
Practical automated process and product metric collection and analysis in a
classroom setting: Lessons learned from Hackystat-UH

Philip M. Johnson Hongbing Kou Joy M. Agustin
Qin Zhang Aaron Kagawa Takuya Yamashita
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

Abstract

Measurement definition, collection, and analysis is an
essential component of high quality software engineering
practice, and is thus an essential component of the soft-
ware engineering curriculum. However, providing students
with practical experience with measurement in a classroom
setting can be so time-consuming and intrusive that it’s
counter-productive—teaching students that software mea-
surement is “impractical” for many software development
contexts. In this research, we designed and evaluated a
very low-overhead approach to measurement collection and
analysis using the Hackystat system with special features
for classroom use. We deployed this system in two soft-
ware engineering classes at the University of Hawaii dur-
ing Fall, 2003, and collected quantitative and qualitative
data to evaluate the effectiveness of the approach. Results
indicate that the approach represents substantial progress
toward practical, automated metrics collection and analy-
sis, though issues relating to the complexity of installation
and privacy of user data remain.

1. Introduction

An important goal for the education of modern software
engineering professionals is the ability to appropriately col-
lect, analyze, and interpret software development process
and product measurements [1]. One approach to measure-
ment education involves the reading and analysis of pub-
lished case studies of measurement programs (such as [5])
as well as general texts on how to define, implement, and in-
terpret software metrics (such as [6]). An advantage of such
literature-centered approaches is the breadth of contexts and

approaches that students can consider.
A second approach is experiential, in which students

actually collect and analyze software metrics while per-
forming software development. The best known experi-
ential approach is the Personal (and Team) Software Pro-
cesses [7, 8]. An advantage of such experiential-centered
approaches is the acquisition of concrete skills in measure-
ment collection and analysis by students. However, expe-
rience with the PSP and TSP has revealed that they can
introduce substantial overhead into the software develop-
ment process [3, 11]. This can have the unfortunate, un-
intended consequence of “teaching” students that software
process and product measurement is impractical for “real”
software development unless the organization devotes sub-
stantial resources (such as a separate software engineering
process group) to metric definition, collection, and analysis.

Since 2001, we have been developing an approach to
software engineering measurement called Hackystat. The
goal of Hackystat is to provide useful process and product
measurement collection and analysis facilities to developers
without adding overhead to their daily activities. To accom-
plish this, Hackystat provides a set of “sensors” that devel-
opers attach to their development tools, such as their editor,
build tool, test framework, and configuration management
system. These sensors unobtrusively monitor development
activities and send process and product data to a central-
ized web service. Developers can log in to the website to
see the collected raw data and run analyses that integrate
and abstract the raw data streams to support higher level
interpretations. Developers can also configure “alerts” that
watch for specified conditions in the data stream and send
the developer email when these conditions occur. To sup-
port the varying product and process measurement needs
of different development contexts, Hackystat has a modu-
lar architecture supporting the definition of custom “con-



figurations”. For example, we designed one configuration,
called Hackystat-JPL, to support analysis of build process
data for the Mission Data System project at Jet Propulsion
Laboratory [9]. We also developed a configuration called
Hackystat-UH to support measurement collection and anal-
ysis of student software engineering data.

In this paper, we present the results of a case study de-
signed to assess the Hackystat-UH configuration. We col-
lected quantitative and qualitative data designed to address
four research questions. First, what level of overhead do
student developers experience when using Hackystat-UH?
Second, do the student developers find the analyses pro-
vided by Hackystat-UH to be usable and useful? Third, do
student developers view Hackystat-UH as providing a rea-
sonable approach to metric collection and analysis in “real
world” settings? Fourth, how can Hackystat-UH be made
more efficient and effective?

