare10 one-linemethods.

Being the conscientiousstudentthat sheis, Sally reviews the one-line methodslisted
in the JBlanlet reportandfinds that one of the methodsis not a getteror setter Thereforeshe
checkshercodeto ensurghatthe contentsof the methodarecorrect.Whatshefindsis two logical
expressionseparatedby a logical-or However, they shouldbe separatedy a logical-and. With
four key strolkes,Sally correctedhe mistale andre-runshertestcases.

100%coverageagain.Satisfiedwith herprogressSally mentallynotesto herselfthatshe

needgo implementmoretestcasedor boundaryconditionsthenquitsfor the day

33

Chapter 4

Evaluation of ExtremeCoverage

The evaluation of this researcls hypothesesoccurredin an academicervironmentby
undegraduatesn a seniorlevel, second-semest&oftware Engineeringcourse(ICS 414) at the
University of Hawai'i. Therewere13 studentsn ICS 414, all of who participatedn developing8
separatevebservicequsingJava 1.4 andJSP)thataredeploed on the InformationandComputer
Scienceg(ICS) homepage(http://wwwics.havaii.edu)asof Spring2003. The combinationof the
webservicesds calledCREST! Dueto thenatureof theprojects eachstudentwasassumedo either
have enrolledin the previous semestes SoftwareEngineeringcourse or have adequaté&nowledge
of Java, JSR ApacheTomcat,CVS, JUnit, HTTPUnit,andApacheAnt.

4.1 Qualitative Data Gathering Process

Studentdadthefirst tenweeksof the semesteto accustonthemselesto the courseand
their projects. Teamsof 2-3 peopleworked on six of the projects. Two studentswho were also
membersn the aforementionedeamsjndividually implementedhe remainingtwo projects.

At the endof the 10th week, | integratedJBlanlet into the Ant build files the students

usedto build their projects.By doingthis, | hopedto remove two possibleobstacles:

1. Theeffort neededo includeJBlanletinto the build processes.

Whenthe studentdirst hadaccesdo JBlanlet, it requireda degreeof familiarity with the
system. wasconcernedhatstudentsnight bediscouragedrom usingthetool if they found
it difficult to integrateinto their build processeskurthermore| did notwantto disrupttheir

1 This projecthasbeenrenamedo CLEW. However, in this researcht will be calledby its original name, CREST
whenreferringto its previous architectureandits currentname ,CLEW, whenreferringto its currentarchitecture.

34

developmentprocesshut enhancet [39]. However, sincethen,theinstallationprocesshas

beenimproved.

2. Inconsistentiseof JBlanlet.

To gatheraccuratedata,everyoneneededo have accesgo JBlanlket simultaneously It was
thenup to the studentdo usethe system. If studentdntegratedthe systemthemseles,the
additionwould proceedat their corvenience.Therefore ary generalcoveragebehaior ob-

senationsareimpossibleif somestudentsareusingthetool andothersarenot.

In the middle of the 11th week, the professorhandedout the Pre-UseQuestionnaires
(“pre™ shawnin FigureA.1 to thestudentssothat! couldjudgetheir currentpracticesandbeliefs
towardsunit testing. Eachcopy wasmarked with a letter of the alphabet.The professotkepta list
thatidentifiedstudentswith theletterthatappearean their copy. | waitedoutsidethe classroomnso
thatl would notknow which questionnair@achstudentcompleted.

After the professorcollectedthe completedquestionnairesind placedthemin a closed
ernvelopewith thelist, | enteredhe classroomandpresentec 20-minuteintroductionto JBlanlet
— adescriptionof the systemhow to runit with their JUnittestcasesandhow to usethe outputto
increasdheir coverage.The professorfollowedthe introductorypresentationvith instructionsthat
eachservicewasrequiredto reach100%XC by theendof the semesterTo increasdhelikelihood
of discaveringwhetherit is difficult to reachtotal coverageandtheamountof work it would take to
maintainsucha high level the professorenforcedhis requirementvith anassignedjrade.

At the end of the semesterthe 16th week, the studentsvere given the Post-UseQues-
tionnaire(“post”) shavn in FigureA.2 to find out their reactionso XC andif their practicesand
beliefstowardunit testingchanged Eachsheetwasonceagainmarkedwith aletterof thealphabet.
Studentsveregiventhesheewith thesamdetterasontheir“pre” questionnairéasrecordednthe
identificationlist). To ensurethatresponsesveresincere studentsvereassuredhattheiranswers
would not affect theirfinal gradeby includingthe questionnairewith the courseevaluationforms?

I wasnot presenfor this phaseeitherandwasnever allowedto seetheidentificationlist.
With the metricscollectedfrom the studentprojectsandcomparisondetweerthe “pre”

and“post” questionnaired,will try to answetthe hypothesesf thisresearch.

2Courseevaluationforms arestudentevaluationsof the contentandsuggestiongor improvementsof a class. These
formsarenotturnedover to the professomntil afterthe gradesareofficially turnedin.

35

4.2 Quantitati ve Data Gathering Process

To gathemetricsfor measuringeffort, the eightstudenfprojectswerecheclkedoutfrom a
commonCVS repository For thefirst two weeksof datagathering] downloadedthe projectsdaily
at approximatelythe sametime. Twelve o’clock noonwaschosenasthe dovnloadtime with the
following 3 assumptions:

1. Mostclassesreduringtheday, sothe projectswould mostlikely notbemodifiedduringthis
time.

2. Moststudentswill work ontheir projectsat night, whenl assumedhey would have the most
continuousamountof time available.

3. |, too,ama college studentandso shouldbe ableto getup by atleastnoonto checlout the
projectsonweekdaysandweelends.(Actually, beinga graduatestudenimalesit evenharder
to getup early)

Metrics gatheredrom theseinitial checloutshelpedto determinethe bestschedulehat
reflectstudents’effort and changesn their projects’ coverage. As canbe seenin Figure4.1 and
Figure 4.2, checkingthe projectsevery day did not resultin finding mary significantchanges.
While therepositoryof atleastoneprojectchangedvery day nonewasconsistentlynodifiedevery
day Furthermorechangeghatdid occurwerenot presenin ary particularpattern. For example,
the coverageof the Poll serviceappearedo changein spurtswhile the coverageof Techreports
serviceincreasedor about4 daysbeforeremainingat a steadylevel for 4 daysbeforeincreasing
0.1%.

Therefore from the datagatheredhusfar, | decidedthatthe projectsshouldbe checled
out onceevery threedays. Within the 3 days,averagecoveragechangewas 8.3% insteadof the
2.2% averagedaily coveragechangeand averageLOC changeis 107.6 LOC insteadof the 42.6
LOC averagedaily LOC change.

4.3 Measurements

In this section,| will discussthe significanceof the datacollectedby boththe question-
nairesandJBlanlet.

3Missing datais dueto inability to calculatecoverage. This happensvhena projectdoesnot compile. However,
coveragewasrecordedeventhougherrorsor failuresoccurredduring unit testing.

36

100.0%

*

*

*

L 3

90.0% /
— // :
80.0% o /
\ / ZA
70.0% & \\ f A A — = ﬂ/:/ . B
- = = B = = £]
60.0% / —\-FAQ
—&—Login
/ —o—Newsbulletin
50.0% =¥=Poll
—@—Resume
——Techreports
/ —&—Textbooks
40.0% / ~&==Tutor
30.0% / /
/
20.0% . ® ° 4
10.0%
0.0% T T T T T T T
11/8/2002 11/9/2002 11/10/2002 11/11/2002 11/12/2002 11/13/2002 11/14/2002 11/15/2002 11/16/2002
Figure4.1. Daily XC of CRESTservices
Table4.1. Daily XC of CRESTservices
N [N N N N N N
N N o o o o o o o
o o o o o o o o o
o o N N N N N N N
N N S = N I <5 0)
0 o — - - — - - -
= 4 = = = = = = =
Service - — - - - - - - -
FAQ 33.7% | 44.9% | 70.4%| 70.4% | 70.4%| 70.4%| 70.4% | 70.4%| 70.4%
Login 70.4% | 70.4% | 70.4%| 70.4% | 70.4% | 69.8% | 70.6% | 74.2% | 84.8%
Newsbulletin | 30.8% | 44.0% | 72.3% | 72.3% | 77.0% | 77.0%| 77.0% | 77.0%| 77.0%
Poll 87.5% | 87.5%| 93.2% | 93.2% | 95.9% (| 95.9%| 95.9% | 94.8% | 94.8%
Resume 27.5% | 28.1%| --- 18.8% | 18.8%| 18.8%| 18.8% | 32.3% | 32.3%
Techreports | 72.0% | 73.0% | 73.2%| 86.5% | 88.4% | 88.4%| 88.4% | 88.4% | 88.5%
Textbooks 100.0%] 100.0% 100.0% 100.0%| 100.0% 100.0%9 100.0%]| 100.0% 100.0%
Tutor 81.0% | 66.7% | 66.7%| 66.7% | 66.7% | 65.3% | 65.3% | 65.3% | 65.3%

37

1800

1600

1400 /—'

1200

¥ ¥ ¥ X FAQ
—&—Login

1000 —o—Newsbulletin
== Poll
—8—Resume
800 : : ——Techreports

—&—Textbooks

/ === Tutor
600

B = = = s = = L S
400 - - 5 e - - - . —a
* * Ls * * > * Lo
= = = = // = n
200 /

T T T T T T T T
11/8/2002 11/9/2002 11/10/2002 11/11/2002 11/12/2002 11/13/2002 11/14/2002 11/15/2002 11/16/2002

Figure4.2. Daily LOC of CRESTservices

Table4.2. Daily total LOC of CRESTservices

AN AN AN N AN N AN

AN AN o o o o o o

o o o o o o o o o

o o N N N N N N N

o N S = N I <5 0 %)

(o] (o2} —l = —i —l = i —i

= = = = = = = = =

Service - i - - - - - - -
FAQ 2457 | 2512 | 2625 | 2625 | 2625 | 2625 | 2625 | 2633 | 2633
Login 2299 | 2299 | 2299 | 2299 | 2299 | 2352 | 2401 | 2395 | 2712
Newsbulletin | 1786 | 1822 | 2043 | 2043 | 2143 | 2143 | 2143 | 2143 | 2143
Poll 3835 | 3835 | 3885 | 3885 | 4168 | 4166 | 4140 | 4217 | 4217
Resume 3041 | 3098 | 3154 | 3166 | 3174 | 3174 | 3174 | 3448 | 3470
Techreports 3986 | 3943 | 3976 | 4236 | 4348 | 4348 | 4436 | 4435 | 4490
Textbooks 1806 | 1806 | 1806 | 1806 | 1806 | 1806 | 1806 [1806 | 1911
Tutor 2153 | 2236 | 2236 | 2236 | 2236 | 2360 | 2360 | 2360 | 2360

38

4.3.1 Questionnaires

This sectiondescribesmy motivation for including eachquestionin the questionnaire.

ThePre-Use&Questionnaireontaindive questionsfour close-endeduestionsandoneopen-ended

guestion. The Post-UseQuestionnairecontainseight questions five close-endedjuestions,and

threeopen-endedjuestionsFour of thefive close-endeduestionandoneof thethreeopen-ended

guestionsveresimilar to Pre-UseQuestionnairguestions Repeatedjuestiongprovided feedback

onary changesor lack thereof,in eachstudents opinions.

1.

Unit testsarevery importantfor creatingcorrectlyfunctioningsoftware. (“pre”, “post”)

This questionwasincludedto uncover students'opinionsaboutthe value of unit testing. It
givesanindicationof how enthusiastidhey aretowardsthe designandimplementatiorof
unit tests,which couldbe connectedo the quality of their testcasesFor example,a student
who views unit testsasimportantwill mostlikely put more effort into creatingusefuland

meaningfulteststhanonewho doesnot.

. Designingunit teststo supportcorrectlyfunctioningsoftwareis hard. (“pre”, “post™)

This questionindicatesthe amountof effort studentsoelieve is neededo implementuseful
tests. Effort canbe thoughtof in termsof time, or LOC, for example. The answersn the
“post” guestionnairenay also be relatedto how much effort was neededo sustain100%

coverage.

. My currentsetof unit testsdoesa goodjob of ensuringthatmy softwarefunctionscorrectly

(“pre”, “post”)

This questionindicatesthe students’confidencen the designof their unit tests.

. JBlanlet helpsme to write unit teststhat ensurethe correctfunctioning of my software.

(‘post)

This questionindicateshow usefulthe studentdgelt thetool wasduringdevelopment.

. To the neares5%, what % of the methodsin your software are currentlyinvoked by your

unittests?“pre”, “post”)

As indicatedin [23], mostestimationsof coverageare higherthantheir actualof coverage
measurementn the“pre” questionnairethis questiorreflectshow muchconfidencestudents
have with respecto their testingabilities. In the “post” questionnaireit reflectswhat they

wereableto achieve.

39

6. Pleasdoriefly describeoneor two of themostsignificantproblemsyou've encounteredvhile
designingunit tests.(Do notincludethe problemof learninghow to useunit testingfacilities
suchasJUnitor HTTPUnit.) (“pre”, “post”)

This open-endedjuestionaimsto find out what hindersthe implementationof quality test
casedfor studentsandif XC would be ableto help rectify the more basic problems,like

implementationandmove focusto amorecomple setof problems]ik e design.

7. Briefly describehow accesdo JBlanlet hasinfluencedtheway you write unit tests.(“post”)

This questionaddressethe third hypothesiswhich stateshat XC influenceghe designand
implementatiorof testing.It isimportantto find outwhatinfluenceslBlanlet hadandif these

influencesanbecomparedo theproblemsaxpressedn the“pre” questionnairguestion#s.

8. Whatwould you suggestve do to improve the usefulnes®f JBlanket? (“post”)

This questionwasaddedfor two reasons.JBlanlet is oneapproachto measuring<C. Any
suggestiongor improvementsmay be directly applicableto improving XC. On the other
hand,suggestionsouldtamgetthe usability of thetool, asimprovementsarealwaysneeded.

4.3.2 ExtremeCoverage

For every setof metricscollectedfrom the CVS checlouts, the following measurements
wererecordedrom the normalsetof resultsprovided by the JBlanlet and LOCC tools andaddi-
tional calculations:

1. JBlanket measurementgotal methodstotal one-linemethodsfotal multi-line methodstotal

testedmulti-line methodstotal untestednulti-line methodsandpercenicoverage

2. LOCC measurementdotal methodstotal testmethodstotal non-testmethods percenttest
methodstotal LOC, totaltestLOC, total non-test_.OC, andpercentestLOC

The mostimportantJBlanlket coveragemeasurementasthe percentcoverage. With a history of
this measuremendver a period of time, possibletrendscanbe obsered. In addition, it canbe
matchedagainstvariousLOCC measurement® estimatethe effort to reachand maintain100%
coverage.

While | cannotlist the one-linemethods,ncluding this metric signalshow mary more
methodscould have requiredexercising. It alsoindicatesthe maximumnumberof additionaltests
avoided. The total methodsgive a rough estimateof eachservices size. The total multi-lined

40

methodsrepresentfiov mary methodsneedto be tested,andthe total testedand untestedmulti-
lined methodsepresenexactly how difficult it is to reachandmaintaincoverage For example,the
casewhen200methodsaremulti-lined andonly two werenotinvoked duringtestingcouldsuggest
thatachieving total coverageis morechallengingthanexpected.

