
 

1  

Configuration Management and Hackystat: 
Initial Steps to Relating Organizational and Individual Development   

Cliff Tomosada 
Burt Leung 

Department of Information and Computer Sciences 
University of Hawai’i 
Honolulu, HI 96822 

tomosada@hawaii.edu 
bleung@hawaii.edu   

Abstract  

Hackystat is a software development metrics 
collection tool that focuses on individual developers.  
Hackystat is able to provide a developer with a personal 
analysis of his or her unique processes.  Source code 
configuration management (SCM) systems, on the other 
hand, are a means of storage for source code in a 
development community and serve as controller for what 
each individual may contribute to the community.  We 
created a Hackystat sensor for CVS (an SCM system) in 
the hopes of bridging the gap between these two very 
different, yet related software applications.  It was our 
hope to use the data we collected to address the issue of 
development conflicts that often arise in organizational 
development environments.  We found, however, that 
neither application, Hackystat or CVS, could be easily 
reconfigured to our needs.   

1. Introduction  

The definition of Configuration, as determined by 
IEEE, is as follows:  

“Configuration is the process of identifying and 
defining the items in the system, controlling the 
change of these items throughout their lifecycle, 
recording and reporting the status of items and 
change requests, and verifying the completeness 
and correctness of items.” [4]  

As it applies to software engineering, configuration is 
about the lifecycle of the software components and how 
code evolves over time.   

Configuration Management (CM) is the process of 
managing the changes made to code over the lifecycle of 

a project [2].  It is about the dynamics of software 
engineering as it applies to the organizational process.  
CM indirectly dictates how members of a software 
development team work together and also how they are 
organized. 

In this paper, we present our initial steps into bridging 
the gap between organizational CM and personal goals 
(development direction) by focusing on CM source 
control applications and a personal software metrics 
application called Hackystat.   

The data collected for configuration management has a 
broad scope that covers all areas of the software 
development process.  CM data for an organization is 
represented in their documented processes, problem 
report logs, repository data, project timeline, etc.  We 
focus upon repository data for purposes of our research. 

An organization following CM practices would have a 
central repository of information through which its 
members can access important company documents and 
project source code.  Our research, however, we focus 
solely on source code repository data. 

In a source code repository, the members of an 
organization (usually the developers) can access the 
source code for their project in a controlled manner.  It is 
the main purpose of the repository to control the source 
code in such a way that it minimizes the development 
conflicts that arise when many people within an 
organization work on the same set of source files. 

A source code repository supports two core functions: 
(1) copying of source code out of the repository and (2) 
adding of source code into the repository.  In addition to 
these core functions are more complex operations such as 
conflict detection, which occurs when someone tries to 
add code that is out of date to the repository; branching, 
which allows developers to have their own personal 
copies of the source code independent of the other 
developers; and merging, which allows the repository to 
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maintain the stability of the source code.  Executing these 
functions cause the source code within the repository to 
change in state.  These state changes can be thought of as 
“events” that take place within the repository. 

In general, source code repository systems are meant 
to control a group of developers working within the same 
project on a pooled code base.  They provide developers 
with instant access to the current code base and provide 
means of controlling for source code conflicts. This 
control, however, is always enforced after-the-fact; i.e. 
developer conflicts only arise after the developers have 
completed coding and attempt to upload their code to the 
repository – at this point the repository informs the 
developer that a conflict has occurred. 

At one end of the spectrum, we have CM and at the 
other, we have Hackystat.  Hackystat works through 
sensors deployed on a client machine.  These sensors 
detect events of interest and send the data associated with 
these events to a central server.  Hackystat data, unlike 
CM data, focuses specifically the individual developer, 
rather than the entire organization. 

The data collected by the Hackystat system can be 
viewed by going to the server’s web page.  The data is 
kept private to the user it applies to and the associated 
analyses that can be performed upon this data are also 
limited to a single user.  Hackystat, therefore, cannot 
make determinations based upon a group of people.  
Hackystat data and associated analyses are helpful, 
however, in determining individual developer 
productivity and relating personal goals.  For example, a 
developer using Hackystat could discover that he or she 
only codes for a total of 1 hour per week, or that he or she 
spends more time creating unit tests than functional code.   

