

Comparing Personal Project Metrics to Support Process and Product
Improvement

Christoph Aschwanden, Aaron Kagawa
Information and Computer Sciences

University of Hawaii
Honolulu, HI 96822

caschwan@hawaii.edu, kagawaa@hawaii.edu

Abstract

Writing high quality software with a minimum of
effort is an important thing to learn. Various personal
metric collection processes exist, such as PSP and
Hackystat. However, using the personal metric collection
processes gives only a partial indication of how a
programmer stands amongst his peers. Personal metrics
vary greatly amongst programmers and it is not always
clear what is the “correct” way to develop software.

This paper compares personal programming
characteristics of students in a class environment.
Metrics, such as CK Metrics, have been analyzed and
compared against a set of similar students in an attempt
to find the correct or accepted value for these metrics. It
is our belief that programmers can gain much, if not,
more information from comparing their personal metrics
against other programmers. Preliminary results show
that people with more experience in programming
produce different metrics than those with less.

1. Introduction

There are many classes taught about software
engineering. Many books and papers exist about the
subject. However there is no proven way how to design
programs. In the mathematics field there are clear
guidelines what is allowed or what is not. There are
mathematical formulas which can be used to solve
problems. The question is, are there similar formulas for
software engineering that can be used to define the
optimal structure for programs? We use statistical
analysis to evaluate software, however results differ.

The Personal Software Process and the Hackystat tool
provide great insights into a programmer’s personal
software development. This paper does not contest that
personal metrics helps individual programmers learn
about their own process. Rather, we believe that personal

metrics are hampered by individualism. Even if
programmers are perfectly aware of their own software
development process, how will they know if that process
is the correct process?

Comparing demographics of users against each other
gives a deeper insight on what is going on during the
software development process. Comparing graduate
students against undergraduate shows how programming
behavior changes. It shows how people are learning and
are adapting their programming traits.

Our motivation is to compare metrics of different
demographics and users against each other. The ability
to compare personal metrics will allow the individual to
gain insights on how they compare to other
programmers. We hypothesize that it allows the
individual to gain information on how to improve their
own programming. To accomplish the comparisons we
have created this general process:

1. Place programmers into groups based on their
demographics. Some demographics include: years
spent programming, level of education, and the
level of classes the programmer has taken.

2. Compare an individual programmer’s metrics
against other programmers within the same
demographic. This allows the programmer to
analyze where he stands amongst his peers.

3. Compare the different demographic groups against
each other. This allows a programmer to analyze
where they stand against other demographic groups.

To accomplish this process we extended the automated
metrics collection tool Hackystat. This extension
includes creating a questionnaire on the Hackystat server
which when filled out, will place a Hackystat user into
different demographic groups. We also implemented
several analysis charts that provide the user with a
comparison analysis of the group which that user is
associated with.

If the comparison provides useful information to
Hackystat users, then the individual users can make
decisions about their own software development process
based on their own personal metrics and how they
compare to other programmers in Hackystat. It is our
belief that these comparisons will become a useful
learning tool in addition to personal metrics. This paper
provides a pilot study of comparing and analyzing
metrics in the collegiate setting, in order to determine its
usefulness. Further we analyze different demographic
groups to see how programming characteristics are
changing. More experienced users are supposed to know
better how to program than less experiences ones.

The Related Work section shows how our current
effort relates to research done in the past.

2. Related Work

The Personal Software Process (PSP) developed by
Watts S. Humphrey was the first to introduce the idea of
using software metrics to learn about one’s own software
development process. PSP helps individual programmers
improve their performance by bringing a process
discipline to the way to develop software. Using PSP
requires the programmer to follow several methods, one
of which is the collection and analysis of personal
metrics. This method allows programmers to learn about
how they program and how they correct their
programming process. One of the goals of PSP is, “by
measuring their own performance, the engineers can see
the effect of these methods on their work” [4]. We have
not attempted to use PSP and have not taken the training
courses on PSP, however, we believe the individualism
that is present in PSP hampers its effectiveness. We
believe that there are limitations to the learning that can
be answered through personal metrics.

