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Abstract

Pedagogies such as the Personal Software Process (PSP)
shift metrics definition, collection, and analysis from the or-
ganizational level to the individual level. While case study
research indicates that the PSP can provide software engi-
neering students with empirical support for improving esti-
mation and quality assurance, there is little evidence that
many students continue to use the PSP when no longer
required to do so. Our research suggests that this “PSP
adoption problem” may be due to two problems: the high
overhead of PSP-style metrics collection and analysis, and
the requirement that PSP users “context switch” between
product development and process recording. This paper
overviews our initial PSP experiences, our first attempt to
solve the PSP adoption problem with the LEAP system, and
our current approach called Hackystat. This approach fully
automates both data collection and analysis, which elimi-
nates overhead and context switching. However, Hackystat
changes the kind of metrics data that is collected, and intro-
duces new privacy-related adoption issues of its own.

1. Introduction

It would be nice to have a tool to automatically
gather the PSP data. Because judgment is in-
volved in most personal process data, however,
no such tool exists or is likely in the near future.
—A Discipline for Software Engineering[4]

Until the mid-1990’s, most software engineering metrics
were designed for use at the organizational rather than the
individual level. A best practice for organizational metrics

programs is the Software Process Group, which takes re-
sponsibility for collection and analysis of metric data. In-
deed, an important reason for these groups is to prevent
the failure of the metrics program due to increased devel-
oper workload. For example, an industrial case study of
code inspection found that adoption was facilitated by pro-
viding additional staff for metrics collection and analysis
in order to “overcome [developer’s] natural resistance to
paperwork—a syndrome typical of most metrics programs”
[12].

In 1995, Watts Humphrey authored A Discipline for
Software Engineering, a ground-breaking text that adapted
organizational-level software measurement and analysis
techniques to the individual developer along with a one
semester curriculum. These techniques are called the Per-
sonal Software Process (PSP)1. The primary goals of the
PSP are to improve project estimation and quality assur-
ance. These goals are pursued by collecting size, time, and
defect data on an initial set of software projects and per-
forming various analyses on it. For example, given the esti-
mated size of a new system, a PSP analysis called PROBE
provides an estimate of the time required based upon the
relationship between time and size on prior projects.

The PSP incorporates two interesting conjectures. First,
it conjectures that PSP-style collection and analysis of met-
ric data by an individual can provide significant benefits to
that individual. Second, it conjectures that these benefits are
large enough that the developer will continue to use the PSP
after leaving the classroom.

Over the past six years, case studies have tested the first
conjecture by analysis of the student-collected PSP data
[7, 9, 10, 5, 13]. These studies support the first conjecture,

1Personal Software Process and PSP are registered service marks of
Carnegie Mellon University



Characteristic Generation 1
(manual PSP)

Generation 2
(Leap,
PSP Studio,
PSP Dashboard)

Generation 3
(Hackystat)

Collection overhead High Medium None
Analysis overhead High Low None
Context switching Yes Yes No
Metrics changes Simple Software edits Tool dependent
Adoption barriers Overhead,

Context-switching
Context-switching Privacy,

Sensor availability

Figure 1. Three generations of approaches to metrics for individuals

indicating that PSP data can support both project estima-
tion and quality assurance. In addition, researchers from
the Software Engineering Institute analyzed data submitted
to them by instructors of 23 PSP classes, and concluded
that the PSP improved the students’ estimation accuracy and
product quality [2].

To our knowledge, there is no published empirical re-
search directly addressing the second conjecture, such as
studies reporting the actual percentage of PSP students who
continue to use it one, two, and three years after hav-
ing taken the class. (Publications on PSP adoption gen-
erally consist of speculative guidelines and/or short-term
data which do not address the second conjecture.) However,
anecdotal evidence does not support the second conjecture.
For example, a report on a workshop of PSP instructors re-
veals that in one course of 78 students, 72 of them “aban-
doned” the PSP because they felt “it would impose an ex-
cessively strict process on them and that the extra work
would not pay off.” None of the remaining six students
reported any perceived process improvements [1]. Our ex-
periences teaching the PSP are similar: despite classroom
improvements in estimation and quality assurance, few if
any students adopted PSP-specific concepts.

