
1

JBlanket: Support for Extreme Coverage in Java Unit Testing

Joy M. Agustin
Information and Computer Science

University of Hawai’i at Manoa
Honolulu, HI 96822
jagustin@hawaii.edu

Abstract

Unit testing is a tool commonly used to ensure
reliability in software development and can be applied to
the software development process as soon as core
functionality of a program is implemented. In
conventional unit testing, to properly design unit tests
programmers will need to have access to specifications
and source code. However, this is not possible in
Extreme Programming (XP), where tests are created
before any feature of a system is ever implemented.
Obviously, XP’s approach does not lead to improper
testing, but instead leads to a different approach for
testing.

JBlanket is a tool developed in the Collaborative
Software Development Laboratory (CSDL) at the
University of Hawai’i (UH) that is meant to assist these
types of “unconventional” testing that calculates method-
level coverage in Java programs, a coarse enough
granularity of test case coverage whereby programmers
will not only be able to ensure that all of their unit tests
pass, but will also be able to test all of their currently
implemented methods. Unit testing where 100% of all
unit tests must pass that also exercises 100% of all non-
trivial remaining implemented methods is called Extreme
Coverage. This research will attempt to show that
Extreme Coverage is useful in developing quality
software.

1. Introduction

Unit testing is a tool commonly used to ensure
reliability in software development and can be applied to
the software development process as soon as core
functionality of a program is implemented. It is after this
first phase in coding that programmers will have access to
source code with which they can begin testing [11]. The
three main reasons that drive the usage of unit testing
include 1) easier management of the individual units, or
“modules”, or combinations of modules before they are
combined to form the entire system, 2) easier to find and
correct bugs, or debug, since already exercising the

module in which the bugs originated, i.e., eliminates
wasted time searching for the guilty module containing
the bugs, and 3) allows multiple modules to be tested in
parallel [6].

In the conventional case, testers need to have access to
a module’s specifications and source code to design
proper test cases. First white-box testing techniques, or
“glass box testing”, are applied to the source code to
verify its logic. Then black-box testing techniques are
derived from the specifications and then applied [6]. To
ensure that intimate association with a module does not
influence testing, this task is usually performed by
person(s) other than the programmer. In the case of unit
testing, the programmer and the tester is the same person
[7].

However, in the case where the software development
model used is Extreme Programming (XP), the
programmer first designs the unit tests from the
specifications before any code is implemented. It is only
after some code is written that it can be exercised by the
unit tests. One hundred percent of the unit tests must
pass. This process is then repeated throughout the
software development life cycle as each feature is coded.
Does this mean that unit testing in XP is improperly
designed or that the unit tests are not as useful as the unit
tests designed in the conventional sense? Many articles
have been published that say otherwise, [8] [9] [10] to
name a few.

However, as the size of programs change, so do the
methods used for testing and the criteria used to measure
its quality. One example of change is with respect to test
case coverage, i.e., a metric that measures the amount of
code that is exercised by the test cases. Boris Beizer
claims that during unit testing 100% coverage is
necessary, and that this level of coverage usually drops as
modules are combined or as testing is done on huge
systems of approximately 10 million lines of code [7].
On the other hand, Brian Marick conducted a study where
he examined the different granularities of coverage, which
will be discussed further in Section 2 [12]. From his
study, he claimed that 100% of “feasible coverage” is an
acceptable level of coverage to achieve.

2

Of the different coverage granularities, the focus will
be on method-level coverage. This level of coverage was
chosen because higher levels of coverage appear to be
cheaper to achieve than all the other types of coverage.
For example, during highly volatile periods of software
development where a system’s source code is
continuously evolving and refactored at a relatively quick
pace, it obviously requires less effort for programmers to
achieve higher levels of method-level coverage than
statement-level coverage, one of the simplest
measurements to calculate [17] [15], since the only way to
exercise every statement is to exercise every method that
contains those lines of code. (The exception, of course,
being abstract methods in Java).

This is the case in XP, where source code can be
considered highly volatile as test cases are created and
more code is written or refactored in every iteration of
development. Interestingly, there is not rule in XP that
states every method written needs to be executed during
testing. This rule may be implicitly implied since code
should only be written to satisfy a test case, but is
impossible to guarantee as programmers move further into
development.

In its “purest” form, 100% method-level coverage
requires invoking every method during testing. However,
it is not clear whether this level of coverage a practical
goal. Although method level coverage is cheap for
achieving high levels of coverage, test cases solely aimed
at exercising methods with only one line of code are most
times worthless. Unless the single line of code contains a
complicated logical expression, for example, inspection is
probably better for verifying its correctness. In addition,
some methods are untestable. For example, abstract
methods in Java can never be invoked. Therefore, “pure”
method-level coverage is not only impractical, but can
also be impossible to achieve. However, method-level
coverage of all “non-trivial” methods, i.e., methods that
contain more than one line of code, or are not abstract, is
not impractical. This approach to unit testing will be
referred to as “extreme coverage”.