We have presented two types of systems so far and 
described their operation at a high level.  Hackystat 
manages and analyzes personal statistics, but cannot make 
inferences upon how a programmer’s current actions will 
impact others in the development organization.  A source 
code repository system, on the other hand, knows nothing 
about personal statistics and cannot determine individual 
development goals. 

One problem that arises because of this disparity 
between source control applications and individual 
developer directions is that while a developer may be 
aware of his or her own personal goals, he or she may not 
know the goals of the other developers within the 
organization.  More importantly, a developer may not 
know if his or her goals conflict with the goals of others.  
In addition, the nature of CM source control systems 
make detection of conflicts possible only at the point 
when developers attempt to merge their individual goals 
together after these goals have been attained.   

This “after-the-fact” conflict detection is sub-optimal 
with regards to software development since developers 
must do the work first before finding out that the work 

they just completed is not compatible with the current 
state of the system.  In this case, developers not only 
waste time performing unnecessarily coding, they must 
also spend time undoing what’s already been done. 

By creating a Hackystat sensor to detect SCM events 
in real time and using the data collected from this sensor 
in conjunction with other Hackystat sensor data, we 
believe that conflicts can be effectively reduced during 
development, thereby increasing developer efficiency; 
ultimately leading to more research in relating CM 
organizational metrics to Hackystat analyses.   

In the following sections, we discuss similar CM 
products along with the pros and cons of each, other 
research conducted on source code repositories and 
Hackystat systems, and development successes and 
failures. We conclude by presenting directions for future 
research and development based upon our experiences so 
far.    

2. Related Work  

In order to see what other products are out there, we 
looked at several commercial products.  Specifically, we 
wanted to see what other group level analysis were 
offered.  While there are a plethora of commercial CM 
systems out there, one of the most famous and highly 
lauded ones is Together/J.  This system won Software 
Development Magazine’s Jolt Award (May 1999), 
JavaWorld’s Best App Award, and JARS Top 1% Award 
[5].  Together/J is considered by many to be the best 
product for design and management of Java software 
projects.  Since it has proved itself as a top contender as a 
commercial CM system, we will take an in-depth look at 
it below.  It is assumed that other CM systems will have 
similar and/or lesser features than that offered by 
Together/J. 

Together/J is a company that proclaims they “create 
software that enables enterprises to deliver high-quality 
applications quickly and on-budget.”  It has products for 
development teams (e.g. ControlCenter) as well as for the 
individual developer (e.g. Solo).  The cost of this product 
is quite steep, about $3500-4000.  For that amount of 
money one gets a comprehensive development suite.   

One feature it offers is quality assurance management 
via a testing framework that performs functional tests, 
nonfunctional tests and unit tests utilizing the JUnit 
library.  The basic way it works is by taking the inputs 
and outputs of the component being examined and then 
matching these up against acceptable values.  The aim of 
the suite was to fully automate testing.  This includes 
automating the setup of unit tests via design patterns and 
functional tests to validate requirements, the running and 
re-running of tests, and allowing creation and use of 
scripts to pilot testing.  Finally, results of tests can be 
viewed via activity diagrams.   
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The unit test setup feature is especially nice in that 
Together/J’s framework uses design patterns for 
determining areas where tests should be implemented.  
For example, there is a ‘PrivateTestCase’ pattern that 
determines if any class has no test case/suite associated 
with it.  In such a case, one will be generated 
automatically.  The framework also has specified 
heuristics for organizing test cases.  For example, the tests 
for classes in a package called com.tzo.websynergy 
would be found in test.com.tzo.websynergy. 

Together/J takes into account that comprehensive 
testing of all software components in a project is 
impossible.  In order to determine how much Unit testing 
is enough it offers metrics and audits that can be used to 
determine delimiters.  For example, metrics that can 
indicate the current difficulty of maintaining code can be 
used to determine if there is too much test code to 
maintain.  The Halstead effort metric is one measure that 
can give such an indication.  Size metrics can also be used 
to determine if the limited number of unit tests is 
inadequate to provide complete coverage of the large 
amount of code it tests.  An example of this would be 
lines of code implemented. 

