
Keeping the coverage green:
Investigating the cost and quality of testing in agile development

Philip M. Johnson Joy M. Agustin
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

Abstract

An essential component of agile methods such as Ex-
treme Programming is a suite of test cases that is incremen-
tally built and maintained throughout development. This
paper presents research exploring two questions regarding
testing in these agile contexts. First, is there a way to val-
idate the quality of test case suites in a manner compatible
with agile development methods? Second, is there a way
to assess and monitor the costs of agile test case develop-
ment and maintenance? In this paper, we present the results
of our recent research on these issues. Our results include
a code coverage measure called XC (for Extreme Cover-
age) which is implemented in a system called JBlanket. XC
is designed to support validation of the test-driven design
methodology used in agile development. We describe how
XC and JBlanket differ from other coverage measures and
tools, assess their feasibility through a case study in a class-
room setting, assess its external validity on a set of open
source systems, and illustrate how to incorporate XC into
a more global measure of testing cost and quality called
Unit Test Dynamics (UTD). We conclude with suggested re-
search directions building upon these findings to improve
agile methods and tools.

1. Introduction

Agile methods such as Extreme Programming place
great emphasis on the incremental development and fre-
quent use of a suite of automated regression tests [2, 6].
Lightweight, freely available testing tool support such as
JUnit has been integral to the adoption and success of this
practice. It makes possible another XP mandate, that 100%
of the test cases pass on a daily basis. This is often referred
to as “keeping the bar green”, a reference to the feedback

given by the JUnit GUI when all the tests pass [13].
Of course, the fact that all the test cases pass has little

bearing on software quality unless they are well designed
and comprehensive. To obtain the latter, practitioners advo-
cate “test-first programming” (recently upgraded to “test-
driven development”), in which tests corresponding to a
new feature are written before beginning its implementa-
tion [3]. The approach forces the developer to focus on the
external client API of a feature first, and to produce a suite
of tests corresponding to each feature. Advocates claim that
following this method will produce not only comprehensive
tests, but even more importantly, a better design.

Over the past two years, we have been incorporating
various agile practices into our research, development, and
teaching activities. While we have been impressed by the
potential of many of the techniques, our experiences with
agile testing techniques motivated research on the follow-
ing two questions:

1. Is there a way to validate the quality of test case suites
in a manner compatible with agile development meth-
ods? While agile methods such as test-driven devel-
opment claim to result in high quality test cases, it is
not obvious that following this method of writing tests
prior to writing code is in itself sufficient to produce
a high quality test suite. An independent, orthogonal
measure of test case quality that is compatible with ag-
ile development practices would be useful, not only as
an independent measure of test suite quality, but also
as a diagnostic tool to help developers uncover areas
of insufficient testing.

2. Is there a way to assess and monitor the costs of agile
test case development and maintenance?Agile test-
ing practices appear to generate a large amount of test
code. According to some practitioners, the size of test
code frequently equals the size of the system itself [3].

The development and especially the maintenance of
such code over time could potentially incur substantial
overhead on development. Since speed of development
is advocated as a virtue of agile methods, better under-
standing of the costs and benefits of large test suites
would be a good first step toward determining if more
cost-effective approaches might exist.

The remainder of this paper is organized as follows.
Section 2 presents XC (Extreme Coverage), a measure

we developed for assessing test quality in agile contexts.
XC differs in interesting ways from conventional coverage
measures. For example, we desired a measure in which
“keeping the coverage green”, or achieving and maintaining
100% test coverage, was both feasible and practical in agile
development. This led us to design a coverage measure that
is substantially more coarse-grained than those advocated
for use in traditional contexts.

Section 3 presents a tool called JBlanket that we devel-
oped for measuring XC on Java-based systems [1], and the
design trade-offs and improvements that have occurred dur-
ing the two years of its development and use.

Section 4 presents a case study we performed in a class-
room setting to assess the feasibility and practicality of the
XC measure. We found evidence that student developers
can achieve 100% XC, and that XC can serve as a useful
measure of test case quality.

Section 5 presents a case study in which we measured
XC on a set of open source tools to see if such a coarse-
grained measure could have value outside an agile context.
None of the tools we investigated had 100% XC, providing
evidence that this measure has value for test case validation
outside the classroom setting.

Section 6 summarizes our findings regarding the rela-
tionship between XC and agile test case quality.

