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Abstract 
 

Writing high quality software with a minimum of 
effort is an important thing to learn. Various personal 
metric collection processes exist, such as PSP and 
Hackystat. However, using the personal metric collection 
processes gives only a partial indication of how a 
programmer stands amongst his peers.  Personal metrics 
vary greatly amongst programmers and it is not always 
clear what is the “correct” way to develop software. 

This paper compares personal programming 
characteristics of students in a class environment. 
Metrics, such as CK Metrics, have been analyzed and 
compared against a set of similar students in an attempt 
to find the correct or accepted value for these metrics.  It 
is our belief that programmers can gain much, if not, 
more information from comparing their personal metrics 
against other programmers. Preliminary results show 
that people with more experience in programming 
produce different metrics than those with less. 
 
1. Introduction 
 

There are many classes taught about software 
engineering. Many books and papers exist about the 
subject. However there is no proven way how to design 
programs. In the mathematics field there are clear 
guidelines what is allowed or what is not. There are 
mathematical formulas which can be used to solve 
problems. The question is, are there similar formulas for 
software engineering that can be used to define the 
optimal structure for programs? We use statistical 
analysis to evaluate software, however results differ.  

The Personal Software Process and the Hackystat tool 
provide great insights into a programmer’s personal 
software development.  This paper does not contest that 
personal metrics helps individual programmers learn 
about their own process.  Rather, we believe that personal 

metrics are hampered by individualism.  Even if 
programmers are perfectly aware of their own software 
development process, how will they know if that process 
is the correct process? 

Comparing demographics of users against each other 
gives a deeper insight on what is going on during the 
software development process. Comparing graduate 
students against undergraduate shows how programming 
behavior changes. It shows how people are learning and 
are adapting their programming traits. 

Our motivation is to compare metrics of different 
demographics and users against each other.  The ability 
to compare personal metrics will allow the individual to 
gain insights on how they compare to other 
programmers.  We hypothesize that it allows the 
individual to gain information on how to improve their 
own programming. To accomplish the comparisons we 
have created this general process: 

1. Place programmers into groups based on their 
demographics.  Some demographics include: years 
spent programming, level of education, and the 
level of classes the programmer has taken.   

2. Compare an individual programmer’s metrics 
against other programmers within the same 
demographic.  This allows the programmer to 
analyze where he stands amongst his peers. 

3. Compare the different demographic groups against 
each other.  This allows a programmer to analyze 
where they stand against other demographic groups. 

To accomplish this process we extended the automated 
metrics collection tool Hackystat.  This extension 
includes creating a questionnaire on the Hackystat server 
which when filled out, will place a Hackystat user into 
different demographic groups.  We also implemented 
several analysis charts that provide the user with a 
comparison analysis of the group which that user is 
associated with.  



If the comparison provides useful information to 
Hackystat users, then the individual users can make 
decisions about their own software development process 
based on their own personal metrics and how they 
compare to other programmers in Hackystat.  It is our 
belief that these comparisons will become a useful 
learning tool in addition to personal metrics.  This paper 
provides a pilot study of comparing and analyzing 
metrics in the collegiate setting, in order to determine its 
usefulness. Further we analyze different demographic 
groups to see how programming characteristics are 
changing. More experienced users are supposed to know 
better how to program than less experiences ones.  

The Related Work section shows how our current 
effort relates to research done in the past. 
 
2. Related Work 
 

The Personal Software Process (PSP) developed by 
Watts S. Humphrey was the first to introduce the idea of 
using software metrics to learn about one’s own software 
development process.  PSP helps individual programmers 
improve their performance by bringing a process 
discipline to the way to develop software.  Using PSP 
requires the programmer to follow several methods, one 
of which is the collection and analysis of personal 
metrics.  This method allows programmers to learn about 
how they program and how they correct their 
programming process.  One of the goals of PSP is, “by 
measuring their own performance, the engineers can see 
the effect of these methods on their work” [4].  We have 
not attempted to use PSP and have not taken the training 
courses on PSP, however, we believe the individualism 
that is present in PSP hampers its effectiveness.  We 
believe that there are limitations to the learning that can 
be answered through personal metrics.   