The Hackystat tool [8] created by the Collaborative
Software Development Laboratory [7] of the Department
of Information and Computer Science at the University of
Hawaii at Manoa, is a relatively new tool which
automates the collection of personal software metrics.
The primary goal of this tool is to automate the collection
and analysis of personal software metrics in an attempt to
provide its user with features that PSP cannot provide.
Like PSP, Hackystat only provides information about a
programmer’s personal software metrics.

Hackystat will be used in this study to analyze the
effectiveness of personal software metrics and will later
be explained in further detail.

Object-oriented metrics are software metrics for
object-oriented programming languages. Hackystat’s
analyses and our comparison analyses use a specific set
of object-oriented metrics; the Chidamber and Kemerer’s

OO metrics (CK metrics). CK metrics can be used as
software quality indicators for object-oriented systems [1]
[5]. The Hackystat analyses use CK metrics to give its
users insights about the software they create.

El-Emam’s study [2] tries to find the optimal class
size for object-oriented software. Perry’s study [6] is
observing people to evaluate how time is spent during
software development. Both studies are interesting,
however they give little to no results about how to do
software engineering. Results found are not conclusive.

The next section is describing what our research is
based on.

3. Environment

This study has been conducted at the University of
Hawaii at Manoa, Department of Computer Science
during the Fall semester 2002. The research has been
done in collaboration with CSDL. The subjects that we
used for our study were students in the classes ICS 414
(an undergraduate class) and ICS 691 (a graduate class)
during that time.

During a period of three months, the students were
involved in various projects entirely implemented in
Java. Hackystat collected sensor log data and metrics
about the Java programs they implemented.

The first two months the standard Hackystat analyses
were available to each student to analyze their own
software development process. In the last month we gave
the students the possibility to compare themselves against
other students. Figure 1 depicts an insight into the
schedule of events taken place.

Figure 1: Schedule of Events

This research is based on the extension of the
Hackystat tool which automatically collects metrics while
the students program. Some of the metrics and analysis
the Hackystat provides are: active/idle times, CK metrics,
effort (hours), JUnit test invocations, number of methods,
lines of code, etc. These metrics are collected by sensors
placed in technologies such as in JBuilder and Ant. A
central Hackystat server is receiving the data and stores
data locally as XML files and makes the log files
available through a web interface. See figure 2 for
details.
 In the first two months our subjects were restricted to

view their own log data without relation to other
students. Analyzing CK metrics data or active/idle time
adds insights to the personal software development
process, however comparing these metrics to other
students allows them to think about their own
programming behavior and helps them to better
understand how they relate to other students.

The extensions that were made to Hackystat include
creating new analyses and an online questionnaire. The
comparison analyses that were created are based on the
standard Hackystat analyses. For example, Hackystat
currently includes an analysis on the amount of active
and idle time that the user gathers any given day. We
extended this analysis to allow the user to compare his
active/idle times against a group of users. Currently we
have implemented the following comparison analyses:
active/idle, hours worked, code added, code removed and
the CK metric suite. For each of these analyses we
include three charts:

? ?Chart 1: Comparison of current user to all users in
Hackystat.

? ?Chart 2: Comparison of current user to a group of
users with the same demographic value as the
current user. If the demographic is education level
and the current user is graduate student her

programming characteristics are compared to other
graduate students.

? ?Chart 3: Comparison of all demographic groups
within Hackystat. If the chosen demographic is
education level, then graduates and undergraduates
get compared to each other.

These charts were chosen to allow the user to make two
important comparisons, which are aimed to help the user
to gain information about their programming on two
different levels.

First, Chart 2 allows the user to compare a specific
metric to metrics that are from her peers. Therefore, the
comparison provides the user with information of
average value of that specific metric for her peers. Using
this information the user can then decided if he is
deficient or sufficient in that specific metric. An
example of this comparison is the hours comparison; the
user feels that she is not getting the grades that she
desires on programming assignments. She can then use
the hours comparison analysis to check if she is not
working the average amount of hours than that of her
peers.

The second important comparison is made with
Chart 3. Chart 3 compares the different demographics
within Hackystat. This chart allows a user to compare
how different groups compare to each other. An example
of this comparison is the CK metric lines of code
comparison; the user has just learned Java and feels that
his classes have too many lines of code. He can use the
CK metric lines of code comparison to compare his lines
of code versus graduate students. The user can then aim
to reduce his lines of code of the classes he writes to what
graduate students do. An important note is that the
assumption is that graduate students have more
experience writing Java programs than new students of
computer science.

