

1

Configuration Management and Hackystat:
Initial Steps to Relating Organizational and Individual Development

Cliff Tomosada
Burt Leung

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822

tomosada@hawaii.edu
bleung@hawaii.edu

Abstract

Hackystat is a software development metrics
collection tool that focuses on individual developers.
Hackystat is able to provide a developer with a personal
analysis of his or her unique processes. Source code
configuration management (SCM) systems, on the other
hand, are a means of storage for source code in a
development community and serve as controller for what
each individual may contribute to the community. We
created a Hackystat sensor for CVS (an SCM system) in
the hopes of bridging the gap between these two very
different, yet related software applications. It was our
hope to use the data we collected to address the issue of
development conflicts that often arise in organizational
development environments. We found, however, that
neither application, Hackystat or CVS, could be easily
reconfigured to our needs.

1. Introduction

The definition of Configuration, as determined by
IEEE, is as follows:

“Configuration is the process of identifying and
defining the items in the system, controlling the
change of these items throughout their lifecycle,
recording and reporting the status of items and
change requests, and verifying the completeness
and correctness of items.” [4]

As it applies to software engineering, configuration is
about the lifecycle of the software components and how
code evolves over time.

Configuration Management (CM) is the process of
managing the changes made to code over the lifecycle of

a project [2]. It is about the dynamics of software
engineering as it applies to the organizational process.
CM indirectly dictates how members of a software
development team work together and also how they are
organized.

In this paper, we present our initial steps into bridging
the gap between organizational CM and personal goals
(development direction) by focusing on CM source
control applications and a personal software metrics
application called Hackystat.

The data collected for configuration management has a
broad scope that covers all areas of the software
development process. CM data for an organization is
represented in their documented processes, problem
report logs, repository data, project timeline, etc. We
focus upon repository data for purposes of our research.

An organization following CM practices would have a
central repository of information through which its
members can access important company documents and
project source code. Our research, however, we focus
solely on source code repository data.

In a source code repository, the members of an
organization (usually the developers) can access the
source code for their project in a controlled manner. It is
the main purpose of the repository to control the source
code in such a way that it minimizes the development
conflicts that arise when many people within an
organization work on the same set of source files.

A source code repository supports two core functions:
(1) copying of source code out of the repository and (2)
adding of source code into the repository. In addition to
these core functions are more complex operations such as
conflict detection, which occurs when someone tries to
add code that is out of date to the repository; branching,
which allows developers to have their own personal
copies of the source code independent of the other
developers; and merging, which allows the repository to

2

maintain the stability of the source code. Executing these
functions cause the source code within the repository to
change in state. These state changes can be thought of as
“events” that take place within the repository.

In general, source code repository systems are meant
to control a group of developers working within the same
project on a pooled code base. They provide developers
with instant access to the current code base and provide
means of controlling for source code conflicts. This
control, however, is always enforced after-the-fact; i.e.
developer conflicts only arise after the developers have
completed coding and attempt to upload their code to the
repository – at this point the repository informs the
developer that a conflict has occurred.

At one end of the spectrum, we have CM and at the
other, we have Hackystat. Hackystat works through
sensors deployed on a client machine. These sensors
detect events of interest and send the data associated with
these events to a central server. Hackystat data, unlike
CM data, focuses specifically the individual developer,
rather than the entire organization.

The data collected by the Hackystat system can be
viewed by going to the server’s web page. The data is
kept private to the user it applies to and the associated
analyses that can be performed upon this data are also
limited to a single user. Hackystat, therefore, cannot
make determinations based upon a group of people.
Hackystat data and associated analyses are helpful,
however, in determining individual developer
productivity and relating personal goals. For example, a
developer using Hackystat could discover that he or she
only codes for a total of 1 hour per week, or that he or she
spends more time creating unit tests than functional code.

We have presented two types of systems so far and
described their operation at a high level. Hackystat
manages and analyzes personal statistics, but cannot make
inferences upon how a programmer’s current actions will
impact others in the development organization. A source
code repository system, on the other hand, knows nothing
about personal statistics and cannot determine individual
development goals.