From LOCC, the main measurementa/ere the uncommentedotal LOC, or total LOC,
andtheuncommentetlestLOC, or testLOC. With thesemeasurement#, maybepossibleto detect
changesn codingactiity. Thisis mostinterestingwhendetectedactiities do not correspondvith
unchangingcoveragebehaior. Moreover, with a measuremeritk e the total methodsor total test
methodschangesn the coveragemeasurementr lack thereof,could have mary implicationswith
respecto maintainingcoverage.

The calculationof the percentof test methodsand test LOC simplified comparisons
againstcoveragebecauseof the similar units of measurement.The total non-testmethodsand
total non-testLOC are measurementsalculatedfrom their respectie total andtestcounterparts.

Recordinghesemeasurementsompletethe setof obserations.

4.4 Duration

Theevaluationperiodbeganon November6, 2002,whenstudentdilled outthe Pre-Use
guestionnaireThis took at most10 minutesfor all 13 studentdo complete.

Thecoveragedatacollectionperiod,on the otherhand lastedfor 5 weeks.A preliminary
samplewastaken the day beforethe questionnairesvere given to the students. The samplewas
solely for the presentatiorio inform the studentsof the level of XC of their services. It wasnot
includedin the resultingdataset. Thefirst official datacollectionday wasNovember8. The last
dayof collectionwasDecembei 1.

On Decemberll, studentscompletedthe Post-UseQuestionnaire.Becausethey were
includedwith thecourseavaluationforms, | did notreceve themuntil mid-Januar2003,alongwith
the “pre” questionnaireso that! would not be swayedby arny suggestionsluring this evaluation

period.

41

Chapter 5

Results

This chaptediscussesy qualitative andquantitatve results.First, Section5.1 describes
my adventuresn implementinga usableJBlanlet system.Next, Section5.2 investigategpossible
trendsfrom ExtremeCoverage(XC) measurementandthenverifiesthe trendswith the LOC and
methodmetricscollected. ThenSection5.3 analyzegshe LOC andmethodmetricsin anattemptto
guantifytheresultsfrom XC. Section5.4 discussesesultsfrom the questionnaires stagesbegin-
ning with acomparisorbetweerthe Pre-UseQuestionnairandPost-Usé)uestionnair@answergo
the close-endedjuestionsvhoseanswersangedirom “Strongly disagree™o “Strongly agree”and
endingwith open-endedjuestionresponseandtheir applicabilityto XC. Section5.5 summarizes
how resultseithersupportor rejectthe hypothesesThen Section5.6 discusseshe limitations of

thisresearchFinally, Section5.7 includesaninterestingobsenrationsthatis not directly relatedto

thehypothesesf thisresearch.

5.1 Supporting ExtremeCoverage

The conceptof XC is very simple. The creationof a usabletool to automateit is not.
Aside from the evolution throughprevious versionsmodificationshave continuouslybeenmadeto
the currentversionof the JBlanlet systemsincethe evaluationperiod (which endedthreemonths

ago)to improve its usabilityandability to gatherXC measurements.

5.1.1 Experiencewith CREST

IntegratingJBlanlket with the CRESTweb servicesbroughtattentionto a few implemen-

tation bugs. For example,onebug wasa missingtranslationof the booleanprimitive type from its

42

representatiolf‘Z”) in the ConstantPool. Without this translation,methodswith a booleanargu-
menttype or returntype areunquestionablyecordedasuntestednethodseven thoughthey could
have beeneithertestedor one-linemethods.

An incorrectimplementatiorof the Singletondesignpatterncausednothetbug. Thepat-
terninstallsorderduringthe executionof multiple unit testswhenforking Ant’s junit task. Further
more, methodsthat accessethe samedatastructuresdid not containthe “synchronize”keyword.
Theseawo bugsledto inaccurateintermediate’coverageresultsbecaussomeresultsoccasionally
overwrotethemseles.

A final bug concernedhe speedwith which JBlanket ran. Both a designflaw in JBlanlet
aswell asthe CRESTdevelopmentprocesscontritutedto the bug. The designflaw (thatis fixed
in the currentversion)did not detectpreviously modifiedmethods For example,supposelBlaniet
calculateghe coverageof a systemFoo. InsideFoois aclassBar. If Baris neverchangedandthus
never recompiled the modifiedmethodsin Bar would be modifiedagain. Not only doesthe size
of the Bar.classfile steadilyincreaseput the mary modificationmethodcallsto storethe method
type signaturegof which only thefirst attempttriggersthe actualstorage)would wastemary CPU
cycles.

5.1.2 Experiencewith Hackystat

In February2003, JBlanlet startedmeasuringhe coverageof Hackystat. This brought
attentionto evenmorebugs,this time relatedto usability

Modifying Methods

For example, as previously mentioned the unconditionalmodificationof methodswas
onceagaina problem. This simple approachcould causedramaticincreasesn the size of .class
files whenthe classis never recompiled. Therefore,addinga checkof whetherthe ConstantPool
alreadycontaineda referenceto the storeMethodTypeS ig natu re methodturnedthe sim-
ple modificationinto a smartmodification. This fix alsoreducedthe amountof time neededo
run JBlanket over a systemsincethe compiledclassesio longerneededo be cleancopiesbefore

calculatingcoverage.

43

Modifying More Than .classFiles

Integrating JBlanlet in its evaluationformatinto the third versionof Hackystat proved
to be impractical. The architectureof Hackystat splits the systembetweena kernel with basic
functionality andplug-in extensionsfor eachfeature. Therefore the kernelandits extensionsare
developedseparatelyand packagednto separatelAR files. Becauseall testingis donethrough
the kernel,andthe extensionsare packagedn a JAR file, the procesf unjaring the extensions,
modify themwith JBlanlet, andthenre-jarthemthroughAnt eachtime coverageis measureds
unreasonabldnsteadanew JAR utility in JBlanlet performsthis service.Thereforewhen&erthe
extensionsaretestedtheir methodtype signaturesarenow recordable.

Furthermoremodifying all filesin a JAR file is not enough.It turnsout thatsomeof the
filesin the packagediAR file previously belongedo outsideJAR files createdby outsidesources,
suchasJDOM. Not only do theseotherJAR files not containline numbergwhich is whatbrought
attentionto this problem),but including themin the coveragemeasuremeris undesirable There-

fore, the latestimprovementallows the modificationof only specificpackageprefixes.

5.2 ExtremeCoverage

By itself, coverageis aratherthoughtprovoking metricto obsere. Only five of theeight
servicedinishedwith 100%coverage.Theremaining3 servicesverewithin 6% of total coverage.
Fromthe graphs,it appearghatno two servicesexhibited the exact samebehaior. Instead,most
servicesveresimilar towardsthe endof the evaluationperiod,whenthey werecloseto or obtained
100%coverage. At first glance,it seemedasif aftera servicereacheda thresholdvaluethat may
not have been100%, its coveragedid not deviate very far from thatlevel. (Thisis especiallythe
casewith Textbooks,which remainedat 100%throughouthe entireevaluation.)

For example,in the caseof Newshulletin’s graph,coverageappearedo be quite unstable
until it reachedl00% on December2. It never left that level thereafter The unstablecoverage
measurementsuggesthatfocuswasnotalwayson increasingcoverage.Instead githerunit testing
wasdoneperiodically or Newshulletin increasedts functionaltesting. The stablecoveragemea-
suremensuggeseithermaintainingsucha high level of coverageis not difficult, studentsneared
the completionof implementingthe service,solittle actiity wasoccurring,or the effort required
to reach100%wasso greatthatthe studentsdid not wantto altertheir codein fear of losingtotal
coverage.

44

Table5.1. Summaryof Newshulletin metrics

Coverag¢ Total |Test LOQ Non-test| Total Test | Non-test| One-line

Date LOC LOC | methody methods| methods methods
11/8 30.8% 1786 172 1614 188 13 175 110
11/11 72.3% 2043 406 1637 195 22 173 112
11/14 77.0% 2143 506 1637 200 27 173 113
11/17 73.8% 2129 506 1623 190 27 163 106
11/20 88.9% 2293 637 1656 198 33 165 108
11/23 89.0% 2299 637 1662 198 33 165 107
11/24 96.0% 2578 925 1653 211 47 164 111
11/29 94.1% 2659 953 1706 215 47 168 113
12/21 100.0%| 2690 975 1715 214 47 167 113
12/4 100.0%| 2686 975 1711 214 47 167 113
12/g 100.0%| 2686 975 1711 214 47 167 113
12/11 100.0%| 2740 982 1758 214 47 167 112

Uponcloserinspectionof the LOC behaiors, it appearghatthe majority of thechanges
in Newshulletin’s total LOC weredueto anincreasean the numberof testLOC. Fromthedatacol-
lected,it is unclearwhetherall of thetestingefforts werefocusedon only increasingcoverage but
it is clearthatcoveragedid increasesvery time thetestLOC increased However, beforereaching
100%on at least2 occasiongNovemberl7 and23), mary changesccurredwithout ary visible
changesn testLOC or testmethods.

Thefinal effort requiredby Newshulletin to reach100%includedanincreaseof 5.9%in
coverageandanincreaseof 31 LOC in total LOC, mostof which looksto be from anincreasen
testLOC. It is difficult to concludeif ary otherfactorswereinvolvedin thisincreaseFor example,
it is not obviousif therefactoringof eithertestor non-testcodecausedheincreasebecausehere
wasno obserablechangean the numberof testmethodsput anobsenableincreaseén thenumber
of non-testmethods.

After reachingl00%,Newshulletin did notappeato evolve very much. Therewasalittle
obserableactiity with respecto thechangean the LOC, but therewasno obserableactiity with
respecto the changen the numberof methods.Sothe only conclusiomatthis time is thatperhaps
the studentsveresatisfiedwith whatthey achiered sofar, andso spentmostof their time cleaning
up thecode.

Ontheotherhand,Poll, whosethresholdvalueappearedo bebetweer4-95%,shaveda
dramaticdecreasén coverageof 21.5%on November29, andthenseemedo quickly recover atthe

next checkon Decembef®. This sudderdecreasén coverageonly happensvhenalarge numberof

45

methodsarenot testedascomparedo the numberof total methods.It turnsoutthaton November
29, 4 failuresoccurredfrom Poll’'s testcases.SinceJUnit failuresthrow an exceptionwhenthey
occur the remainderof the methodsin which they areinvoked are never executed,resultingin a

possibleossof methodsrom coverage.

Table5.2. Summaryof Poll metrics

Coverag¢ Total |Test LOQ Non-test| Total Test | Non-test| One-line

Date LOC LOC | methodg methods] methodqg methods
11/8 87.5% 3835 793 3042 380 62 318 220
11/11 93.2% 3885 901 2984 380 67 313 219
11/14 95.9% 4140 1118 3022 394 80 314 224
11/11 94.8% 4217 1118 3099 400 80 320 228
11/24 94.8% 4216 1118 3098 400 80 320 228
11/23 94.8% 4216 1118 3098 400 80 320 228
11/24 95.3% 4216 1118 3098 400 80 320 228
11/29 73.8% 4216 1118 3098 400 80 320 228
12/ 94.8% 4209 1111 3098 400 80 320 228
12/94 94.2% 4234 1125 3109 400 80 320 227
12/ 94.2% 4234 1125 3109 400 80 320 227
12/11) 94.9% 4358 1211 3147 404 84 320 229

ThefactthatPoll missedl00%caoverageby atleast4.7%is crucial. By itself thisbehaior
suggestshatremoring methodswith only oneline of codemaynotenough Perhapshereareother
untestablecatgyoriesof methodsbesideabstraciand natve methods.On the otherhand,perhaps
thosemethodghatwerenot invoked during testingshouldhave beenimplementedifferently For
example,asbelieved by TFD adwocatesusing TFD would producemoretestablenethods(While
Resumavasalsonot ableto reachtotal coveragedueto onemethodiit is harderto concludef this
is dueto thedifficulty of achieving total coverageor if thestudentsverenot awarethis methodwas
untested.The JBlanlet summaryoutputto the screenlists the coveragemeasuremerniundedto
thenearespercentin additionto the numberof uninvoked methods.)

Overall, every service,exceptfor Textbooks,experiencedat leastonedecreasén cover
agethat appearedat no particularpoint in development. From Table C.3, the dropsrangedfrom
0.1%to 21.5%.Thecoveragemeasurementsf FAQ, Login, andTechreportslecreasedroundl%.
Newshulletin shaved decreasetessthan4%. Poll hadonebig decreasef about21% and other
smallerdipslessthan2%. Theremaining2 servicesResumeandTutor, eachexperiencedlecreases
lessthan 15%. The presencef thesedropsin coveragesuggesthat maintainingcoverageis not

effortlessandthatduringthoseperiodsin developmentfocusmaynothave beenonly onincreasing

46

coverage.For example,in FAQ andLogin, decreases coverageappearedvhenlittle or no evi-

denceof changeo the obseredtestLOC or testmethodsexisted. However, in Techreportsthere
appearedo be half asmuchchangen thetotal testLOC thannon-tesi_OC andanincreasen the
total numberof non-testmethodsaswell astestLOC.

Anotherinterestingobserationis thatseveral servicesexperiencednedropin coverage
thatwassignificantlylarger thanthe others,while the otherswere smallerdropsaround1%. For
example,the Tutor serviceshaved a 14.3%drop at the beginningwhile its other2 dropswereonly
1.5%and0.2%. Similarly, Resumes biggestdropis 8.7%, andits otherdropis 0.9%. The large
dropsoccurduringtimesin whichtherewasno obsenablechangen thetotaltestLOC, but changes
in thetotal non-testLOC. Thesetwo servicedurther supportthe assumptiorthatmaintainingcov-
erageis not easyandrequiressomeeffort. (Poll's big drop of 21.5%waspreviously explainedand
is alsoin favor of thedifficulty of maintainingcoverage.)

My lastcoverageobsenation concerngheamountof effort thatmightbeneededo reach
100%. From FAQ, Login, Newshulletin, Techreportsand Tutor, an averageof 2.8% increasen
coveragewasthe lastincreasebeforereachingtotal coverage.(Technically Resumedid notreach
100%, soiit is not fair to assumehat the studentscould have invoked the 1 remainingmethod.)
Becausehe remaininguncovered percentagés so low, covering the remainingmethodswould
probablyrequiresomeeffort onthe partof the programmers.

5.3 LOC and Method Metrics

The previous sectionshaved that someeffort wasrequiredfor reachingl00%coverage
andthatmaintainingthatlevel of coveragerequiredsomeeffort. In thissectionl attemptto discover
how mucheffort both casesequire,andif thateffort is reasonableSincesix of the eightservices
(FAQ, Login, Newshulletin, Techreports,Textbooks,and Tutor) reachedand/or maintainedtotal
coverage they areconsideredn this analysis.In addition, eventhoughPoll did not achieve total
coverage,it did reachathresholdvalueandmoreor lessmaintainit. Therefore this analysisalso

includesPoll.

5.3.1 Reaching100% ExtremeCoverage

As mentionedn the previous section,anaverageof 2.8%increasean coverageprevented
someservicesfrom reachingtheir thresholdvalue (that may or may not have been100%). Since

Textbooksstartedwith total coveragethis portionof theanalysiscannotincludeit. Calculatinghow

47

mucheffort the programmersisedto reachthatlevel is impossible.lt couldvery well be thatthey
did not needto useary additionaleffort to invoke every methodat leastonceduringtesting.Onthe
otherhand,the compleity of this servicecould have beenlow enoughthatit resultedin methods
thatwereeasierto test.