If the first conjecture is true but the second is false, then
studying the PSP is similar to studying Latin: a task that
advocates suggest you learn for its indirect benefits, rather
than because you’ll actually use it in your daily life. The
workshop report echos this PSP-as-Latin viewpoint when
it conjectures, “Even if students don’t use the PSP again,
improving and making them aware of their programming
habits will help them in their future academic and profes-
sional careers.”

This paper presents a perspective on our research and ed-
ucational experiences for the past six years regarding met-
rics collection and analysis for individual developers. We
began by teaching and using the PSP in its original form,
but students found the overhead of metrics collection and
analysis to be excessive. To address this issue, we next de-
veloped a comprehensive toolkit for PSP-style metrics col-

lection and analysis called Leap [8, 6]. Despite the auto-
mated support, adoption was still low, and this led us to the
discovery of another adoption barrier: the need for students
to continuously “context switch” between product develop-
ment and process recording. We have now implemented a
new system called Hackystat and have deployed it in two
software engineering classes. Hackystat completely auto-
mates both collection and analysis of metric data and thus
addresses both the overhead and context switching barriers
to adoption. The next section discusses this research trajec-
tory in more detail.

2. Three generations of metrics for individuals

Looking back, we can divide our research on metrics for
individuals into three generations. Figure 1 illustrates five
distinguishing characteristics of these generations.

The first generation approach uses the PSP as originally
described in A Discipline for Software Engineering. Users
of the PSP create and print out forms in which they man-
ually log effort, size, and defect information. Additional
forms use this data to support project estimation and qual-
ity assurance. This approach creates substantial overhead
due to form filling. For example, the PSP requires students
to write down every compiler error that occurs during de-
velopment. It also recommends that the developer keep a
stopwatch by their desk in order to keep track of all inter-
ruptions. A benefit of using forms is that changing metrics
simply involves editing the affected forms and/or creating
new ones.

We began teaching the PSP in 1996, and had success
similar to that reported in other case studies. Most of our
students were able to estimate both the size and time of their
final project with 90% or better accuracy, and one student
achieved 100% yield on one project. (This means that the
student eliminated all syntax and semantic errors from the
system prior to the first compile of that system.) Despite
the obvious discipline displayed by these students, followup
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Figure 2. The basic Hackystat architecture and information flow

email indicated that none of them continued using the man-
ual PSP after finishing the semester. We attributed this to
the overhead involved in collection and analysis, and began
the Leap research project in 1998 to pursue low overhead
approaches to collection and analysis of individual software
engineering metric data.

A second generation approach uses Leap or another auto-
mated tool for PSP-style metrics such as the PSP Studio [3]
and PSP Dashboard [11]. These tools all have the same ba-
sic approach to user interaction: they display dialog boxes
where the user records effort, size, and defect information.
The tools also display various analyses when requested by
the user. Second generation approaches do an excellent job
of lowering the overhead associated with metrics analysis,
and substantially reduce the overhead of metrics collection.
However, metrics changes require changes to the software
and are thus more complicated than in the first generation
approach.

After teaching and using the Leap system we found that,
similar to the manual PSP, developers can utilize their Leap
historical data to substantially improve their project plan-
ning and quality assurance activities. Followup email indi-
cated that adoption improved slightly: a handful of students
continued to use Leap after the end of the semester, and a
small number of industrial developers discovered the tool
online and began using it. A few former students and devel-
opers continue to use at least some parts of Leap.