One problem that arises because of this disparity
between source control applications and individual
developer directions is that while a developer may be
aware of his or her own personal goals, he or she may not
know the goals of the other developers within the
organization. More importantly, a developer may not
know if his or her goals conflict with the goals of others.
In addition, the nature of CM source control systems
make detection of conflicts possible only at the point
when developers attempt to merge their individual goals
together after these goals have been attained.

This “after-the-fact” conflict detection is sub-optimal
with regards to software development since developers
must do the work first before finding out that the work

they just completed is not compatible with the current
state of the system. In this case, developers not only
waste time performing unnecessarily coding, they must
also spend time undoing what’s already been done.

By creating a Hackystat sensor to detect SCM events
in real time and using the data collected from this sensor
in conjunction with other Hackystat sensor data, we
believe that conflicts can be effectively reduced during
development, thereby increasing developer efficiency;
ultimately leading to more research in relating CM
organizational metrics to Hackystat analyses.

In the following sections, we discuss similar CM
products along with the pros and cons of each, other
research conducted on source code repositories and
Hackystat systems, and development successes and
failures. We conclude by presenting directions for future
research and development based upon our experiences so
far.

2. Related Work

In order to see what other products are out there, we
looked at several commercial products. Specifically, we
wanted to see what other group level analysis were
offered. While there are a plethora of commercial CM
systems out there, one of the most famous and highly
lauded ones is Together/J. This system won Software
Development Magazine’s Jolt Award (May 1999),
JavaWorld’s Best App Award, and JARS Top 1% Award
[5]. Together/J is considered by many to be the best
product for design and management of Java software
projects. Since it has proved itself as a top contender as a
commercial CM system, we will take an in-depth look at
it below. It is assumed that other CM systems will have
similar and/or lesser features than that offered by
Together/J.

Together/J is a company that proclaims they “create
software that enables enterprises to deliver high-quality
applications quickly and on-budget.” It has products for
development teams (e.g. ControlCenter) as well as for the
individual developer (e.g. Solo). The cost of this product
is quite steep, about $3500-4000. For that amount of
money one gets a comprehensive development suite.

One feature it offers is quality assurance management
via a testing framework that performs functional tests,
nonfunctional tests and unit tests utilizing the JUnit
library. The basic way it works is by taking the inputs
and outputs of the component being examined and then
matching these up against acceptable values. The aim of
the suite was to fully automate testing. This includes
automating the setup of unit tests via design patterns and
functional tests to validate requirements, the running and
re-running of tests, and allowing creation and use of
scripts to pilot testing. Finally, results of tests can be
viewed via activity diagrams.

3

The unit test setup feature is especially nice in that
Together/J’s framework uses design patterns for
determining areas where tests should be implemented.
For example, there is a ‘PrivateTestCase’ pattern that
determines if any class has no test case/suite associated
with it. In such a case, one will be generated
automatically. The framework also has specified
heuristics for organizing test cases. For example, the tests
for classes in a package called com.tzo.websynergy
would be found in test.com.tzo.websynergy.

Together/J takes into account that comprehensive
testing of all software components in a project is
impossible. In order to determine how much Unit testing
is enough it offers metrics and audits that can be used to
determine delimiters. For example, metrics that can
indicate the current difficulty of maintaining code can be
used to determine if there is too much test code to
maintain. The Halstead effort metric is one measure that
can give such an indication. Size metrics can also be used
to determine if the limited number of unit tests is
inadequate to provide complete coverage of the large
amount of code it tests. An example of this would be
lines of code implemented.

In order to make sure that software projects are
meeting the standards set forth by management,
Together/J also has an auditing tool. Such standards can
be coding standards, documentation standards, etc. For
example, the permission to override private methods
and/or the permission to use static attributes for
initialization are both coding standards that can be
checked by the tool. The tool goes through all the code
of a software project, records, and finally reports all
violations of the standards defined. The auditing feature
can be extended should the default audits not cover what
an organization needs. While the default audits that come
with Together/J are comprehensive, custom audits can be
implemented and integrated quite easily.