By following the guidelines of extreme coverage, XP
programmers will not only be able to ensure that 100% of
their tests pass, but they will also be able to ensure that
100% of their non-trivial methods are exercised.
Furthermore, this concept can also be applied to non-XP
software models where test cases are created to exercise
existing source code. In this case, extreme coverage can
help testers ensure that all non-trivial methods are
executed at least once during testing. As a result, this
approach also has to potential to reduce the size of
systems by high-lighting potentially unneeded code and
to improve testing by improving the way test cases are
implemented.

This research project will investigate the concept of
extreme coverage and attempt to provide answers to the
following questions:

1) Is knowledge of method-level coverage helpful to
implementing quality software?

2) How much effort does it take to achieve and
maintain 100% method-level coverage?

3) Does knowing method-level coverage influence the
way systems are implemented?

4) Is extreme coverage feasible?

As an aid to this research, extreme coverage will be
measured by JBlanket, a method-level coverage tool that
is currently in development in the Collaborative Software
Development Laboratory (CSDL) at the University of
Hawai’i (UH) at Manoa.

The remainder of this paper will be presented in the
following order. The next section will discuss previous
studies and a selection of coverage tools that currently
exist. Section 3 describes the functionality and
architecture of the JBlanket system. The evaluation
procedures and results of the above hypotheses are
discussed in Section 4. Finally, Section 5 contains the
conclusions and possible future directions of this research.

2. Related Work

Test case coverage measurement can be performed
using different granularities. Numerous studies have been
conducted with the different granularities to discover the
ideal level of code coverage and the possible impacts they
have on the quality of software. Over the years, many
automated tools have also been developed to measure
these different granularities of coverage. In this section,
previous research and existing tools will be discussed.

2.1. Related Work

In [13], Elbaum et. al presented a study that compared
the effectiveness of using either statement coverage or
method-level coverage for prioritizing test cases during
regression testing. Each coverage type was measured in
four different ways: total coverage, additional elements
invoked, total fault-exposing potential (FEP), and
additional FEP potential. These eight types of coverage
were executed on eight C programs with sizes ranging
from 138 to 6218 lines of code (LOC), seven of which
were under 520 LOC.

They found that while statement coverage performed
better than method-level coverage, there were several cases
in which the difference between coverages were not
significant, and two cases in which a method-level
measurement performed better than its statement-level
counterpart. In addition, on the average, the various
method-level coverage measurements performed similarly
to statement coverage measurements. The ranking for both
types were: 1) additional FEP potential, 2) total FEP, 3)
total coverage, and 4) additional elements invoked. The
authors also noted that, while some loss of effectiveness
can be expected due to the coarser granularity, their
findings suggest benefits of method-level coverage should
be further investigated since it is the “less costly and less
intrusive” approach [13].

3

This study relates to the helpfulness of method-level
coverage. If it can perform similarly to a finer granularity
during regression testing, perhaps it can be used during
unit testing to obtain useful data about test cases and the
amount of a system being exercised.

An experiment conducted by Marick [12] suggested
that high levels of coverage are acceptable goals with
various granularities of test case coverage. He measured
the cost of reaching near 100% coverage with branch
coverage, loop coverage, multi-condition coverage, and
weak-mutation coverage. Cost was determined in terms of
the amount of coverage attained, the number of test cases
documented, the amount of time needed to design the test
cases, and the number of conditions argued to not be
feasible to test. Infeasible conditions included conditions
which are either impossible to test or are not worthwhile
testing.

The results of this single person experiment showed
that after two tries, branch coverage reached 95% using
black-box testing techniques, a level noted to be higher
than those reached in previous studies. In addition, when
both loop and multi-condition coverage results were
combined, their total reached 92%. To exercise the
remaining 8% would require “3% of total time, 2% of
total test conditions, and 3% of the total test cases” [12].
By using these various granularities of coverage, the
experimenter concluded “100% feasible coverage is a
reasonable testing goal for unit testing” [12].

However, this experiment was conducted on a very
small scale. The experimenter was the only person
conducting the experiment (i.e., creating missing
specifications, designing test cases, calculating the
amount of time used designing the test cases, etc.). The
systems measured were C programs consisting of 30 to
272 LOC. Results from such small experiments cannot be
generalized to include larger systems [18] or be
generalized to other granularities of coverage since each
coverage type has different weaknesses [19].