The next section describes the classroom context in
which we performed the case study. We then introduce
the measurement collection and analysis capabilities of the
Hackystat-UH configuration, followed by the quantitative
and qualitative results of the case study. We conclude with
our lessons learned and future directions. This research con-
tributes new insights on the design of software engineering
metrics instruction, the strengths and limitations of this con-
figuration of automated metrics collection and analysis, and
the capabilities and potential pitfalls of these measures in an
industrial context.

2. The Classroom Setting

We performed the case study during the Fall semester
of 2003 in a senior-level undergraduate and an introduc-
tory graduate-level software engineering course at the Uni-
versity of Hawaii. The undergraduate course contained 10
students, randomly assigned to 3 project groups with three
members each (one did not participate in the group project).
The graduate course had 17 students, randomly assigned to
3 groups of three students and 2 groups of four students.
Both courses followed the same basic curriculum, though
the graduate section had additional supplementary readings.

The experiential curriculum focused on techniques and
tools for Java-based software engineering of open source
software systems. The techniques included: Java code for-
matting and documentation best practices, system pack-
aging for multi-platform open source distribution, design
patterns, team structure and organization, unit testing,
coverage-based test plan assessment, configuration man-
agement, software review, web applications, and agile soft-
ware development. The tools included: Eclipse (an interac-
tive development environment), CVS (a configuration man-
agement system), Ant (a Java-based build tool), JUnit (an
automated testing framework), HttpUnit (a testing frame-

work for web applications), JBlanket (a coverage tool),
Tomcat (a web application server), and Hackystat (our tool
for process and product measurement).

For the first half of the course, the students worked
alone to develop a series of small software systems to in-
troduce them to the tools and techniques. In the second
half of the course, the instructor divided the students into
eight teams, each charged with developing a web applica-
tion called “SiteWatch”. The SiteWatch system is a JSP
and Servlet-based system that enables a community of users
to register with the installed web application and use it to
manage their own personal “watch list” of web sites. The
SiteWatch system recursively traverses the web sites on the
watch list of each user each day, informing the registered
user (via email or via a web interface) of any additions,
deletions, or modifications to pages within the sites on their
watch list.

The eight teams followed many of the practices asso-
ciated with “agile” development. The requirements for
the SiteWatch system were expressed as a set of 20 “user
stories”, short descriptions of end-user functionality. The
professor acted as an “on-site” customer, providing feed-
back, resolving requirement ambiguities, and prioritizing
user stories. The systems were developed incrementally
over two months, with release iterations occurring approxi-
mately weekly. For a user story to be considered complete,
the team was required to provide an automated acceptance
test using JUnit and HttpUnit that verified its functionality.
Using Ant and CVS, the teams were able to integrate, build,
and test their systems one or more times per day. Although
the curriculum included descriptions and short-term use of
pair programming and test-driven development, these two
agile practices were not required of the SiteWatch teams.
Teams did see high-level descriptions of each other’s sys-
tems at weekly review sessions, but were not allowed to
download code from each other’s CVS repository.

Unlike agile practices, which generally eschew detailed
metrics collection and analysis, the students installed Hack-
ystat sensors into each installation of their interactive de-
velopment environment (Eclipse) and their build tool (Ant).
These sensors collected information about the time each
project member spent editing each file in their system, struc-
tural metrics of the system at the time of a build, the occur-
rence of JUnit test invocation and the unit test results, and
the coverage associated with the unit tests. Students ran
analyses over this data to learn about their own develop-
ment process, to compare aspects of their development to
other team members, and to compare their team’s progress
to that of other teams. The next section discusses these fea-
tures of the Hackystat-UH configuration in more detail.



3. The Hackystat-UH configuration

Since its inception in 2001, a major goal of the Hackys-
tat project has been to learn how to make existing software
development environments “metrics-aware”, freeing the de-
veloper from the burden of metrics collection and analysis
so that they can focus on higher-level issues of interpreta-
tion and process change. We realized from the start that
there could be no “one size fits all” approach: different or-
ganizations would require their own unique combination of
sensors, metrics, and analyses. The current Hackystat sys-
tem consists of over a dozen subsystems that can be com-
posed together in different configurations depending upon
the types of measures, sensors, and analyses desired by an
organization.