Making sure that documentation and code are in-sync
at all times is a very important process that can be
painstaking in a large software project that employs many
developers. Together/J makes this process easier by
providing a feature it calls ‘hyperlinking.’ There are
different types of hyperlinks for different purposes. For
example, two use cases of a software model can be linked
together to associate a semantic relationship. This is also
seen in linking a UML model and its associated code
together. On the other hand, separate sections of
documentation may be linked together to provide for ease
of navigation.

Semantic hyperlinks provide developers with a means
to delineate realization of hierarchical levels of diagrams.
For example, selecting one diagram will lead to another
diagram(s) that is at a lower level of detail. The diagrams
will eventually lead to the code itself. Navigation
hyperlinks make any software project less intimidating by

providing a convenient way for developers to find their
way through documentation. Such documentation can
also be diagrams that are linked together. In current or
future versions of Together/J, the goal is to automate
changes to code as the associated documentation is
changed as well.

Currently, the only patterns that Together/J can
recognize are the ones meant for unit testing mentioned
previously. These types of pattern recognition are simple
to implement since it involves little more than matching
up code strings. However, Together/J cannot recognize
software design patterns. Rather, it provides functionality
that makes it easier for the developer to document them.
Obviously, the effectiveness of such a feature would be
similar to technologies like voice recognition in which
there will probably be a lesser or greater degree of error
[6].

Additional features of Together/J include: generation
of UML diagrams, profiling of program execution,
distributed testing, refactoring support, forward and
reverse engineering of code. Documentation is also made
easier since Together/J can automatically generate a
JavaDocs or UML for existing code.

Another producer of CM systems is Rational, which is
well known for their comprehensive software engineering
products, e.g. Rational Rose. They offer two products for
configuration management, ClearCase and ClearQuest.
These tools provide management of the workspace,
building of the code, version control, visualization of the
relationships between code components, and
identification of defects and changes to code. These are
all features covered in Together/J’s product we just
described.

To date, all configuration management software out
there provide a shallow analyses of data captured from
the developer. Current CM systems keep a database of
CM data collected and thus a history is generated for
evaluation. However, there offer no deep critical
analyses that would propose suggestions for change about
software development within group dynamics.

While current commercial CM systems will give
metrics such as total time spent on a project, lines of
code, or cohesion or coupling, these features are
commonplace and offer no in-depth analyses of the
interactions among developers on the same team. Such
commercial systems are almost always expensive as well,
costing several thousands of dollars to purchase. Our
research deals with analyses of group level dynamics. It
involves recognizing code that is touched by an
individual developer on the team and then deriving a
suggestion based upon the analysis of the collective data
– specifically, the ability to recognize patterns in the
organization using a specific CM application that will
lead to source code conflicts.

4

While there are no commercial systems that offer this
functionality, much research has been done in the domain
of detecting and resolving conflicts within a development
organization.

Ruiqiang Zhuang in his master’s thesis proposes a
method of using a web based distributed design system
and intelligent agents to detect conflicts [1] – a system
that seemed very similar to Hackystat. This research,
however, depended upon a preconceived knowledge of
the exact system to be developed. In addition, this system
was meant to detect only run-time conflicts.

Leonhardt, et al. describe how they use decentralized
process models that recognize patterns against historical
development traits to maintain software design
consistency [8]. They use a framework called
ViewPoints in their research to define parts of the
development process. In that respect, they are attempting
to detect conflicts in software architecture. Their research
deals with the high levels of design rather than
development of source code.

Steve Berczuk, in his paper, Configuration
Management Patterns, proposes the idea of minimizing
conflict through the definition of a private and public area
of source code [9]. He proposes the idea of Private
Versioning as a means of backing out when a conflict
occurs. He states that there should be a private repository
for each developer, and a public repository among all
developers. As developers make changes, they update
their private repository and occasionally merge with the
public repository. This way, he states, there is always a
means of backing out of a conflict when it occurs. He
does not focus on detecting conflicts, but rather on
resolving them.

Much research has been done in the area of conflict
detection and resolution. Our research in unique in that
we are proposing a method of detecting conflicts between
developers at code-time working in an environment that
uses a standard source control application. In the next
section, we explain our methodology in creating a

Event
1 User A retrieves source code version 1 from the

repository.
2 User B uploads her new source code to the

repository.
3 The repository source version is now 2.
4 User A works on the source code on his computer

(this is the old version).
5 User A uploads his source to the repository
6 The repository informs him that his code is in

conflict with the current version.