Everyserviceshavedanincreasen theirtotalnumberof testLOC exceptfor Techreports.
In fact, Techreportsdecreasedts total LOC (-101 LOC), which resultedin a total loss of two
one-linemethodsand four non-testmethodsfor an increaseof 1% in coverage. In addition, the
studentdixedthe singletestfailurethatoccurredn the previouscheck. This decreasén LOC and
methodssuggestshe programmer(spossiblyrestructuredhe non-testcodeandimprovedthetests

toincreasecoverage.

Table5.3. Changen Techreportsnetricsfor reachingl00%coverage

Coverag¢ Total |Test LOJ Non-test] Total Test | Non-test| One-line

Date LOC LOC | methody methods| methods methods
11/8 - 11/11 14.5% 250 275 -25 2 7 -5 -1
11/11-11/14 1.8% 200 66 134 0 6
11/14 - 11/1 0.1% 54 21 33 0 0
11/17 - 11/2f) -0.5% 384 135 249 25 5 20 8
11/20 - 1128 85% | 237 245 8 8 2 0
11/23-11/2F 2.6% | 260 240 20 6 1
11/26 - 11/2&) 1.0% -101 -63 -38 -4 0 4 -2

Most servicesshaved morechangen their testLOC thantheir non-testLOC exceptfor
FAQ. The positive increasdn testLOC andtestmethodssuggesthe implementatiorof moretest
cases.The positive increasean testLOC andno changein testmethodssuggesimprovementin
testcases Althoughtherewereno olvious changesn the numberof methodsn FAQ, the greater
increasan its total non-test_OC (+136LOC) thanits testLOC (+4 LOC) suggestshatfocuswas
moreon modifying non-tesicodeto increasecoverage.

Thenumberof one-linemethodsof mostserviceschangeceitherpositively or negatively
exceptfor Newshulletin, whosenumberof one-linemethodsdid not change .Newslulletin hadthe
seconchighestincreasen coverageof 5.9%. In additionto its smalltotal LOC increas€+31LOC),
its total numberof non-tesimethodslecreasety 1 while its testmethodgemainedhesameandits
testLOC increasedy 22 LOC. This suggestsomerestructuringof non-testcodeandimprovement

to testcodeto increasecoverage.

48

Table5.4. Changen FAQ metricsfor reachingl00%coverage

Coverag¢ Total [Test LOJ Non-test| Total Test | Non-test| One-line

Date LOC LOC | methody methods| methods methods
11/8 - 11/1} 36.7% 168 143 25 14 8 6 10
11/11-11/14 0.0% 0 0 0 0 0 0 0
11/14 - 11/1f 0.0% 8 0 8 0 0 0 0
11/17 - 11/2f) 13.5% 240 67 173 13 5 8 3
11/20 - 11/2H$ 0.7% -15 0 -15 -3 0 -3 -2
11/23 - 11/2& -0.6% 31 0 31 0 1 -1
11/26 - 11/2f) 12.5% 14 57 -43 3 -1 4
11/29 - 12/8 3.4% 140 4 136 0 0 -1

Table5.5. Changen Newshulletin metricsfor reachingl00%coverage

Coverag¢ Total [Test LOJ Non-test| Total Test | Non-test| One-line
Date LOC LOC | methody methods| methods methods
11/8 - 11/1} 41.5% 257 234 23 7 9 -2 2
11/11-11/14 4.7% 100 100 0 5 5 0 1
11/14 - 11/1)f -3.2% -14 0 -14 -10 0 -10 -7
11/17 - 11/2f) 15.1% 164 131 33 8 6 2 2
11/20 - 11/2H$ 0.1% 6 0 6 0 0 0 -1
11/23 - 11/2& 7.0% 279 288 -9 13 14 -1
11/26 - 11/2 -1.9% 81 28 53 4 0 4 2
11/29 - 12/ 5.9% 31 22 9 -1 0 -1

49

On the otherextreme,Login increasedts numberof one-linemethodsby 34 methods,
which contributedto theimprovementof its coverageby 29.4%to reach100%thefirst time. Other
noticeablechangesncludedatotal increasenf 279testLOC, 21 testmethodsp non-testmethods,
andtheremoval of 57 LOC from thetotal non-testLOC. The programmeffor Login clearly took
advantageof the exclusion of one-linemethods. He also could have dramaticallyimproved the
quality of thetestcasessincethereis little or no evidenceof changein testLOC from the previous
checlout or the subsequentheclout.

Table5.6. Changen Login metricsfor reachingl00%coverage

Coverag¢ Total |Test LO{ Non-test] Total Test | Non-test] One-line

Date LOC LOC | methody methods] methodq methods
11/8 -11/11 0.0% 0 0 0 0 0 0 0
11/11-11/14 0.2% 102 0 102 3 0 3 2
11/14 - 11/1] 29.4% 222 279 -57 27 21 6 34

At onepoint,astudentrevealedio methatinsideevery JUnittestclassis amain method
thatlooked ik e thefollowing:

public static void main(String[] argv) {

/I[Runs all no-arg methods starting with "test".
System.out.printin(*Running testclass TestFo00.");
TestRunner.run(new TestSuite(TestFoo.class));

Thesemethodsareincludedto ensurethatindividual testsclassesanbe executedfrom the com-
mandline interfaceinsteadof executingevery testclassthroughthe Ant build.xml file. However,
the implementatiorof testcasedo invoke the main methodsis not feasiblebecausahesemeth-
odsinvoke the testclasses.Therefore one studentrealizedthat commentingout, or remaoving the
System.out.prin tl n methodcall reduceshemain methodto oneline of code,andtherefore
becomingexemptfrom the coveragemeasurement.

From the abore obserations,the easiestvay to increasecoverageis to first attemptto
reducemulti-line methodsto one-linemethodsby removing non-essentiatode. Othertechniques
includeaddingmoretestcasesmodifying non-testcode,or improving testcases.(XC appearso

requireupdatingiestcasewheneerasystems changedwhichalsoincreaseshechance®sf higher

50

coveragemeasurementsQverall, thesearepositive changes programmeshouldalwaysperform,
regardlessof whethercoverageis or is not measured.The factthat no serviceshaved changesn
their total LOC exceeding300LOC couldimply thata smallamountof effort wasused.However,
it is alsoplausiblethatthe causeof the smallamountof noticeablechangds therefactoringandre-
designingof thetestandnon-tesmethodsandclassesuchthattheresultcontainedaslightincrease
in the size of codethanthe original size. Therefore while reachingl00% XC may not appearo
requirean unreasonablamountof work from this perspectie, more researchwill be neededo

evaluatethis claim.

5.3.2 Maintaining ExtremeCoverage

Shiftingthefocusto determiningf XC is maintainablevith areasonablamountof effort
changeghe groupsof servicesanalyzed.Textbooksis includedin this portion of analysissinceit
had 100% coveragefrom the first checlout and maintainedthat level of coveragethroughoutthe
evaluationperiod. (Actually, Textbooksshouldprovide the bestevidenceto how much effort is
neededo maintainXC.) However, Tutor cannotbeincludedin this analysishecausét reachedotal
coverageonthelastdayof the evaluation. Therefore no dataexistsregardingary actvities, or lack
thereof,for maintainingits coverage.

While coveragenevervariedfrom 100%, Textbook's datareflecteconly aminimalamount
of actvity. For example,when consideringthe dataat facevalue, the only day in which actv-
ity clearly could have influencedthe maintainabilityof coverageis Novemberl7, whenthe total
methodsncreasedy 3 methods Oneassumptioris thatthe studentsmplementedsomeadditional
modificationsandthenits tweakingcarriedover to the next checlout. Aside from this day observ-
ableactuities occuron only threeotherdays,eachonealteringthetotal LOC by lessthan30LOC.
It is possiblethatthe implementatiorof this services featuresnearedcompletionwhen coverage
wasmeasuredsotheonly taskremainingwasto cleanup thecodeandimprove unit testing. There-
fore, the conclusionthat coveragemaintainabilityrequiresa reasonablemountof effort derived
from thebehaior of this serviceis duemainly to the datacollectedon Novemberl?.

Corversely the possibility of this services featuresnot beingalmostcompleteis remote
becausen additionof a featurewould mostlikely produceanincreasdan the numberof non-test
LOC or non-testmethods.

On the otherhand,FAQ displayeda lot of actvity in the four checlouts after reaching
100%. Total LOC appearso changey 309LOC (+181L0OC,-128L0OC) andtotal methodsappears
to changeby 18 methodq-10LOC, +8 LOC). Thisis the secondnostobserabletraumaa service

51

Table5.7. Changen Textbooksmetricsfor maintainingl00%coverage

Coveragg Total Test | Non-tes{ Total Test | Non-tesq{ One-ling

Date LOC LOC LOC | methodg methodg methodg methody
11/8 - 11/11 0.0% 0 0 0 0 0 0 0
11/11 - 11/344 0.0% 0 0 0 0 0 0 0
11/14 - 11/97 0.0% 105 94 11 3 3 0 -1
11/17 - 11/20 0.0% 2 0 2 0 0 0 -1
11/20 - 11/43 0.0% 0 0 0 0 0 0 0
11/23 - 11/26 0.0% 0 0 0 0 0 0 0
11/26 - 11/29 0.0% 0 0 0 0 0 0 0
11/29 - 122 0.0% 0 0 0 0 0 0 0
12/2 - 12/p 0.0% 26 0 26 0 0 0 0
12/5-12/B 0.0% 0 0 0 0 0 0 0
12/8 - 12/11 0.0% 12 0 12 0 0 0 0

experiencedInterestinglythetotal one-linemethodsdroppedby 4 duringthistime. Thenumberof
testmethodsand non-testmethodsdid not continuallyincreasenor continuallydecreaselnstead,
therewasa decreasén total methodsanincreasen total methodsandthenadecreaseagain.This
could be dueto the removal of unneedednethodsfollowed by the creationof more methodsand
moretestmethodgo testthenew methodslf thisis whathappenedthenmaintainingXC probably
requiressomeeffort sincethetotal increasen testLOC is greatethanthetotal increasén non-test
LOC.

Table5.8. Changean FAQ metricsfor maintainingl00%coverage

Coverag¢ Total |Test LO{ Non-test] Total Test | Non-test] One-line

Date LOC LOC | methody methods] methodq methods
12/2 -12/% 0.0% -128 9 -137 -9 -1 -8 -3
12/5-12/§§ 0.0% | 171 | 105 66 8 3 5 0
12/8 - 12/11 0.0% 10 2 8 -1 0 -1 -1

The mosttraumatizedserviceafter reachingl00% coverageappeardo be Login. This
servicefirst achieredtotal coverageon Novemberl7. Thencoveragedroppedo 99.2%for the next
two checloutsbecaus@nemethodwasmissed.Login thenregained100%coverageuntil theend,
whenonceagaina methodwasnot invoked, droppingto 99.2%. The bouncingbetweertwo values

52

suggestghat maintainingcoveragerequiresa lot of work sincethe obsenable changesn LOC
arerelatively small comparedo the final size of the service,yet 100% coveragewas not always
maintained More actvities occurredduringthe secondvisit to 100%. However, the mostactvities
seento have taken placebetweerDecembeB to 11, whentotal LOC increasedy 207 LOC, total
methodsncreasedy 17 methodsandone-linemethodsncreasedy 16 methods.Thislastchange
looks suspicioushlik e the creationof a new class.If so,thenit impliesthatcodewasmostlikely

refactoredsincetherewereno obserablechangesn testLOC or testmethods.

Table5.9. Changen Login metricsfor maintainingl00%coverage

Coverag¢ Total [TestLO{J Non-test| Total Test | Non-test| One-line

Date LOC LOC | methody methods| methods methods
11/17 - 11/2f) -0.8% 11 1 10 1 0 1 0
11/20 - 11/28 0.0% 0 0 0 0 0 0 0
11/23 - 11/2Hi 0.8% 40 40 0 4 4 0 2
11/26 - 11/2) 0.0% 55 0 55 0 0 0 2
11/29 - 12/ 0.0% -1 0 -1 0 0 0 0
12/2 -12/% 0.0% 24 7 17 1 0 1 1
12/5-12/§ 0.0% 0 0 0 0 0 0 0
12/8 - 12/1] -0.8% 207 0 207 17 0 17 16

Poll's coveragereachedapproximately96% at best,but it's coveragemeasurementslso
bouncedaroundwhile the amountof noticeableactivity wasminimal. The coveragemeasurement
alonehintsthatcoverageis not easyto maintain.

Thebehaior of Newslulletin is someavhatsimilar to Textbooks— no obserablechanges
in numberof methodshut obserablechangesn LOC.

Techreportdisplayedunusualbehaior throughoutthe evaluationperiod. It shaved a
steadyincreasen total testLOC beforereaching100% coverage,andthena steadydecreasen
total testLOC after reachingl00%. As a whole, maintenancdehaior suggestghe cleanup of
non-testandtestcode. Therefore,in this case maintainingcoverageonceagaindid not appeaitto
requireanunreasonablamountof effort.

Overall, the amountof effort neededio maintain XC is not definite becausadifferent
servicesproduceddifferent results. From the bouncingbetweenvaluesby Login and Poll that

suggesperhapsheamountof effort is unreasonabl® the steadycoverageby theremainderof the

53

servicesthat suggesperhapshe amountof effort is reasonablethe only clearconclusionis that

moreinvestigationis needed.

5.4 Questionnaires

Two differenttypesof questionsappearedn boththe Pre-UseQuestionnair€“pre”) (See
FigureA.1) andPost-Usé&uestionnair€“post”) (SeeFigureA.2): close-endeduestionandopen-
endedquestions. The close-endedjuestionsasled studentgo rate their responsess one of the
following: stronglydisagreedisagreeno opinion,agreepr stronglyagree.Theratingfor theircur
rentcoverages: 0%, 25%,50%, 75%,100%.All answersarecomparedising“pre” questionnaire
responsesersus‘post” questionnairgesponsegitherper studentor asa class. Due to the small
samplesize,therewereno attemptsat statisticaltestsfor significance.

5.4.1 Unit Testsare Very Important

Theintensionof this close-endedjuestionis to discorer how muchvaluestudentglaced
onunittestingin general.n the“pre” questionnairemajority of the studentsanswereakitheragree
or stronglyagreeandonestudenthadno opinion In the“post” questionnairemoststudentsither
agred or stronglyagred. Every answereitherremainedthe sameor increased.Clearly, students
agreedn theendthatunit testsareimportantto correctlyfunctioningsoftware.

Thestudenthatfirsthadnoopinionchangedo stronglyagredhatunittestsareimportant.
Interestingly for all of the closed-endeduestionsthis samestudent responseall changedrom

negative to positive responsessuchasdisagredo agree

5.4.2 DesigningUnit Testsis Hard

This close-endedjuestiongaugeghe amountof effort studentsieedto implementuseful
unit tests.In the “pre” questionnairemoststudentsaansweredvith agreebut answergangedfrom
disagredo stronglyagree In the “post” questionnairemoststudentsonceagainansweredagree
with answergangingfrom disagredo stronglyagree Therewasno particulardirectionin change
betweerguestionnairesSomeopinionsincreasedn favor of difficulty, somedecreaseth favor of
easinessandothersstayedhe same.