While “some adoption” is definitely an improvement
over “no adoption”, we were still surprised by the very low
level of adoption of a toolkit that provided so much auto-
mated support. We then discovered that a major adoption
barrier is the requirement that the user constantly switch
back and forth between doing work and “telling the tool”
what work is being done. Even if telling the tool is as simple

and fast as pressing a button, this continual context switch-
ing is still too intrusive for many users who desire long pe-
riods of uninterrupted focus for efficient and effective de-
velopment.

In May 2001, we began the Hackystat project, in which
metrics are collected automatically by attaching sensors to
development tools, metric data is sent by the sensors to a
server, analyses over the gathered data are performed by a
server, and alerts are emailed to the developer when trig-
gered. With Hackystat, the overhead of metrics collection
is effectively eliminated, developers never context switch
between working and telling the tool that they’re working,
and analysis results can be provided in a “just in time”
manner. While Hackystat successfully addresses the bar-
riers to adoption identified in first and second generation
approaches, it changes the nature of metric data that is col-
lected, imposes requirements on development tools, and in-
troduces new adoption issues. The remainder of the paper
describes the system and our results in more detail.

3. An overview of Hackystat

Figure 2 shows the basic architecture of Hackystat and
how information flows between the user and the system.
Hackystat requires the development of client-side sensors
that attach to development tools and that unobtrusively col-
lect effort, size, defect, and other metrics regarding the
user’s development activities. Not every development tool
is amenable to Hackystat instrumentation: Emacs is easy to
integrate, Notepad is not.

The current system includes sensors for the Emacs and
JBuilder IDEs, the Ant build system, and the JUnit test-
ing tool. These sensors collect activity data (such as which
file, if any, is under active modification by the developer
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at 30 second intervals), size data (such as the Chidamber-
Kemerer object oriented metrics and non-comment source
lines of Java code), and defect data (invocation of unit tests
and their pass/fail status).

The developer begins using Hackystat by installing one
or more sensors, and registering with a Hackystat server.
During registration, the server sets up an account for the de-
veloper and sends her an email containing a randomly gen-
erated 12 character key that serves as her account password.
This password prevents others from accessing her metric
data or uploading their data to her account.

Once the developer has registered with a server and in-
stalled the sensors, she can return to her development activ-
ities. Metrics are collected by the sensors and sent unobtru-
sively to the server at regular intervals (if the developer is
connected to the net) or cached locally for later sending (if
the developer is working off line).

On the server side, analysis programs are run regularly
over all of the metrics for each developer. A fundamental
analysis is the abstraction of the raw metric data stream into
a representation of the developer’s activity at 5 minute in-
tervals over the course of a day. We call this abstraction the
“Daily Diary”, and it is illustrated in Figure 3. This Daily
Diary shows that the developer began work on Friday, June
21, 2002, at approximately 9:30am, and during the first five
minutes of work the file that was edited most frequently was
called Controller.java. The location of this file is also indi-
cated along with its Chidamber-Kemerer metrics and size,
computed from the .class file associated with the most re-
cent compilation of this file in the developer workspace.
Among other things, this Diary excerpt also shows that be-
tween 9:45am and 9:55am, the developer invoked 60 JUnit
tests that passed, 1 that failed, and none that aborted due to
exceptional conditions.

The Daily Diary is useful for visualizing and explain-
ing Hackystat’s representation of developer behavior, but is
not intended as the “user interface” to the system. Instead,
the Daily Diary representation serves as a basis for generat-
ing other analyses, such as: the amount of developer effort
spent on a given module per day (or week, or month); the
change in size of a module per day (or week, or month); the
distribution of unit tests across a module, their invocation
rate, and their success rate per day (or week, or month), the
average number of new classes, methods, or lines of code
written in a given module per day (or week, or month), and
so forth.

Analysis results are available to each developer from
their account home page on the web server, and can be re-
trieved manually to support, for example, project planning
activities. However, a more interesting mechanism in Hack-
ystat is the ability to define alerts, which are analyses that
run periodically over developer data and that specify some
sort of threshold value for the analysis. If the threshold is

exceeded, the server sends an email to the developer indi-
cating that an analysis has discovered data that may be of
interest to the developer along with an URL to display more
details about the data in question at the server.

