
Most Active File Measurement Validation in Hackystat

Hongbing Kou, Xiangli Xu
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu HI 96822

hongbing@hawaii.edu

Abstract

 Hackystat, an automated metric collection and
analysis tool, adopts the “Most Active File”
measurement in five-minute time chunks to represent the
developers’ effort. This measurement is validated
internally in this report. The results show that big time
chunk sizes are highly linear regressive with the
standard time chunk size (1 minute). The percentage of
missed effort to total effort is very low with five minutes
chunk size. And the relative ranking with respect to the
effort of the active files is only slightly changed.

Keyword Hackystat, Most Active File Measurement,
Linear Regression

1. Introduction

Hackystat is a sensor-based automated metrics
collection tool that is developed at the Collaborative
Software Development Laboratory at the University of
Hawaii. The sensor, also called plug-in is installed in the
IDE to collect the developers’ activities. At present the in
use sensors are the activity sensors for JBuilder and
Emacs. The sensors record the developer’s activities by
checking the active buffer change after a small period
and sends out the new buffer size to the Hackystat server
if there is any change. The buffer change can represent
the developer’s editing effort or work effort because files
are the contribution of the developers to the project. The
sensor is invoked once every 30 seconds in Hackystat. [1]
In addition to the buffer changes the Chidamber-Kemerer
object metrics to the active java files are also collected by
the sensor at the same time.

The metric data is sent from Hackystat sensors to
Hackystat server via SOAP [1] and it is stored in XML
files in the Hackystat server repository. With the activity
data we can do the analysis and provide useful
information for the developers to improve the software
development process. However, it is not a simple issue
because of the volume of the activity data. Using 30
seconds interval and assuming 6 work hours in a day, the

number of items will be 6 * 60 / 0.5 = 720. If the
Hackystat sensor is configured to be invoked every 5
seconds or shorter we will have tons of data to be
analyzed. It’s one issue regarding to the Hackystat
analysis. On another hand Hackystat can only detect the
developers’ editing work effort. However, in the software
development process not only the editing work but also
the review work like code review, document reference are
included So the Hackystat sensor may not function well
because it simply thinks only the editing effort is the
actual work. These two issues motivated the Hackystat
designers and developers to use a conceptual
measurement called “Most Active File” measurement.
Basically it uses one mostly edited file in a time chunk --
a relatively big period such as 5 minutes, as the
representation of the work effort in that period. As long
as there is one most edited file the developer will own
this time period and that file is called most active file in
Hackystat. In current Hackystat system this time chunk
size is 5 minutes. The Hackystat analysis modules
abstract the developer’s daily activity log with 5 minutes
chunk size and then conduct the analyses on the
abstracted activity log.
 However, we don’t know whether it is valid to use
“Most Active File” measurement and how good the
selected time chunk size is. We designed some
experiments to validate the “most active file”
measurement as a course project for class ICS6911.
 The first experiment is to validate the selected time
chunk size in Hackystat and study other possible sizes. In
Hackystat we can access to the fine-grained data since the
sensor interval (30 second) is very small. However, the
“Most Active File Measurement” maps the data to
coarse-grained data with 5 minutes time chunk size in
Hackystat We believe the bigger the chunk size is the less
accurate the data will be. Since 1-minute is small enough
we use 1-minute chunk size as the standard to evaluate
the effects of big chunk sizes 3, 4, 5, 8, 10 minutes. This

1 ICS691 represents the class ICS691-1 in fall semester
of 2002 at the University of Hawaii in this paper.

study can help us select the good chunk size for
Hackystat and have reliable analysis results with the good
time chunk size or sizes.
 The second experiment is used to evaluate the
accuracy of “Most Active File Measurement” with 5
minutes chunk size in Hackystat. The 1 minute time
chunk size is used as the standard to evaluate how
accurate it is. Since only one mostly edited file is chosen
as the most active file in 5 minutes chunk the effort to the
less active files might be lost with this measurement. In
this experiment the missed effort percentage is calculated
to study the accuracy. Also from the statistics point of
view the activity density can vary from one developer to
another developer and it can also be changed with time
going on to one developer. So we designed a standard
distribution activity generator program to generate
different activity densities to study the effects of density.
 The last experiment is to study the relative ranking
change of most active files with respect to effort in
Hackystat. We ordered the most active files in a day by
the effort from the most active to the least active. The
ranking of the most active files is an important attribute
in a day because it can be used to study how the
developers spend their time or other related issues. If the
ranking is changed drastically we should give up using
this measurement to conduct this kind of studies because
the measurement may introduce bias to the experiment
data.
 In our study we conducted our experiments on one
author’s Hackystat data and used the results to direct our
study direction. In the latter phase of the project we
acquired the consents of 10 students of the ICS691 and
conducted the experiments on their Hackystat data.