The changesn opinionscould have beeninfluencedby, amongotherthings, eitherthe
introductionto XC andJBlanlet or the complity of the 8 services.

54

@Pre-Use
W Post-Use

Strongly disagree Disagree No opinion Agree Strongly agree

Figure5.1. Questionl responses

@Pre-Use
W Post-Use

Strongly disagree Disagree No opinion Agree Strongly agree

Figure5.2. Question2 responses

55

5.4.3 My Unit Testsare Good

This close-endedjuestionmeasureshe confidencestudentshave in their currentunit
testingabilities. In the “pre” questionnaireanswergangedfrom strongly disagredo agree with
agreebeing the more popular thoughnot by much. In the “post” questionnaireanswerswere
slightly more positive, rangingfrom disagreeo strongly agreewith the consensusemainingat
agree Someopinionsdecrease@h confidenceor remainedthe same,but the confidenceof most
studentsncreased.

While onestudenthad no opinionin the “pre” questionnairehis coveragemeasurement
was estimatedat 100% In the “post” questionnairethe samestudentagred that his unit tests
did a goodjob afterknowing the coveragemeasurementf his service.Furthermorehis response
to JBlanlet’s influenceon his unit testsstatedthat he did not think he did much testingbeyond
coveragetesting. Therefore this studentmustunderstandhattotal coveragedoesnot indicatethe
endof unit testing.

14

12

10

mPre-Use
mPost-Use

Strongly disagree Disagree No opinion Agree Strongly agree

Figure5.3. Question3 responses

5.4.4 JBlanketis Helpful

This close-endedpost” questionnairguestionmeasurethe usefulnessf JBlanlet. The
answersangedrom disagredo stronglyagreewith majority of the studentsagreéng thatJBlanlet
washelpful,i.e., knowing their XC washelpful.

56

Two studentglisagred that JBlanletis helpful. For onestudenttheanswergo the other
qguestionglid not provide suficient evidenceasto thereasorfor his negative opinion. Onthe other
hand,the secondstudentdid not seemto placemuchvalue on the reductionin testcodesizethat
alsoincreaseaoverage.

14

12

WPost-Use

N

e ET

Strongly disagree Disagree No opinion Agree Strongly agree

Figure5.4. Questiord responses

5.4.5 My Method Coverageis ...

This close-endedjuestionverifieshow realisticstudents’expectationsof their coverage
are. In the “post” questionnaireevery studentestimatedhis coverageat 100% However, in the
“pre” questionnairea surprisingnumberof six studentsranked their coverageas approximately
25% andonly one studentapproximating100% The averagecoverageapproximationis about
46%. Theactualaveragecoveragerom thefirst dayof datacollectionis 38.7%,proving onceagain
thatpeopleover-estimatetheir coveragesvhenthey arenot measuringt.

Interestinglytheonestudentwhoseestimatedoverageremainedat 100%stronglyagred
thatJBlanletis helpful.

5.4.6 Unit TestProblems

Thisopen-endeduestiortouchesiponwhetherXC succeedeth addressingncountered
problemswith designingandimplementingunit tests. The“pre” questionnaire&oncernamein a
wide variety, rangingfrom not having enoughtime to implementadequateeststo frustrationfrom

57

14

12

10

mPre-Use
mPost-Use

0% 25% 50% 75% 100%

Figure5.5. Questions responses

not beingableto implementtestscorrectlyto the incorvenienceof changingunit testsin response
to changesn sourcecode. For example,one studentclaimedthat outsideinspirationwasneeded
asmotivation for implementingtests. Another studentclaimedthat updatingunit testswas“very
tediousandcumbersomé. Someof his classmateagreedhat unit testswerefragile andrequired
immediateattentionwheneer sourcecodeis changed(Becauseheservicesverealwaysbuilt asa
whole,onefailedtestwould “break” the build.) Finally, 3 studentsommenteadn having problems
determiningwhattestcasedo write andhow to ensurehatthey includedall combinationsf valid
andinvalid values.

Working towardsagoalof 100%XC providesmotivationfor writing testcasesnorethan
instructionsthat vaguelyspecifythe codeneedso betested.However, only applyingXC may not
provide enoughmotivationfor someprogrammers.

With regardsto updatingunit tests XC cannothelp studentgredictwhich methodswill
changeor provide implementatiorhintsfor teststhatwill notbe modifiedthe next time somecode
is changed. Unfortunately no matterhow they are designedautomatedestslike JUnit require
maintenancg40]. However, if a studentfindsthis problemoccurringfrequently it may signalthat
the implementationof the testcasesare too tightly coupledto the implementationof the system
beingtested. On the otherhand, perhapshe problemis not the testcasesput the designof the
system.The studentmay needto re-think the currentdesignbeforeproceedingwith testingsothat

the systemwill beasrobustandeasyto testaspossible.

58

Astothelackof directionwhendesigningestcasesJBlanletcreateseportsthatincludes
methodsnot invoked in testing. This list of untestedmethodscan sene as a starting point for
studentgo decidewhatto testnext. By creatingtestsfor the untestedmethods,othertestcases
usingspecificboundarypointsor conditionsmay berealized.

In the“post” questionnaireanswervnceagaincovereda variety of problems.However,
the typesof the problemsshifted from personaissueswith testing,like finding the motivation to
createthem, to the act of designingjmplementingandexecutingtests. For example,studentsare
no longercluelesson whatto test. Instead they now know aboutmethodcoverageandcanmove
beyondit to “trying to figure out how to thoroughlytestthe systent. At leastonestudentrealized
that “reaching100% methodcoveragedoesnot meanthat the softwareis fault free. If you make
thatassumptioryou areworseoff thennot having 100%"

Otherproblemsncludedtestinglinked pages|ack of atestingtool for JavaScript,testing
void or file /0O methods,and NullPointerExceptions.The problemof updatingtestswasstill an
issuefor onestudent.Issueselatedto gettingtestcasedo executecorrectlyandreliably werestill
presentiswell.

At leastonestudentexperienceda problemrelatedto testingreliability. Runningonly the
services testsproducedlifferentoutputthanrunningall of thetestsin CRESTtogether While the
causeof this is still unknavn, the onedifferencebetweenthe students’developmentervironment
and my developmenternvironmentwas our versionsof Tomcat. After Tomcatwas fixed to one
specificversion,this problemwasnot broughtup againuntil the“post” questionnaireThereforejt
is unclearwhetherthis commentrefersto their previous experienceor the problemwasstill present

attheendof thesemester

5.4.7 JBlanket Influenced My Unit Tests

This open-endedjuestionin the “post” questionnairdooks for the typesof changestu-
dentsnoticedin their unit testing. It canalsobe interpretedas how knowledgeof XC influenced
unit testing.

A handfulof studentslaimedthatthey wrote moreunit tests. A coupleof themstated
they wrote lesstestcodeto increasetheir coverageby invoking the “bigger” methodsthat called
other“smaller” methodsinsteadof implementingindividual testsfor the “smaller” methods.One
studentsaidthathe wasableto write testsquicker. Interestingly anotherstudentwrote thatusing
JBlanletimprovedhis confidencen his unit tests.

59

However, JBlanket and XC alsoinfluencedsomeundesirablébehaior. Somestudents
mentionedhatthey endedup focusingsomuchonreachingl00%coveragethatthey did notthink
too muchaboutincluding othertypesof testing,like conditionalsor boundaryconditions.

5.4.8 JBlanket Needsimpr ovement

SinceJBlanletis closelyassociatedo XC, answergo this open-endedjuestioncouldbe
interpretedassuggestionso imprave XC, JBlanlet, or both. For example,suggesteimprovements
onthespeedclarity of output,andinclusionof a method-callingreearespecificto JBlanlet. The
speedof theearlierversionof JBlanletusedby theICS 414 classfor evaluationwasrelatively slow.
As the size and complity of a systemincreasedthe time to measurecoveragealso increased
because cleanbuild of the systemwas always needed.This problemis no longera concernin
the currentversion. With respecto the output,as mentionedpreviously, the summaryprintedto
the consoleroundednumbergo the nearespercent. Therefore it wasdeceving to studentsvhen
coveragewaslistedat 100%,but 1 methodwasnot invoked.

Includinga method-callingreeis actuallya plannedfutureimprovementto the JBlanlet
system. This tree would representa map of all the methodsin a systemand the methodsthey
call. After resultsfrom onerun of JBlanlet are calculatedthe nodesin the treewould indicateif
a methodwasinvoked or not, visually identifying the next possibletestcasethat would increase
coverage.

A coupleof studentsequestea¢hangedo both XC andJBlanlet. For example,someone
saidthatall methodsregardles®of size,shouldbeincludedin coverage Otherstudentslaimedthat
othergranularitiesof coverageshouldalsobeincludedlik e statementoverageor branchcoverage.

One commentincludedin the previous questionactually appliesto this question. The
studentwrote that the covering of empty methods,i.e., methodsthat do not containary lines of
codein its body shouldnot be counted. While theseempty methodswere includedin coverage,
they wereincludedwith the assumptiorthat eventually the methodswould containcode. If not,
thenthey would beimplementedasabstracimethods However, the casewhereemptymethodsact
asplaceholderghat eitherrestricta userfrom invoking the methods like private constructorspr
provide requiredimplementatiorof abstractmethodswverenot consideredThis issueneeddurther

investigated.

60

5.5 Summary

Armedwith the obserationsmadefrom the evaluationresults,the following summaries
canbemadeaboutthethreehypotheses:

1. Technologyto supportXC is feasibleandpractical.

AlthoughimprovementsarecontinuouslyneededJBlanlet hasalreadyevolvedinto aneasy-
to-useandcomprehensibléool to measureXC. It providesa packageof functionalitiesthat
arenot availablewith the othercoveragetoolsmentionedn Chapter3. It currentlysurpasses
othermethodcoveragetoolswith its flexibility concerningone-linemethodsandextendibility
toincludeotherXC rules.

Furthermore the run times for building Newshulletin with the old version of JBlanlet is
alwaysapproximately75 secondaindwithout JBlanlet is approximately60 secondghefirst
time and25 secondshereaftewith no changedgo the sourcecode.Theruntimesfor thetest
casewith theold versionof JBlanletis 225secondwversuswithout JBlanletis 150seconds.
With the new versionof JBlanlet, building Newshulletin takes90 secondghefirst time and
then60 secondghereaftemwith no changego the sourcecode,andthe testcasesakes 225
secondsThereforethetimeto measurédothunit testsandcoveragencreaseaxecutiontime
by 50%- 140%.

2. Theeffort requiredto achieve andmaintainXC is reasonable.

Evidencedid suggesthat achiering XC requiressomeeffort and maintainingXC requires
someeffort. Conflictingobsenrationsbetweerthebehaiors of differentservicesuggestshat
maintainingXC wasrelatively easyandthat maintainingXC wasrelatively hard. However,

dueto thelimitations of the LOCC metricscollected exactly how mucheffort is unclear

3. Knowledgeof methodcoveragecanhelpwith systemdesignandimplementation.

Fromthe questionnaireghe majority of the studentsagreedthat usingJBlanlet to measure
their coveragewas helpful with writing useful unit tests. It encouragedtudentsto write
testsmore often and helpeda couple studentsby reducingthe amountof testcodeimple-
mentedwhile exercisingmoremethods.However, somestudentslaimedthatconcentration
on achieving 100% coveragedrew attentionaway from designingandimplementingother
testcasegshatchecled boundaryaluesandconditionals.

61

5.6 Limitations

Following thepresentationf theresultsof this study seserallimitationsonthegenerality
applicability andinterpretatiorof this researcmeedto be mentioned.

First,generalizingheresultsof this studyto abiggerpopulations notrecommendedThe
hypothese®f this researclwereevaluatedusinga smallgroupof 13 undegraduatestudents.The
rangeof their“experience’is unknavn asthey wereonly expectedo have someworkingknowledge
of technologiedike Java, Tomcat,Ant. Moreover, the studentsbehaiors andthe behaiors of the
serviceghey implementedare specificto their situations.As canbe seenfrom the results,no one
serviceactedexactly the sameasanotherservice.

In addition,the metricsobtainedfrom both JBlanket and LOCC reflectsnapshotef the
stateof eachserviceat periodicintenalsfor 5 weeks.Thedatadoesnotrepresenall of theactiities
thatoccurredduringthe intenals. For example,while the changéan total LOC mayappeato be0,
therealityis that20 non-test.OC couldhave beenremavedandreplacedy 20 othernon-test.OC
thataremoreeffective atincreasingcoverage. Furthermoreit is impossibleto detectbig changesn
sourcecodewhenonly smallamountof changesredetectedFor example,anew classcanreplace
agroupof relatedmethodswhile the total numberof methodsdoesnot change Poll is anexample
of this possibility — no visible changescould be detectedwith respectto LOC or the numberof
methodshut XC actiity wasstill present.

Finally, mostcoveragemeasurementshouldbetakenwith a grainof salt. Unfortunately
not all testcasegpassedl00% of the time. For example,in Poll, the coveragedecreasedt one
point dueto testcasefailures. However, otherserviceswith testfailuresdid not resultin suchbig

differencesn their coverage.

5.7 Additional Observations

Aside from proving or dispraving the hypothesesanotherinterestingobsenation was
madefrom the resultsof JBlanket andLOCC thatwerenot directly connectedo the objectivesof
this study

At theendof theevaluationthepercentagef testLOC andtestmethoddor eachservice
on eachdate was calculated. Thenthe differencein the percentage®etweenNovember8 and

Decemberd 1 wasfound. Theresultsareshavn in Figure5.6 andTable5.10.

62

Interestingly the servicewith the mostincreasdn coverage,Resumg72.0%),alsohad
themostincreasan percentof testLOC (31.0%)andpercentof testmethodg22.0%).Corversely
the servicewith theleastincreasen coverage,Textbooks(0.0%),did not have theleastincreasen
percentof testLOC (3.3%),but did have the leastincreasen percentof testmethodg1.5%). The

servicewith theleastincreasen percentof testLOC (-0.1%)wasTutor.

100.0%
90.0%
80.0%
70.0%

60.0%

50.0% @coverage
Wtest lines

Otest methods

40.0%

30.0%

20.0%

10.0%

0.0%

-10.0%

Figure5.6. Percenthangdn metricsof CRESTservices

63

Table5.10.Percenthangdan metricsof CRESTservices

Service Coverage Test LOC |Test Methods
FAQ 66.3% 11.1% 6.6%
Login 28.8% 6.6% 6.3%
Newsbulletin 69.2% 26.2% 15.0%
Poll 7.4% 7.1% 4.5%
Resume 72.0% 31.0% 22.0%
Techreports 28.0% 8.7% 2.8%
Textbooks 0.0% 3.3% 1.5%
Tutor 19.0% -0.1% 3.1%

64

Chapter 6

Conclusionsand Futur e Dir ections

Unit testingis a useful software testingtechniquethat can reducethe costof software
developmentby revealingdefectssoonerandcanincreasehelikelihoodof producingquality soft-
ware. In this researcha variationof methodcoveragecalled“Extreme Coverage”(XC) wascom-
binedwith unit testingin an attemptto reducethe costof implementingunit testswhile increasing
their quality Resultsshavedthatknowledgeof XC influencedthefrequeng of the creationof unit
testsandhelpedto increasaleveloperconfidencen them. However, resultsalsoshavedthatknowl-
edgeof XC reducedattentionto conditionalandboundaryvaluetestingbecausef anincreasan
attentionto obtaining100%coverage.