Therefore, these findings cannot be generalized to
method-level coverage. So how much effort is needed to
reach 100% method-level coverage is unknown. In this
research, effort will be measured in terms of the total
LOC, total test LOC, and the amount of coverage
obtained for the system measured. To ensure measuring
only “feasible coverage”, rules pertaining to the types of
methods included in coverage will be applied.

Piwowarski et. al studied the benefits of statement
coverage on a large scale software system at IBM [16].
They measured statement coverage during unit testing,
function testing, and system testing. Initially, they
observed that testers overestimated their coverage when
they did not know their actual coverage. For example,
some estimated achieving coverage of 90% or above, but
actually reached only 50% to 60%. However, after
measuring coverage, they found problems such as
unreachable code or unexecutable code prevented 100%
coverage. For example, code managing unlikely errors
during normal execution cannot be reached under normal

circumstances, or special hardware commands cannot be
executed during testing [16].

The authors concluded that “70% statement coverage is
the critical point for our function test”, “50% statement
coverage was generally insufficient”, and “beyond a
certain range (70%-80%), increasing statement coverage
becomes difficult and is not cost effective” [16]. They
also found that with coverage information, test cases
could be improved to increase coverage 10%.
Furthermore, while 100% statement coverage is not
feasible during function testing, it is feasible during unit
testing.

From their experiment, it is clear that knowledge of
statement coverage influenced the implementation of test
cases while trying to increase coverage. This is probably
the case with method-level coverage also. However, in
what ways are the test cases are modified? For example,
does it require significantly more code, or just minor
adjustments to current test cases to increase coverage?

These three case studies have influenced the evaluation
of the usefulness of extreme coverage. The next section
describes the influences that guided the design and
implementation of JBlanket, the system used to gather
data for this research.

2.2. Coverage Tools

While numerous tools exist that offer the various
forms of coverage, none of them were considered to play
key roles in this research. Although the tools may or may
not have either offered method-level coverage, the main
reasons behind this decision are that majority were Closed
Source projects and the possible financial strain on the
evaluators.

With Closed Source projects, they either did or did
not offer method-level coverage. If method-level coverage
was not offered, the tool could not be extended to include
the needed coverage measure. If the tool did offer method-
level coverage, the options were to either spend over a
hundred dollars to purchase a copy of the tool, or use trial
versions for at most 30-days. Since undergraduate college
students were the evaluators, it did not seem feasible to
require them to purchase individual copies of or licenses
for coverage tools or be constrained by the life span of
trial versions. These actions would most likely have
shrunk the size of the evaluator population considerably.

Therefore, the coverage measurement tool used in this
research needed to be accessible and available for use
under any situation. Hence, to avoid re-downloading
expired trial versions, the obvious choice was to use an
Open Source Project.

The coverage tools reviewed here appear to be among
the most popular (i.e., appeared higher up in the Google
ranking).

2.2.1. Clover. Clover [1] is an impressive code
coverage tool that determines which sections of code are
not executed during testing. The current version of

4

Clover, version 0.6b, supplies two JAR files, clover.jar
and velocity.jar, and can measure method, statement, and
branch coverage. After running this tool with Jakarta Ant,
class files are produced that include both the original
program and Clover's methods to record trace data. This
automatic addition ensures that the user does not need to
manually alter their source code. Clover's output can be
viewed as either XML, HTML, or through a Swing GUI.
Any unexecuted code is highlighted for quick
identification.

Users need to have access to the source code of the
system being tested because Clover recompiles the entire
system to include its ``coverage gathering mechanism''.
While this restricts the tool from being used on systems
in which only byte code is available, it allows users to
include or exclude specific chunks of code from coverage
by adding Clover specfic commands to the source code.

In addition, this is a Closed Source system and it is
not clear whether it can be used with client-server
systems. The projects used for the evaluation uses Jakarta
Tomcat as the server.

2.2.2. JCover. With JCover(TM) [2], users can work
with a program's source code, class files, or both to
calculate statement, branch, method, class, file, or
package coverage. It can conduct client and server-side
testing with any ``standards-compliant JVM''. An
additional Java API is included that allows the user to
``programmatically control JCover's(TM) coverage agent
at runtime'' [2]. This API must be integrated into the
user's test framework. All coverage data is archived for
future analysis. The data collected can also aid in
optimizing tests by including whether coverages overlap
or are disjoint. The reports are formatted in HTML,
XML, CSV, and MDB.

JCover(TM) is not an Open Source project, but a fully
functional 15-day evaluation copy can be downloaded [2].
It is not clearly stated on this tool’s web page what the
process of data collection is or what servers it can be used
with.