We designed the Hackystat-UH configuration for use in
the Fall, 2003 software engineering classes at the University
of Hawaii. The configuration provides sensors for Eclipse,
JUnit, BCML, and JBlanket, and assumes that all develop-
ers will use these tools. It also provides analyses based upon
the assumption that developers will work in a set of groups,
and that developers can gain insight into software devel-
opment through access to measures regarding their own
group’s processes and products, as well as through access
to measures that compare their own group to others in the
class. The next sections present examples of these measures
and analyses in the Hackystat-UH configuration.

3.1. Measures: Active Time and Most Active File

Software developer effort is a notoriously difficult metric
to measure. At one extreme, the Personal Software Process
requires developers keep a log of time spent in each phase
of development, including design, implementation, compi-
lation, defect removal, and so forth. Developers are advised
to keep a stopwatch beside their desk, and use it to track the
duration of each interruption during development. While
this approach has (in theory) the potential to produce very
fine-grained measures of effort, experience has shown that it
is (in practice) both inaccurate and impractical: few if any
developers willingly accomodate such measurement over-
head for extended periods of time.

At the other extreme, industrial metrics programs often
rely on timecard data to measure developer effort. This
approach has the advantage of incurring virtually no ad-
ditional overhead beyond already existing administrative
tasks. However, the problem with this approach is that time-
card data is very coarse in nature; it rarely yields informa-
tion more specific than that the developer was engaged in
some kind of activity related to the project. Even worse,
timecard data is often inaccurate: a common administra-
tive constraint is that developers cannot charge more than
40 hours a week to their projects regardless of how many

actual hours they work.
Hackystat takes an alternative approach to the problem

of measuring developer effort, one that combines the fine-
grained approach of PSP style measurement with the low
overhead of timecard-based measurement. The cost of this
precise yet low overhead effort measurement is complete-
ness: Hackystat only measures the subset of developer ef-
fort that can be sensed from active use of development envi-
ronment tools. To minimize confusion, Hackystat calls this
measure as “Active Time” rather than “Effort”.

We have developed Active Time sensors for several in-
teractive development environments, including JBuilder,
Eclipse, Emacs, VisualStudio, and Vim, and implementa-
tions for Microsoft Office tools are forthcoming. Each sen-
sor implements the following algorithm. First, the sen-
sor starts a timer-based process that wakes up at user-
configurable intervals (with a default of 30 seconds). Each
time the Active Time sensor timer wakes up, it determines
the buffer (and file) the user is currently working on, and
its current size. It then compares this information to the file
and file size from the previous 30 seconds, and if the user
is still working on the same file and if the size has changed,
then the sensor records a “State Change” event for this file
for this 30 second interval.

The Active Time sensor collects together State Change
events and sends them to the server at user-configurable in-
tervals (with a default of 10 minutes). The server processes
State Change events to generate Active Time values in the
following way. First, each 24 hour day is divided up into
288 five minute intervals. For each five minute interval,
if at least one State Change event exists for that interval,
then the user is assumed to have been active for that en-
tire five minute interval. To determine the focus of atten-
tion during that five minute interval, the file associated with
each State Change event counts as a “vote”, and the file get-
ting the most votes during that five minute interval becomes
the “Most Active File” for that five minute interval, and is
counted as the single file that the user was working on for
that entire five minute period.

Figure 1 shows a portion of one user’s Daily Diary,
which is an analysis that illustrates (among other things) the
results of processing State Change events into Active Times
and Most Active Files. Although this approach of using a
five minute grain size might appear to have the potential to
lose information, we performed a validation study that indi-
cated very little difference in results for a five minute grain
size and, for example, a one minute grain size [12].