6.1 Evaluation Impr ovements

During the evaluationperiodwith the ICS 414 studentsseveralunforeseemroblemsand
issuesarose. Someproblemsoriginatedin JBlanket and someproblemswere resultsof different
developmentervironmentsusedby the students.Regardlessof the causeof a problem,coverage
measurementa/ere not recalculatedbecauseat was importantthat the resultsappearedas they

appearedo the studentsTheseissuesshouldberesoled beforeproceedingvith futureresearch.

6.1.1 Run Time Impr ovement

As mentionedin the previous chapter the speedwith which JBlanlet ran over CREST
could also be attributed to CRESTS build process. Eachservicehadits own build.xml file to
build themseles. However, the whole systemneededo be compiledas a whole first, packaged

and copiedover to Tomcat,and thenlaunchedon Tomcatbeforea services testcasescould be

65

executed.Dependinguponthe speedf the processqrthe entireprocesdastedbetweenl5 minutes
to 30 minutes.

A relatedproblemoccurredwhenforking wasturnedoff in an attemptto decreasehe
time neededo run all thetestcasesWithout forking, System.out.pri nt In statementi test
casedeganappearingn the screennsteadof mysteriouslydisappearingnto JUnit’s outputXML
files. However, System.err.pri nt In statementgrom errorsthat never causedestfailures
alsostartedappearingon the screerthat did appeaiin the output XML files, but did not appeatin
the JUnitHTML reports.As aresult,somestudentsliscoveredthatthey did not fully comprehend
theclient-serer model.

With theimplementatiorof smartmodification,runtimeis nolongeranissuewith respect
to how a systemis built. As mentionedn the previous chaptertherun time of Newshulletin’s test
caseswith JBlanlet took about90 secondswith a “clean” build of the system,andthenabout60
secondghereafter(with no changego the sourcecode)to executewhile without JBlanket took
about60 secondsvith a“clean” build andthen25 secondshereafte(with no changego thesource
code).

However, whatremainsanissueis whenin thebuild processhouldasystems methodde
modified. For example,modificationcanoccurright aftercompiling a systemor beforepackaging
the systeminto a JAR file.

Forking of JUnittestsin Ant shouldbe avoidedwherepossiblebecausdorking by itself
canincreaseexecutiontime. Experimentingvith Hackystatversion2.0 (without JBlanlet), testing
without forking took about107 secondsvhile testingwith forking took about270seconds.

6.1.2 SetTomcatVersion

Anotherproblemwasthe differentversionsof Tomcatusedby the studentghat ranged
from 4.0.1to 4.1.12.JBlanlet wasdevelopedusingversion4.0.1,which wasalsousedby students
thatenrolledin the previous semestes ICS 413 class. Otherstudentausedversion4.0.3or later,
which arenot aslenientwith the TagLibraries. Interestingly this versionproblemwasnot discov-
ereduntil afterthe studentdried usingJBlanlet. In future researchrestrictthe Tomcatversionto
only oneversion.

66

6.1.3 Data Collection Process

Thedatacollectionandrecordingprocessesvereperformedmanually | checled outthe
CRESTmoduleonceevery threedays. A batchfile thenran the test casesof eachserviceand
sentthe outputto differentfiles. Eachoutputcontaineda measuremerftom LOCC andJBlanlet. |
wouldthenscantheoutputfiles andenterthedatainto onecolumnof a Microsoft Excelspreadsheet
perday Finally, the sourcecodeandoutputfiles werecompresseavith WinZip [41] andarchved
in a separatetoragdocation.

While | tried to be extremely carefulenteringthe data,like checkingthe numberswice,
2 errorsappearediuring the analysisphaseof this research.Oneerroruseda '3’ insteadof a2’
to describethe numberof testLOC, skewing theresults. The seconderror switchedtwo numbers,
'41’ insteadof '14’, which did notaffect theresultsasmuchasthefirst error.

Datarecordingshouldbe performedautomaticallywith HackystatsensorsFor example,
the existing sensoffor JBlanket anda possiblefuture sensoifor LOCC couldcollectdatasimilarto
whatthe systemsutputto the screen Sincesensoralsoarchive thedatathey collect,spreadsheets
areno longerneededIn addition,if theuncoreredmethodsarestored.,it is possibleto discover the
mostdifficult methodgo testandperhapsvhatmakesthemsodifficult.

Thelastitemonthiswishlist is theautomateatheclout of CREST executionof JBlanlet
andLOCC, andrecordingof theirresults.Attemptsatimplementingcrontabsdid not progressvery
far. Becausef time limitationsandmy experiencejt waseasierto manuallyperformthesetasks.
However, having a functioningcrontabwould have saved me at leastonehour on thosedayswhen
| gatheredhenext setof CRESTdata.

Thesedatacollectionimprovementsvould helpthe next researcheconcentrat@n duties

thataremoreimportant.

6.1.4 Gathering Informative Data Samples

Theamountof effort neededo achieze andmaintainXC remainsamystery Oneproblem
experiencedduring analysiswas the difficulty of arriving at ary plausibleconclusionsregarding
effort. The metricscollectedfrom bothJBlanlet andLOCC reflectedonly a snapshobf the actual
developmentprocesseskor example,it wasdifficult to concludewhethera changeof 20 LOC in
total LOC wasstrictly 20 LOC addedo the serviceor 300LOC addedand280LOC removed.

Shorteningthe intervals betweenmeasurementseemdike an improvement. It would
resultin smalleramountsof time with which major changesould occur However, with this ap-

67

proachi,it is still possiblethatanincreaseof 20 LOC couldbefrom only anadditionof 20 LOC or
anadditionof 300LOC andthena subtractiorof 280LOC.

Instead effort shouldbe measuredy the amountof time spentworking on eachtype of
file (testand non-testclasses).With the currentsetof Hackystatsensordor the emacs JBuilder
andEclipselDEs, this datacanbe collected.

In addition,a sensoffor the CK (ChidambetKemermermetricsalsoexists. In this case,
the usefuldatait providesis LOC. Sincethe sensorcalculateghe LOC every 30 secondger file
thatis worked on, anaccurateneasurementf the changen LOC overtimeis measurable.

Furthermore JUnit and JBlanlet sensorsxist also. Unit testand coveragedatais now
collectableevery time unit testsareexecuted.With morefrequentdatasamplesthe obsered cov-
eragebehaiors now representhe actualbehaior. Coupledwith anIDE sensolandthe CK metrics

sensartheamountof effort usedto reachdifferentlevelsof coverageis measurable.

6.2 Future Directions

Theresultsof this studyareintendedo beafoundationfor futurestudieson thefeasibility

of includingmethodcoveragein the softwaredevelopmentprocessandits applicability

6.2.1 How Much Effort is a Needed?

Themostobviousnext stepis to answettheguestionof how mucheffort doesXC require
to reachandmaintain100%coverage?n thisresearchit wasestimatedhatstudentgrobablyused

someamountof effort.

6.2.2 Refining the Rulesof XC

FromthePoll services behaior, it appearshattherulesappliedby XC needto be mod-
ified. A next stepin this directionincludesrecordingwhich methodswverenotinvoked during unit
testing,catayorizingthem,andthenevaluatingthosecateyoriesaseithertestableor untestableFor
example,in Hackystat,testingof the JBlanket sensopackagés almost100%. Theonly methodnot
invokedis theexecute methodthemethodinvoked by Ant wheneer the JBlanlet sensottaskis
invoked. (SeeFigure6.1andFigure6.2)

In addition,moreresearchs neededo find outif excludingevery methodwith oneline of
codeis feasible.The original assumptiorfocusedon remaving accessoandmodificationmethods

from coveragesothatachiering high levels of coveragewould not becomeaedious.However, is the

68

[B¥ JBlanket Test Results. - Mozilla

ol x|
File Edit ‘iew Go Bookmarks Tools MWindow Help |
Home ﬂ JBlanket Test Results

Packages Designed for use with JBlanket, JUnit and Ant.

K — j

Package org.hackystatx.sensor.ant.jblanket

org.hackystatx.sensc| Classes

Name Methods Methods Subtotal Tested Untested %
classes total one-line multi-line multi-line multi-line cove_re_d
multi-line
JBlanketSensar
5

IBlanketSensorEx ception JBlanketSensar 7 3 4 3 1 75.0%
TestlBlanketSensor IBlanketSensorException 2 z 0 0 0 100.0%

TestiBlanketSensar 2 a 2 2 a 100.0%

0 2|

Figure6.1. JBlanlket resultsof JBlanket sensompackagean Hackystat3

|8 JBlanket Test Results. - Mozilla 1O x|
File Edit ‘iew Go Bookmarks Tools MWindow Help |

Home ﬂ JBlanket Test Results

Designed for use with JBlanket, JUnit and Ant.
Packages

org.hackystat.admin
org.hackystat.alert Class org.hackystatx.sensor.ant.jblanket.JBlanketSensor
org.hackystat.cache

Name Methods Methods Subtotal Tested Untested %o
org.hackystat.changelog

total one-line multi-line multi-line multi-line covered
arg.hackystat,command multi-line
i 3

JBlanketSensar 7 3 4 3 1 75.0%

org.hackystatx.sens¢| Tested Methods

Name
Classes

<init={)
JBlanketSensar

1BlanketSensorException <init={ java.lang.Ztring , java.lang.String)
TestIBlanketSensor

processIBlanketxmlFilef javalang.String)

UnTested Methods
Name

executel)

One Line Methods

Name

send()

setMethodsetsxmlfile] java.lang.String)

setVerbose(java.lang.String)

R 2

Figure6.2. JBlanlet resultsof JBlanletSensoclassin Hackystat3

69

probability of methodscontainingonly oneline of codethatdoesnot containacomplicatedexpres-
sionso smallthatthis rule is feasible?Or shouldit be modifiedfurtherto somehav includeonly

the accessoor modificationmethods?Or do thesemethodsthemseles also containcomplicated
expressionghatneedto betested?

6.2.3 Comparison Against StatementCoverage

As previously stated,methodcoverageis a coarsergranularity coveragemeasurement
thanstatementoverage,branchcoverage,and conditioncoverage. However, statementoverage
considersa behaior thatis similar to a behaior consideredoy methodcoverage. For example,

considerthefollowing if-else statement:

if (condition) {

else {

If within the bodiesof the if-statementand else-statemenfy methodcalls, statementoverage
could reach100%if both the bodiesof the if-statementand else-statemerdre tested. Similarly,
methodcoveragewill reachl100%if bothbodiesaretested.

Ontheotherhand,if thereareno methodcallswithin the bodiesof theif-else statement,
statementoveragewill not reach100% until both bodiesare testedwhile methodcoveragewill
reach100%.However, this casecanalsobe measuredby anotheitype of coveragdik e branchcov-
erage.Combiningtwo typesof coveragedik e methodcoverageandbranchcoverageis considered
to bebetterthanusingonly onetypeof coveragedlik e statementoverage[30].

Therefore,|it is not clearat this time how significantthe differenceis betweenstatement
coverageand methodcoveragethat cannotbe measuredy anothertype of coverage. The study
conductedy Elbaumet. al [21] suggestsimilar pursuits,.e., investigatinghe benefitsof applying
methodcoverage.

70

6.2.4 Where Hasthe CoverageGone?

For the evaluationof this study studentswere requiredto reach100% coverageby the
endof the semesterAt the endof the semesterCREST asa whole, reachedapproximately98%
XC. Eachof its servicesachieved atleast94%or better

Sincethen,CRESThasbeenredesignednto a kernelandextensionsarchitecturesimilar
to Hackystatandrenamedo CLEW. Eight of the 13 studentsreturned,four of themasan inde-
pendentstudy and four of them as volunteerssincethey graduatedast semester With only the
motivation of producingawebservicethatwill beusedby the ICS Departmentindoccasionalise
of JBlanlet, togetherthey achiered approximately91% XC at the beginning of March. Unfortu-
nately a perservicemeasuremertannotbetaken sinceall testingis donein the kernel. However,
by perusingthe JBlanlet report, as seenfrom coverageper packagepnly two of the servicesre-
mainedat 100%while the othersdid not.

Ontheotherhand XC of Hackystat,which only usedJBlanletinfrequentlyis only about
62% at aboutthe sametime. Interestingly the previous version, which did not have accesgo
JBlanlet, had XC atabout70%.

In othersituations,would coverageremainhigh like CLEW, or would it be lower, i.e.,
more like Hackystat without frequentuse of JBlanlet? Are thesechangesdueto the changein
architecturepr somethingelse?Furthermorewhy did the coveragemeasuremertf CLEW andits
servicedrop?In addition,whathappensvhenprogrammersirst have accesgo JBlanlet, thendo
not have accesdo JBlanlet, andthenhave accesdo JBlanket again?

This future studyinvestigatesvhetherXC is adequatelylight-weight”, like unit testing
in XP, suchthat programmersare willing to useit unconditionally and make up the difference
when coverageis not 100%. One experimentobsenres coveragebehaiors from using JBlanlet
throughoutdevelopmentand comparegshem with coveragebehaiors from using JBlanlet after
developmentbegins. AnotherexperimentintroduceslBlanlet to achieve 100%coverage andthen
removesJBlanletto discorer how muchcoveragedrops,andthenre-introducesiBlanletto find out

if programmersrewilling to work towardsincreasingcoveragebackup to 100%.

6.2.5 XC and SystemQuality

In 1994 Horganet. al presentedwo casestudiesin which they measurediataflav cov-
erageusing ATAC (AutomatedTestAnalysisfor C®) on C programg42]. ATAC measure®lock

71

coverage decisioncoverage c-use(computationakxpression) p-use(predicate) andall-uses(ei-
therc-useor p-use).

Thefirst casestudyconductedn the large attemptedo find a relationshipbetweencov-
eragemeasuremerdandthetotal faultsby inspectingone of Bellcores productionsoftware. These
resultswereinconclusve.

The othercasestudyinvolved anautopilotsystemdevelopedby 40 studentdividedinto
15teamsat the University of lowa andthe Rockwell/CollinsAvionics Division. Eachteamcreated
their own systemthat rangedfrom 900 to 4,000lines of code. They discorered the following

interestingoutcomes:

e With every testexecution, the quality of testsimproved while the rangeof coveragesde-

creased.

e Thefirst testexecutiontestedarge amountsof the systemswith overall coveragesncreasing
monotonicallywith respectto the amountof testcases.In eachsubsequenéxecution,the

differencedetweercoverageglecreasedntil eventuallyleveling out.

¢ Reachingabore 80 percentcoveragewasanimportantsteptoward softwarequality andreli-

ability.

e Theredid not seembe a strongcorrelationbetweerfthe total faultsdetectedn the program

versionsandtheir coveragemeasuresluring varioustestingconditions”[42].

Sincethe study conductedby Horganet. al did not measurenethodcoverage,a study
similar to this onecould be conductedusing XC. Begin with two systemsn which onehasaccess
to JBlanlet and the otherdoesnot. Requirethe systemwith JBlanket maintain 100% coverage
throughoutdevelopment. At the end, comparingthe quality and coverageof the two systemscan

determinevhetherXC canimprove the quality of software.