The Hackystat tool [8] created by the Collaborative 
Software Development Laboratory [7] of the Department 
of Information and Computer Science at the University of 
Hawaii at Manoa, is a relatively new tool which 
automates the collection of personal software metrics.  
The primary goal of this tool is to automate the collection 
and analysis of personal software metrics in an attempt to 
provide its user with features that PSP cannot provide.  
Like PSP, Hackystat only provides information about a 
programmer’s personal software metrics. 

Hackystat will be used in this study to analyze the 
effectiveness of personal software metrics and will later 
be explained in further detail. 

Object-oriented metrics are software metrics for 
object-oriented programming languages.  Hackystat’s 
analyses and our comparison analyses use a specific set 
of object-oriented metrics; the Chidamber and Kemerer’s 

OO metrics (CK metrics).  CK metrics can be used as 
software quality indicators for object-oriented systems [1] 
[5].  The Hackystat analyses use CK metrics to give its 
users insights about the software they create. 

El-Emam’s study [2] tries to find  the optimal class 
size for object-oriented software. Perry’s study [6] is 
observing people to evaluate how time is spent during 
software development. Both studies are interesting, 
however they give little to no results about how to do 
software engineering. Results found are not conclusive. 

The next section is describing what our research is 
based on.  
 
3. Environment 
 

This study has been conducted at the University of 
Hawaii at Manoa, Department of Computer Science 
during the Fall semester 2002. The research has been 
done in collaboration with CSDL. The subjects that we 
used for our study were students in the classes ICS 414 
(an undergraduate class) and ICS 691 (a graduate class) 
during that time.  

During a period of three months, the students were 
involved in various projects entirely implemented in 
Java. Hackystat collected sensor log data and metrics 
about the Java programs they implemented.   

The first two months the standard Hackystat analyses 
were available to each student to analyze their own 
software development process. In the last month we gave 
the students the possibility to compare themselves against 
other students. Figure 1 depicts an insight into the 
schedule of events taken place. 

Figure 1: Schedule of Events 



This research is based on the extension of the 
Hackystat tool which automatically collects metrics while 
the students program.  Some of the metrics and analysis 
the Hackystat provides are: active/idle times, CK metrics, 
effort (hours), JUnit test invocations, number of methods, 
lines of code, etc.  These metrics are collected by sensors 
placed in technologies such as in JBuilder and Ant. A 
central Hackystat server is receiving the data and stores 
data locally as XML files and makes the log files 
available through a web interface. See figure 2 for 
details. 
    In the first two months our subjects were restricted to 

view their own log data without relation to other 
students.  Analyzing CK metrics data or active/idle time 
adds insights to the personal software development 
process, however comparing these metrics to other 
students allows them to think about their own 
programming behavior and helps them to better 
understand how they relate to other students. 

The extensions that were made to Hackystat include 
creating new analyses and an online questionnaire.  The 
comparison analyses that were created are based on the 
standard Hackystat analyses.  For example, Hackystat 
currently includes an analysis on the amount of active 
and idle time that the user gathers any given day. We 
extended this analysis to allow the user to compare his 
active/idle times against a group of users.  Currently we 
have implemented the following comparison analyses: 
active/idle, hours worked, code added, code removed and 
the CK metric suite.  For each of these analyses we 
include three charts: 

? ?Chart 1: Comparison of current user to all users in 
Hackystat. 

? ?Chart 2: Comparison of current user to a group of 
users with the same demographic value as the 
current user. If the demographic is education level 
and the current user is graduate student her 

programming characteristics are compared to other 
graduate students. 

? ?Chart 3: Comparison of all demographic groups 
within Hackystat.  If the chosen demographic is 
education level, then graduates and undergraduates 
get compared to each other. 

These charts were chosen to allow the user to make two 
important comparisons, which are aimed to help the user 
to gain information about their programming on two 
different levels.   