2. Methods

A new branch is created from Hackystat to conduct all
the experiments in this study and we added some new
features to Hackystat to facilitate our study.

2.1 Time chunk size selection
2.1.1 Time chunk size configuration

In Hackystat the time chunk size is 5 minutes and it’s
a constant value. We created a configuration JSP page to
configure the chunk size. The configurable time chunk
sizes are 1, 2, 3, 4, 5, 8, 10, 15, and 20 minute(s).

2.1.2 “Active File Time” analysis

The “Active File Time” analysis was designed to
count the effort of all kinds of chunk sizes in a day or a
period. Given a day or a period the analysis will calculate
the efforts in that period with different time chunk sizes
and the results are used to do linear regression analysis.

2.2.3 Real Hackystat data
The real Hackystat data was used to conduct this

experiment. Since our project is a branch of Hackystat we
can use the Hackystat data directly in our experiment.
We first conducted the experiment on one author’s
Hackystat data and then on the ICS691 students’
Hackystat data.

2.1.4 Linear regression analysis

We did the linear regression analysis between effort of
big time chunk size and the effort of standard time chunk
size (1 minute in the study). The linear regression
analyses between 3 minutes and 1 minute, between 5
minutes and 1 minute, between 8 minutes and 1 minute,
and between 10 minutes and 1 minute were conducted on
one author’s Hackystat data. In the third milestone of the
project we did the experiment on 10 ICS691 students’
Hackystat data and studied the linear regression model of
5 minutes time chunk size.

2.2 Missed effort analysis

Some efforts could be lost in Hackystat with the “Most
Active File” measurement. Any measurement schema has
its limitation on accuracy and this measurement has the
same problem. For instance, in a 5 minutes chunk, the
less active files in that chunk will be lost because the
measurement can only reach 5 minutes’ accuracy. In this
experiment we will study how much effort will be missed
with 5 minutes time chunk size.

2.2.1 Algorithm to calculate the missed effort and the
missed effort percentage

In Hackystat a most active file is chosen as the
representative of a chunk. So the less active file can be
lost if there is any. However, the less active files can get
their credits back if these files are mostly edited files in
another chunk. The effort to some files will be lost with
the “Most Active File” measurement. An algorithm is
designed to count the effort to these missed files with 5
minutes time chunk size.

Firstly we calculated the most active file set in a day
of 1 minute chunk size. This set is used as the standard
most active file set. In order to calculate the missed effort
we calculated the most active file set of 5 minutes time
chunk size and compared this set with the standard set.
The effort to the active files that exist in the standard set
not in the new set were lost and can not be detected with
the “Most Active File” measurement. So the sum of the
effort of the lost files is the effort we missed in a day.
Dividing this value by the total effort in a day we will get
the missed effort percentage. The formula (1) is used to
count the total effort miss and formula (2) is used to
calculate the effort miss percentage.

? ?? }){}({ USefforteffortMissed (1)
{S} is the set of the most active files of 1 minute time chunk in a day

 {U} is the set of the most active files of 5 minutes time chunk in a day

?? }{/ SefforteffortMissedpercentageeffortMissed (2)

2.2.2 Missed effort percentage

A new Hackystat analysis called “Measurement
Validation” was created to calculate the effort miss
percentage. It calculates over all Hackystat time span of
one author and presents the information including missed
effort, total effort and missed effort percentage in three
layers’ structure. The first layer is the accounting
information over the entire Hackystat space, the second
layer is the accounting information over a month and the
last layer is the detail analysis result in a day. In the last
layer files and efforts are listed in the descending order
for the researcher to observe the results manually.

2.2.3 Missed effort percentage on real Hackystat data
 This study is conducted on 10 ICS691 students’
Hackystat data over their Hackystat time span and the
missed effort percentages were calculated to study the
difference of missed percentage to different developers.