Section 7 presents a measure that combines XC, devel-
oper test effort, and test code size data together to provide a
more global perspective on the costs and benefits of testing
over the life of a system. We call this composite measure-
ment approach UTD, for “Unit Test Dynamics” (UTD). We
show how implementing UTD using the Hackystat system
[12] makes it practical to obtain in an agile context, and il-
lustrate the utility of the measure through a case study.

Section 8 concludes the paper with a summary of the
contributions made by this research and our views on how
to build upon them to improve agile development methods
through empirically based understanding of the strengths
and weaknesses of their various practices.

2. Extreme Coverage

The development of a high quality automated test case
suite is an essential goal of most agile development meth-
ods [15]. A well-established technique for assessing the

quality of test suites is to measure its comprehensiveness in
exercising the source code, otherwise known as “coverage”.
Many kinds of coverage measures have been proposed, in-
cluding method, statement, branch, path, and loop [8], al-
though statement coverage is the most common measure. A
variety of research has investigated the relationship between
coverage measures and code quality [5, 16, 18]. Some re-
searchers advocate the use of coverage to drive the design of
test suites [10], while others argue that coverage data should
be restricted to use as a validation metric for some other test
case design technique [14].

In the context of agile development, it is interesting to
note that inconsistencies exist within various practices re-
garding statement coverage. On the one hand, one of the XP
practices is “Test Everything That Could Possibly Break”,
which Kent Beck defines as follows:

”You should test things that might break. If
the code is so simple that it can’t possibly break,
and you measure that the code in question doesn’t
actually break in practice, then you shouldn’t
write a test for it.” [2]

This seems to indicate that comprehensive coverage is
not necessary. Indeed, it would be an error to achieve 100%
statement coverage, since this would imply that “simple”
code was tested. Other research on statement coverage in
traditional testing contexts also indicate that less that 100%
statement coverage might be most cost-effective [17].

On the other hand, another XP practice is Test-Driven
Development (previously known as “Test-First Program-
ming”), in which the developer designs a set of test cases
for any given development task, which serves to both clarify
design and external interface issues, as well as provide an
unambiguous specification for when the task is completed.
Beck states the following regarding TDD:

”Test Driven Development followed reli-
giously should result in 100% statement cover-
age.” [3]

Unlike the first practice, TDD seems to indicate that a
test suite that comprehensively exercises all of the code
in the system including “simple” code is not an error,
but rather the natural result of rigorous application of the
method.

This inconsistency in practices within the same agile
method regarding statement coverage is striking. Given the
wide availability of coverage tools, it would also seem quite
straightforward to gather the empirical data necessary to re-
solve this inconsistency. However, test coverage tools do
not enjoy the same popularity as test invocation tools in ag-
ile contexts. Why might this be so?

2

We approached this question by investigating the fea-
tures of the xUnit tools that seem to be of most value to ag-
ile practitioners, and using this list to generate an analogous
set of requirements for an “agile” test suite validation tool
based upon coverage. Five major requirements emerged:

1. Open source. The agile development community
shows a marked preference for open source tools, from
the Eclipse editor to the JUnit test framework to the
CVS configuration management system. Fee-for-use
creates a substantial barrier to widespread adoption.

2. Lightweight. An essential characteristic of all agile
methods, “lightweight” in this context of test case suite
validation implies two things. First, it should be easy
for the developer to introduce in a variety of develop-
ment contexts. Second, the validation process should
not significantly slow down development, even when
applied many times per day as a natural adjunct to test
case invocation.

3. 100% coverage as a practical, continuous goal.Open
source, lightweight testing tools such as JUnit enable
agile methods to enforce a discipline of requiring all
of the unit tests to pass all the time. Either all the unit
test cases pass, in which case development proceeds,
or one or more unit test cases fail, in which case devel-
opment focusses on making the failing unit test(s) pass.
A similar lack of ambiguity in interpretation would be
a very desirable property of an agile coverage measure.

4. Improves development.Agile practitioners adopt unit
test invocation tools and practices because the invest-
ment in test case development and maintenance ap-
pears to pay off in improved development speed and/or
conformance to user requirements. One reason is be-
cause running test cases after each change tends to un-
cover introduced defects right after insertion, simpli-
fying identification and removal. Another is that the
availability of easily invoked test suites seems to re-
duce the cost of change by making ripple effects more
apparent. The use of an agile coverage tool should ap-
pear to pay off in similar ways by increasing the quality
and utility of test suites.