These comparisons are made possible by defining
groups of users with the same demographic
characteristics. However, these groups are not stored in
Hackystat explicitly; rather they are attributes that the
individual user contains. The extension of an online
questionnaire to Hackystat allows each user to voluntarily
add these demographic attributes to their user profile.
Upon a comparison analysis Hackystat searches for users
with the specific demographic the comparison requires.
The online questionnaire contains the following
questions:

? ?Months of experience in programming (in Java and
other languages, at school, at work and for personal
usage)

? ?Education level (graduate, undergraduate, highest
level of ICS class done)

? ?Programming interest

Figure 2: Hackystat Architecture

The next section shows how we conducted our
experiment.

4. Experimental design

There are several ways to evaluate the comparison

analyses that we have created. They include looking at
various comparison analyses to see the type of
information that can be obtained from them and a
questionnaire to subjectively measure the usefulness of
the comparison charts.

The pre-release questionnaire evaluation will give us
insights to a users’ views of the current metrics and
analyses that the standard set of Hackystat analyses
provide. A second, post-release questionnaire will be
given to assess what they liked or didn’t and what they
would like to have added. We also gave them the
opportunity to comment about our research. This
questionnaire evaluation is intended to subjectively
evaluate the usefulness of the comparison analyses. The
questionnaires will be given to the students in the classes
ICS 691 and ICS 414. The total number of students in
these two classes is 30. The period which separates the
two questionnaires will be two weeks, to give the students
enough time to look over the comparison analyses that
have been implemented.

The next section shows the results that we found
during our study.

5. Results

Our results are based on a pre and post-release

questionnaire that students filled out regarding our
comparison analysis, which we added to Hackystat. The
students gave their opinion about the Hackystat system
before and after we added our feature. Further we
analyzed the data collected by Hackystat and compared
different demographics against each other. The students
had to fill out an online questionnaire.

5.1. Pre and Post-Release Questionnaire

The results of the pre and post-release questionnaires
varied greatly among different students. The pre-release
questionnaire asked about the usefulness of the original
Hackystat analyses.

After a period of two weeks, during which the
students had the opportunity to view the comparison
analyses, the post-release questionnaire was handed out.
The results of our analysis is depicted in Table 1. The
meaning of the values are available in Table 2. Also
included in the questionnaire were questions asking the
students about what type of comparison analyses they
would mostly like to have. The results are listed in Table
3.

Our expectations were high that people would use our
system and try to compare themselves against others. Our
believe is that comparing yourself against others could
help a great deal to improve yourself. So from the 30
students that filled out the pre-release questionnaire, 15
of them also filled out the post-release one. However,

Question Pre-Release
Questionnaire

Post-Release
Questionnaire

The Hackystat analyses are very
useful to me

2.1 2

I can use Hackystat to learn how I
program

1.7 1.9

I can use Hackystat to improve my
programming

2.5 2.3

I know where my programming skills
place me in relation to other
programmers by using the Hackystat
analyses

3.2 3

Table 1. Average Value of Pre-Release and Post-Release Questionnaire

Value Associated Meaning
1 Strongly agree
2 Agree
3 No opinion
4 Disagree
5 Strongly disagree

Table 2. Values and Meaning

Question Selected answers (answers are paraphrased)
LOC (lines of code)
LOC per hour
All if possible.
How fast others program doing a similar project
Active / Idle time
CK Metrics
Complexity of programs, time spent programming, method-level coverage,
and unit testing

What analyses would like to be able to
compare against other Hackystat
users?

Code churn
Table 3. Answers about what Comparisons would be most useful to the Student

Figure 3: Online Questionnaire

only 6 of them really used the system and could give us
accurate answers.

5.2. Demographic Comparison

To do analyses based on different demographics, we
used an online questionnaire. See figure 3. Programmers

can define their own experience, education level and

interest in programming. We were able to get 9 people to
fill out the questionnaire. Which of 5 were undergraduate
students, 3 were Ph.D. and 1 professor. These out of 30
people that participated in our research. Furthermore we
provided 3 charts as described in section 4.