2.2.4 Effort missing percentage on simulated data

Since we have only 10 students’ Hackystat data for
study we are not for sure whether all the conditions are
covered so a program was created to generate standard
derivation activities of different densities to simulate all
possible conditions. A standard derivation activities
generator was created to generate different density
activities to study the effects of activity density to missed
effort percentage. The activities densities are 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

2.3 Relative ranking change with respect to effort

As mentioned in the introduction section the relative
ranking of the most active file in a day plays an
important role on some studies. In this experiment we
studied how likely the relative ranking of the most active
file of 5 minutes time chunk size in a day is going to be
changed. Since the relative ranking of most active files
with respect to effort will be changed with the “Most
Active File” measurement because of the accuracy the
equivalent study is to study the average effort difference
caused by the changes of the relative ranking.

2.3.1 Algorithm to calculate the average effort
difference

Table 1 is an example of the list of most active files of
1 minute time chunk size and 5 minutes time chunk size

in a day. The second column is the most active file list of
1 minute time chunk size ordered by the effort from the
biggest to the least. The second column is the most
active file list of 5 minutes time chunk size ordered by
the effort from the biggest to the least. The number in
the bracket after the file name is the total effort to that
file in that day.

Table 1 List of most active files in a day in descending

order of effort

 1 minute (effort) 5 minutes (effort)
1 Foo.java (12) Bar.java (30)
2 Bar.java (9) Foo.java (25)
3 Foo.jsp (8) Foo.jsp (10)
4 Bar.jsp (4) Foo.html (10)
5 Foo.html (3) Bar.html (5)
6 Bar.html (2) Bar.jsp (5)

We can see from the above table that the ranking of

most active files are inconsistent. The formula to
calculate the difference of effort is as following
 |12(Foo.java)-9(Bar.java)| + |9(Foo.java)-12(Bar.java)|
+ |8(Foo.java) – 8(Foo.java)| + |4(Bar.jsp) – 3(Foo.html) |
+ |3(Foo.html) – 2(Bar.html)| + |2(Bar.html) – 4(Bar.jsp)|
= 3 + 3 + 0 + 1 + 1 + 2
= 10 minutes
 Note: All the numbers are from the second column
because the effort of 1 minute time chunk size is used as
the standard for the study.
 The total effort difference is 10 minutes and the
average effort difference is 10 / 6 = 1.67 minutes because
there are 6 most active files in this day.
 The general formula to calculate the average effort
difference is as following.

MEEAED
M

i
Uindexi i?

?
??

1
))(((3)

 AED standards for Average Effort Difference
 Ui is the ith item of the most active file list of 5 minutes time
 chunk size in the descending order by effort
 Ei is the effort of the ith most active file of the standard effort
 list of 1-minute time chunk size
 Index () takes a file name and looks up the most active file
list
 of 1 minute time chunk size for the index of that file
 M is the size of the most active files list of 5 minutes time
 chunk size

2.3.2 Average effort difference on real data

We conducted the experiment on 10 ICS691 students’
Hackystat data and calculate the average effort difference
over their Hackystat time span.

3. Results
3.1 Time chunk size selection study

This study was conducted on one author’s Hackystat
data from April 10 to December 2, 2002. Figure 1 gives
the linear regression mode between 5 minutes chunk size
and the standard chunk size.

5 minutes over 1 minute

y = 1.608x + 11.479
R2 = 0.9511

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250
1 minute

5
m

in
ut

es

Figure 1 Linear Regression model of 5 minutes to 1 minute

of one author’s Hackystat data

We can see that the effort of 5 minutes’ chunk size

and the effort of 1 minute’s chunk size are linearly
regressive. The R-square value is 0.9511 so we can
predicate the standard effort accurately by the effort of 5
minutes chunk size. We also conduct the linear
regression analysis between time chunk size 3 minutes
and standard time chunk size, between 8 minute time
chunk size and standard time chunk size and between 10
minutes time chunk size and standard time chunk size.
The following table gives the linear regressive models of
different time chunk sizes to the same person’s Hackystat
data.