2.2.3. Optimizeit Code Coverage. Optimizeit Code
Coverage is a part of Borland's Optimizeit Suite, which
also contains two other tools, Optimizeit Profiler and
Optimizeit Thread Debugger. It measures class, method,
and statement coverage. Depending upon the type of
measurement, it calculates the number of times a class,
method, or line of code is executed in real-time. A GUI is
also available for quick identification of results. The
source code is not required for this coverage tool. Class
and jar files are sufficient to receive an accurate
measurement. It also works with application servers [4].

While this is not an Open Source project, it also offers
a 15-day trial version [4]. In addition, Optimizeit Code
Coverage seems to show coverage for every class in an
application. The user does not appear to have the option
to focus on a specific subset of classes.

2.2.4. Quilt. Quilt is an Open Source project created
by David Dixon-Peugh and Tom Copeland. Currently it
offers statement, branch, and path coverage. Through byte
code instrumentation, classes are loaded into a
ClassLoader specifically designed for Quilt before they are
loaded into the JVM. Statistics are kept, from which
coverage is calculated. Results can be displayed in HTML
or XML using its reporting functionality [5].

Quilt is released under the Apache License. Therefore,
someone other than the authors can extend Quilt to
include method-level coverage. However, while their
licensing makes Quilt available for use free of charge,
modifying it to include method-level coverage and
integrating it with Jakarta Tomcat did not proved to be
possible due to the author’s limited knowledge of Java.

From the coverage tools reviewed, both Clover and
Quilt were considered as possible candidates in this
research. However, its price as well as the length of its
trial version hindered access to Clover. It would be
detrimental to this study if the evaluators were required to
renew their trial version after it expired. Furthermore, if
they would not be able to run Clover with Tomcat, the
evaluators would not be able to use it to measure their
systems (see Section 4).

With respect to Quilt, while it is an Open Source
system that can be modified to also measure method-level
coverage, the author found the use of ClassLoader to
inhibit integration of Quilt with Jakarta Tomcat.
Therefore, the decision was made to create JBlanket.

3. The JBlanket System

To gather method-level coverage data for this research,
the JBlanket coverage tool was developed. It uses JUnit
test cases to calculate the percent of methods in a system
invoked during testing. From the various coverage
systems available, JBlanket was designed to combine
desirable features from the many different systems so that
it would be a feasible tool for research. This means that
from a research standpoint, it is readily available,
relatively easy to use, and relatively easy to understand.
By creating a readily available tool allows others to gain
access to the tool and be able to integrate it into their own
research. With relatively ease of use, people will not be
discouraged from using the tool inside and outside of
their research. Then with coverage results presented in a
comprehensible manner, people will be able to easily
understand how to apply the results.

3.1 System Functionality

JBlanket is able to measure coverage of both stand-
alone and client-server systems. However, it has only
been applied to client-server systems that use Jakarta’s
Tomcat as the web server. To calculate coverage, users
will need to have access to a system’s source code and
byte code. With these two sources of input, four main

5

output sets are created: (1) the total methods measured in
the system (total), (2) the methods that cannot be invoked
during testing (untestable), (3) the methods invoked
during testing (tested), and (4) the remaining methods
that are not invoked during testing (untested), considered
to be untested. Coverage is measured with the following
formula:

% coverage = tested/untested

where

untested = (total – untestable) – tested

To measure extreme coverage, users have the option of
excluding methods that contain one line of code. These
“one-line methods” form an optional fifth output set. The
percent coverage is calculated with

tested = total – one-line

and

untested = (total – untestable) - tested

To further improve the versatility of JBlanket, specific
files can either be excluded from or included in coverage
data. This feature allows combinations of multiple sub-
packages to be measured separately, which is useful for
targeting parts of a system.

Coverage results are reported in an HTML format
similar to that of JUnit reports. Since users are required to
implement JUnit test cases prior to running JBlanket, it
was decided that mimicking JUnit’s reports would
simplify the use of the JBlanket reports by reducing the
amount of time users need to understand and interpret the
results and learn to navigate between reports.

3.2 System Architecture

JBlanket is implemented in Java, and was designed to
be executed from either the command-line or integrated
with Jakarta’s Ant. There are four main tasks that need to
be executed to calculate coverage. The first task uses
LOCC (supplied by CSDL) to create a file containing the
total methods included in the coverage measurement. By
using the “javamethod” value for “sizetype”, all method
type-signatures are located in the source code and stored
in the first output set mentioned in the previous section.

The second task in JBlanket modifies the byte code
created from compiling the source code. The Jakarta Byte
Code Engineering Library (BCEL) is used to alter each
method such that when a method is executed for the first
time during unit testing, its type-signature will be stored.
Before each method is modified, it is checked for two
separate conditions. The first condition is if the method
can be invoked or should be included in coverage. If a
method falls into either category it is not modified and
placed in the second output set. The other condition relies

on the number of lines of code the method contains. If
methods containing a single line of code are to be
excluded from coverage, then one-line methods are not
modified and recorded in the optional fifth output set.
The second output set is immediately removed from the
first output set, creating a modified first output set, and is
not included in the coverage measurement.