First, Chart 2 allows the user to compare a specific 
metric to metrics that are from her peers.  Therefore, the 
comparison provides the user with information of 
average value of that specific metric for her peers.  Using 
this information the user can then decided if he is 
deficient or sufficient in that specific metric.  An 
example of this comparison is the hours comparison; the 
user feels that she is not getting the grades that she 
desires on programming assignments.  She can then use 
the hours comparison analysis to check if she is not 
working the average amount of hours than that of her 
peers.   

The second important comparison is made with 
Chart 3.  Chart 3 compares the different demographics 
within Hackystat.  This chart allows a user to compare 
how different groups compare to each other.  An example 
of this comparison is the CK metric lines of code 
comparison; the user has just learned Java and feels that 
his classes have too many lines of code.  He can use the 
CK metric lines of code comparison to compare his lines 
of code versus graduate students.  The user can then aim 
to reduce his lines of code of the classes he writes to what 
graduate students do.  An important note is that the 
assumption is that graduate students have more 
experience writing Java programs than new students of 
computer science. 

These comparisons are made possible by defining 
groups of users with the same demographic 
characteristics.  However, these groups are not stored in 
Hackystat explicitly; rather they are attributes that the 
individual user contains.  The extension of an online 
questionnaire to Hackystat allows each user to voluntarily 
add these demographic attributes to their user profile.  
Upon a comparison analysis Hackystat searches for users 
with the specific demographic the comparison requires.  
The online questionnaire contains the following 
questions: 

? ?Months of experience in programming (in Java and 
other languages, at school, at work and for personal 
usage) 

? ?Education level (graduate, undergraduate, highest 
level of ICS class done) 

? ?Programming interest 

Figure 2: Hackystat Architecture 



The next section shows how we conducted our 
experiment. 
 
4. Experimental design 

 
There are several ways to evaluate the comparison 

analyses that we have created.  They include looking at 
various comparison analyses to see the type of 
information that can be obtained from them and a 
questionnaire to subjectively measure the usefulness of 
the comparison charts. 

The pre-release questionnaire evaluation will give us 
insights to a users’ views of the current metrics and 
analyses that the standard set of Hackystat analyses 
provide.  A second, post-release questionnaire will be 
given to assess what they liked or didn’t and what they 
would like to have added. We also gave them the 
opportunity to comment about our research.  This 
questionnaire evaluation is intended to subjectively 
evaluate the usefulness of the comparison analyses.  The 
questionnaires will be given to the students in the classes 
ICS 691 and ICS 414.  The total number of students in 
these two classes is 30.  The period which separates the 
two questionnaires will be two weeks, to give the students 
enough time to look over the comparison analyses that 
have been implemented. 

The next section shows the results that we found 
during our study. 
 
5. Results 

 
Our results are based on a pre and post-release 

questionnaire that students filled out regarding our 
comparison analysis, which we added to Hackystat.  The 
students gave their opinion about the Hackystat system 
before and after we added our feature. Further we 
analyzed the data collected by Hackystat and compared 
different demographics against each other. The students 
had to fill out an online questionnaire. 

 
5.1. Pre and Post-Release Questionnaire 
 

The results of the pre and post-release questionnaires 
varied greatly among different students. The pre-release 
questionnaire asked about the usefulness of the original 
Hackystat analyses.   

After a period of two weeks, during which the 
students had the opportunity to view the comparison 
analyses, the post-release questionnaire was handed out.  
The results of our analysis is depicted in Table 1.  The 
meaning of the values are available in Table 2. Also 
included in the questionnaire were questions asking the 
students about what type of comparison analyses they 
would mostly like to have. The results are listed in Table 
3. 

Our expectations were high that people would use our 
system and try to compare themselves against others. Our 
believe is that comparing yourself against others could 
help a great deal to improve yourself. So from the 30 
students that filled out the pre-release questionnaire, 15 
of them also filled out the post-release one. However, 

 

Question Pre-Release 
Questionnaire 

Post-Release 
Questionnaire 

The Hackystat analyses are very 
useful to me 

2.1 2 

I can use Hackystat to learn how I 
program 

1.7 1.9 

I can use Hackystat to improve my 
programming 

2.5 2.3 

I know where my programming skills 
place me in relation to other 
programmers by using the Hackystat 
analyses 

3.2 3 

Table 1. Average Value of Pre-Release and Post-Release Questionnaire 

Value  Associated Meaning 
1 Strongly agree 
2 Agree 
3 No opinion 
4 Disagree 
5 Strongly disagree 

Table 2. Values and Meaning 
 

Question  Selected answers (answers are paraphrased) 
LOC (lines of code) 
LOC per hour 
All if possible. 
How fast others program doing a similar project  
Active / Idle time 
CK Metrics 
Complexity of programs, time spent programming, method-level coverage, 
and unit testing 

What analyses would like to be able to 
compare against other Hackystat 
users? 