One alert is called the “Complexity Threshold Alert”,
and it allows the developer to configure it to analyze the
Chidamber-Kemerer metrics associated with each class she
worked on during the previous seven days and trigger
an email if the values of these metrics exceed developer-
specified values. This enables the system to monitor the
complexity of the classes that the developer works on and
to send an email if they exceed the specified value.

Student usage creates an opportunity for specialized
analyses and alerts. For example, analyses can help students
see whether “last minute hacking” leads to more testing fail-
ures, less testing in general, and lower productivity. Alerts
can help students monitor their usage and inform them when
their effort falls below a certain level of consistency (such
as at least one hour of effort at least 4 days a week).

Alerts provide a kind of “just-in-time” approach to met-
rics collection and analysis. The developer can effectively
“forget about” metrics collection and analysis during her
daily work, but the metrics will still be gathered and avail-
able to her when she has a need for them. Furthermore, the
alert mechanism can make her aware of impending prob-
lems without her having to regularly “poll” her dataset look-
ing for them.

4. Results

The Hackystat project began in early 2001, and the first
operational release of the server and a small set of sensors
occurred in July 2001. The server is written in Java and con-
tains approximately 200 classes, 1000 methods, and 15,000
non-comment lines of code. Client-side, tool-specific code
is much smaller: the JBuilder sensor code is approximately
200 lines of Java, and the Emacs sensor code is approxi-
mately 400 lines of Lisp. Hackystat is available without
charge under an open source license and is available for
download at http://csdl.ics.hawaii.edu/Tools/Hackystat. In
addition, we maintain a public server running the latest re-
lease of Hackystat at http://hackystat.ics.hawaii.edu/.

Hackystat is currently being used by approximately 40
students in undergraduate and graduate software engineer-
ing classes at the University of Hawaii, as well as by one
industry site. One user has development data for over 250
days spanning 15 months of usage. We will be gather-
ing adoption data regarding the ongoing use of Hackystat
throughout 2003.

Our research confirms the quote that begins this paper:
we did not discover a means to automatically collect PSP-
style effort, size, and defect data. On the other hand, our
research shows that automatic collection of Hackystat-style
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Figure 3. The Daily Diary: Developer metrics at five minute intervals.

effort, size, and defect data is indeed possible. It is instruc-
tive to compare and contrast the two approaches to these
three metrics and its implications.

Effort. In the PSP, effort data (whether recorded by hand
or using a tool) is always associated with a “project” and
a “phase” of development. So, a developer might record
that from 10:00am to 11:00am, she was working on Project
“Timer1.2” in the phase “design”. Although in theory this
seems simple enough, in practice it incurs significant over-
head to define unique “projects” for every development ac-
tivity, determine the “phase” to be assigned, and record indi-
vidual entries each time the developer switches to a different
task or project. In addition, the PSP requires that you record
“idle time”, so every phone call or colleague’s appearance
at your door generates an additional recording activity.

In Hackystat, effort data is associated with active mod-
ification of a file, and has a fixed grain size of five minute
increments. If the developer is not actively changing a file,
then they are “idle”. Instead of a “project”, Hackystat has
the concept of a “locale”, which generally corresponds to a
subdirectory (or package) hierarchy. There is currently no
attempt to represent development “phase” in Hackystat.

While the PSP effort representation has the potential to
be more accurate than Hackystat’s, the reality is that the
overhead and context switching required to conform to PSP
effort collection makes it exceedingly costly to the devel-
oper. Hackystat effort data, on the other hand, is effectively
“free”. Another difference is in the application of effort
data to planning and estimation. In the PSP, one plans us-
ing “projects” which are associated with various sizes and
effort levels. In Hackystat, one can plan using “locales”,
which are also associated with various sizes and effort lev-
els. However, one can also plan using simple “work week”

data, which involves examining size and effort over a repre-
sentative period of weeks.