6.2.6 Exercisingthe TestFirst DesignTheory

TestFirst Designtheorystateghattestcasesarecreatedorior to implementation.These
testcasesareimportantbecausdhey aid in the designof the system.Many examples([10] [43])
canbefoundastestimonialto its effectiveness.Considerthe CVSReadeexamplein [10]. First, a
testcaseis createdo testthe creationof a CVSReadepbjectwith a non-«istingfile. It obviously
fails becauséehe classbeingtesteddoesnot exist. Thenthetestedclassis implementedustenough

to malke thetestpass After thetestpassesthenext testcaserecognizingvalid filesis implemented.

72

Whenthesecondestis shavn to fail, the CVSReadeconstructois furtherdevelopeduntil it passes
thetest. This processepeatsuntil the classis complete.

Somestepsin the processseento be very tedious. For example,the next stepinvolves
returningatruevalueto male atestfail andthenchangingthatvalueto falseto make thetestpass.
Do programmersusing TFD always ensuretheir testcasedail first andthen correctthem, or do
they glanceover suchdrudgeryshavn in this example?Furthermorewhatis the quality of thetest
caseghatdrive the designandimplementatiorof the system?Do they invoke every methodor is it
possiblethat,asthe sizeof a systemincreasesmethodsareoverlooked?With XC, the TFD theory
canbevalidatedby studyingthe behaiors of TFD developedsystemsandmeasuringhe coverage
of theirtestcases.

In addition, the boundarief XP canalsobe tested. Kent Beck recommendsbout10
peopleteamsfor usingXP [44], but thereis no clearlimitation on the size(LOC) of projects.With
XC, explorationon sizelimitationsis possible For example,if attheendof ary givendayasystem
alwaysachieves 100% XC (which is not equivalentto achieving 100% statementoverage[13]),
suddenconsecutie decreasef caveragemay indicatethat a systemis growing too big andthat

projectmanagementeedgeoiganization.

6.3 Final Thoughts

Fromtheresultsof this researchg¢reatingatool to measureXC waschallenging but not
insurmountableThe mostdifficult taskswerefinding anapproactwith anacceptableuntime and
ensuringJBlanket could beintegratedinto ary systems build procesgeasonably

With sucha flexible tool, XC wasdeemeda usefulmeasurementy undegraduatesn a
seniorlevel secondsemesteSoftware Engineeringclass.However, assomestudentgealized,it is
not meantto be the only techniqueappliedduring unit testing,but to assistwith unit testing.If the
amountof effort neededoy XC canbe determinedthe feasibility of its presencen the software
developmentprocessanbe supported.

73

Appendix A

ExtremeCoverageEvaluation

Questionnaires

74

Pre-Use Questionnaire for JBlanket

Thank you for your participation. As a reminder, your participation in this research is voluntary. All
references to data gathered will be made anonymously.

[}

g

=y)

© o

> 8 E >

5 § & & 5

s 0 o o =

n o z << o
1. Unit tests are very important for creating correctly 1 2 3 4 5
functioning software.
2. Designing unit tests to support correctly functioning softwarg 2 3 4 5

is hard.

3. My current seof unit tests does a good job of ensuring that 1 2 3 4 5
my software functions correctly.

4. To the nearest 25%, wHdt of the methods in your software 0% 25% 50% 75% 100%
are currently invoked by your unit tests?

5. Please briefly describe one or two of the most significant problems you've encountered while designing
unit tests. (Do not include the problem of learning how to use unit testing facilities such as JUnit or
HttpUnit).

FigureA.1. Pre-UseQuestionnaire

75

PostUse Questionnaire for JBlanket

Thank you for your participation. As a reminder, your participation in this research is voluntary. All
references to data gathered will be made anonymously.

Strongly disagree
Disagree

No opinion
Stronglyagree

Agree

N
w
SN
(¢}

1. Unit tests are very important for creating correctly functioningl

software.

2. Designing unit tests to support correctly functioning softwarels 2 3 4 5
hard.

3. My current st of unit tests does a good job of ensuring that mg 2 3 4 5

software functions correctly.

4. JBlanket helps me to write unit tests that ensure the correct 1 2 3 4 5
functioning of my software.

5. To the nearest 25%, witdt of the methods in your software 0% 25% 50% 75% 100%
are currently invoked by your unit tests?

6. Please briefly describe one or two of the most significant problems you've encountered while designing
unit tests. (Do at include the problem of learning how to use unit testing facilities such as JUnit or
HttpUnit).

7. Briefly describe how access to JBlanket has influenced the way you write unit tests.

8. What would you suggest we do to improve the usefubfel3lanket?

FigureA.2. Post-UseQuestionnaire

76

Appendix B

Questionnaire Data

Note: The fourth questiondoesnot apply to the Pre-UseQuestionnaireso answersare
marked with “n/a”. Answersto open-endedjuestions(6-8) are denotedas “(Pre-Use)” for an-
swersto the Pre-UseQuestionnaireand “(Post-Use)"for answersgo the Post-UseQuestionnaire.
Questionswhich were not answeredare marked with “(no answer)”. Answersto the open-ended

guestionsarepresentedscloseto the original answersandpossible.

77

B.1 StudentA

Pre-Use Post-Use
1. Unit testsarevery importantfor creating Stronglyagree Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Stronglyagree Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Agree No opinion
job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Agree
ensurehe correctfunctioningof my software.

5. To the neares25%,what% of the methods 75% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Updatingunit testhasa major overheadeven for the smallestchangein the
code.

e Thinkingfor all possiblecombinationof casethataunit testclassshouldhave.
(Post-Use)
e Methodsw/ 0O linesof codeis asledto becovered.

e Updatingtest.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-UseMakesmefeel saferto know I'm at 100%.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Use)no answer)

78

B.2 StudentB

Pre-Use Post-Use

1. Unit testsarevery importantfor creating Agree Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Agree No opinion
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Agree Stronglyagree
job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Stronglyagree
ensurehe correctfunctioningof my software.

5. Totheneares5%,what% of themethods 75% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Translatinghtml tagsto work with unit tests.
Example:
 currentlymessesip my unit tests.

(Post-Use)no answer)

7. Briefly describehow accesgo JBlanlet hasinfluencedthe way your write unit
tests.

(Post-Use) eastamountof codewith the mostamountof coverage.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Useptionfor unit testingsingleline methods (toggleon andoff)

79

B.3 StudentC

Pre-Use Post-Use
1. Unit testsarevery importantfor creating Agree Agree
correctlyfunctioningsoftware.
2. Designingunit teststo supportcorrectly Stronglyagree Stronglyagree
functioningsoftwareis hard
3. My currentsetof unit testsdoesa good No opinion Agree
job of ensuringthatmy softwarefunctions
correctly
4. JBlanlet helpsmeto write unit teststhat n/a No opinion
ensurehe correctfunctioningof my software.
5. To the neares25%,what% of the methods 25% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Themainproblemnow is thathaving to finish all codebeforedoingunit tests.
I know canwrite without it beingcompletelydone but the partwe’re working
onis amajorpartof the project.

e Otherthanthat, having to remove stuff, loggingin throughHttpUnit is a big
hasslewhich makes the methodreally long and might make it go over 200
lines.

(Post-Use)
o Null pointers.

e Having themwork onetime, thenfail (without changinganything), thenwork
again(no changeagain).

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-UseWrite it moreoftento get100%.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-UseNot roundoff %. If maybecango faster

80

B.4 StudentD

Pre-Use Post-Use
1. Unit testsarevery importantfor creating Stronglyagree Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly No opinion Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Agree Agree
job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Disagree
ensurehe correctfunctioningof my software.

5. To the neares25%,what% of the methods 50% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Sometimest’'s hardto try to cover a certainmethod. For instance|f | try to
make atestcasdor Sysinfo.jaain the CREST (maybein the Hackystattoo) |
have noideato write getReleaseandgetBuildTime.

(Post-Use)

e hardto testvoid returntype andthe methodrelatedto file manipulation.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use)no answer)

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Usedefault pluginsfor ANT.

81

B.5 StudentE

Pre-Use Post-Use
1. Unit testsarevery importantfor creating Stronglyagree Stronglyagree
correctlyfunctioningsoftware.
2. Designingunit teststo supportcorrectly No opinion Stronglyagree
functioningsoftwareis hard
3. My currentsetof unit testsdoesa good Stronglydisagree No opinion
job of ensuringthatmy softwarefunctions
correctly
4. JBlanlet helpsmeto write unit teststhat n/a Agree
ensurehe correctfunctioningof my software.
5. To the neares25%,what% of the methods 25% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Determineif you actuallycoveredall links andform fill insfor bothvalid and
invalid instances.

(Post-Use)

e Orderof JUNIT testruns would output different results (would get errors
runningonebatfile while it ranperfectfor the other).

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use)JBlanlet is excellent! It help me pinpoint packageswhich have in-
adequateHowever onceit wascoveredl gave very little thoughtto conditionaland
branchcoverage.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Use)Make it run faster Provide someway to include test coveragefor
conditionalandbranchtesting.

82

B.6 StudentF

Pre-Use Post-Use

1. Unit testsarevery importantfor creating Agree Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Agree Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Agree Stronglyagree
job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Stronglyagree
ensurehe correctfunctioningof my software.

5. Totheneares5%,what% of themethods 25% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Don't know whereto start.

¢ Bombswhene&er make changedo packages.
(Post-Use)

e Testingpageswhichrequirelinking to otherpages.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-UseAble to write unit testquicker. Know whatl still needto test.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Use)lno answer).

83

B.7 StudentG

Pre-Use Post-Use
1. Unit testsarevery importantfor creating No opinion Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Disagree Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Disagree Agree

job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Stronglyagree
ensurehe correctfunctioningof my software.

5. To the neares25%,what% of the methods 25% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e The main problemis finding time to write them becausehereisn’t enough
time to evenwrite theclasses.

e Anotherproblemis forgettingto changehetestwhenthe classesrechange.
(Post-Use)

e Whenoneof the HttpUnit testserrorsout it sometimesauseghe restof the
teststo fail aswell.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use)nsteadof goingfor quantityl try for the quality of thetests.

8. Whatwould you suggestve do to improve the usefulnessf JBlanlet?

(Post-UseMake it faster

84

B.8 StudentH

Pre-Use Post-Use
1. Unit testsarevery importantfor creating Agree Agree
correctlyfunctioningsoftware.
2. Designingunit teststo supportcorrectly Disagree Disagree
functioningsoftwareis hard
3. My currentsetof unit testsdoesa good Stronglydisagree No opinion
job of ensuringthatmy softwarefunctions
correctly
4. JBlanlet helpsmeto write unit teststhat n/a Agree
ensurehe correctfunctioningof my software.
5. To the neares25%,what% of the methods 25% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Making unit testsare troublesomebecauset takes too muchtime and also
doesnot build uponthe programyourworking on.

e Theunittestsarealsoincorvienientwhenyou cantestwhatyoudo alot faster
manually

(Post-Use)

e Doesnt testJavascriptfunctionality

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use) write moreunit teststo testmore partsof thesystem.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-UseHave JBlanlet seeif every line of codeis invoked.

85

B.9 Studentl

Pre-Use Post-Use

1. Unit testsarevery importantfor creating Agree Agree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Stronglyagree Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good No opinion Agree
job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Agree
ensurehe correctfunctioningof my software.

5. To the neares25%,what% of the methods 50% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Becausdhe systemchangesconstantlyupdatingthe unit testshecomesrery
tediousandcumbersome.

e Becausef dualVM'’ sin unit testingsoftwareandthejdk, sometimest’s hard
to testalsosomeunit testingdoesnt seemto work properlysometimesaven
thoughit’s setup correctly(l think).

(Post-Use)

e Sometimeghetestdoesnt goto theright pagesoit’s hardto becausanerror
occursthatmay have no correlationto thetestingbeingdone.

7. Briefly describehow accesgo JBlanlet hasinfluencedthe way your write unit
tests.

(Post-Use) Definitely think more about unit tests covering more “area” of
sourcecode.More functionality testsratherthanunit tests.

86

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Use)
e | thinkit’s bestto justincludeall methodsegardlesf lengthin tests.

¢ Maybealsohave atracecapabilityto shav whenmethodswverecalled.

87

B.10 StudentJ

Pre-Use Post-Use
1. Unit testsarevery importantfor creating Agree Stronglyagree
correctlyfunctioningsoftware.
2. Designingunit teststo supportcorrectly Agree Agree
functioningsoftwareis hard
3. My currentsetof unit testsdoesa good No opinion Agree
job of ensuringthatmy softwarefunctions
correctly
4. JBlanlet helpsmeto write unit teststhat n/a Stronglyagree
ensureghe correctfunctioningof my software.
5. To theneares25%,what% of the methods 100% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encounteredavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Therewasaproblemearlierin semestewhenwe madea junit test,but it kept
failing. Whenwe took the sameexact codeout andputit in a testclass,it
workedfine. Otherthanthatnever really hadproblems.

(Post-Use)

o Nonereally, we found out whatthe problemwasearlierin the semesteandit
wasnt ajunit testproblem.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use)l dont think we testedout every little detail since we were just re-
ally looking to getthe systemto 100%.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-UseNone.

88

B.11 StudentK

Pre-Use Post-Use

1. Unit testsarevery importantfor creating Agree Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Agree Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Disagree Disagree
job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Disagree
ensurehe correctfunctioningof my software.

5. TothenearesP5%,what% of themethods 25% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Gettingmyselfto dothem. Anytime | finish writing somecode, | just physi-
cally testit w/o writing unit testimmediately Thereneedgo be someoutside
inspirationfor meto write unit testyour| justwon’t doit.

(Post-Use)
e To createtestthattestall casesf positionfunctionally

o Totestif thedisplaylooksright.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use)l wrote less test casesthat covered more code. Insteadof write a
whole bunch of testcase$or eachmethod,l just call the “super” methodthat calls

all thelittle smallones.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Use)Clarity of jblanket output. What does ___ out 100% meanfor ev-
erything?Somewereclear somewerent.

89

B.12 StudentL

Pre-Use Post-Use

1. Unit testsarevery importantfor creating Agree Agree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Agree Stronglyagree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Disagree Agree

job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Agree
ensurehe correctfunctioningof my software.

5. TothenearesP5%,what% of themethods 50% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)

e Most of thetime | concentrateon implementingfunctionality as opposedo
testing.l view functionalityasbeingmoreimportant.So,whenit comedo the
point of decidingto implementfunctionality or test,| choosdunctionality

e Also, theuseof inspectionprovidesmewith a “good enough”view of correct
functionality

e However, | dotry to dotestsandl liketests.
(Post-Use)

e Reachingl00%methodcoveragedoesnot meanthatthe softwareis faultfree.
If you make thatassumptioryou areworseoff thennot having 100%.

7. Briefly describehow accesgo JBlanlet hasinfluencedthe way your write unit
tests.

(Post-Use)l was able to ensurethat my methodswere being called. If a
methodwasreportedasnottested testedit.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-UseWouldit be hardto do statementoverage?