In order to make sure that software projects are 
meeting the standards set forth by management, 
Together/J also has an auditing tool.  Such standards can 
be coding standards, documentation standards, etc.  For 
example, the permission to override private methods 
and/or the permission to use static attributes for 
initialization are both coding standards that can be 
checked by the tool.  The tool goes through all the code 
of a software project, records, and finally reports all 
violations of the standards defined.  The auditing feature 
can be extended should the default audits not cover what 
an organization needs.  While the default audits that come 
with Together/J are comprehensive, custom audits can be 
implemented and integrated quite easily. 

Making sure that documentation and code are in-sync 
at all times is a very important process that can be 
painstaking in a large software project that employs many 
developers.  Together/J makes this process easier by 
providing a feature it calls ‘hyperlinking.’  There are 
different types of hyperlinks for different purposes.  For 
example, two use cases of a software model can be linked 
together to associate a semantic relationship.  This is also 
seen in linking a UML model and its associated code 
together.  On the other hand, separate sections of 
documentation may be linked together to provide for ease 
of navigation. 

Semantic hyperlinks provide developers with a means 
to delineate realization of hierarchical levels of diagrams.  
For example, selecting one diagram will lead to another 
diagram(s) that is at a lower level of detail.  The diagrams 
will eventually lead to the code itself.  Navigation 
hyperlinks make any software project less intimidating by 

providing a convenient way for developers to find their 
way through documentation.  Such documentation can 
also be diagrams that are linked together.  In current or 
future versions of Together/J, the goal is to automate 
changes to code as the associated documentation is 
changed as well. 

Currently, the only patterns that Together/J can 
recognize are the ones meant for unit testing mentioned 
previously.  These types of pattern recognition are simple 
to implement since it involves little more than matching 
up code strings.  However, Together/J cannot recognize 
software design patterns.  Rather, it provides functionality 
that makes it easier for the developer to document them.  
Obviously, the effectiveness of such a feature would be 
similar to technologies like voice recognition in which 
there will probably be a lesser or greater degree of error  
[6].  

Additional features of Together/J include: generation 
of UML diagrams, profiling of program execution, 
distributed testing, refactoring support, forward and 
reverse engineering of code.  Documentation is also made 
easier since Together/J can automatically generate a 
JavaDocs or UML for existing code. 

Another producer of CM systems is Rational, which is 
well known for their comprehensive software engineering 
products, e.g. Rational Rose.  They offer two products for 
configuration management, ClearCase and ClearQuest.  
These tools provide management of the workspace, 
building of the code, version control, visualization of the 
relationships between code components, and 
identification of defects and changes to code.  These are 
all features covered in Together/J’s product we just 
described.   

To date, all configuration management software out 
there provide a shallow analyses of data captured from 
the developer.  Current CM systems keep a database of 
CM data collected and thus a history is generated for 
evaluation.  However, there offer no deep critical 
analyses that would propose suggestions for change about 
software development within group dynamics. 

While current commercial CM systems will give 
metrics such as total time spent on a project, lines of 
code, or cohesion or coupling, these features are 
commonplace and offer no in-depth analyses of the 
interactions among developers on the same team.  Such 
commercial systems are almost always expensive as well, 
costing several thousands of dollars to purchase.  Our 
research deals with analyses of group level dynamics.  It 
involves recognizing code that is touched by an 
individual developer on the team and then deriving a 
suggestion based upon the analysis of the collective data 
– specifically, the ability to recognize patterns in the 
organization using a specific CM application that will 
lead to source code conflicts.   
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While there are no commercial systems that offer this 
functionality, much research has been done in the domain 
of detecting and resolving conflicts within a development 
organization. 

Ruiqiang Zhuang in his master’s thesis proposes a 
method of using a web based distributed design system 
and intelligent agents to detect conflicts [1] – a system 
that seemed very similar to Hackystat.  This research, 
however, depended upon a preconceived knowledge of 
the exact system to be developed.  In addition, this system 
was meant to detect only run-time conflicts.   

Leonhardt, et al. describe how they use decentralized 
process models that recognize patterns against historical 
development traits to maintain software design 
consistency [8].  They use a framework called 
ViewPoints in their research to define parts of the 
development process.  In that respect, they are attempting 
to detect conflicts in software architecture.  Their research 
deals with the high levels of design rather than 
development of source code.  