Size. In the PSP, the developer invokes a source code
analysis tool to collect size data at the end of project (and
perhaps at the beginning, if the project is an incremental ex-
tension of an existing system). Size data consists of counts
of classes, methods, and non-comment lines of code.

In Hackystat, similar size data is collected, but this
data needs to be incrementally collected since there are no
projects, much less defined start or end dates. This poses a
problem, since the source code files parsed by the source
code analysis tools are frequently syntactically incorrect
while they are under active development. Hackystat solves
this for Java by parsing the .class file associated with the
most recent compilation of the source file. This enables
Hackystat to provide size information such as the actual
number of new methods added during a given day.

Defects. In the PSP, the developer must record every
defect, including compilation defects, as well as the time it
took to remove them, any other defects injected as a result of
this defect, the phase in which the defect was injected into
the product as well as the phase in which it was removed.

In Hackystat, pre-release defect data is automatically
collected by attaching a sensor to a unit testing mechanism
such as JUnit, and post-release defect data is automatically
collected by attaching a sensor to a bug reporting system
such as Bugzilla.

PSP defect collection supports a number of analyses not
possible with Hackystat defect collection, such as the re-
lationship between the cost of removal of a defect and the
interval in phases between its injection and removal. On
the other hand, PSP defect collection creates substantial de-
veloper overhead, and is quite sensitive to “collection fa-
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tigue”. For example, if developers stop recording defects
as conscientiously over time, then potentially incorrect and
misleading analyses (such as a trend toward decreased de-
fect density) can result. Hackystat defect collection is not
susceptible to these problems, and does support activities
such as complexity measurement validation (the develop-
ment of models that predict post-release defect rates from
pre-release complexity measures).

While Hackystat reduces barriers to adoption due to de-
veloper overhead, it creates a new adoption issue of its own:
the specter of “Big Brother”. As Figure 3 illustrates, Hacky-
stat servers provide a fairly detailed log of developer activi-
ties, which may cause privacy concerns, particularly among
professional developers who might worry about access to
the data by management. We have taken several steps to
address privacy. First, data access requires a password that
should be known only to the developer who owns the data.
Second, we maintain a public Hackystat server that allows
developers to keep their data “off site” and thus unavail-
able to management. Third, a developer might alternatively
decide to download the Hackystat server and run it locally
so that all data is kept under their immediate control. We
may investigate further measures, such as PGP encryption
of data, if privacy issues are revealed to be a major barrier
to adoption.

5. Conclusions and Future Directions

Our first conclusion is the need for further research on
the issue of PSP adoption. While there now exists ample
case study evidence that the PSP can provide software engi-
neering benefits in a classroom setting, our own experience
and other anecdotal evidence suggests that most developers
abandon PSP practices after its use is no longer mandated.

Our second conclusion is that a significant barrier to
adoption of metrics by individual developers occurs when
there is the need to regularly “context switch” between
product development and process recording. This indi-
cates that second generation approaches that simply auto-
mate PSP-style effort, size, and defect collection might not
be widely adopted.

Our third conclusion is that third generation approaches
such as the Hackystat system present a promising means
to eliminate the need for context switching by developers
by automatic collection of metric data. However, the ap-
proach changes the nature of the data that is collected, and
raises new adoption issues related to privacy. We hope that
other researchers will download and evaluate Hackystat to
explore these issues or be inspired to develop their own third
(or fourth!) generation approach to metrics collection and
analysis for individuals.

Hackystat is under active development, and we are cur-
rently developing sensors for Eclipse, Forte, and CVS. We

are also beginning empirical studies regarding the construct
validity of measures such as “Most Active File.” Finally,
we will be assessing the long-term adoption of Hackystat
by following changes in usage patterns by students as they
move on to other classes or professional work.
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