The third task to perform is executing the JUnit test
cases. Prerequisite setup tasks may be needed depending
upon how the system is tested. For example, the
modified class files can be packaged into JAR files before
running the JUnit tests when the JUnit classpath does not
include the directory containing the modified class files.
A WAR file can be created and copied to Tomcat, or the
modified class files can be copied to one of the “classes”
subdirectories in the Tomcat directory. Then Tomcat can
then be launched for client-server systems. This third task
outputs the third set that consists of methods invoked
during testing.

After the JUnit tests are executed, the final task can be
performed. This is the report task that interprets all of the
accumulated results. First the fourth output set is created
from the difference of the first set and the combination of
the third set and the optional fifth set. Then these sets of
raw coverage data are aggregated into one XML file,
where each method is stored according to the package-
prefixed name of its class. Therefore, each package-prefix
class contains at most three different method
classifications (tested, untested, one-line) under which the
corresponding type-signatures are stored. This file is then
transformed into HTML through XSL Transformations
(XSLT).

Before JBlanket can be used, the javac “debug” option
must be turned on when compiling the source code. The
debug option ensures that line numbers from source code
is included in the byte code. Without line numbers,
BCEL cannot calculate the lines of code in a method in
the second task. In addition, to ensure that the Java
ClassLoader loads the correct class, it is recommended
that all copies of the compiled class files be removed
from the classpath, including the original compiled class
files prior to modification. If these files linger there is no
guarantee that the ClassLoader finds the modified class
file. No data can be collected from invoking methods
from unmodified classes. Finally, for coverage data to be
reliable, all test cases need to pass. It is possible for
JBlanket to calculate coverage when some test cases
succeed and others fail. However, this measurement will
not reflect the true coverage of the system.

In the next section, the evaluation of the research
questions introduced in the first section are tested and
evaluated using JBlanket.

6

4. Evaluation

4.1. Experimental Methodology

This research will be evaluated in an academic
environment through undergraduates in an upper-division,
second-semester Software Engineering course at the
University of Hawai’i. There are approximately 14
students in this class, all of who are developing eight
separate web services (with Java 1.4 and JSP) that will be
deployed on the Information and Computer Science (ICS)
home page (http://www.ics.hawaii.edu) next semester,
Spring 2003. The combination of these web services is
refered to as CREST. Due to the nature of their projects,
it was assumed at the beginning of the semester that each
student had either enrolled in the previous semester’s
Software Engineering course, or adequate knowledge of
Java, JSP, Jakarta Tomcat, CVS, JUnit, HttpUnit, and
Jakarta Ant.

The students were first given time to accustom
themselves to the course and their projects for the first
two months of the semester. Seven projects were assigned
to teams of two people. The remaining project was
assigned to one person, who is also a member of one of
the aforementioned teams.

Then they were given a questionnaire to judge their
current practices and beliefs towards unit testing. After the
professor collected the completed questionnaires, the
author presented a 20-minute introduction to JBlanket – a
description of the system, how to run it with their unit
tests, and how to use the output to increase their
coverages. The student’s Ant build files were previously
modified to run the JBlanket system to eliminate the
effort to include the JBlanket target(s) by the students.

After the introductory presentation, the professor
instructed the students that they would be required to
reach and maintain 100% “feasible” method-level
coverage. By requiring the students to reach a specific
level, there was an increased likelihood of discovering
whether it is difficult to reach the 100% and the amount
of work it takes to maintain such a high value. At the end
of the semester, the students were told, they will once
again fill out another survey to find out their reactions to
method-level coverage.

In addition to what the students were told, their
individual projects were downloaded from a shared CVS
repository. For the first two weeks of November, their
projects were downloaded every day at approximately the
same time. These initial downloads were needed to decide
upon the best course of action with respect to finding a
schedule that would best reflected the students’ effort and
changes in their projects’ coverage. It was found that
checking the projects every day did not result in finding
many changes. While the repository of a couple of
projects did change daily, most did not, and those
changes did not appear to be extremely significant. For
example, one or two files changed, and the resulting
coverage was modified less than 5%. Therefore, it was

decided that projects would be checked once every three
days.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

CREST

FAQ

Login

Newsbulletin

Poll

Resume

Techreports

Textbooks

Tutor

Figure 1. Daily checks of CREST coverage.

0

1000

2000

3000

4000

5000

6000

Crest

FAQ

Login

Newsbulletin

Poll

Resume

Techreports

Textbooks

Tutor

Figure 2. Daily checks of CREST LOC.