Code churn 
Table 3. Answers about what Comparisons would be most useful to the Student 

Figure 3: Online Questionnaire 



only 6 of them really used the system and could give us 
accurate answers.   

 
5.2. Demographic Comparison 
 

To do analyses based on different demographics, we 
used an online questionnaire. See figure 3. Programmers 

can define their own experience, education level and 

interest in programming. We were able to get 9 people to 
fill out the questionnaire. Which of 5 were undergraduate 
students, 3 were Ph.D. and 1 professor. These out of 30 
people that participated in our research. Furthermore we 
provided 3 charts as described in section 4.  

The chart that is interesting for this paper compares 
different demographics against each other. Questions 

arose such as:  
Graph 1: Active Time Comparison 



Graph 2: Code Added within 24h 

? ? Are graduate students better than undergraduates? 
? ? Can experience be measured in a collegiate setting?  

Graph 1 shows a comparison of people during one month 

of software development. The chosen demographic is 
level of education. The graph shows the hours spent 
programming during that time. Changing the 

Graph 3: CK Metrics (Size in Bytecode) 



demographic and the time period doesn’t return any 
difference. The graph doesn’t give any indication about 
the optimal way of spending time. 

Graph 2 shows a comparison with the lines of code 
added within 24 hours of active programming. The 
chosen demographic is again level of education. Each 
group of the demographic, such as undergraduate 
students, sums up to 100%. With only 9 subjects in the 
chart, the results are not conclusive. Another analysis 
with lines of code removed doesn’t return any results 
either. 

One of the most interesting parts of our research was 
to do the CK Metrics comparison. What are the different 
characteristics of people creating software? Are less 
experienced software developers programming in a 
different way? Graph 3 shows the distribution of Java 
class sizes produced by different developers. The size is 
the bytecode size of compiled Java code1. 

As visible in the chart, there is a peak in the graph 
distribution at around 3500 bytes. The distribution goes 
from 0 to around 15000 bytes for most programmers. See 
figure 4 for details. The categories of software developer 
can be divided into three basic groups: 

? ? Unexperienced Programmers – People with no or 
very little experience in programming. 

? ? Medium Experienced Programmers – People with 
two years or less experience in programming. 
Undergraduates. 

? ? Experienced Programmers – People with a couple 
of years experience in programming. Higher level 
of education. E.g. Ph.D. or Master’s degree. 

One interesting fact on the side. Some of the students 
developing software created classes of nearly 100000 
bytes in size. 

Analysis of CK Metrics values other than class size 
didn’t return any conclusive results: 

? ? WMC (Weighted Methods per Class) – Peaks of the 
distribution appear between 3 and 9. 

? ? CBO (Coupling Between Objects) – Peaks of the 
distribution appear between 6 and 18. 

? ? RFC (Response For Class) – Peaks of the 
distribution appear between 10 and 30. 

? ? DIT (Depth of Inheritance Tree) – There is not 
enough data available to make an analysis. 

? ? NOC (Number Of Children) – There is not enough 
data available to make an analysis. 

There are no differences visible within a demographic 
group for the CK metrics mentioned above. Less 
experienced programmers show the same traits as those 
with more experience. Undergraduate students show the 

                                                
1 ? bytes of compiled source code correspond to 1 line of 
compiled source code. 

same traits as graduate students. With only 9 people 
taking part in our research it was not possible to get 
conclusive results. 

The evaluation section gives a critical analysis of our 
results found. 
 