Table 2 Linear regression models of time chunk sizes 3
minutes, 5 minutes, 8 minutes and 10 minutes of one author’

Hackystat data

Chunk size Linear approximation R-Square
3 minutes Y = 1.3928X + 5.9342 0.9771
5 minutes Y = 1.608X + 11.479 0.9511
8 minutes Y = 1.8553X + 20.574 0.9174

10 minutes Y = 1.954X + 24.623 0.8965

From this table we can see that the linear regression

model fits well to all time chunk sizes. The R-Square is
big enough so that we can choose any one of them as the
chunk size in Hackystat.

In Hackystat the chunk size of the analysis is 5
minutes. We did the linear regression analysis of time
chunk size 5 minutes on 10 ICS691 students’ Hackystat
data. The following table lists the r-square values of the
linear regression models to everybody’s Hackystat data.

Nearly all of them are bigger than 0.9 and there is only
one r-square value is less than 0.9.

Table 3 R-square values of linear regression model of time
chunk size 5 minutes to all students’ Hackystat data.

No. R-Square

1 0.9511
2 0.95
3 0.9678
4 0.8312
5 0.9496
6 0.9341
7 0.9705
8 0.9527
9 0.9876
10 0.9581

From the above table we can conclude that the linear

regression model can be applied to all students’
Hackystat data with time chunk size 5 minutes. So the 5
minutes time chunk size is appropriate in Hackystat to all
users by our study.

3.2 Missed effort analysis
3.2.1 Missed effort on real Hackystat data

Table 4 Missed effort percentage to 10 ICS691 students’
Hackystat data of time chunk size 5 minutes

No. Total effort Missed percentage%

1 7070 5
2 4703 4.1
3 2259 2.5
4 72 9.7
5 8953 4.5
6 13001 4.3
7 5858 0.9
8 377 1.3
9 226 2.2

10 2443 1.7

 The above table is the missed effort percentage of 5
minutes time chunk size to 10 ICS691 students’
Hackystat data by applying the algorithm described in
section 2.2.1. The missed percentages are less than 5% to
most students except for one student who has only little
Hackystat work effort. (It is less than 72 minutes) On the
average the missed effort percentage is around 5% but to
some students it is only 2% or less. Clearly the missed
effort is trivial with respect to the effort students spent on
the projects with 5 minutes time chunk size.

3.2.2 Missed effort percentage on different effort
densities
 The standard derivation activity generator generated
the activities according to experiment plan of table 5.
The first column is the month with activities and the
second column is the activity density in that month.

Table 5 Experiment plan between month and the density

Month Density
1/2002 10%
2/2002 20%
3/2002 30%
4/2002 40%
5/2002 50%
6/2002 60%
7/2002 70%
8/2002 80%
9/2002 90%

10/2002 100%

 100% percent density means that the developer works
every minute and there is no break. 10% density means
that the developer spends 10% time on the project. The
results we got are shown on figure 2. The effort miss
percentage is 1.3% to 10% activity density and 12.5% to
100% activity density. The average effort miss
percentage is 6.3%.

Figure 2 Missed effort percentage on different activity densities

3.2.3 Relative ranking change with respect to effort
 With the algorithm described on section 2.2.3 we
calculated the average effort differences caused by the

relative ranking change of the most active files with
respect to effort. Table 6 lists the average effort
difference of 5 minutes time chunk size.

Table 6 Average effort differences of 5 minutes time chunk
size of one author’s Hackystat data

Month Average out of order effort

difference (min)
4/02 1.4
5/02 1.3
6/02 0.9
8/02 0.6
9/02 0.6
10/02 0.8
Average 0.93 << 5

The value in the table is the effort difference with respect
to the relative ranking changes. The average effort
different is only 0.93 minute of 5 minutes time chunk
size. It means that the order of most active files with
respect to effort will not be changed if the effort
difference between two files is bigger than 0.93 minute.
Because 0.93 minute is a small period compared with the
time spent on the files the result is acceptable with 5
minutes time chunk size.

 The average effort differences to all 10 students’
Hackystat data are listed in table 7.

Table 7 Average effort differences of 5 minutes’ chunk size

No. Average Effort difference
1 0.83
2 1.18
3 0.93
4 0.3
5 1.25
6 0.99
7 1.1
8 0.2
9 0
10 0.91

 All of the average effort difference values are much
smaller than the 5 minutes time chunk size. From the
results we can tell the relative ranking with respect to the
effort will not be changed if the work effort to two files
are not too close. In another word the relative ranking

with respect to effort will be only slightly changed if we
choose 5 minutes as the time chunk size.