4.2. Results

4.2.1. Preliminary Results. While preparing for the
introductory presentation, the author found a couple of
interesting unexpected results when running JBlanket.
Initially, the process of invoking the coverage system was
integrated into the build file in a local copy of CREST
that was checked out from the CVS repository. After
reviewing results from “pure” method-level coverage, the
first trend noticed was that most unexecuted methods
began with “get” or “set”, i.e., they were accessor
methods or modification methods. Because majority of
these methods are expected to contain one line of code,
‘return foo’ or ‘this.foo = foo’ for example, it was
concluded that these methods were probably best tested
via inspection versus writing individual test cases that
would eventually exercise all of these methods. This line
of reasoning was then extended to include all methods
containing one line of code (one line methods) when a
similar trend was noticed in other untested methods. As a
result, JBlanket was modified to discard one line methods
from the resulting coverage percent upon request.

7

However, these methods appear in the final reports so that
the user would be able to review all excluded methods,
and individually inspect them as needed.

A second unexpected discovery occurred when the
JUnit tests were included in the coverage data. At first,
the debate was whether inclusion of these classes was
feasible. In the end, would users be expected to write test
cases for their test cases so that they would not cause the
level of coverage to drop? This question ended up being a
moot point. What the author found was that by including
the JUnit test classes in the coverage information, they
were themselves checked for possible errors, including
spelling of the method names. In JUnit, the test cases
need to begin with “test”. If a test case does not begin
with this prefix, then the test case is never executed. This
is a fact that all JUnit testers are affected by. For example,
one of the misspelled methods was “tstFoo”. After
running all of the test classes, there was no indication that
anything was wrong because all tests passed. So the tester
moved on to create more test classes. It wasn’t until after
perusing the JBlanket reports that the tester was notified
of the erroneous prefix. Therefore, by using JBlanket, the
tester was notified right away when the test cases
themselves did not achieve 100% coverage as expected.

4.2.2. Intermediate Results. After the evaluators were
notified of their required use of the system, one expected
result was that the students would start to refactor and
modify their code with the intention of improving their
coverage. All of their initial coverage levels were between
the 20-50% range. (However, it should be noted that a
bug existed in that version of JBlanket such that in some
cases, the files containing the method information would
overwrite themselves, or methods would not be counted
at all because unneeded JAR files lingered from a
previous build of part of the system.) One of the methods
that was constantly untested was the main method
included in test classes. This method is intended for use
whenever a tester wants to run a single test class instead
of all of the JUnit tests. A typical main method looked
like:

public static void main(String[] args) {
 System.out.println("Testing Foo");
 //Runs all methods starting with "test".
 TestRunner.run(new TestSuite(TestFoo.class));
}

As it stands, this method is considered to contain two
lines of code. One solution was to include another
command in JBlanket that would specifically exclude this
method from coverage. However, students found that if
the System.out.println method was commented out, this
method was reduced to one line of code. Therefore, it was
excluded from coverage.

4.2.3. Final Results. During this study, the size of
the 8 services grew from a range of 1786 to 3986 LOC to
the range of 1951 to 5379 LOC. (See Figure 3) The

coverage of the 8 services grew from a range of 27.5% to
100% to the range of 94.9% to 100%. (See Figure 4)
Within the time span of this study, 6 services were able
to reach 100% method-level coverage. However, only 5 of
the 8 services reached the 100% coverage at the end of
this study. Two services missed complete extreme
coverage by 1 method.

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

11
/8

/0
2

11
/1

1/
02

11
/1

4/
02

11
/1

7/
02

11
/2

0/
02

11
/2

3/
02

11
/2

6/
02

11
/2

9/
02

12
/2

/0
2

12
/5

/0
2

12
/8

/0
2

12
/1

1/
02

FAQ
Login
Newsbulletin
Poll
Resume
Techreports
Textbooks
Tutor

Figure 3. LOC for CREST services.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

11
/8

/0
2

11
/1

1/
02

11
/1

4/
02

11
/1

7/
02

11
/2

0/
02

11
/2

3/
02

11
/2

6/
02

11
/2

9/
02

12
/2

/0
2

12
/5

/0
2

12
/8

/0
2

12
/1

1/
02

FAQ
Login
Newbulletin
Poll
Resume
Techreports
Textbooks
Tutor

Figure 4. JBlanket coverage for CREST services.