Table 1: Describing events that take place in the
occurrence of conflicts.

Hackystat sensor for a source control application and the
problems we encountered.

3. Sensor Design

One of our initial goals was to create a means for
Hackystat to identify occasions when a user’s current
development intensions were in conflict with the
development intensions of others working within the
same source code repository. We realized early on that
the detection of this type of event would require
knowledge of the developer that went outside the scope
of Hackystat or any SCM application since it would
require that we know the intensions (and the changes in
these intensions over time) for each developer in an
organization. Therefore, we focused on a simpler but
related problem: detecting upcoming conflicts between
developers. In Figure 1, we illustrate the progression of
events that would lead to developer conflict from a
conceptual standpoint. Ideally, the detection of an
upcoming conflict would take place somewhere between
steps 3 and 4 of Table 1, when User A’s version of the
source code became out of date due to User B’s upload of
new source code. This problem could be easily dealt with

User A User B Repository

1

2

3

4

5

6

Figure 1: An illustration of events leading to a conflict (See Table 1).

5

using the data already being collected by Hackystat and
by harvesting data from a source code repository.

Hackystat is a system designed to sense developer
activities and send the activity data to a central server for
processing. The main components of this operation are
the sensors that reside on the client machine. Sensors
exist for IDE’s like Emacs and JBuilder; and also for
project build utilities like Ant and JUnit. The sensor data
contains information that indicates the files that a
developer works on over a period of time.

On the other hand, SCM systems contain information
about contributions to the repository over time. By
collecting this information from the repository and
relating it to Hackystat data, it was possible to detect
upcoming development conflicts. In Table 1 above, steps
1, 2, and 3 would be information collected from the
repository. Upon the occurrence of step 4, which would
be detected by Hackystat, a possible upcoming conflict
would be detected. Implementation of this concept,
however, would not be a trivial task. In this section, we
discuss how we went about implementing the data
collection for SCM systems and the problems we
encountered with this task.

We first had to choose the source code configuration
management system we were going to use. This would
be the system we would develop the Hackystat sensor for.
We wanted a system that was free, open source, and
widely used. Some options, like RCS and Microsoft™
Visual Source Safe, were considered but discarded
because they did not meet these desires. CVS was the
most logical choice because it met our requirements. An
added benefit to using CVS was that it was also the
system we were going to use to control our source code.
Designing a Hackystat sensor for CVS would prove to be
difficult, however.

Development was considered keeping three
implementation objectives in mind. The first of these
objectives was to create the sensor with minimal or no
dependencies upon the SCM system itself (in this case,
CVS). We did not want to alter the system’s source code
or base our sensor on any volatile part of system that may
change over time. Another design objective was for the
sensor to be easy for users to install and set up. We did
not want to involve the user in a complex setup and
maintenance routine. The last objective was to code the
sensor entirely in Java. Since Hackystat was also coded
in Java, it follows suit that any extension of Hackystat
should also be coded in Java, save for extreme cases.

We also needed to research ways that we could detect
CVS events. CVS events, in this case, were defined as
any action that causes a connection to be made between
the CVS client and the CVS server. In this case, a CVS
“event” could be a CVS update (copying source code out)
or a CVS commit (adding source code in). Unfortunately,
our research led us to believe that we would not be able to

detect all CVS events without violating our three design
objectives. We could, through use of a built in hook
function in CVS, reliably detect commit events, however,
CVS did not provide a framework for plug-in
development, nor did it allow for any indirect extension
to its functionality. To gain access to this full range of
events, we would need to alter the CVS source code
(written in C), and therefore violate one of our
implementation objectives. Despite these limitations, we
moved ahead and developed a Hackystat sensor that
would detect CVS commit events using the built in hook
function which conformed to all of our implementation
objectives.