Steve Berczuk, in his paper, Configuration 
Management Patterns, proposes the idea of minimizing 
conflict through the definition of a private and public area 
of source code [9].  He proposes the idea of Private 
Versioning as a means of backing out when a conflict 
occurs.  He states that there should be a private repository 
for each developer, and a public repository among all 
developers.  As developers make changes, they update 
their private repository and occasionally merge with the 
public repository.  This way, he states, there is always a 
means of backing out of a conflict when it occurs.  He 
does not focus on detecting conflicts, but rather on 
resolving them.   

Much research has been done in the area of conflict 
detection and resolution.  Our research in unique in that 
we are proposing a method of detecting conflicts between 
developers at code-time working in an environment that 
uses a standard source control application.  In the next 
section, we explain our methodology in creating a                  

# Event 
1 User A retrieves source code version 1 from the 

repository. 
2 User B uploads her new source code to the 

repository. 
3 The repository source version is now 2. 
4 User A works on the source code on his computer 

(this is the old version). 
5 User A uploads his source to the repository 
6 The repository informs him that his code is in 

conflict with the current version. 

 

Table 1: Describing events that take place in the 
occurrence of conflicts.  

Hackystat sensor for a source control application and the 
problems we encountered.  

3. Sensor Design  

One of our initial goals was to create a means for 
Hackystat to identify occasions when a user’s current 
development intensions were in conflict with the 
development intensions of others working within the 
same source code repository.  We realized early on that 
the detection of this type of event would require 
knowledge of the developer that went outside the scope 
of Hackystat or any SCM application since it would 
require that we know the intensions (and the changes in 
these intensions over time) for each developer in an 
organization.  Therefore, we focused on a simpler but 
related problem: detecting upcoming conflicts between 
developers.  In Figure 1, we illustrate the progression of 
events that would lead to developer conflict from a 
conceptual standpoint.  Ideally, the detection of an 
upcoming conflict would take place somewhere between 
steps 3 and 4 of Table 1, when User A’s version of the 
source code became out of date due to User B’s upload of 
new source code.  This problem could be easily dealt with 

User A User B Repository

 
1 

2 

3 

4 

5 

6 

Figure 1: An illustration of events leading to a conflict (See Table 1). 
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using the data already being collected by Hackystat and 
by harvesting data from a source code repository.   

Hackystat is a system designed to sense developer 
activities and send the activity data to a central server for 
processing.  The main components of this operation are 
the sensors that reside on the client machine.  Sensors 
exist for IDE’s like Emacs and JBuilder; and also for 
project build utilities like Ant and JUnit.  The sensor data 
contains information that indicates the files that a 
developer works on over a period of time. 

On the other hand, SCM systems contain information 
about contributions to the repository over time.  By 
collecting this information from the repository and 
relating it to Hackystat data, it was possible to detect 
upcoming development conflicts.  In Table 1 above, steps 
1, 2, and 3 would be information collected from the 
repository.  Upon the occurrence of step 4, which would 
be detected by Hackystat, a possible upcoming conflict 
would be detected.  Implementation of this concept, 
however, would not be a trivial task.  In this section, we 
discuss how we went about implementing the data 
collection for SCM systems and the problems we 
encountered with this task. 

We first had to choose the source code configuration 
management system we were going to use.  This would 
be the system we would develop the Hackystat sensor for.  
We wanted a system that was free, open source, and 
widely used.  Some options, like RCS and Microsoft™ 
Visual Source Safe, were considered but discarded 
because they did not meet these desires.  CVS was the 
most logical choice because it met our requirements.  An 
added benefit to using CVS was that it was also the 
system we were going to use to control our source code.  
Designing a Hackystat sensor for CVS would prove to be 
difficult, however.   

Development was considered keeping three 
implementation objectives in mind.  The first of these 
objectives was to create the sensor with minimal or no 
dependencies upon the SCM system itself (in this case, 
CVS).  We did not want to alter the system’s source code 
or base our sensor on any volatile part of system that may 
change over time.  Another design objective was for the 
sensor to be easy for users to install and set up.  We did 
not want to involve the user in a complex setup and 
maintenance routine.  The last objective was to code the 
sensor entirely in Java.  Since Hackystat was also coded 
in Java, it follows suit that any extension of Hackystat 
should also be coded in Java, save for extreme cases. 