Similar to the findings in [14] that measured block
coverage, decision (branch) coverage, c-use (computational
expression use) coverage, and p-use (predicate use)
coverage on C programs, the levels of coverage obtained
by each service were not always consistent. For example,
the coverage for the Resume service initially decreased
before increasing. The same drop in coverage (over 5%)
occurred in the Poll and Tutor services, but at different
times. Other services like FAQ, Newsbulletin, Login, and
Techreports experienced a continuous increase in coverage
with drops of less than 5%. Textbooks were able to
maintain their 100% coverage throughout the study.

Table 1 displays the changes observed in the 8
CREST services. The change in total LOC is calculated
as the difference between the final total LOC and the

8

starting total LOC divided by the beginning total LOC.
Test LOC was calculated similarly. Services marked with
a ‘*’ indicate those that achieved 100% extreme coverage
at the end of this study. The service marked with a ‘+’
indicates the service that achieved 100% extreme
coverage, but was not able to maintain it.

Interestingly, the Resume service had the most change
in coverage, total LOC, and test LOC, but missed total
extreme coverage by 1 method. The Textbooks service
was able to maintain total extreme coverage with the least
amount of change in total LOC but not in test LOC.
Only the Tutor service experienced a negative change in
test LOC while increasing the amount of total LOC and
reaching 100% extreme coverage.

Service % Change
Coverage

% Change
Total LOC

% Change
Test LOC

Resume 72.0 76.9 31.0
Newsbulletin* 69.2 53.4 26.2
FAQ* 66.3 26.0 11.1
Techreports* 28.0 32.1 8.7
Poll 7.4 13.6 7.1
Login+ 28.8 28.7 6.6
Textbooks* 0.0 8.0 3.3
Tutor* 19.0 21.2 -0.1

Table 1. Percent change in coverage, total LOC, and test
LOC of CREST services

Figure 5 is a graph representation of the data in Table
1. From the graph, the only noticeable pattern for
majority of the services that reached 100% extreme
coverage and the change in their test LOC is the increase
in test code. For those services (FAQ, Newsbulletin, and
Techreports) the change in test LOC was less than half the
change in total LOC. The other two services displayed
unique behaviors, as mentioned previously.

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

FA
Q

LO
GIN

NEW
SB

ULL
ET

IN
PO

LL

RES
UM

E

TEC
HREP

O
RTS

TEX
TBO

O
KS

TUTO
R

coverage

total LOC

test LOC

Figure 5. Change in coverage, total LOC, and test LOC.

5. Contributions and future directions

Knowledge of method-level coverage through use of
JBlanket was helpful by the students in the ICS 414
class. They were able to discover how thorough their unit
tests were. Students found that results indicated which
methods were not invoked during unit testing where they
previously thought “it was testing everything”. Therefore,
they were able to improve their test cases to include those
methods and remove methods that were on longer needed.

Achieving 100% pure method-level coverage was not
found to be a reasonable goal. Therefore, the goal was
modified to 100% extreme coverage. Those students that
achieved total extreme coverage increased their test LOC
by less than 27%. One team reduced the amount of their
test LOC by 0.1%. With respect to maintaining the 100%
extreme coverage, as can be seen from Figure 3 and 4,
once a team reached the goal, their total LOC did not
change beyond 500 LOC. This behavior could be
attributed to the maturity of the service or the fear from
programmers of dropping their coverage. Only one service
obtained total extreme coverage and was not able to
maintain it. Therefore, the effort needed to maintain total
coverage remains unknown.

When armed with knowledge of their method-level
coverage, the size of services with respect to total LOC
did increase, some more than others. The increases can be
due to the state of the service when JBlanket was
introduced. If a service were mature, i.e., almost complete
for the semester, its total LOC would not dramatically
increase. For example, the total LOC for the Textbook
service increased only 8% while the Resume service total
LOC increased 76.9%, implying the Textbook service
was more mature. However, it is not clear that the amount
of test LOC change could also be attributed to a service’s
maturity. For example, the Tutor service decreased its test
LOC by 0.1% with an increase in its total LOC by of
21.2% while the test LOC for the Textbook service
increased 3.3% with 8% total LOC change. Therefore,
knowing method-level coverage does appear to influence
the implementation (and testing) of software.

Most reactions from the ICS 414 students were
favorable to the idea of using both extreme coverage and
JBlanket. While they understood that total extreme
coverage “does not mean the system is fault-free”, they
claimed that knowing their service’s coverage was helpful
in designing their unit tests and that invoking every
method was important. Interestingly, although extreme
coverage was used instead of pure method-level coverage,
one team still insisted that they “didn’t think 100%
method coverage [was] necessary.” Nonetheless, extreme
coverage can be considered to be feasible because its
measurement rules are flexible for adaptation to different
situations.

Extreme coverage is an immature concept that has
quickly evolved throughout this study. With further
research, this concept can be improved to include more

9

precise rules that improve the accuracy of its
measurement.