The Active Time/Most Active File measure has several
appealing properties. First, it can be performed entirely
automatically and does not incur any developer overhead.
Second, the information enables a variety of higher-level
analyses: for example, editing a file with the suffix “.java”
implies that the developer was engaged in Java program de-



Figure 1. The Daily Diary represents the user’s day in 5 minute intervals.

velopment during that five minute interval. Third, it au-
tomatically senses idle time—if the developer goes off to
lunch and leaves their editor running, the timer will stop
recording State Change events within 60 seconds. Fourth,
it is consistent and comparable: Active Time is measured
the same for all developers regardless of the editor they are
using. Fifth, it is specific and unambiguous: Active Time
measures the time the developer spends physically modify-
ing software artifacts.

It must be noted that not all important and useful de-
veloper activities involve modification of software artifacts.
For example, design meetings can be extremely important
and useful, but Active Time does not represent this effort.
Managers may perform a critical role in improving project
velocity by using email to coordinate people’s activities, but
Active Time does not represent this effort either. We will re-
turn to this issue in Section 5.

3.2. Measures: FileMetric, Coverage, UnitTest

The Active Time/Most Active File measure indicates the
developer’s focus of attention, but indicate little about the
results of that attention. The Hackystat-UH configuration
collects three additional measures that help track the evolu-
tion of the software system: FileMetric, UnitTest, and Cov-
erage.

The FileMetric measure provides size and complexity
data regarding the software artifact. Hackystat provides a
sensor for the “BCML” (Byte Code Metrics Library) tool

that calculates object oriented size and complexity metrics
for Java based upon the Chidamber-Kemerer metrics defi-
nitions [4]. The BCML sensor is available for certain IDEs
(such as Eclipse and Emacs) to calculate the current size
and complexity for the Most Active File. An Ant task is
also available for obtaining a snapshot of the system’s over-
all size and complexity.

The UnitTest measure provides information regarding
the invocation of JUnit tests and their results: whether they
passed, failed, or generated an exception. As with the File-
Metric measure, this data can either be collected within the
IDE if a JUnit sensor is available, or through an Ant task.
Currently the only IDE supporting a JUnit sensor is Eclipse.

Finally, the Coverage measure provides an indication of
the percentage of the source code exercised by testing, and
thus an indirect measure of the quality of testing. Hackys-
tat provides a sensor for the JBlanket method coverage tool
[2]. Both JBlanket, and the Hackystat sensor for collecting
Coverage measures from it, are available to developers as
Ant tasks.

As with Active Time, the FileMetric, UnitTest, and Cov-
erage measures are designed to avoid incurring new over-
head on developers apart from installation. The BCML sen-
sor Ant task can be installed as a dependent target of the
compile task, so that the structural metrics are automati-
cally computed and sent to the server each time the system
is built. Similarly, the UnitTest and Coverage sensors run
each time the developer tests the system.



3.3. Definition: Projects

In addition to active time, file metrics, and test invoca-
tions and coverage, the Hackystat-UH configuration must
represent which developers are working together, what files
they are collaboratively developing, and the time period
during which a given increment of the system is under de-
velopment. While it might be possible for the system to
attempt to infer this from the patterns of work of develop-
ers, it is more simple and less error-prone to simply require
one developer from each project team to define a “Project”
containing that information.

A Project definition specifies the set of developers who
are collaborating together, as well as the directory hierar-
chies containing the project files. The system sends the
developers specified in this project definition an email in-
dicating that they have been defined within a project. They
must explicitly confirm their agreement to participate in this
Project definition, which implies their agreement to allow
their data to be used in Project-level analyses that will be
visible to all group members.

While defining a Project is overhead, it is a one-time
overhead of only a few minutes per project. Since a typical
Project lasts several weeks or months, this overhead appears
to be acceptable provided developers receive benefits from
the representation. The next sections present a subset of the
analyses available in the Hackystat-UH configuration that
provide a flavor for the kinds of information developers can
obtain.