We also needed to research ways that we could detect 
CVS events.  CVS events, in this case, were defined as 
any action that causes a connection to be made between 
the CVS client and the CVS server.  In this case, a CVS 
“event” could be a CVS update (copying source code out) 
or a CVS commit (adding source code in).  Unfortunately, 
our research led us to believe that we would not be able to 

detect all CVS events without violating our three design 
objectives.  We could, through use of a built in hook 
function in CVS, reliably detect commit events, however, 
CVS did not provide a framework for plug-in 
development, nor did it allow for any indirect extension 
to its functionality.  To gain access to this full range of 
events, we would need to alter the CVS source code 
(written in C), and therefore violate one of our 
implementation objectives.  Despite these limitations, we 
moved ahead and developed a Hackystat sensor that 
would detect CVS commit events using the built in hook 
function which conformed to all of our implementation 
objectives.   

We later found, that a sub optimal design decision we 
made regarding the way sensor data was sent would make 
analysis of the data difficult.  In Hackystat, each user has 
his or her personal store of sensor data and all Hackystat 
sensors are configured to address a single user per 
session.  This design was reasonable for the situation at 
the time; since only one person should be using an IDE or 
project build utility on a single computer.  In our 
situation, however, since a CVS server handles many 
users on a single machine, we needed the CVS sensor to 
be able to adapt to multiple users and data that applied to 
different users of Hackystat.   

At this point we saw two options.  Our first option was 
to ignore the issue and just send the data to a single user 
account on the Hackystat server.  This account would 
presumably be publicly accessible so that any user would 
be able to see the sensor data.  The other option was to 
have the CVS sensor send the data for each commit, 
depending on the user who performed the commit, to the 
appropriate Hackystat user.  The latter method seemed a 
better design decision at the time since it would preserve 
users’ data privacy, a prominent concern of Hackystat.  
We later realized, however, that this solution would 
separate the data into individual user accounts, destroying 
the organizational component that the data previously 
represented.  In short, we again constrained ourselves to 
analyses upon the individual, since Hackystat analyses 
were not meant to run across multiple users and we would 
not be able to detect events that occur above the 
individual level.  Hackystat needed to be able to access all 
the data across all users in order to perform this function. 

In addition, the sensor we developed proved to be 
inadequate.  It did not collect enough data to allow us to 
conduct further research in our theory.  We implemented 
the CVS sensor knowing we would only detect CVS 
commits.  Only detecting commit activity, however, did 
not provide enough information to detect upcoming 
conflicts that occur at the organizational level.  A critical 
piece of data we were missing was the detection of the 
CVS “update” event.  With respect to Table 1, a CVS 
“update” is analogous to step 1, when user A downloads 
the source code to his computer.  Without this 
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information, we had no idea when a particular Hackystat 
user updated his or her source code.  Therefore, we had 
no idea of knowing what version of the code was on a 
user’s machine at any given time, or at what time that 
version of the source became out of date.  This 
information was needed in order to detect upcoming 
conflicts.   

In spite of this problem, we used the commit data we 
were able to collect from CVS and began implementing a 
set of analyses that would operate upon this data.  We 
could not detect emerging conflicts yet, but we could start 
implementing the framework for doing so in the future.  
In the following section, we discuss the analyses we 
implemented using the data we had available.  

4. Analysis Design  

Hackystat analyses are implemented as a set of web 
service commands on the Hackystat server.  A user goes 
to the Hackystat homepage and requests that a certain 
analysis be performed on a set of his or her personal 
sensor data.  The web service then processes the request, 
performs the analysis, and displays the results to the user.  
The most basic of these functions is a user request to view 
the sensor data.  Some other implemented examples 
include active file and development curve analyses.  The 
active file analysis operates upon the activity log data and 
shows the user what files were active at a certain time.  
The development curve analysis operates upon the 
OOSize and activity data to plot a graph of the 
development of files over time.  In this section, we 
discuss the Hackystat web service pages and respective 
analyses we developed, current problems with the 
implementation, and future plans regarding these 
analyses. 