5. Configurable and extensible.Given the ill-defined un-
derstanding of the use and application of coverage
measures in an agile context, the tool design should
support customization to a broad family of coverage
measures.

A Google search on “code coverage tool” reveals a
large number of commercial (Whitebox, Koalog Code Cov-
erage, Clover, PureCoverage, Discover for Delphi) and
open source (GCT, JDepend, JCoverage, JUnit Quilt) tools.

While all of them address at least some of these require-
ments, none address all of them. The most problematic re-
quirement, by far, is Number 3: 100% coverage.

This requirement is problematic for traditional coverage
measures and tools because, as noted above, at least one ag-
ile practice recommends against testing code “that cannot
possibly break.” This results in the correct coverage level
being less than 100% for all of the traditional coverage mea-
sures. Once a level less than 100% becomes the target, how
does one decide what the appropriate level should be, and
thus whether the current level is too low, or even too high?
Indeed, an online workshop attended by agile researchers
and practitioners raised this issue as an apparent barrier to
use of coverage measures in agile development [7].

A central claim of our research is the following: in order
to make coverage useful in a variety of agile contexts, we
must explore new coverage measures that are significantly
more coarse-grained than traditional measures. If we can
“loosen” the coverage measure appropriately, then less than
100% coverage will indicate a clear failing in the compre-
hensiveness of the agile test suite, though achieving 100%
coverage does not necessarily imply that the test case suite
is optimal.

Our proposed measure, called XC (Extreme Coverage1)
has a three part definition:

� Method-level invocation.Instead of tracking which
statements are invoked during test case execution, XC
implements method coverage, and thus checks only
whether a method is invoked or not.

� One-line methods ignored.We heuristically identify
“code that cannot possibly break” as methods contain-
ing only a single line. For example, get and set meth-
ods for instance fields typically contain one line of
code, and are so simple that visual inspection can ver-
ify their correctness.

� User-specified ignore list.Finally, a user has the option
of manually removing methods from the calculation of
XC coverage, in order to define additional non-one line
methods as belonging to the set “that cannot possibly
break.”

The XC measure departs dramatically from other cover-
age measures by being explicitly partial rather than striving
for total comprehensiveness. Its goal is to be coarse enough
so that “keeping the coverage green”, or 100% XC, is a rea-
sonable goal during developent. If agile developers have
less than 100% XC, then this is a clear indication of the
need for more test cases. XC is designed to minimize false
negatives (i.e. a coverage value less than 100% even though

1The irony of calling such a coarse-grained measure “extreme” is not
lost on us.

3

testing is sufficient) at the expense of increased false posi-
tives (i.e. a coverage value of 100% even though testing is
insufficient).

Unlike other coverage measures, XC has at least the po-
tential to satisfy Requirement 3. However, it is unclear from
the definition alone that it satisfies any of the five require-
ments. Evaluating XC against these requirements involves
investigating a constellation of issues, including: Can the
XC measure be implemented in an open source tool that is
lightweight? Is the XC measure too coarse? In other words,
is XC always at 100% regardless of the testing quality? Al-
ternatively, is the XC measure not coarse enough? In other
words, is it still too difficult to reach 100% XC under agile
conditions?

3. JBlanket: A tool to measure XC for Java

To support evaluation of the XC measure, we have been
developing a tool called JBlanket since early 2002. JBlan-
ket is developed and released under the Gnu Public License,
satisfying the first requirement, open source distribution. As
our research and teaching involves development of client-
server web applications, supporting collection and merging
of coverage data from multiple processes became an addi-
tional self-imposed requirement.

The first version of JBlanket used the LOCC source code
size tool to determine the total size of the system, and
the Java Debug Interface (JDI) to monitor method invoca-
tions on both client and server sides at run-time. JDI is
a low-level interface to the Java run time environment de-
signed to support interactive debuggers, and enables call-
back functions to be associated with a variety of run time
events, including method invocation. After running the sys-
tem under the control of the JDI, we implemented a post-
processor program to combine the collected data from client
and server together and determine the XC coverage by com-
paring this to the total system size. Unfortunately, we found
that the use of JDI resulted in a 50-fold increase in execu-
tion time, an unacceptable behavior for a lightweight tool.

The second version of JBlanket attempted to modify the
open source coverage tool JUnit Quilt to support the XC
measure. Quilt implements a customized Java class loader
that dynamically inserts bytecodes into class implementa-
tions as they are loaded. The modified classes collect cov-
erage data. The Quilt design does not suffer the perfor-
mance penalties imposed by the JDI run-time system. Un-
fortunately, the Tomcat web application system that we use
for research and teaching uses its own custom class loader,
and we were unable to successfully integrate these two class
loading mechanisms together to support coverage.