3.4. Analysis: Project Member Active Time

Two common problems in student project work are pro-
crastination and free-loading. Procrastination leads to a de-
lay in the start of the project and/or intervals where noth-
ing is accomplished, followed by a last minute desperate
rush to complete the system. Free-loading results in one
or more members of the project team performing very lit-
tle useful work, requiring excessive effort and commitment
from the remaining team members to complete the project.
Procrastination and free-loading tend to reduce the quality
and completeness of the project, and increase the stress lev-
els of participants.

Figure 2 illustrates the “Project Member Active Time”
analysis. This analysis provides each project team with a
chart of the cumulative Active Time devoted by each of their
members to the project. Project Member Active Time is de-
signed to ameliorate procrastination and free-loading in a
group by making visible the consistency and equality of Ac-
tive Time devoted to the project over time. If a team mem-
ber is working consistently on the project, then their line
will have an approximately constant slope. If team mem-
bers are contributing an equal amount of active time, then

Figure 2. Project Member Active Time

the each line should converge to the same final cumulative
Active Time value. In Figure 2, for example, two of the
three members generated an approximately equal amount
of Active Time with a consistent slope. The third member
generated less Active Time, and less consistently than the
other two. The chart legend (omitted in Figure 2) indicates
the team member associated with each line.

3.5. Analysis: Project Member File Active Time

A second problem in student project work is maintaining
awareness of the work being done by members on a daily
basis. Students tend to work in a highly distributed setting,
with little time spent physically co-located. Lack of knowl-
edge of who is working on what can lead to coordination
problems and reduced productivity.

Figure 3 illustrates the “Project Member File Active
Time” analysis. This analysis provides each team with a
table showing the files associated with their project that a
member of the team worked on for a given day, along with
the number of minutes of Active Time associated with the
file. The analysis provides a window into the daily devel-
opment activities of each group member and the team as a
whole. It is designed to provide each team member with a
kind of passive “awareness” of the group’s efforts.

3.6. Analysis: Course Project - To Date

The “Project” analyses provide information to members
of a group about the process and products of that group’s



Figure 3. Project Member File Active Time

software engineering efforts. However, there is also vari-
ability across student project groups: some get started more
quickly, function more smoothly, and develop much high
quality systems than others. The Hackystat-UH configura-
tion provides a set of “Course” analyses that allow students
to compare certain aggregate product and process measures
across the set of all project groups. These analyses are de-
signed to make visible the state and progress of all groups
to each other, and thus help groups to recognize when and
if they are “falling behind”.

Figure 4. Course Project - To Date

The “To Date” analysis shown in Figure 4 collects to-
gether the latest values of the major measures associated
with the Hackystat-UH configuration.

In this example, the SiteWatch-Ewalu system is the
largest (in terms of classes, methods, and LOC) among all
the SiteWatch projects, yet has lower coverage than several
others. This indicates they might want to refocus develop-
ment effort into increased testing.

3.7. Other measures and analyses

Space does not permit a description of all the analyses in
the Hackystat-UH configuration. The Course Project Anal-
ysis provides six other analyses in addition to the “To Date”
comparison described above, which allow teams to compare
their process and product measures to each other over time.
The configuration also includes a “Buffer Transitions” mea-
sure tracks the sequence of files visited by a user in their edi-
tor, which has potential to uncover “behavioral”, as opposed
to structural, coupling between modules. A set of personal
analyses on Active Time, files, and directory structures are
provided. Hackystat provides a “alert” facility that users
can configure in order to be notified by email when events
of “interest” occur in their collected data.

4. Results and Evaluation

To assess the Hackystat-UH configuration, we collected
both quantitative data focusing on the project outcomes and
qualitative data focussing on the opinions of the students
regarding Hackystat-UH after approximately six weeks of
use.

4.1. Quantitative Results

The quantitative data includes the Hackystat measures
collected throughout project development, along with the
number of user stories completed by each project team. A
summary of this data is provided in Figure 5. The com-
pleted user stories value provides an indirect measure of to-
tal project functionality, the total active time value provides
an indirect measure of team effort, the final size provides
an indirect measure of software complexity, and the final
coverage measure provides an indirect measure of testing
quality.