90

B.13 StudentM

Pre-Use Post-Use

1. Unit testsarevery importantfor creating Agree Stronglyagree
correctlyfunctioningsoftware.

2. Designingunit teststo supportcorrectly Agree Agree
functioningsoftwareis hard

3. My currentsetof unit testsdoesa good Agree Agree

job of ensuringthatmy softwarefunctions

correctly

4. JBlanlet helpsmeto write unit teststhat n/a Agree
ensurehe correctfunctioningof my software.

5. Totheneares5%,what% of themethods 50% 100%

in your softwarearecurrentlyinvoked by
your unit tests?

6. Pleasebriefly describeone or two of the most significant problemsyou've
encountereavhile designingunit tests.(Do notincludethe problemof learninghow
to useunit testingfacilities suchasJUnit or HttpUnit.)

(Pre-Use)
e (noanswer)
(Post-Use)

e Trying to figure out how to thourouglytestthe system.

7. Briefly describehow accesgo JBlanket hasinfluencedthe way your write unit
tests.

(Post-Use)t hasinfluencedmeto write moreunit tests.

8. Whatwould you suggestve doto improve the usefulnessf JBlanlet?

(Post-Use)increasethe speedif possible. Also maybeintegrate it into an IDE
e.g.JBuilder

91

Appendix C

JBlanket data

The coveragedatagatheredduring the evaluationperiodis presentegsbothgraphsand
tables.
Thefollowing metricsweregraphedandsortedby service:

e extremecoverage

e totalLOC

e testLOC

¢ total one-linemethods
e total multi-line methods

o total testedmulti-line methods

92

C.1 FAQ

10005
0%
B00%
0%
0o
s00%
00w
00%

200%

100%

A A AV A AV AN SN AR OV 4 A A A AT eV A eN AR iR avd

FigureC.1. Extremecoverage- FAQ FigureC.2. Total LOC - FAQ

100

0

A AT AV SN AV AN SN SN & 4 A A AN AT AN AV AN AR iR AV

FigureC.3. Total one-linemethods FAQ FigureC.4. TestLOC - FAQ

93

C.2 Login

10000
00
0o
o0
0%
s00%
004
00%
200%

100%

PN

FigureC.5. Extremecoverage- Login

50

SIS

FigureC.7. Total one-linemethods Login

AT A AT AN A AN AR A vy

FigureC.6. Total LOC - Login

500

AT AT AN AN A iR dh vy

FigureC.8. TestLOC - Login

C.3 Newshulletin

100%

SIS Qy&yﬁy&f&éﬁfﬁﬁfﬁ

Figure C.9. Extreme coverage -

Newshulletin FigureC.10.Total LOC - Newhbulletin

100

0

500

o

P IIIIY NN

Figure C.11. Total one-line methods - _ _
Newshulletin FigureC.12.TestLOC - Newshulletin

95

C.4 Poll

100%

A A AV AN AV AN AN AR OV 4

FigureC.13. Extremecaoverage- Poll

50

ST

FigureC.15. Total one-linemethods Poll

96

A A A AT AV AN AN AR AN o 4

FigureC.14.Total LOC - Poll

500

A A AT AN AN A AR dh vy

FigureC.16.TestLOC - Poll

C.5 Resume

100%

A A AV AN AV AN AN AR OV 4

FigureC.17.Extremecoverage- Resume

50

ST

Figure C.19. Total one-line methods -
Resume

A A A AT AV AN AN AR AN o 4

FigureC.18.Total LOC - Resume

A A A AT AV AV AN AN AN o 4

FigureC.20.TestLOC - Resume

C.6 Techreports

10000
00
0o
o0
0%
s00%
004
00%

200%

100%

RAF S AN AN SN SV AV AV SV AV a4 F LSS
Figure C.21. Extreme coverage -)
Techreports FigureC.22.Total LOC - Techreports

100

50

P IIIIY N

Figure C.23. Total one-line methods - - 04 TestLOC . Tech
Techreports igureC.24. Test - Techreports

98

C.7 Textbooks

100%

A A AV AN AV AN AN AR OV 4

FigureC.25. Extremecoverage- Textbooks

50

ST

Figure C.27. Total one-line methods -
Textbooks

99

A A A AT AV AN AN AR AN o 4

FigureC.26.Total LOC - Textbooks

A A AN AT eV AN AN AR iE avd

FigureC.28.TestLOC - Textbooks

C.8 Tutor

100%

A A AV AN AV AN AN AR OV 4

FigureC.29. Extremecoverage- Tutor

50

ST

FigureC.31.Total one-linemethods Tutor

100

A A A AT AV AN AN AR AN o 4

FigureC.30.Total LOC - Tutor

500

A A AT AN AN A AR dh vy

FigureC.32.TestLOC - Tutor

TableC.1. CRESTresults

N N N N 3 ~ ~ ~
S S 3 S S 8 = = S S S =
3 Metric S|l l|g|g|g|sg|s8|8|g|g8 |8 |¢g
= @ |2 |2 |2 |8 | | & |8 |g |v |2 |3
;3 |33 (22|23 |3 |88 |8 |S
total 227 | 241 | 241 | 241 | 254 | 251 | 252 | 254 | 254 | 245 | 253 | 252
oneline total 123 133 | 133 133 | 136 134 | 133 | 137 | 136 | 133 | 133 | 132
= multi-line total 104 [108 | 108 108 | 118 117 | 119 | 117 | 118 | 112 | 120 | 120
< |multi-line tested 35 76 76 76 99 99 100 | 113 | 2118 | 112 | 120 | 120
f—.g multi-line untested 69 32 32 32 19 18 19 4 0 0 0 0
™ % coverage 33.7%| 70.4%)| 70.4%)]| 70.4%| 83.9% | 84.6%| 84.0%]| 96.6%]100.0%4100.0%100.0%4100.09
total methods 227 241 241 241 254 251 252 254 254 245 253 252
norttest methods | 215 221 221 221 229 226 227 226 226 218 223 222
test methods 12 20 20 20 25 25 25 28 28 27 30 30
L [total LOC 2457 | 2625 | 2625 | 2633 | 2873 | 2858 | 2889 | 2903 | 3043 | 2915 [3086 | 3096
9,:' 8 nontest LOC 2291 | 2316 | 2316 | 2324 | 2497 | 2482 | 2513 | 2470 | 2606 | 2469 [2535 | 2543
L |~ [test LOC 166 [309 | 309 | 309 | 376 | 376 | 376 | 433 | 437 | 446 | 551 | 553
total 210 210 213 240 241 241 245 245 245 246 246 263
oneline total 85 85 87 121 121 121 | 123 | 125 | 125 | 126 | 126 | 142
= multi-line total 125 125 | 126 119 120 | 120 | 122 | 120 | 120 | 120 | 120 | 121
< |multi-line tested 88 88 89 119 119 119 | 122 | 120 | 120 | 120 | 120 | 120
f—.g multi-line untested 37 37 37 0 1 1 0 0 0 0 0 1
™ % coverage 70.4%| 70.4%)| 70.6%|100.0% 99.2%| 99.2%|100.094100.094100.0%100.094100.0% 99.2%
total methods 210 | 210 | 213 | 240 | 241 | 241 | 245 | 245 | 245 | 246 | 246 | 263
nontest methods | 177 177 180 186 187 187 187 187 187 188 188 | 205
test methods 33 33 33 54 54 54 58 58 58 58 58 58
< lo [total LOC 2299 | 2299 | 2401 | 2623 | 2634 | 2634 | 2674 | 2729 | 2728 | 2752 | 2752 | 2959
@ 8 nontest LOC 1838 | 1838 | 1940 | 1883 | 1893 | 1893 | 1893 | 1948 | 1947 | 1964 | 1964 | 2171
— - |test LOC 461 | 461 | 461 | 740 | 741 | 741 | 781 | 781 | 781 | 788 | 788 | 788
total 188 195 | 200 | 190 | 198 198 | 211 | 215 | 214 | 214 | 214 | 214
oneline total 110 | 112 113 106 | 108 107 | 111 | 2113 | 113 | 113 | 113 | 112
= multi-line total 78 83 87 84 90 91 100 [102 | 101 | 101 | 101 102
< |multi-line tested 24 60 67 62 80 81 96 96 101 | 101 | 101 [102
f—.g multi-line untested| 54 23 20 22 10 10 4 6 0 0 0 0
™ % coverage 30.8%| 72.3%]| 77.0%]| 73.8%| 88.9%| 89.0%| 96.0%| 94.1%]100.0%4100.0%100.0%4100.09
total methods 188 195 | 200 | 190 | 198 198 | 211 | 215 | 214 | 214 | 214 | 214
S nontest methods | 175 173 | 173 163 | 165 165 [164 | 168 | 167 167 | 167 167
%’ test methods 13 22 27 27 33 33 47 47 47 47 47 47
2 |0 [total LOC 1786 | 2043 | 2143 | 2129 | 2293 | 2299 | 2578 | 2659 [2690 [2686 | 2686 | 2740
% 8 nontest LOC 1614 | 1637 | 1637 | 1623 | 1656 | 1662 [1653 | 1706 | 1715| 1711 | 1711 | 1758
Z |- |test LOC 172 | 406 | 506 | 506 | 637 | 637 | 925 | 953 | 975 975 | 975 | 982
total 380 | 380 | 394 | 400 | 400 | 400 | 400 [400 | 400 | 400 | 400 | 404
oneline total 220 | 219 | 224 | 228 | 228 | 228 | 228 | 228 | 228 | 227 | 227 | 229
= multi-line total 160 | 161 170 | 172 172 172 | 172 | 172 | 172 173 | 173 | 175
< |[multi-line tested 140 | 150 | 163 163 | 163 163 | 164 | 127 | 163 | 163 | 163 | 166
f—.g multi-line untested 20 11 7 9 9 9 8 45 9 10 10 9
™ % coverage 87.5%| 93.2%)]| 95.9%| 94.8%| 94.8%| 94.8%| 95.3%]| 73.8%]| 94.8%)| 94.2%| 94.2%| 94.9%
total methods 380 | 380 | 394 | 400 | 400 | 400 | 400 [400 | 400 | 400 | 400 [404
nontest methods | 318 | 313 | 314 [320 | 320 | 320 | 320 | 320 [320 | 320 | 320 | 320
test methods 62 67 80 80 80 80 80 80 80 80 80 84
L [total LOC 3835 | 3885 | 4140 | 4217 | 4216 | 4216 | 4216 | 4216 | 4209 | 4234 | 4234 | 4358
S 8 nontest LOC 3042 | 2984 | 3022 | 3099 | 3098 [3098 | 3098 | 3098 | 3098 | 3109 [3109 | 3147
A [Jtes LOC 793 | 901 | 1118 1118 1118 1118 1118 1118 1111 | 1125 1125(1211

101

TableC.2. CRESTresults,con't

o))) S S P P2 I N o P2
@ Metric 8 S S & & & & & S S S &
g s |3 |3 |58 |8 |g|g|al|ldl|a |2
@ S22/ |3l |ala|8|83 |3 |8
total 326 338 338 360 418 420 420 422 422 441 --- 475
oneline total 206 221 221 233 248 248 248 245 245 255 --- 269
= multi-line total 120 117 117 127 170 172 172 177 177 186 --- 206
< |multi-line tested 33 22 22 41 126 126 126 140 140 169 --- 205
f—.g multi-line untested 87 95 95 86 44 46 46 37 37 17 1
™ [% coverage 27.5%) 18.8%| 18.8% | 32.3%| 74.1%| 73.3%]| 73.3%| 79.1%| 79.1%] 90.9%| --- | 99.5%
total methods 326 | 338 | 338 | 360 | 418 | 420 | 420 | 422 | 422 | 441 | 453 | 475
norttest methods | 312 324 324 325 334 336 336 332 332 340 342 350
® test methods 14 14 14 35 84 84 84 90 90 101 111 125
g L [total LOC 3041 | 3166 | 3174 | 3470 | 4273 | 4298 | 4298 | 4391 | 4393 | 4749 | 4958 | 5379
2 8 nontest LOC 2914 | 3039 | 3047 | 3057 | 3140 | 3165 | 3165 3159 [3161 [3317 | 3387 | 3487
X H |test LOC 127 127 127 413 | 1133 1133 | 1133 | 1232 | 1232 | 1432 | 1571 | 1892
total 352 354 361 363 388 394 399 395 395 395 397 396
oneline total 184 183 189 189 197 197 198 196 196 196 198 198
= multi-line total 168 171 172 174 191 197 201 199 199 199 199 198
< |multi-line tested 121 148 152 154 168 190 199 199 199 199 199 198
f—.g multi-line untested 47 23 20 20 23 7 2 0 0 0 0 0
™ |% coverage 72.0%)] 86.5%| 88.4%]| 88.5%| 88.0%| 96.4%)| 99.0%]100.0%4100.094100.0%4100.0%100.09
total methods 352 | 354 | 361 [363 | 388 | 394 | 399 | 395 [395 [395 | 397 | 396
I nontest methods | 240 | 235 | 242 244 | 264 | 262 | 261 | 257 | 257 257 | 259 | 259
g test methods 112 119 119 119 124 132 138 138 138 138 138 137
g L |[total LOC 3986 | 4236 | 4436 | 4490 | 4874 [5111 | 5371 | 5270 | 5271 | 5266 | 5307 | 5265
9 8 nontest LOC 2723 | 2698 | 2832 | 2865| 3114 [3106 | 3126 | 3088 [3089 | 3088 | 3129 | 3140
— 2 [test LOC 1263 | 1538 | 1604 | 1625| 1760 | 2005 | 2245 | 2182 | 2182 | 2178 | 2178 | 2125
total 172 172 172 175 175 175 175 175 175 175 175 175
oneline total 90 90 90 89 88 88 88 88 88 88 88 88
= multi-line total 82 82 82 86 87 87 87 87 87 87 87 87
< |multi-line tested 82 82 82 86 87 87 87 87 87 87 87 87
= |multi-line untested 0 0 0 0 0 0 0 0 0 0 0 0
™ |% coverage 100.0%100.094100.0%4100.0%4100.0%4100.0%4100.0%4100.0%4100.0%100.0%4100.0%4100.09
total methods 172 172 172 175 175 175 175 175 175 175 175 175
nontest methods | 150 150 150 150 150 150 150 150 150 150 150 150
% test methods 22 22 22 25 25 25 25 25 25 25 25 25
1S | [total LOC 1806 | 1806 | 1806 | 1911 | 1913 | 1913 | 1913 1913 | 1913 | 1939 | 1939 | 1951
% 8 nontest LOC 1448 | 1448 | 1448 | 1459 | 1461 | 1461 | 1461 | 1461 | 1461 | 1487 | 1487 | 1499
— |- [test LOC 358 358 358 452 452 452 452 452 452 452 452 452
total 169 173 175 175 180 175 174 174 188 187 187 187
oneline total 85 83 77 77 79 75 75 75 85 86 86 87
= multi-line total 84 90 98 98 101 100 99 99 103 101 101 100
< |multi-line tested 68 60 64 64 85 85 84 84 90 98 98 100
f—.g multi-line untested 16 30 34 34 16 15 15 15 13 3 3 0
™ |% coverage 81.0%) 66.7%| 65.3%| 65.3%| 84.2%| 85.0%| 84.8%] 84.8%| 87.4%)| 97.0%] 97.0%|100.09
total methods 169 173 175 175 180 175 174 174 188 187 187 187
norttest nethods 148 152 154 154 154 149 149 149 159 158 158 158
test methods 21 21 21 21 26 26 25 25 29 29 29 29
_ lo [total LOC 2153 | 2236 | 2360 | 2360 | 2455 | 2428 | 2424 | 2424 | 2653 [2593 [2593 | 2610
% 8 nornttest LOC 1640 | 1723 | 1847 | 1847 | 1862 | 1835 | 1834 | 1834 | 1974 | 1988 | 1988 | 1990
— |- [test LOC 513 513 513 513 593 593 590 590 679 605 605 620