6. Evaluation 
 

Evaluating the pre and post-release questionnaire, the 
results found are not conclusive. Only 6 people that filled 
out our post-release questionnaire really used our system 
for comparison analysis. So our results are only partly 
valid for these questionnaires. 

Interesting however is table 3. It shows the analysis 
that is most interesting for students. For our research we 
didn’t implement graphs for method level coverage or 
unit tests. We implemented most of the other 
comparisons requested in table 3. However, it seems that 
from the people that requested the graphs, only 6 out of 
30 students really used our system to try the comparison 
analyses. 

One of the problems doing our project in a class 
environment was of not having an incentive for the 
students using our system. They didn’t get any benefits 
for testing it. Rather, they spent time for our research and 
didn’t get their own work done. So at the very end, 
participation for our project was pretty low. Students 
wouldn’t even spend 5 minutes of their time to logon to 
our system and fill out our questionnaire in figure 3. 

At the very end we were able to convince 9 people to 
logon to our system and fill out the online questionnaire. 

0       3500                        15000 

Figure 4: Approximate Size Distribution 

Unexperienced Programmer 

Medium Experienced 

Experienced Programmer 



The results described in section 5.2 all relate to these 9 
subjects of which 5 were undergraduate students, 3 were 
Ph.D. and 1 professor.  

The charts shown in this paper all relate to the 
demographic “level of education”. It correlates with the 
demographics “experience level in programming”. 
“Highest level of classes taken” or “Interest in 
Programming” didn’t show any correlation at all. Even 
though people seemed to be interested in programming, 
they didn’t show similar programming traits as found in 
other demographics such as education level. There was 
no clear distinguishing between the different subgroups 
of these demographic possible. 

The subjects participating in our research were doing 
different projects. Some created completely new software 
products, others just extended existing programs. Some 
people extended the Hackystat system as we did. Other 
groups created sensors for tools such as CVS, Eclipse or 
Forte for Java. Others created analysis tools.  

The next section is providing ideas how to proceed 
with further research. 
 
7. Contributions and future directions 
 

Our pilot study showed some results that could 
support product and process improvement in software 
engineering. The research has to be seen as a first step. 
As mentioned in the evaluation section, some problems 
arose during our study. 

One important point in doing further research is to 
have more people participating. It is difficult to make 
clear statements with only a small group of subjects. 
Furthermore, subjects should be evenly distributed with 
level of education or experience level. This makes 
analysis easier.  

The comparison analyses to Hackystat that we created 
didn’t supply any comparison analyses for code level 
coverage or unit tests. Unit tests can be used to verify the 
fault proneness of a software product. Both metrics would 
allow to improve the quality of a program.  

One possible next research step could be to get a 
couple of people together and let them do the same kind 
of programming task. As in our research we didn’t have 
the opportunity to let all our subjects create the same 
system. The results that we got may not be completely 
reliable. Everybody that did programming worked on a 
different project. Creating a completely new program or 
changing an existing one might return different results. It 
could be interesting to see the difference between 
working on new software or extending one that already 
exists.  

Many students didn’t test our system because they 
didn’t have enough time. They didn’t compare 

themselves against other students. Some people 
mentioned they were just to lazy to use Hackystat all the 
time. One way to solve that would be to send out a 
weekly e-mail to the student to let them know where they 
stand against other people. So they wouldn’t need to 
logon to a web site to see their personal metrics. 

Hackystat could be used as a learning tool. So far the 
system is collecting metrics and allows to view them but 
doesn’t make any suggestions how to program better. 
Using comparison analyses, Hackystat could be used to 
find and verify good programming traits. This would be 
the first step. The second step would be to let people 
know through e-mail where they stand against other 
programmers and how they can improve. An 
unexperienced programmer can be teached through e-
mail how to develop software better. Undergraduate 
students can be compared to graduate students and given 
advice what to change in their process. E.g. e-mails 
stating “your class sizes are too big” or “your DIT value 
is too high for your system produced” could help improve 
products and processes in software engineering. 

Using Hackystat, everything can be automated, so 
overhead for students or professors is small. Required is a 
registration in the Hackystat system and installation of 
the sensors in the programming tools such as JBuilder, 
Emacs or Eclipse. 
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