The completed user stories values indicate that all groups
made substantial progress in development of the SiteWatch
system, though only one group completed all 20 user stories
in the project specification. All groups devoted substantial
effort to their projects, with most groups spending between
95 to 130 hours. The systems varied in size between ap-
proximately 1500 and 2500 non-comment LOC. Coverage



varied, with three groups obtaining good final coverage val-
ues (over 90%), two groups obtaining very poor final cov-
erage (under 40%), and the remainder in the middle.

Perhaps the most interesting feature of the quantitative
results in Figure 5 is that, despite substantial variation in
the values of each measure across the eight teams, all of
these measures are highly uncorrelated with each other. One
might hope for a correlation between effort and functional-
ity, for example, or between functionality and size, because
such a correlation would support predictive measurement.
At least for this context, any predictive model will require
a more sophisticated representation of context, process, and
product.

4.2. Qualitative Results

The quantitative data helps reveal the software develop-
ment context in which we undertook a qualitative evalu-
ation of the Hackystat-UH configuration. The evaluation
consisted of a survey instrument containing 13 questions
that we distributed via email to the 27 students in the two
classes. Response was optional, but the students were of-
fered extra credit points for providing their opinions. We
obtained 24 responses, an 89% response rate.

The survey questions are organized into four sections.
The Installation/Configuration section requests opinions re-
garding the ease or difficulty of initial installation and con-
figuration of the Hackystat sensors and server-side config-
uration of the Hackystat user account. The Overhead of
Use section requests opinions regarding the work required
from users after installation and configuration to gather data
and perform analyses. The Usability and Utility section re-
quests opinions regarding the three analyses described in
Section 3. “Usability” is defined to mean the ease of invok-
ing an analysis and understanding what the results mean,
while “utility” is defined to mean the usefulness of the anal-
ysis; does the analysis provide information that is actually
helpful. The Future Use section requests opinions regarding
whether Hackystat is considered feasible (i.e. appropriate,
useful, or beneficial) for use in a professional software de-
velopment context. Each section contains initial questions
in which the subject was asked to respond with a number
between 1 and 5 (1 being the most favorable response and
5 being the least favorable response, with their actual labels
varying depending upon the question). The final question
of each section asks for feedback on the section issue in an
open-ended format.

A companion technical report to this paper provides on-
line access to the complete questionnaire and the raw data
[10]. Figure 6 presents a subset of the questions and the
percentage of the 24 respondents replying with the given
numeric value from 1 to 5.

The survey also includes four open-ended questions re-

questing feedback on problems encountered and sugges-
tions for future improvements, which generated 98 com-
ments (available in [10]). Example comments from each
section include: “Yeah, a nice installation ”wizard” with
installation options and such would be kool”, “After instal-
lation and configuration, there was virtually no overhead in
using hackystat”, “All of the above analyses were easy to
use and understand. The Course Project Analysis was inter-
esting to run to see how your group compared to the others,
but I wasn’t sure exactly how that information could be used
to improve your project”, and “I think Hackystat is very fea-
sible in a professional setting. The only problem i can think
of is that some people may not want to be monitored.”

The quantitative and qualitative results provide evidence
regarding the four research questions of this study.

1. What level of overhead do student developers expe-
rience when using Hackystat-UH?During installation and
configuration, the level of overhead depends upon the spe-
cific sensor. The Eclipse sensor, for example, takes advan-
tage of Eclipse platform installation wizards and thus incurs
minimal overhead. The Ant sensors were significantly more
difficult to install and thus incurred significantly more over-
head. However, during daily use after successful installa-
tion, the results provide substantial evidence that Hackystat-
UH is unintrusive and incurs very little overhead.