We later found, that a sub optimal design decision we
made regarding the way sensor data was sent would make
analysis of the data difficult. In Hackystat, each user has
his or her personal store of sensor data and all Hackystat
sensors are configured to address a single user per
session. This design was reasonable for the situation at
the time; since only one person should be using an IDE or
project build utility on a single computer. In our
situation, however, since a CVS server handles many
users on a single machine, we needed the CVS sensor to
be able to adapt to multiple users and data that applied to
different users of Hackystat.

At this point we saw two options. Our first option was
to ignore the issue and just send the data to a single user
account on the Hackystat server. This account would
presumably be publicly accessible so that any user would
be able to see the sensor data. The other option was to
have the CVS sensor send the data for each commit,
depending on the user who performed the commit, to the
appropriate Hackystat user. The latter method seemed a
better design decision at the time since it would preserve
users’ data privacy, a prominent concern of Hackystat.
We later realized, however, that this solution would
separate the data into individual user accounts, destroying
the organizational component that the data previously
represented. In short, we again constrained ourselves to
analyses upon the individual, since Hackystat analyses
were not meant to run across multiple users and we would
not be able to detect events that occur above the
individual level. Hackystat needed to be able to access all
the data across all users in order to perform this function.

In addition, the sensor we developed proved to be
inadequate. It did not collect enough data to allow us to
conduct further research in our theory. We implemented
the CVS sensor knowing we would only detect CVS
commits. Only detecting commit activity, however, did
not provide enough information to detect upcoming
conflicts that occur at the organizational level. A critical
piece of data we were missing was the detection of the
CVS “update” event. With respect to Table 1, a CVS
“update” is analogous to step 1, when user A downloads
the source code to his computer. Without this

6

information, we had no idea when a particular Hackystat
user updated his or her source code. Therefore, we had
no idea of knowing what version of the code was on a
user’s machine at any given time, or at what time that
version of the source became out of date. This
information was needed in order to detect upcoming
conflicts.

In spite of this problem, we used the commit data we
were able to collect from CVS and began implementing a
set of analyses that would operate upon this data. We
could not detect emerging conflicts yet, but we could start
implementing the framework for doing so in the future.
In the following section, we discuss the analyses we
implemented using the data we had available.

4. Analysis Design

Hackystat analyses are implemented as a set of web
service commands on the Hackystat server. A user goes
to the Hackystat homepage and requests that a certain
analysis be performed on a set of his or her personal
sensor data. The web service then processes the request,
performs the analysis, and displays the results to the user.
The most basic of these functions is a user request to view
the sensor data. Some other implemented examples
include active file and development curve analyses. The
active file analysis operates upon the activity log data and
shows the user what files were active at a certain time.
The development curve analysis operates upon the
OOSize and activity data to plot a graph of the
development of files over time. In this section, we
discuss the Hackystat web service pages and respective
analyses we developed, current problems with the
implementation, and future plans regarding these
analyses.

Within the Hackystat server, we first created several
pages that allowed the user to view the collected sensor
data. The first such page displayed the sensor data in a
view similar to a Windows™ Explorer file hierarchy.
This page allowed the user to traverse through the
different directories and files represented in the sensor
logs. Each directory and file was represented as a
hyperlink; clicking on a file link allowed the user to view
the CVS commit actions for each file. We felt this
functionality was necessary in the case of our sensor data
since, at the time, other Hackystat data was displayed
chronologically. We believed that displaying CVS sensor
data in this manner (in chronological order rather than in
file order) would be conceptually difficult since a CVS
server is more representative of a repository of files rather
than a timeline of events/transactions.

Hackystat, however, not only allows users to view the
sensor data, it also offers specific analyses that can
operate upon the collected data. These pages we created
for our sensor data assisted the user in viewing the data,

but did not offer any sort of helpful analysis upon the
data. Our next step, then, was to create a set of pages that
would display analysis results from the data we collected
from the CVS server. Even though we were unable to
collect the data we needed from CVS to detect upcoming
conflicts, we still wanted to lay down a base set of
analyses from which a conflict analysis could be derived
at a later time when more data became available.