The current version of JBlanket is inspired by Quilt, but
instead of dynamically intercepting class implementations
as they are loaded, JBlanket rewrites the class files prior

to execution, inserting the bytecodes required to instrument
method invocations. At the same time that JBlanket mod-
ifies the class files, it also identifies all of the classes and
methods in the system, eliminating the need to use a sepa-
rate source code size tool. Modifying Java class files with
instrumentation code prior to execution also eliminates in-
compatibilities due to non-standard class loaders. Finally,
we implemented an HTML interface for reporting the XC
measurements, with summaries for the system as a whole,
and drilldowns for individual packages and classes. This
interface is modelled on the JUnit reporting interface.

Figure 1 illustrates one such report screen providing a
package-level summary of XC measurements. The report
shows a listing of eight classes in the package hackys-
tat.client.cli.shell. For each class, it lists the total number
of methods in the class, the number of one line methods
(which are thus excluded from XC coverage calculation),
the number of remaining “multi-line” methods, the numbers
of tested and untested multi-line methods and the resulting
XC coverage percentage. Clicking on a class name drills
down to a report on the class listing the names of all meth-
ods in the class and whether they were tested or not. Click-
ing on the “Home” link drills up to the top-level summary
page, where aggregate coverage data for the entire system
organized by package is displayed.

The current version of JBlanket also appears to satisfy
the second requirement for a lightweight impact on develop-
ment. The JBlanket distribution comes with Ant tasks that
make it straightforward for developers to insert XC data col-
lection into their development process. The instrumentation
process incurs overhead only for newly compiled files, mak-
ing it quite suited for an incremental development process.
Run-time execution of test cases is increased by approxi-
mately 20-30%, which is significant, but still small enough
in most cases to permit an agile development process re-
quiring many test runs per day.

We began using JBlanket to support our development
activities in the Summer of 2002, and have been enhanc-
ing it regularly since then. JBlanket has been used in sev-
eral courses, and has been downloaded by students and
developers both locally and externally. The current ver-
sion is well documented and quite small—approximately 36
classes, 225 methods, and 3100 lines of code. The JavaDoc
design and HTML versions of the source code are available
for inspection on the web at its public distribution site [11].
The petite size of the system, its public availability and doc-
umentation, and the modifications we have already made to
it provide evidence of configurability and extensibility, the
fifth requirement. We invite its use, evaluation, and further
enhancement by the broader software engineering commu-
nity.

To verify the JBlanket implementation, we compared the
XC coverage data it generates on several systems against

4

Figure 1. Example report from JBlanket providing XC measures for a Java package.

the method coverage data generated on the same systems
by Clover, another Java-based code coverage tool. Clover
implements coverage by instrumenting source code rather
than the compiled bytecode. Interestingly, there were dif-
ferences in the data due to the different points at which the
two tools insert their instrumentation code. In Java, if the
user does not define a constructor for a class, a no-argument
public constructor is implicitly defined and its bytecode im-
plementation exists in the class file. Since Clover rewrites
source code, the implicit constructor is not instrumented.
Since JBlanket rewrites bytecodes, the implicit constructor
is instrumented.

The two most important requirements remain to be eval-
uated, of course: is 100% XC a practical, continous goal,
and does knowledge of the current XC value improve de-
velopment? The next section presents a brief summary of
a case study we performed to provide some initial insight
into these questions. Details of the methodology and data
collection are available in a thesis based on this research [1].

4. A case study of Extreme Coverage and
JBlanket

In the Fall of 2002, we performed a case study of XC
and JBlanket as part of a senior-level software engineering
project course. The 13 students spent four months working
on the development of eight interactive web services. All
students worked in pairs, though some students worked on
more than one service. The web services were designed to

plug in to a framework system called CREST, which sup-
ports the functions of an academic department. For exam-
ple, one service supports direct selling of textbooks between
students, and another implements a technical report library.
The students developed the software with agile practices
such as pair programming, daily builds, and unit tests. They
also used Java-based technologies advocated for agile de-
velopment, including CVS, Ant, JUnit, and HttpUnit. The
final size of each web service ranged between 2000 and
5500 non-comment source lines of code.