The chart that is interesting for this paper compares
different demographics against each other. Questions

arose such as:
Graph 1: Active Time Comparison

Graph 2: Code Added within 24h

? ? Are graduate students better than undergraduates?
? ? Can experience be measured in a collegiate setting?

Graph 1 shows a comparison of people during one month

of software development. The chosen demographic is
level of education. The graph shows the hours spent
programming during that time. Changing the

Graph 3: CK Metrics (Size in Bytecode)

demographic and the time period doesn’t return any
difference. The graph doesn’t give any indication about
the optimal way of spending time.

Graph 2 shows a comparison with the lines of code
added within 24 hours of active programming. The
chosen demographic is again level of education. Each
group of the demographic, such as undergraduate
students, sums up to 100%. With only 9 subjects in the
chart, the results are not conclusive. Another analysis
with lines of code removed doesn’t return any results
either.

One of the most interesting parts of our research was
to do the CK Metrics comparison. What are the different
characteristics of people creating software? Are less
experienced software developers programming in a
different way? Graph 3 shows the distribution of Java
class sizes produced by different developers. The size is
the bytecode size of compiled Java code1.

As visible in the chart, there is a peak in the graph
distribution at around 3500 bytes. The distribution goes
from 0 to around 15000 bytes for most programmers. See
figure 4 for details. The categories of software developer
can be divided into three basic groups:

? ? Unexperienced Programmers – People with no or
very little experience in programming.

? ? Medium Experienced Programmers – People with
two years or less experience in programming.
Undergraduates.

? ? Experienced Programmers – People with a couple
of years experience in programming. Higher level
of education. E.g. Ph.D. or Master’s degree.

One interesting fact on the side. Some of the students
developing software created classes of nearly 100000
bytes in size.

Analysis of CK Metrics values other than class size
didn’t return any conclusive results:

? ? WMC (Weighted Methods per Class) – Peaks of the
distribution appear between 3 and 9.

? ? CBO (Coupling Between Objects) – Peaks of the
distribution appear between 6 and 18.

? ? RFC (Response For Class) – Peaks of the
distribution appear between 10 and 30.

? ? DIT (Depth of Inheritance Tree) – There is not
enough data available to make an analysis.

? ? NOC (Number Of Children) – There is not enough
data available to make an analysis.

There are no differences visible within a demographic
group for the CK metrics mentioned above. Less
experienced programmers show the same traits as those
with more experience. Undergraduate students show the

1 ? bytes of compiled source code correspond to 1 line of
compiled source code.

same traits as graduate students. With only 9 people
taking part in our research it was not possible to get
conclusive results.

The evaluation section gives a critical analysis of our
results found.

6. Evaluation

Evaluating the pre and post-release questionnaire, the
results found are not conclusive. Only 6 people that filled
out our post-release questionnaire really used our system
for comparison analysis. So our results are only partly
valid for these questionnaires.

Interesting however is table 3. It shows the analysis
that is most interesting for students. For our research we
didn’t implement graphs for method level coverage or
unit tests. We implemented most of the other
comparisons requested in table 3. However, it seems that
from the people that requested the graphs, only 6 out of
30 students really used our system to try the comparison
analyses.

One of the problems doing our project in a class
environment was of not having an incentive for the
students using our system. They didn’t get any benefits
for testing it. Rather, they spent time for our research and
didn’t get their own work done. So at the very end,
participation for our project was pretty low. Students
wouldn’t even spend 5 minutes of their time to logon to
our system and fill out our questionnaire in figure 3.

At the very end we were able to convince 9 people to
logon to our system and fill out the online questionnaire.

0 3500 15000

Figure 4: Approximate Size Distribution

Unexperienced Programmer

Medium Experienced

Experienced Programmer

The results described in section 5.2 all relate to these 9
subjects of which 5 were undergraduate students, 3 were
Ph.D. and 1 professor.

The charts shown in this paper all relate to the
demographic “level of education”. It correlates with the
demographics “experience level in programming”.
“Highest level of classes taken” or “Interest in
Programming” didn’t show any correlation at all. Even
though people seemed to be interested in programming,
they didn’t show similar programming traits as found in
other demographics such as education level. There was
no clear distinguishing between the different subgroups
of these demographic possible.