102

TableC.3. Changen metricsof CRESTservices

- S S & & 8 S N p
o Metric sl |32 |22 |al|s|8 |8]S
S s 2|35 |8 (&g |2 |a |5 |
S = = 3 3 3 3 S 5 N N N
) I I I b — — a9 g9 — — —
total 14 0 0 13 -3 1 2 0 -9 8 -1
oneline total 10 0 0 3 -2 -1 4 -1 -3 0 -1
= multi-line total 4 0 0 10 -1 2 -2 1 -6 8 0
£ |multi-line tested 41 0 0 23 0 1 13 5 -6 8 0
f—.g multi-line untested -37 0 0 -13 -1 1 -15 -4 0 0 0
™ [% coverage 36.7%| 0.0% | 0.0% | 13.5%| 0.7% | -0.6% | 12.5%| 3.4% | 0.0% [0.0% | 0.0%
total methods 14 0 0 13 -3 1 2 0 -9 8 -1
nontest methods 6 0 0 8 -3 1 -1 0 -8 5 -1
test methods 8 0 0 5 0 0 3 0 -1 3 0
L [total LOC 168 0 8 240 -15 31 14 140 | -128 | 171 10
2 18 [nontest LOC 25 0 8 173 | -15 | 31 | -43 [136 | -137 | 66 8
- |- |test LOC 143 0 0 67 0 0 57 4 9 105 2
total 0 3 27 1 0 4 0 0 1 0 17
oneline total 0 2 34 0 0 2 2 0 1 0 16
= multi-line total 0 1 -7 1 0 2 -2 0 0 0 1
£ |multi-line tested 0 1 30 0 0 3 -2 0 0 0 0
= |multi-line untested | 0 o | 37| 1 0 -1 0 0 0 0 1
™ [% coverage 0.0% | 0.2% | 29.4%| -0.8%| 0.0% | 0.8% | 0.0% | 0.0% | 0.0% | 0.0% | -0.8%
total methods 0 3 27 1 0 4 0 0 1 0 17
nonrtest methods 0 3 6 1 0 0 0 0 1 0 17
test methods 0 0 21 0 0 4 0 0 0 0 0
< o [total LOC 0 102 222 11 0 40 55 -1 24 0 207
5 |8 |nontest LOC 0 [102] 57 [10| 0 0o [55 [1 [17| o [207
— |© Jtest LOC 0 0 279 1 0 40 0 0 7 0 0
total 7 5 -10 8 0 13 4 -1 0 0 0
oneline total 2 1 -7 2 -1 4 2 0 0 0 -1
= multi-line total 5 4 -3 6 1 9 2 -1 0 0 1
< |multi-line tested 36 7 -5 18 1 15 0 5 0 0 1
% multi-line untested -31 -3 2 -12 0 -6 2 -6 0 0 0
™ |% coverage 41.5%)| 4.7% | -3.2% | 15.1%] 0.1% | 7.0% | -1.9% | 5.9% [0.0% | 0.0% [0.0%
total methods 7 5 -10 8 0 13 4 -1 0 0 0
= nontest methods -2 0 -10 2 0 -1 4 -1 0 0 0
% test methods 9 5 0 6 0 14 0 0 0 0 0
12 |0 [total LOC 257 100 -14 164 6 279 81 31 -4 0 54
% |8 |nontestLOC 23 | o 1433] 6 [9 [53] 9 | 4] ol ar
< |- |test LOC 234 100 0 131 0 288 28 22 0 0 7
total 0 14 6 0 0 0 0 0 0 0 4
oneline total -1 5 4 0 0 0 0 0 -1 0 2
= multi-line total 1 9 2 0 0 0 0 0 1 0 2
£ |multi-line tested 10 13 0 0 0 1 -37 36 0 0 3
f—.‘ﬂ’ multi-line untested -9 -4 2 0 0 -1 37 -36 1 0 -1
™ [% coverage 57% | 2.7% | -1.1%| 0.0% | 0.0% | 0.6% [-21.5% 20.9%| -0.5% | 0.0% | 0.6%
total methods 0 14 6 0 0 0 0 0 0 0 4
nontest methods -5 1 6 0 0 0 0 0 0 0 0
test methods 5 13 0 0 0 0 0 0 0 0 4
o [total LOC 50 255 77 -1 0 0 0 -7 25 0 124
5 [[nontestLOC 58 | 38 [77 | 1 | 0 0 0 0 12 [o | 38
0 |- |test LOC 108 217 0 0 0 0 0 -7 14 0 86

103

TableC.4. Changean metricsof CRESTservicescont

< ~ o ™ © o
2SS S |S|S |8 |8 |e ||
1 i (V) N N
Metre O - - T I - - N Y v I
S = = = = = = 5 5 I N N
0 I I I I I I Y 4 — I —
total 12 0 22 58 2 0 2 0 19 34
oneline total 15 0 12 15 0 0 -3 0 10 14
= multi-line total -3 0 10 43 2 0 5 0 9 20
< [multi-line tested -11 0 19 85 0 0 14 0 29 --- 36
,_f—g multi-line untested 8 0 -9 -42 2 0 -9 0 -20 -16
™ |% coverage -8.7%]| 0.0% | 13.5%] 41.8%] -0.9%| 0.0% | 5.8% | 0.0% | 11.8%| --- 8.7%
total methods 12 0 22 58 2 0 2 0 19 12 22
nontest methods 12 0 1 9 2 0 -4 0 8 2 8
° test methods 0 0 21 49 0 0 6 0 11 10 14
g L |total LOC 125 8 296 [803 25 0 93 2 356 | 209 [421
2 8 nontest LOC 125 8 10 83 25 0 -6 2 156 70 100
® | Jtest LOC 0 0 286 | 720 0 0 99 0 200 | 139 | 321
total 2 7 2 25 6 5 -4 0 0 2 -1
oneline total -1 6 0 8 0 1 -2 0 0 2 0
= multi-line total 3 1 2 17 6 4 -2 0 0 0 -1
< |multi-line tested 27 4 2 14 22 9 0 0 0 0 -1
f—.g multi-line untested -24 -3 0 3 -16 -5 -2 0 0 0 0
™ [% coverage 14.5%| 1.8% | 0.1% [-0.5% | 8.5% | 2.6% | 1.0% | 0.0% | 0.0% | 0.0% | 0.0%
total methods 2 7 2 25 6 5 -4 0 0 2 -1
2 nontest methods -5 7 2 20 -2 -1 -4 0 0 2 0
s test methods 7 0 0 5 8 6 0 0 0 0 -1
E L |total LOC 250 [200 54 384 | 237 | 260 | -101 1 -5 41 -42
2 8 nontest LOC -25 134 33 249 -8 20 -38 1 -1 41 11
— [[test LOC 275 66 21 135 | 245 | 240 -63 0 -4 0 -53
total 0 0 3 0 0 0 0 0 0 0 0
oneline total 0 0 -1 -1 0 0 0 0 0 0 0
= multi-line total 0 0 4 1 0 0 0 0 0 0 0
< |multi-line tested 0 0 4 1 0 0 0 0 0 0 0
S |multi-line untested | 0 0 0 0 0 0 0 0 0 0 0
™ [% coverage 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [0.0% | 0.0% | 0.0% | 0.0% | 0.0%
total methods 0 0 3 0 0 0 0 0 0 0 0
nontest methods 0 0 0 0 0 0 0 0 0 0 0
%’ test methods 0 0 3 0 0 0 0 0 0 0 0
1S | [total LOC 0 0 105 2 0 0 0 0 26 0 12
}:g 8 nontest LOC 0 0 11 2 0 0 0 0 26 0 12
— - |test LOC 0 0 94 0 0 0 0 0 0 0 0
total 4 2 0 5 -5 -1 0 14 -1 0 0
oneline total -2 -6 0 2 -4 0 0 10 1 0 1
= multi-line total 6 8 0 3 -1 -1 0 4 -2 0 -1
< [multi-line tested -8 4 0 21 0 -1 0 6 8 0 2
f—.g multi-line untested | 14 4 0 -18 -1 0 0 -2 -10 0 -3
™ [% coverage -14.3% -1.4%| 0.0% | 18.9%| 0.8% | -0.2%| 0.0% | 2.5% | 9.7% | 0.0% | 3.0%
total methods 4 2 0 5 -5 -1 0 14 -1 0 0
nontest methods 4 2 0 0 -5 0 0 10 -1 0 0
test methods 0 0 0 5 0 -1 0 4 0 0 0
_ lo [total LOC 83 124 0 95 -27 -4 0 229 -60 0 17
% 8 nontest LOC 83 124 0 15 -27 -1 0 140 14 0 2
— |- |test LOC 0 0 0 80 0 -3 0 89 -74 0 15

104

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

Bibliography

BorisBeizer Softwae TestingTediniques VanNostrandReinhold New York, secondedition,
1990.

WattsHumphrg. A Disciplinefor Softwae Engineering Addison-Wesley PublishingCom-
pary, Massachusett4,995.

Steve Cornett. CodeCoverageAnalysis. <http://www.bull seye.c om/covera ge.
html> .

CemKaner JackFalk, andHung QuocNguyen. TestingComputerSoftwae. JohnWiley &
Sons,Inc., New York, secondedition, 1999.

William Hetzel. The CompleteGuideto Softwae Testing QED Information Sciencesinc.,
Massachusett4,984.

Glenford Myers. Softwae Reliability: Pinciplesand Practices JohnWiley & Sons,New
York, 1976.

GlenfordMyers. TheArt of Softwae Testing JohnWiley & SonsNew York, 1979.

Lisa Crispin. TestingExtremeProgramming AddisonWesleg/ ProfessionalMassachusetts,
2002.

S.R.Dalal,J.R. Hogan,andJ. R. Kettenring.ReliableSoftnareand CommunicationsSoft-
wareQuality, Reliability, andSafety In Proceeding®f the 15th InternationalConfeencein

Softwae Engineering Organizationalssueson Effective Use of Interfaces,pages425-435,
May 1993.

Jef Langr Ewvolution of Testand CodeVia Test-FirestDesign. Technicalreport, Object
Mentor, Inc., 2001. Presentecit OOPSLAFall 2001, TampaBay, Florida. also available at
<https://www.ob je ct mento r. com/res ourc es/arti cl es/t fd .pd > .

105

[11] Jim Highsmith. ExtremeProgramming.e-Busines®\pplication Delivery, XII(2), February
2000. alsoavailableat <http://www.cu tt er. com/fr eestu ff /e ad0002. pdf> .

[12] Brian Marick. ExperienceWith the Cost of Different CoverageGoals For Testing. In
Proceedingsof the Ninth Pacific NorthwestSoftwae Quality Confeence pagesl47-164,
Oreggon, October1991. also available at <http://www.tes ti ng.c om/writ in gs/

experience.pdf>
[13] KentBeck. Test-DrivenDevelopment AddisonWeslg/, Massachusett2003.
[14] JUnit.og. <http://www.ju nit .org/i ndex. ht m>
[15] Hackystat. <http://csdl.i cs.ha waii .e du/To ol s/ Hackyst at /> .
[16] JBlanlet. <http://csdl.i cs. hawaii .e du/ Tool s/ JBlan ket/ >.
[17] ApacheTomcatProject.<http://jakarta .a pache. org /t onctat/ ind ex.h tml> .
[18] GlassJAR Toolkit. <http://glassja rt oolk it .co m/gj tk .h tml >.
[19] Brian Marick. How to MisuseCodeCoverage.ReliableSoftwae Technolagies 1997.

[20] CemKaner Software Negligenceand TestingCoverage. Softwae QA Quaterly 2(2):18,
1995.

[21] SebastiarElbaum,Alexey G. Malishersky, and Gregg Rothermel. Test CasePrioritization:
A Family of Empirial Studies. I[EEE Transactionson Softwae Engineering 28(2):159-182,
February2002.

[22] RobertL. Glass. PersistenSoftware Errors. IEEE Transactionsof Softwae Engineering
SE-7(2):162-168Warch 1981.

[23] Paul Piwowarski, Mitsuru Ohba,andJoeCaruso.CoverageMeasuremenExperienceDuring
FunctionTest. In Proceeding®f the 15thInternationalConfeencein Softwae Engineering
pages87-301California,1993.IEEE CSPress.

[24] GoogleSearchEngine.<http://www.goog le .c om/>.

[25] Clover: A CodeCoverageTool for Java. <http://www.th ecort ex.n et/c lov er/> .

106

[26] JCover: Java Code CoverageTestingand Analysis. <http://www.code work .c on’

JCover/product. ht mi>.

[27] Optimizeitsuite: Codecoverage <http://www.bor la nd. com/opti mizei t/ code_

coverage/index. ht mi>.
[28] JUnit-Quilt. <http://quilt. sourc ef or ge.n et/ overvi ewht ml>.
[29] ApacheSoftwarelLicense.<http://ant.apac he.or g/ li cense.h tml> .

[30] Cem Kaner JamesBach, and Bret Pettichord. LessonsLearnedin Softwae Testing: A
Contet-Driven Approad. JohnWiley & Sons,Inc., New York, 2002.

[31] Guide to Functional Coverage Methods. <http://www.alp haworks .i bmc om
tech/focus> . Foundin trial downloadatfocusTutorial/CoverageMetbdology.html.

[32] GNU General Public License. <http://www.gnu .or g/li censes/ li censes.

html> .

[33] Byte Code EngineeringLibrary. <http://jakarta .ap ache.org /bc el /i ndex.
html> .

[34] Xerces2Java ParserReadme. <http://xml.apac he.o rg/ xerc es2-j/i ndex.
html> .

[35] W3C XSL Transformations. <http://xml.apac he.o rg/ xerc es2-j/i ndex.
html> .

[36] W3C DocumentObjectModel. <http://www.w3c .0 rg /IDOM/>.
[37] JDOM. <http://www.jdo m.or g>.
[38] LOCC. <http://csdl.ic s. hawaii. edu/ Tool s/L OCC/LOCCht ml>.

[39] ElfriedeDustin,Jef RashkaandJohnPaul. AutomatedSoftwae Testing: Introduction,Man-
agementand Performance AddisonWeslg/ Longman,Inc., Massachusett4,999.

[40] Douglas Hoffman. Cost Benefits Analysis of Test Automa-
tion. <http://softwar equali ty methods.c omSQM/Papers /
CostBenefitAnal ysis Paper.p df >,1999.

107

[41] WinZip. <http://www.winz ip .c om> .

[42] JoseptR. Horgan,SaulLondon,andMichaelR. Lyu. Achieving SoftwareQuality with Test-
ing CoverageMeasuresComputer 27:60-69 Septembefl994.

[43] Test First: Roman Numeral Corversion. <http://www.dif ferentpla .net/

“roger/devel/xp It est_fi rst /t o_ro man/> .

[44] KentBeck. ExtremeProgrammingExplained: Embrace Chang. Addison Weslg, Mas-
sachusett2000.

108