We collected both qualitative and quantitative data. The
qualitatitive data took the form of an anonymous pre-test
questionnaire, given approximately half way through the
semester. The pre-test questionnaire asked the students to
indicate their level of agreement with a set of questions as-
sessing their attitude toward unit testing, such as: “Unit tests
are very important for creating correctly functioning soft-
ware”. Other questions assessed student opinions regarding
the perceived difficulty of creating unit tests, and the quality
of their current test suites.

We then introduced JBlanket into the development pro-
cess by integrating it into the Ant build file associated with
each project. From this point on to the end of the course
five weeks later, students had continuous feedback on the
XC coverage measure for their test suites. To reduce the
possibility that failure on the part of a group to reach 100%
XC coverage was simply due to disinterest, the instructor
told the students that a portion of their project grade would
be based upon their service’s final XC value.

At the end of the semester, we gave an anonymous post-

5

test questionnaire including the same questions from the
pre-test questionnaire, plus an additional open-ended ques-
tion asking the students to comment on JBlanket. We used
a key system to associate each student’s pre-test with their
post-test while preserving anonymity. Comparing the pre-
test to post-test answers provides some evidence that for this
small group, their development experiences using JBlanket
strengthened their belief in the importance of unit tests, and
gave several students more confidence in the quality of their
testing. Almost all of the students indicated that JBlanket
data was helpful to them in writing unit tests to support cor-
rect functioning of their systems.

An open ended question soliciting comments on JBlan-
ket was especially revealing. Several students indicated that
XC data helped them improve their test suites. One student
wrote, “[It] makes me feel safer to know I’m at 100%”. A
second said, “I write more unit tests to test more parts of
the system.” On the other hand, other students recognized
the danger of relying too much on the XC measure. A third
student wrote: “JBlanket is excellent! It helps me pinpoint
packages which are inadequate. However once it was cov-
ered I gave little thought to conditional and branch cover-
age.” A similar danger was also noted by a fourth student:
“I don’t think we tested out every little detail since we were
just really looking to get the system to 100%.”

The quality of the web services, based upon the subjec-
tive analysis of the instructor, improved significantly over
the course of the case study period. Several students noted
that the development of new unit tests as a result of XC
analysis uncovered previously unknown defects in their sys-
tems, and the tests also helped reveal subsequent defects
soon after insertion. However, the uncontrolled nature of
the study prevents us from determining to what extent the
introduction of XC and JBlanket caused the increase in
quality; it is likely that a portion of the quality increase was
simply a byproduct of continued development effort on the
services.

Quantitative metrics collected once every three days
from student activities included the size in LOC of test and
non-test code, the number of methods exercised during test-
ing, number of methods not exercised during testing, and
the XC coverage. Over the five weeks, six out of eight
reached 100% XC at least once, with the seventh reaching
99.5% XC (a single untested method remained). One sys-
tem began at 100% XC and stayed there for the entire study
period. Three began below 50% XC, and the remaining be-
gan between 70-90% XC. Five out of eight systems did not
lose 100% XC once it was achieved.

Figure 2 summarizes some of the quantitative data for
the eight services. It reveals that the introduction of the
XC measure did lead to substantial coverage change in most
systems; the only system without positive coverage change
began with 100% XC.

% Change
Service XC XC Test LOC Test

Methods
FAQ 100.0% 66.3% 11.1% 6.6%
Login 99.2% 28.8% 6.6% 6.3%
Newsbulletin 100.0% 69.2% 26.2% 15.0%
Poll 94.9% 7.4% 7.1% 4.5%
Resume 99.5% 72.0% 31.0% 22.0%
Techreports 100.0% 28.0% 8.7% 2.8%
Textbooks 100.0% 0.0% 3.3% 1.5%
Tutor 100.0% 19.0% -0.1% 3.1%

Figure 2. Summary statistics for the eight ser-
vices

Great care must be taken in the interpretation of this data,
since this study suffers from substantial experimental limi-
tations. The study size of 13 is too small for any statistical
tests of significance. A very specialized type of software
was under development, which might have influenced the
data values. Most significantly, the study by design is sus-
ceptible to the Hawthorne effect: students knew that their
use of JBlanket was under study, and knew that their grade
would depend in part upon their XC measures. It is no won-
der that XC values improved to at least some extent, and that
even anonymous responses would indicate generally posi-
tive opinions about the technique.