Currently, all Hackystat sensor data is based upon a set
of files being edited, active, etc. We realized that our
sensor data was based upon a related but different set of
files. The files we dealt with were in a SCM repository,
rather than on a user’s computer. In the same way a user
has a set of active files a CVS server would also have a
set of active files. We created a “CVS active file”
analysis that determined the most and least active CVS
files by comparing the total number of commits along
with total lines changed at each commit. Used in
conjunction with the active file analysis, we believed that
this analysis would assist users in relating coding effort
(files that were worked on the most/least) with
contribution effort in CVS (files that were committed the
most/least). Coupled with other CVS event data, this
analysis could provide a more accurate picture of the
active CVS files.

Figure 2: A graph showing the work effort analysis
between two commits of a file.

We also knew that work effort could be divided into
the intervals between commits of a file. We created an
analysis page that allowed Hackystat users to see a graph
of their work effort on a file between two commits of that
file. The analysis also overlaid a graph of the combined
effort on other files within that time period as well.
Figure 2 shows an example graph. The graph’s X-axis
represents the time span between the two commits
divided into arbitrary “intervals” and the Y-axis
represents the collective effort as a heuristic number

7

analogous to a “credit”. We believed that this analysis
would allow users to relate their coding effort on a
particular file with coding effort on other files within a
specific time period. In this case, within two commits of
a file.

Using the Hackystat sensor we created for detecting
CVS commit events, we were able to come up with a set
of analyses that operated upon the data we collected. The
analyses we developed were not useful in determining
upcoming developer conflicts, but instead, laid down a
basic set of analyses that could be extended to detect
conflicts once we were able to collect more data from
CVS or some other SCM system. Even with this data,
however, we would still need to be able to extend the
functionality of Hackystat in such a way that analyses
upon the CVS sensor data could be applied across
multiple users. We discuss ways of doing this in later
sections.

In the future, the CVS active file analysis could allow
a Hackystat user to determine the appropriate time to
commit a file by comparing the CVS update and commit
events against the Hackystat sensor logs that determine
file activity. Once total effort on a file reached a certain
threshold, Hackystat could recommend that the user
commit the file. In addition, this analysis would be useful
in also informing the user about files that are not in the
repository. These are files that have never been
committed to the repository, but are present in the user’s
computer.

Similarly, the work effort analysis we developed could
also be expanded in the future, using other CVS event
data and data from other users in Hackystat, to determine
points where development conflicts may occur. The
effort graph could be overlaid with CVS event
information. When certain events occur, in this case, a
CVS commit by another user of the file in question,
Hackystat could inform the other users editing this file
that their version of the code is out of date.
Optimistically, we could detect the upcoming conflict
even earlier; when we notice that two users were working
on the same file and that their version of the file was the
most recent in the repository, we could inform both users
that they are working on the same file and are heading for
a potential conflict.

Analysis pages are only an initial step in extending the
functionality of Hackystat. It is expected that, in the
future, Hackystat user analyses will be performed
automatically as data reaches the Hackystat server. When
Hackystat “sees” an interesting bit of information, it
would send an “alert” to the user informing them that it
had seen something that may be of interest. At that point,
the user has the option of taking action or ignoring the
alert. In the next section, we discuss possible Hackystat
alerts for detecting upcoming developer conflicts.

5. Alert Design

Unlike a Hackystat analysis, which is initiated by the
Hackystat user from his or her user page, a Hackystat
alert is generated automatically when Hackystat detects
an interesting event. In the future, it is expected that
Hackystat analyses will give way to Hackystat alerts, thus
eliminating the need for a user accessible web page. A
user would no longer need to visit his or her user page to
analyze the sensor data: the Hackystat server would do
analysis automatically and inform the user when it sees
something that may be of interest.

Several Hackystat alerts already exist. They deal with
things such as bad sensor data and class complexity.
Hackystat users are informed through a personal email
when the alerts fire. These emails are sent once per day
in the early morning hours. As such, there could be up to
a 24-hour delay between the time an interesting event
occurs and the time a user is informed about that event.
Whether or not this is a suitable solution, however, is not
the focus of our research.

We did not create any Hackystat alerts in this iteration
of development, since we did not believe that we had an
analysis that would provide any interesting information to
the user warranting the creation of an alert. However, we
did have an unrealized concept of how to detect
upcoming conflicts. Development of this idea would
warrant the creation of a Hackystat alert. In this section,
we discuss how such an alert could be developed in
Hackystat.