Within the Hackystat server, we first created several 
pages that allowed the user to view the collected sensor 
data.  The first such page displayed the sensor data in a 
view similar to a Windows™ Explorer file hierarchy.  
This page allowed the user to traverse through the 
different directories and files represented in the sensor 
logs.  Each directory and file was represented as a 
hyperlink; clicking on a file link allowed the user to view 
the CVS commit actions for each file.  We felt this 
functionality was necessary in the case of our sensor data 
since, at the time, other Hackystat data was displayed 
chronologically.  We believed that displaying CVS sensor 
data in this manner (in chronological order rather than in 
file order) would be conceptually difficult since a CVS 
server is more representative of a repository of files rather 
than a timeline of events/transactions. 

Hackystat, however, not only allows users to view the 
sensor data, it also offers specific analyses that can 
operate upon the collected data.  These pages we created 
for our sensor data assisted the user in viewing the data, 

but did not offer any sort of helpful analysis upon the 
data.  Our next step, then, was to create a set of pages that 
would display analysis results from the data we collected 
from the CVS server.  Even though we were unable to 
collect the data we needed from CVS to detect upcoming 
conflicts, we still wanted to lay down a base set of 
analyses from which a conflict analysis could be derived 
at a later time when more data became available. 

Currently, all Hackystat sensor data is based upon a set 
of files being edited, active, etc.  We realized that our 
sensor data was based upon a related but different set of 
files.  The files we dealt with were in a SCM repository, 
rather than on a user’s computer.  In the same way a user 
has a set of active files a CVS server would also have a 
set of active files.  We created a “CVS active file” 
analysis that determined the most and least active CVS 
files by comparing the total number of commits along 
with total lines changed at each commit.  Used in 
conjunction with the active file analysis, we believed that 
this analysis would assist users in relating coding effort 
(files that were worked on the most/least) with 
contribution effort in CVS (files that were committed the 
most/least).  Coupled with other CVS event data, this 
analysis could provide a more accurate picture of the 
active CVS files.    

  

Figure 2: A graph showing the work effort analysis 
between two commits of a file.  

We also knew that work effort could be divided into 
the intervals between commits of a file.  We created an 
analysis page that allowed Hackystat users to see a graph 
of their work effort on a file between two commits of that 
file.  The analysis also overlaid a graph of the combined 
effort on other files within that time period as well.  
Figure 2 shows an example graph.  The graph’s X-axis 
represents the time span between the two commits 
divided into arbitrary “intervals” and the Y-axis 
represents the collective effort as a heuristic number 
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analogous to a “credit”.  We believed that this analysis 
would allow users to relate their coding effort on a 
particular file with coding effort on other files within a 
specific time period.  In this case, within two commits of 
a file.   

Using the Hackystat sensor we created for detecting 
CVS commit events, we were able to come up with a set 
of analyses that operated upon the data we collected.  The 
analyses we developed were not useful in determining 
upcoming developer conflicts, but instead, laid down a 
basic set of analyses that could be extended to detect 
conflicts once we were able to collect more data from 
CVS or some other SCM system.  Even with this data, 
however, we would still need to be able to extend the 
functionality of Hackystat in such a way that analyses 
upon the CVS sensor data could be applied across 
multiple users.  We discuss ways of doing this in later 
sections. 

In the future, the CVS active file analysis could allow 
a Hackystat user to determine the appropriate time to 
commit a file by comparing the CVS update and commit 
events against the Hackystat sensor logs that determine 
file activity.  Once total effort on a file reached a certain 
threshold, Hackystat could recommend that the user 
commit the file.  In addition, this analysis would be useful 
in also informing the user about files that are not in the 
repository.  These are files that have never been 
committed to the repository, but are present in the user’s 
computer.   

Similarly, the work effort analysis we developed could 
also be expanded in the future, using other CVS event 
data and data from other users in Hackystat, to determine 
points where development conflicts may occur.  The 
effort graph could be overlaid with CVS event 
information.  When certain events occur, in this case, a 
CVS commit by another user of the file in question, 
Hackystat could inform the other users editing this file 
that their version of the code is out of date.  
Optimistically, we could detect the upcoming conflict 
even earlier; when we notice that two users were working 
on the same file and that their version of the file was the 
most recent in the repository, we could inform both users 
that they are working on the same file and are heading for 
a potential conflict. 