Despite these limitations, this study contributes useful
evidence that the XC measure is neither excessively coarse-
grained nor excessively fine-grained. Had the measure been
excessively coarse-grained, most or all of the projects would
have started out at 100% XC and stayed there. Had the
measure been excessively fine-grained, most or all of the
projects would never have achieved 100% XC. Instead,
most projects started at significantly less than 100% XC,
and most projects successfully achieved 100% by the end
of the study. We view the qualitative and quantitative data
in this study as providing at least weak evidence that XC is
both useful and practical in an agile context, and thus wor-
thy of wider experimental investigation.

As an example of a follow-on study, we are deploying
JBlanket in two software engineering courses in Fall of
2003. In this case study, we are instructing the students that
they will be graded based upon the quality and comprehen-
siveness of their test case suite. JBlanket will be available to
both the students and instructor as a tool to probe for weak-
nesses in the test case suite. We will collect data to see if
100% XC is achieved and maintained when the focus is di-
rected toward quality and comprehensiveness, as opposed
to simply achieving a certain value of the measurement.

6

Figure 3. UTD data for the Hackystat project from June to September, 2003. The top line is the %
coverage (XC), the middle line is the % system code devoted to testing, and the bottom line is the %
of developer effort devoted to testing.

5. XC on open source software

To provide some external validation of our claim that the
XC measure is neither too coarse-grained nor fine-grained,
we used JBlanket to compute XC on a sample of open
source, practitioner-grade, Java-based systems with JUnit
test cases. Most of the systems that we found were obtained
from the Jakarta project. The goal of this study was to en-
sure that the variation in XC values that we observed in the
classroom setting was also present in external settings. Fig-
ure 4 presents the results.

This data provides additional evidence in support of the
usefulness of the XC measure, by showing that external sys-
tems also show wide variability in XC. For the eight systems
studied, XC ranged from approximately 4% to 87% with
none achieving 100% XC. By adding the Covered and Un-
covered numbers together and subtracting this result from
the Total Methods, you can derive the number of one line
methods for any of the systems. For example, Antelope had
53 (41 + 12) multi-line methods subject to XC calculation,

indicating that more than half of the methods in the system
were single line and thus excluded from the coverage mea-
surement. All of the systems studied had substantial num-
bers of one line methods, indicating that this aspect of the
XC definition has a significant impact on the way coverage
is measured.

Finally, the low XC values found for external systems
raise an interesting question: Do finer-grained coverage
measurements actually add value, at least for these types
of projects at this point in their evolution? Rather than re-
search into more complex and sophisticated coverage tools,
whose results are correspondingly more difficult to inter-
pret, should we instead focus on making very simple cover-
age measurement tools as easily used and as widely avail-
able as current test invocation tools like JUnit?

7

XC
System

Total
Classes

Total
Methods Covered Uncovered %

Antelope v2.55 96 112 41 12 77.4
Checkstyle v3.1 224 1437 944 327 74.3
Jakarta Commons
BeanUtils

130 1526 688 363 65.5

Jakarta Commons
CLI

33 307 103 122 45.8

Jakarta Commons
Collections

540 5662 1432 2616 35.4

Jakarta Commons
Sandbox Graph2

57 497 296 85 77.7

Jakarta
Tomcat v4.1.27
Catalina subpackage

338 4306 105 2579 3.9

JWebUnit v1.1.1 30 443 224 33 87.2

Figure 4. XC data for a variety of open source
Java systems

6. XC, JBlanket, and agile test case quality

The first experimental question guiding this research
asked whether there is a way to validate test case quality in
a manner compatible with agile development methods. The
research results presented above combine together to pro-
vide positive evidence regarding this question. However, all
coverage-based approaches to test case validation possess
inherent limitations. For example, they cannot detect errors
of omission, where the software does not implement cer-
tain user requirements. And, of course, simply exercising a
method does not guarantee its correctness.

Based upon the evidence, XC appears to best support
improved agile test case quality when used in combination
with other quality assurance measures, and when the XC
values obtained are interpreted correctly. It would be risky
to use XC for test case design to the exclusion of other
methods like TDD; there is no evidence that high levels of
XC guarantee high test case quality. On the other hand,
the evidence does suggest that low levels of XC do indi-
cate low test case quality. Thus, XC can provide an easy
and cost-effective way to monitor and detect low quality
test case suites during agile development. Finally, use of
XC does not preclude application of other coverage tech-
niques. A development group might begin by using XC to
validate their test case suite, and once 100% XC is consis-
tently maintained, move on to statement or path coverage
for more comprehensive, fine-grained validation.