Essentially, all Hackystat sensor data can be
characterized as a stream of events that arrive at the
Hackystat server in chronological order. Hackystat
analyses operate on this stream, but only do so upon a
user request. By creating an alert-style function, the data
can be analyzed automatically; either in real time as it
arrives on the server, or once a day as is done now.

Assuming that we are able to collect the data we
require from the CM source repository, we expect a
Hackystat alert for upcoming conflicts to operate by
detecting events depicted in steps 1 – 4 of Table 1. In
keeping with the current set of alerts in Hackystat, we
would have a daily analysis function that would be run
automatically each morning upon the data received from
the previous day. As the analysis iterates through the list
of sensor data, it would append events of interest into an
event queue. Events of interest, in this case, include CM
repository events and files undergoing active
development.

This event queue would hold a collection of events
that occurred across the users of Hackystat for that day.
The queue would then be traversed according to a
grammar or other pattern-matching algorithm. Any
matches would indicate an upcoming conflict between
developers, and those developers could be notified.

8

Following is a simple BNF-type grammar that describes a
pattern in the event stream indicating an upcoming
developer conflict. In this example, let E = any event in
the queue, Un, x = an update event for a user n upon file x,
Cn, x = a commit event for a user n upon file x, and An, x =
any activity event with respect to a user n that changes the
file x in question:

[E]* [Un, x]+ [E]* (Q || Y) [E]*

Where: Q = [Cj, x]+ [E]* [An, x]+ and
Y = [An, x]+ [E]* [Cj, x]+

Basically, the grammar describes a sequence of events
that apply to the same file such that, aside from irrelevant
events represented by E, if a user does an update, and if
that user edits the file, and if another user at some point
commits a new version of the file to the repository, a
possible conflict has been detected. Note that this event
stream can be related back to Table 1.

After a pattern match has been made, an appropriate
alert could be sent to the affected users indicating that
they are headed for a conflict in the future, when they will
commit the affected file(s) back to the repository.

Of course, none of this functionality has been
implemented. We are waiting until we are able to collect
the data required to perform such an analysis. In this
section, we described one possible way of implementing a
Hackystat alert that would allow users to be informed
when an upcoming conflict has been detected. In the next
section, we expand upon directions for future
development and research based upon what we have
learned so far.

6. Future Directions

As stated before in this paper, we were unable to
collect the data we needed from the SCM system we used
(CVS). Without this data, we were left unable to further
our research into using Hackystat along with CM data to
detect upcoming developer conflicts. In this section, we
discuss this problem, other problems, alternative routes
we considered during the development process, and
finally conclude future research directions.

Because of the many limitations of CVS, we began
preliminary research into another similar configuration
management software package, Subversion. Subversion
is another free, open source system. It is currently under
development and boasts newer and better functionality
than CVS [3]. However, after reading the documentation
and submitting an inquiry to the Subversion development
team, we found that although Subversion had many hook
functions to allow detection of various CM events, no
such mechanism existed to detect “update” events. This

was a critical piece of data we needed to be able to detect
developer conflict.

One of our implementation objectives was to create the
sensor with minimal dependency upon the tool (in this
case, CVS). This objective limited the ways in which we
could collect data from the tool we chose. Altering CVS
source code was undesirable, since it would require users
of the CVS sensor to download and install our customized
version of CVS. It may be, however, that in order to
collect the data we need, we may need to alter the CVS
source code in order to add in a hook function that will
allow the CVS sensor to detect update events.

There may be another option, however. CVS operates
through use of two “cvs” executable files, one located on
the client, the other on the server. When a user invokes
CVS, the two executables make a connection and transfer
information. We may want to look into creating our own
simple cvs executable that would wrap the real cvs
executable. In this case, our executable, when invoked,
would call the CVS sensor, and then invoke the real cvs
executable (that had been previously renamed or
relocated). This would simplify the install process such
that a user would only have to download our cvs wrapper
executable to the right directory, and rename the real cvs
executable to another name, like “real-cvs”.
Conceptually, the idea seems simple, however, not
enough research has been done into the cvs executable
application to determine if this is a feasible course for
development.