4.Conclusion and Discussion

The effort of big chunk size is linearly related with
the standard effort (of 1 minute time chunk size). From
the effort of 5 minutes’ chunk size we can predicate the
efforts accurately with linear regression model according
to our results. From the time chunk selection analysis we
can conclude that we can use any size from 3 minutes to
10 minutes as the time chunk size in Hackystat and the 5
minutes chunk size is a good value according to our
study. With our results of the study of linear regression
model of 5 minutes time chunk size on 10 ICS691
students’ Hackystat data the “Most Active File”
measurement can be applied to everybody.

The missed effort percentage in Hackystat is trivial
with 5 minutes time chunk size. The missed percentage
is around 5% to most students and it’s much less than
5% to some students. And our analyses on all kinds of
activity densities also suggest that 5 minutes chunk size
is a good value because the average missed effort
percentage is only 6.3%.

The relative ranking change of most active files with
respect to effort is only slightly changed by our results.
The average effort difference is only 0.93 minute to 5
minutes time chunk size.

So we can conclude that the “Most Active File”
measurement is applicable in Hackystat and the data
quality is still very high with 5 minutes chunk size.

However, as a sensor-based automatic metrics
collection tool, Hackystat can only collect the data that
represents the programmer’s editing activities. It cannot
represent the programmer’s other activities in the
software development process, for example, reading
document, thinking about the structure of the program,
discussing with other colleagues, reviewing the code etc.
It’s the weakness of Hackystat compared with PSP and
Leap Toolkit [3], which are relatively flexible on
choosing what kind of data to be collected.

In the project proposal discussion session Philip M.
Johnson, the instructor of class ICS691, and some other
classmates opposed this study because they thought we
could not validate the Hackystat measurement by
Hackystat itself. They said you could not say the effort
with “Most Active File” measurement is validate by this
study. They proposed the external validation to conduct
the research, which views the “most active file”
measurement from another point of view. Since other
kinds of work like documenting are interleaved with the
editing work it’s possible that the “Most Active File
Measurement” can include the work effort except for the
editing work. As we can see from linear regression model

the effort we got with 5 minutes time chunk size is much
bigger than the effort with 1 minute time chunk size. If
the “Most Active File” measurement can measure the
developer’s actual work effort including programming,
referring to other parts of the code, reading the
documentation, reviewing the code etc it will be a great
feature of this measurement. The only way to verify this
is to do the external validation.

In our study we concluded that we can choose any
time chunk size from 3 minutes to 10 minute. Any value
can help us to have reliable analysis results. With
external validation we can find which size can
summarize the developer’ work effort best and to study
whether there is one universal time chunk size applicable
to all developers. So the external validation could be the
future research direction. The Ginger2 system[4]
designed by Koji Torri etc can be used to conduct this
research. In the study we conducted the experiments with
time chunk sizes from 3 minutes to 10 minutes but it is
not the upper bound. So another research can be
conducted to study the upper bound of the chunk size in
the future.

5. Acknowledgments

This project used the real Hackystat data provided by
some students in ICS691 of fall semester of 2002 at
University of Hawaii. Dr. Philip M. Johnson spent a lots
time on discussing with us about this project and gave us
a lot helpful suggestions on experiment design. The
classmates of class ICS691 also gave a lot good
suggestions and comments on the research and technique
report. Also thanks for CSDL for providing the CVS
repository and Hackystat data for us to conduct this
research.

6. References
[1] Philip M. Johnson, etc. “Beyond the Personal
Software Process: Metrics collection and analysis for the
differently disciplined”,
http://csdl.ics.hawaii.edu/techreports/02-07/02-07.pdf
July, 2002
[2] Watts S. Humphrey Introduction to the Personal
Software Process Addison-Wesley Long Inc, Berkeley,
California, 1997
[3] Carleton A. Moore “Investigating Individual Software
Development: An Evaluation of the Leap Toolkit”,
Ph. D thesis, August 2002
[4] Koji Torri etc “Ginger2: An Environment for
Computer-Aided Empirical Software Engineering”,
IEEE Transaction on Software Engineering, Vol. 25, No.
4, July/August 1999