7. Assessing agile test costs using Unit Test Dy-
namics

It is a widely acknowledged that testing and debugging
consume significant development resources [4]. An indus-
trial case study indicated that 10-25% of code in the systems
studied were devoted to test cases [19]. The agile literature

indicates a much higher proportion: 50% of the code in the
system can be devoted to test cases [3]. A test case suite
equal in size to the system itself must surely present signif-
icant development, maintenance, and quality challenges of
its own. It creates at least the possibility of thrashing, where
the impact of changes to the test case suite begins to inhibit
the development and enhancement of the system itself. An
important research issue for the agile community is to bet-
ter understand the developmental dynamics of the test case
suites created using their methods.

We have begun work on this research issue by using the
Hackystat system to automatically collect and analyze test
case cost and quality data over time. Hackystat is a system
in which developers attach sensors to their tools which al-
low unobtrusive collection and analysis of development ac-
tivities and products [9]. We designed a composite measure,
called Unit Test Dynamics (UTD), and implemented it in
the Hackystat system. UTD measures three values of a de-
velopment project over time: the percentage of the system’s
code devoted to test cases, the percentage of developer ef-
fort devoted to test case development and maintenance, and
XC: the percentage of code covered by the test cases. The
unobtrusive nature of Hackystat data collection and analy-
sis make it well suited to agile development contexts, where
traditional, non-automated process and product data collec-
tion activities tend to be avoided due to their overhead.

To collect UTD, the developers of a system attach a
Hackystat sensor to their editors. After configuration,
the sensor automatically monitors the developers’ activities
within the editor and measures the effort devoted to devel-
opment of both the test and non-test code for the system
under study. A different sensor, after being attached to the
system’s build process and similarly configured, automati-
cally collects the total size of the system, the percentage of
it devoted to test code, and the value of XC at that point in
time.

We began implementing the UTD analysis mechanisms
for Hackystat in the Spring of 2003, and finished connecting
the sensor to our automated build system in August. Figure
3 illustrates the UTD data collected from June to Septem-
ber for the six active developers on the Hackystat project.
Due to build process issues, test code percentage data was
collected only intermittently until August.

This analysis reveals several interesting features regard-
ing testing in the Hackystat project during this period. First,
XC has varied between a high of 85% and a low of 45%,
with the final values at approximately 60%. A more detailed
analysis indicates wide variability in the XC value: many
of the older packages and classes have 100% XC, which is
balanced by a significant amount of new, experimental code
with low or zero XC. The plummet from 85% in mid-July
corresponds to the incorporation of this new code into the
Hackystat baseline.

8

On the other hand, the other two lines indicate that the
cost of testing is currently quite low: around 20% of the
total code is devoted to test cases, and less than 15% of
developer effort over the three months was devoted to test
code development and maintenance.

This UTD analysis indicates a decrease in software qual-
ity assurance over the past three months for this project. It
reveals both the need for additional tests on existing code, as
well as improved integration of testing into ongoing devel-
opment so that incorporation of new code in future does not
impact so negatively on XC. It also provides an interesting
baseline: as we work to raise our XC measure to 100% and
maintain it there, will the test code double or triple in size
to comprise half the total size of the system? What will be
the cost in terms of developer effort? Most importantly, will
the resulting system be more robust and easier to enhance?

8. Contributions and Future Directions

We believe that our investigation into the two questions
motivating this research has resulted in six contributions.

1. A novel coverage measure, Extreme Coverage (XC),
whose design is based upon requirements generated
from unit test invocation tools of widespread use in
agile development. The design of XC makes it more
amenable to use in agile programming contexts, pro-
viding this community with a means to validate com-
prehensiveness of test case suites.

2. A novel open source implementation of XC for Java
systems, JBlanket, that is available to the software de-
velopment community for use, evaluation, and modifi-
cation.

3. Case study evidence from a classroom setting indicat-
ing that the XC measure is neither too coarse grained
nor too fine grained for application in agile program-
ming contexts, and that 100% XC is feasible and prac-
tical in an agile setting.

4. Case study evidence from XC data on open source
tools indicating that XC is a useful measure for test
case suite validation.

5. A second novel measure, Unit Test Dynamics (UTD),
which provides a way to understand the costs and ben-
efits associated with agile test development and main-
tenance.