Another difficulty we faced was the problem of data
storing and analysis. We made a decision to store the
sensor data in such a way that the user’s privacy was
kept. This limited our analysis ability, because Hackystat
was not designed to perform analysis across users. Since
we still would like data to remain private, one option that
would allow for multi-user analysis, while preserving
data privacy, would be to modify Hackystat to allow
individual users to select a group (in this case, a CVS
server) to which they belong. Hackystat would store a
mapping of user to CVS servers. When a user requests an
analysis for CVS sensor data, the analysis command
would traverse the user list and use only the data from
those users whose CVS servers match that of the user
requesting the analysis. In this way, we preserve the
individual’s data privacy while allowing data analysis
across multiple users.

The preceding paragraphs enumerated several future
development considerations. In the remainder of this
section, we discuss other research considerations that
should both precede and succeed this phase of
development.

Due to the time constraints of this research project, we
were unable conduct research in evaluating the problem.
In this case, the problem was that of developer conflicts
leading to decreased productivity and increased system

9

defects. We know that development conflicts arise
regularly within a software development organization, but
we do not really know the impact that these conflicts have
on developer productivity. Ideally, research should be
conducted using direct observation, retrospective
interview, and bug tracking data to determine, if in fact,
occurrences of developer conflicts contribute to the
reduction of overall productivity and if this is related to
increased system defects.

It is hard to quantify the number of future research
opportunities into this domain. Many other types of CM
applications exist from which data can be harvested. The
data, such as that from a bug tracker application, could be
used in determining why defects occur in a system. In
other words, it is inevitable that a developer will
introduce bugs into a software system, so exactly what is
it about the actions of a developer that make him or her
directly responsible for introducing a bug into the
system? This is a very hard question to answer, but
research has already begun on this problem [7].

Another, perhaps easier problem dealing with bug
tracking data deals with developer activity. Is there a
relationship between defects and developer activity? In
other words, does a high level of developer activity
correlate with increased system defects? If so, a can a
Hackystat alert be created to inform the developer to relax
or work harder; like some sort of “you-need-to-take-a-
break” and “you’re-not-working-enough” alert?

Relating the organization to the individual is a broad
topic that covers a wide range of applications. Much of
this is undiscovered territory. This phase of research and
development covers only a fraction of what is out there to
be discovered. The sky is definitely not the limit.

7. Acknowledgements

We would like to thank Dr. Philip Johnson for guiding
us in our research and providing insight into our
methodology. In addition we would like to acknowledge
the other students our ICS 691 class who have
contributed their ideas and suggestions, supporting our
work.

8. References

[1] Ruiqiang Zhuang. Conflict Detection in Web Based
Concurrent Engineering Design. Masters Thesis
Proposal, University of Florida, 1999.

[2] Configuration Management Inc. Overview of
software configuration management. Online
documentation:
http://www.softwareconfiguration.com/About%20CM/ab
outCM_overview_layers.htm, 1999.

[3] Subversion. Project home site for Subversion version
control software: http://subversion.tigris.org/, 2002.

[4] IEEE. The configuration management definition.
Online documentation:
http://www.lal.in2p3.fr/~arnault/Atlas/cern-feb-
99/tsld003.htm.

[5] Frank Baker. Together/J Wins JOLT Award.
http://www.multitask.com.au/JavaNews, May 13, 1999.

[6] Together/J. Together/J Developer’s Guide, Chapter
6, pp.111-161, 2002.

[7] Koji Torii, et al. Ginger2: An Environment for
Computer-Aided Empirical Software Engineering.
Retrieved from the World Vide Web. IEEE Transactions
on Software Engineering, Vol 25, No. 4, July/August
1999.

[8] Ulf Leonhardt, et al. Decentralised Process
Enactment in a Multi-Perspective Development
Environment. Imperial College & City University,
London, 1995.

[9] Steve Berczuk. Configuration Management Patterns.
Optimax Systems Corporation, Cambridge, MA, 1996.

http://www.softwareconfiguration.com/About%20CM/ab
http://subversion.tigris.org/
http://www.lal.in2p3.fr/~arnault/Atlas/cern-feb-
http://www.multitask.com.au/JavaNews