Analysis pages are only an initial step in extending the 
functionality of Hackystat.  It is expected that, in the 
future, Hackystat user analyses will be performed 
automatically as data reaches the Hackystat server.  When 
Hackystat “sees” an interesting bit of information, it 
would send an “alert” to the user informing them that it 
had seen something that may be of interest.  At that point, 
the user has the option of taking action or ignoring the 
alert.  In the next section, we discuss possible Hackystat 
alerts for detecting upcoming developer conflicts.  

5. Alert Design  

Unlike a Hackystat analysis, which is initiated by the 
Hackystat user from his or her user page, a Hackystat 
alert is generated automatically when Hackystat detects 
an interesting event.  In the future, it is expected that 
Hackystat analyses will give way to Hackystat alerts, thus 
eliminating the need for a user accessible web page.  A 
user would no longer need to visit his or her user page to 
analyze the sensor data: the Hackystat server would do 
analysis automatically and inform the user when it sees 
something that may be of interest. 

Several Hackystat alerts already exist.  They deal with 
things such as bad sensor data and class complexity.  
Hackystat users are informed through a personal email 
when the alerts fire.  These emails are sent once per day 
in the early morning hours.  As such, there could be up to 
a 24-hour delay between the time an interesting event 
occurs and the time a user is informed about that event.  
Whether or not this is a suitable solution, however, is not 
the focus of our research.   

We did not create any Hackystat alerts in this iteration 
of development, since we did not believe that we had an 
analysis that would provide any interesting information to 
the user warranting the creation of an alert.   However, we 
did have an unrealized concept of how to detect 
upcoming conflicts.  Development of this idea would 
warrant the creation of a Hackystat alert.  In this section, 
we discuss how such an alert could be developed in 
Hackystat.  

Essentially, all Hackystat sensor data can be 
characterized as a stream of events that arrive at the 
Hackystat server in chronological order.  Hackystat 
analyses operate on this stream, but only do so upon a 
user request.  By creating an alert-style function, the data 
can be analyzed automatically; either in real time as it 
arrives on the server, or once a day as is done now. 

Assuming that we are able to collect the data we 
require from the CM source repository, we expect a 
Hackystat alert for upcoming conflicts to operate by 
detecting events depicted in steps 1 – 4 of Table 1.  In 
keeping with the current set of alerts in Hackystat, we 
would have a daily analysis function that would be run 
automatically each morning upon the data received from 
the previous day.   As the analysis iterates through the list 
of sensor data, it would append events of interest into an 
event queue.  Events of interest, in this case, include CM 
repository events and files undergoing active 
development. 

This event queue would hold a collection of events 
that occurred across the users of Hackystat for that day.  
The queue would then be traversed according to a 
grammar or other pattern-matching algorithm.  Any 
matches would indicate an upcoming conflict between 
developers, and those developers could be notified.  
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Following is a simple BNF-type grammar that describes a 
pattern in the event stream indicating an upcoming 
developer conflict.  In this example, let E = any event in 
the queue, Un, x = an update event for a user n upon file x, 
Cn, x = a commit event for a user n upon file x, and An, x = 
any activity event with respect to a user n that changes the 
file x in question:  

[E]* [Un, x]+ [E]* (Q || Y) [E]*  

Where:  Q = [Cj, x]+ [E]* [An, x]+  and  
Y = [An, x]+ [E]* [Cj, x]+  

Basically, the grammar describes a sequence of events 
that apply to the same file such that, aside from irrelevant 
events represented by E, if a user does an update, and if 
that user edits the file, and if another user at some point 
commits a new version of the file to the repository, a 
possible conflict has been detected.  Note that this event 
stream can be related back to Table 1. 

After a pattern match has been made, an appropriate 
alert could be sent to the affected users indicating that 
they are headed for a conflict in the future, when they will 
commit the affected file(s) back to the repository.   

Of course, none of this functionality has been 
implemented.  We are waiting until we are able to collect 
the data required to perform such an analysis.  In this 
section, we described one possible way of implementing a 
Hackystat alert that would allow users to be informed 
when an upcoming conflict has been detected.  In the next 
section, we expand upon directions for future 
development and research based upon what we have 
learned so far.  

6. Future Directions  

As stated before in this paper, we were unable to 
collect the data we needed from the SCM system we used 
(CVS).  Without this data, we were left unable to further 
our research into using Hackystat along with CM data to 
detect upcoming developer conflicts.  In this section, we 
discuss this problem, other problems, alternative routes 
we considered during the development process, and 
finally conclude future research directions. 