Future research includes conducting a study in which a
system is measured from the very beginning. This would
more accurately indicate the difficulty of obtaining and
maintaining the 100% method-level coverage. By
conducting this type of study within companies of
various sizes, a better indication of the effects method-
level coverage on software quality.

Furthermore, with each system that uses JBlanket, the
more refined rules become in which measure coverage.
For example, from this study, it was discovered that one
possible future enhancement to the system would be a
method call tree whereby users will be able to easily
identify “hotspots” from the unexercised methods, and
thus increase coverage by exercising a maximum number
of methods with the least amount of test case
modifications. This call tree would reduce the amount of
time it could take a tester to scan through all of the
untested methods and decide which method should be
tested next.

However, before the concept of extreme coverage can
be refined, the tool used for measurement also needs to be
improved. For example, the process of integrating
JBlanket with another system needs to be simplified to
encourage others to use it. This could be achieved by
reducing the amount of steps for running the system.
Currently, the process of executing JBlanket is separated
into four steps. These steps could be reduced if LOCC is
integrated into JBlanket. By removing the need to run
LOCC separately, the user would only need a system’s
byte code, improving the versatility of the system.

6. Acknowledgments

I would like to thank Professor Philip Johnson for
providing guidance throughout this research project and
allowing me to deploy the JBlanket system in his second-
semester undergraduate-level Software Engineering class
(ICS 414).

I would like to thank the students in the ICS 414 for
using JBlanket and providing the data that made this
research possible.

Finally, I would like to thank the students in the
graduate-level Special Topics class (ICS 691) for
providing feedback on the contents of this research
project.

References

[1] Clover: A Code Coverage Tool for Java. Online at
http://www.thecortex.net/clover.
[2] JCover. Java Code Coverage Testing and Analysis.
O n l i n e a t
http://www.codework.com/JCover/product.html.
[3] G l a s s J A R T o o l k i t . O n l i n e at
http://glassjartoolkit.com/gjtk.html.
[4] Optimizeit suite: Code coverage. Onilne at

http://www.borland.com/optimizeit/code_coverage/innex.
html.
[5] J U n i t Q u i l t . O n l i n e a t
http://quilt.sourceforge.net/overview.html.
[6] Myers, Glenford. The Art of Software Testing, John
Wiley & Sons, New York, 1979.
[7] Beizer, Boris. Software Testing Techniques, second
edition, Van Nostrand Reinhold, New York, 1990.
[8] Highsmith, Jim. Agile Project Management Advisory
Service White Paper, January 2002. Online at Online at
http://www.sdmagazine.com/documents/s=7147/sdm0206
a/sdm0206a.htm.
[9] Crispin, Lisa. How XP Solves Testing and Quality
Assurance Problems, January 2002. Online at Online at
http://www.xptester.org/_ZABLE[0]_/tab/9/excerpts/xpso
lvesqa.htm.
[10] Bossi, Piergiuliano and Cirillo, Francesco. Repo
Margining System: Applying XP in the Financial
Indus t ry , November 2002. Online at Online at
http://www.agilealliance.org/articles/articles/RepoMargini
ngSystem.pdf.
[11] Kaner, Cem, Falk, Jack and Nguyen, Hung Quoc.
Testing Computer Software, John Wiley & Sons, Inc.,
New York, 1999.
[12] Marick, Brian. Experience With the Cost of Different
Coverage Goals For Testing. In Proceedings of the Ninth
Pacific Northwest Software Quality Conference, pages
147-164, Portland, Oregon, 1991. Also online at
<http://www.testing.com/writings/experience.pdf>.
[13] Rothermel, Gregg. Test Case Prioritization: A
Family of Empirical Studies. In IEEE Transactions on
Software Engineering, pages 159-182, vol. 28, No. 2,
February 2002.
[14] Horgan, Joseph, London, Saul and Bellcore,
Michael. Achieving Software Quality with Testing
Coverage Measures. In Computer , pages 60-69,
September 1994.
[15] Kaner, Cem. Software Negligence and Testing
Coverage. In Software QA Quaterly, page 18, vol. 2, No.
2, 1995
[16] Piwowarshi, Paul, Ohba, Mitsuru and Caruso, Joe.
Coverage Measurement Experience During Function test.
In IEEE, pages 287-299, 1993.
[17] Marick, Brian. How to Misuse Code Coverage,
1 9 9 7 . O n l i n e a t
http://www.testing.com/writings/coverage.pdf.
[18] Glass, Robert. Persistent Software Errors. In IEEE
transactions on Software Engineering, pages 162-168,
vol. SE-7, No. 2, March 1981.
[19] Cornett, Steve. Code Coverage Analysis. Online at
http://www.bullseye.com/coverage.html