The subjects participating in our research were doing
different projects. Some created completely new software
products, others just extended existing programs. Some
people extended the Hackystat system as we did. Other
groups created sensors for tools such as CVS, Eclipse or
Forte for Java. Others created analysis tools.

The next section is providing ideas how to proceed
with further research.

7. Contributions and future directions

Our pilot study showed some results that could
support product and process improvement in software
engineering. The research has to be seen as a first step.
As mentioned in the evaluation section, some problems
arose during our study.

One important point in doing further research is to
have more people participating. It is difficult to make
clear statements with only a small group of subjects.
Furthermore, subjects should be evenly distributed with
level of education or experience level. This makes
analysis easier.

The comparison analyses to Hackystat that we created
didn’t supply any comparison analyses for code level
coverage or unit tests. Unit tests can be used to verify the
fault proneness of a software product. Both metrics would
allow to improve the quality of a program.

One possible next research step could be to get a
couple of people together and let them do the same kind
of programming task. As in our research we didn’t have
the opportunity to let all our subjects create the same
system. The results that we got may not be completely
reliable. Everybody that did programming worked on a
different project. Creating a completely new program or
changing an existing one might return different results. It
could be interesting to see the difference between
working on new software or extending one that already
exists.

Many students didn’t test our system because they
didn’t have enough time. They didn’t compare

themselves against other students. Some people
mentioned they were just to lazy to use Hackystat all the
time. One way to solve that would be to send out a
weekly e-mail to the student to let them know where they
stand against other people. So they wouldn’t need to
logon to a web site to see their personal metrics.

Hackystat could be used as a learning tool. So far the
system is collecting metrics and allows to view them but
doesn’t make any suggestions how to program better.
Using comparison analyses, Hackystat could be used to
find and verify good programming traits. This would be
the first step. The second step would be to let people
know through e-mail where they stand against other
programmers and how they can improve. An
unexperienced programmer can be teached through e-
mail how to develop software better. Undergraduate
students can be compared to graduate students and given
advice what to change in their process. E.g. e-mails
stating “your class sizes are too big” or “your DIT value
is too high for your system produced” could help improve
products and processes in software engineering.

Using Hackystat, everything can be automated, so
overhead for students or professors is small. Required is a
registration in the Hackystat system and installation of
the sensors in the programming tools such as JBuilder,
Emacs or Eclipse.

8. Acknowledgements

We thank Philip Johnson for his advice and support in
writing this paper. Furthermore we thank all the students
from ICS 413 and ICS 691 in Fall 2002 who participated
in our research.

9. References

[1] K. El-Emam, “Object-Oriented Metrics: A Review of
Theory and Practice”, NRC/ERB-1085, NRC/CNRC,
Canada, March 2001.

[2] K. El-Emam, S. Benlarbi, N. Goel, W. Melo, H.
Lounis, S. N. Rai, “The Optimal Class Size for Object-
Oriented Software: A Replicated Study”, NRC/ERB-
1074, NRC/CNRC, Canada, March 2000.

[3] P. M. Johnson, A. M. Disney, “A Critical Analysis of
PSP Data Quality: Results from a Case Study”, CSDL
Lab, University of Hawaii at Manoa, August 1999.

[4] W. S. Humphrey. “Pathways to Process Maturity:
The personal software process and team software
process.” SEI Interactive, June 1999.

[5] V. R. Baslii, L C. Briand, W. L. Melo. “A Validation
of Object-Oriented Design Metrics as Quality Indicators”
IEEE Transactions on Software Engineering, VOL. 22,
No. 10, October 1996.

[6] D. E. Perry, N. A. Staudenmayer, L. G. Votta,
“Understanding and Improving Time Usage in Software
Development” At&T BellLaboratories, USA,

Massachusetts Institute of Technology Sloan School of
Management, USA, 1995.

[7] Collaborative Software Development Laboratory
(CSDL), University of Hawaii at Manoa,
http://csdl.ics.hawaii.edu

[8] CSDL, Hackystat tool,
http://hackystat.ics.hawaii.edu