6. A Hackystat implementation of UTD that makes this
measure practical within an agile context. UTD data
for the Hackystat project itself over a three month in-
terval illustrates the application of the measure.

These contributions suggest a number of promising fu-
ture research directions.

First, work needs to be done to resolve the inconsisten-
cies in the literature regarding statement coverage and agile
practices. Should 100% statement coverage be strived for,
or avoided?

Second, should coverage be used as a driver for test
case design, or only as a quality assurance metric for some
other test case design method? Are some coverage mea-
sures (such as XC) more suited to “driving” test case design,
while others (such as statement or branch) are more suited
to validation?

Third, our UTD data provides evidence that very low lev-
els of test effort during development can result in moderate
levels of XC coverage. How much additional effort will be
required to raise the XC level to 100%? We plan to inves-
tigate this issue during Fall of 2003 by raising the XC level
in Hackystat to 100% and monitoring the resulting change
in proportion of test code and test effort that results.

Finally, we hope that the availability of XC, JBlanket,
UTD, and Hackystat along with our initial research results
will encourage members of the agile community to begin
collecting empirical data concerning the cost and quality of
test suite development, and that this will result in new in-
sight on how to make agile development faster, better, and
cheaper.

9. Acknowledgments

We gratefully acknowledge the hardworking and disci-
plined students from our current and prior software engi-
neering courses, and the code reviews, pair programming,
and good advice provided by the Hackystat Hackers (Hong-
bing Kou, Cam Moore, Cedric Zhang, Aaron Kagawa, and
Takuya Yamashita). Support for this research was provided
in part by grants CCR98-04010 andCCR02-34568 from the
National Science Foundation.

References

[1] J. M. Agustin. Improving software quality through extreme
coverage with JBlanket. M.S. Thesis CSDL-02-06, Depart-
ment of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, May 2003.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, Massachusetts, 2000.

[3] K. Beck. Test-Driven Development. Addison Wesley, Mas-
sachusetts, 2003.

[4] B. Beizer.Software Testing Techniques. Van Nostrand Rein-
hold, New York, second edition, 1990.

[5] P. Bishop. Estimating residual faults from code coverage. In
Proceedings of SAFECOMP 2002, 2002.

[6] A. Cockburn. Agile Software Development. Addison Wes-
ley, Massachusetts, 2002.

9

[7] P. Costa, R. Tvedt, F. Shull, and M. Lindvall. Agile methods
in the context of large companies. Technical Report TR-
03-114, Fraunhofer Center for Experimental Software Engi-
neering, Maryland, October 2003.

[8] R. DeMillo, W. McCracken, R. Martin, and J. Passaume.
Software Testing and Evaluation. Benjamin/Cummings,
1987.

[9] The Hackystat home page.
http://csdl.ics.hawaii.edu/Tools/Hackystat.

[10] J. R. Horgan, S. London, and M. R. Lyu. Achieving Soft-
ware Quality with Testing Coverage Measures.Computer,
27:60–69, September 1994.

[11] The JBlanket home page.
http://csdl.ics.hawaii.edu/Tools/JBlanket/.

[12] P. M. Johnson, H. Kou, J. M. Agustin, C. Chan, C. A. Moore,
J. Miglani, S. Zhen, and W. E. Doane. Beyond the per-
sonal software process: Metrics collection and analysis for
the differently disciplined. InProceedings of the 2003 In-
ternational Conference on Software Engineering, Portland,
Oregon, May 2003.

[13] The JUnit home page. http://www.junit.org/.
[14] B. Marick. How to misuse code coverage. Tech-

nical report, Reliable Software Technologies,
http://www.testing.com/writings/coverage.pdf, 1997.

[15] B. Marick. Agile methods and agile testing.Software Test-
ing and Quality Engineering, 3(5), 2001.

[16] J. Morgan and G. Knafl. Residual fault density prediction
using regression methods. InProceedings of the Seventh In-
ternational Symposium on Software Reliability Engineering,
1996.

[17] P. Piwowarski, M. Ohba, and J. Caruso. Coverage mea-
surement experience during function test. InProceedings of
the 15th International Conference in Software Engineering,
pages 287–301, California, 1993. IEEE CS Press.

[18] K. Saileshwar and A. Mathur. On predicting reliability of
modules using code coverage. InProceedings of the 1996
conference of the Centre for Advanced studies on collabora-
tive research, 1996.

[19] T. Yamaura. How to design practical test cases.IEEE Soft-
ware, 15(6), November 1998.

10