Because of the many limitations of CVS, we began 
preliminary research into another similar configuration 
management software package, Subversion.  Subversion 
is another free, open source system.  It is currently under 
development and boasts newer and better functionality 
than CVS [3].  However, after reading the documentation 
and submitting an inquiry to the Subversion development 
team, we found that although Subversion had many hook 
functions to allow detection of various CM events, no 
such mechanism existed to detect “update” events.  This 

was a critical piece of data we needed to be able to detect 
developer conflict. 

One of our implementation objectives was to create the 
sensor with minimal dependency upon the tool (in this 
case, CVS).  This objective limited the ways in which we 
could collect data from the tool we chose.   Altering CVS 
source code was undesirable, since it would require users 
of the CVS sensor to download and install our customized 
version of CVS.  It may be, however, that in order to 
collect the data we need, we may need to alter the CVS 
source code in order to add in a hook function that will 
allow the CVS sensor to detect update events.   

There may be another option, however.  CVS operates 
through use of two “cvs” executable files, one located on 
the client, the other on the server.  When a user invokes 
CVS, the two executables make a connection and transfer 
information.  We may want to look into creating our own 
simple cvs executable that would wrap the real cvs 
executable.  In this case, our executable, when invoked, 
would call the CVS sensor, and then invoke the real cvs 
executable (that had been previously renamed or 
relocated).  This would simplify the install process such 
that a user would only have to download our cvs wrapper 
executable to the right directory, and rename the real cvs 
executable to another name, like “real-cvs”.  
Conceptually, the idea seems simple, however, not 
enough research has been done into the cvs executable 
application to determine if this is a feasible course for 
development.   

Another difficulty we faced was the problem of data 
storing and analysis.  We made a decision to store the 
sensor data in such a way that the user’s privacy was 
kept.  This limited our analysis ability, because Hackystat 
was not designed to perform analysis across users.  Since 
we still would like data to remain private, one option that 
would allow for multi-user analysis, while preserving 
data privacy, would be to modify Hackystat to allow 
individual users to select a group (in this case, a CVS 
server) to which they belong.  Hackystat would store a 
mapping of user to CVS servers.  When a user requests an 
analysis for CVS sensor data, the analysis command 
would traverse the user list and use only the data from 
those users whose CVS servers match that of the user 
requesting the analysis.  In this way, we preserve the 
individual’s data privacy while allowing data analysis 
across multiple users.   

The preceding paragraphs enumerated several future 
development considerations.  In the remainder of this 
section, we discuss other research considerations that 
should both precede and succeed this phase of 
development.   

Due to the time constraints of this research project, we 
were unable conduct research in evaluating the problem.   
In this case, the problem was that of developer conflicts 
leading to decreased productivity and increased system 
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defects.  We know that development conflicts arise 
regularly within a software development organization, but 
we do not really know the impact that these conflicts have 
on developer productivity.  Ideally, research should be 
conducted using direct observation, retrospective 
interview, and bug tracking data to determine, if in fact, 
occurrences of developer conflicts contribute to the 
reduction of overall productivity and if this is related to 
increased system defects.   

It is hard to quantify the number of future research 
opportunities into this domain.  Many other types of CM 
applications exist from which data can be harvested.  The 
data, such as that from a bug tracker application, could be 
used in determining why defects occur in a system.  In 
other words, it is inevitable that a developer will 
introduce bugs into a software system, so exactly what is 
it about the actions of a developer that make him or her 
directly responsible for introducing a bug into the 
system?  This is a very hard question to answer, but 
research has already begun on this problem [7].   

Another, perhaps easier problem dealing with bug 
tracking data deals with developer activity.  Is there a 
relationship between defects and developer activity?  In 
other words, does a high level of developer activity 
correlate with increased system defects?  If so, a can a 
Hackystat alert be created to inform the developer to relax 
or work harder; like some sort of “you-need-to-take-a-
break” and “you’re-not-working-enough” alert?   

Relating the organization to the individual is a broad 
topic that covers a wide range of applications.  Much of 
this is undiscovered territory.  This phase of research and 
development covers only a fraction of what is out there to 
be discovered.  The sky is definitely not the limit.  
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