2. Do the student developers find the analyses provided
by Hackystat-UH to be usable and useful?The results pro-
vide substantial evidence that Hackystat-UH analyses are
quite usable—at least 75% of the respondents gave usabil-
ity ratings of 1 or 2 to all three analyses evaluated, and no
one rated them a 5 (Not Usable At All). Usefulness var-
ied depending upon the analysis. Over 60% of the respon-
dents gave the two Project Member analyses a usefulness
rating of 1 or 2, and no one gave a rating of 5. However, the
Course Project analyses received decidedly mixed reviews,
with 50% giving them a rating of 1 or 2, but almost 30%
giving them a 4 or 5.

3. Do student developers view Hackystat-UH as provid-
ing a reasonable approach to metric collection and analysis
in “real world” settings? Over 70% responded with a 1 or
2 to the question of whether Hackystat would be feasible
at their job if they were a professional software developer,
and none responded with a 5. The open ended questions re-
vealed concerns regarding privacy, although more than one
response indicated that the respondent would not find the
privacy issues of concern as long as they were the manager
and not the programmer!

4. How can Hackystat-UH be made more efficient and
effective? The results provide several priorities for future
Hackystat-UH development. First, installation of Ant-based
sensors should be simplified and made more reliable. One
promising approach is a “download assistant” that auto-
mates the client-side installation process. Second, user doc-



T1 T2 T3 T4 T5 T6 T7 T8
Completed User Stories 12 20 17 17 10 16 18 14
Total Active Time (hrs) 128 95 119 97 170 96 163 117
Final Size (LOC) 1948 1698 2190 1632 2191 2371 2438 1456
Final Coverage (%) 36 31 84 99 72 94 86 98

Figure 5. Selected quantitative results

Installation/Configuration Very Easy ... Very Difficult
Installing the Eclipse sensor was: 54% 33% 8% 4% 0%
Installing the Ant sensors (JUnit, JBlanket, BCML) were: 8% 17% 46% 21% 8%

Overhead of Use Very Low ... Very High
The amount of overhead required to collect Hackystat data was: 71% 13% 13% 0% 4%
The amount of overhead required to run Hackystat analyses was: 67% 17% 13% 4% 0%

Usability Highly Usable ... Not Usable at all
The Project Member Effort Analysis was: 54% 33% 8% 4% 0%
The Course Project Analysis was: 33% 42% 25% 0% 0%

Utility Highly Useful ... Not Useful at all
The Project Member Effort Analysis was: 38% 33% 13% 17% 0%
The Course Project Analysis was: 21% 29% 21% 17% 13%

Future Use Very Feasible ... Not Feasible at all
If I was a professional software developer, using Hackystat at my job would be: 38% 33% 25% 4% 0%

Figure 6. Selected qualitative results

umentation was weak in several areas. Third, the ability
to track forms of developer activity in addition to Active
Time would create a richer and more accurate representa-
tion. Two candidates include “Pair Programming Time” and
“Code Review Time”. Finally, privacy issues are clearly an
important aspect of Hackystat, and must be addressed in
each proposed context of use.

4.3. Limitations

There are several threats to the external validity of this
case study that must be taken into account in interpreting
these results.

First, this data is drawn from a limited sample size of
approximately two dozen students in software engineering
classes at the University of Hawaii. The subjects therefore
have a relatively narrow and homogeneous background in
software development.

Second, the context in which they used the system was a
course project. Course projects tend to be smaller, narrower
in scope, and with less pressure on the developers than an
industrial context. It is one thing to get a poor grade for
doing a poor job, it is another thing to lose your job for
doing a poor job.

Third, the administration of the questionnaire was per-
formed by the designer of the system under study, who
was also the instructor for the class. Responses were not
provided anonymously, but rather emailed back to the in-
structor/designer. This raises the question of whether the

responses are biased, either consciously or unconsciously,
in order to ”please” the instructor/designer.

The best way to address each of these threats is to repli-
cate this study in other academic and industrial environ-
ments, and we would support and encourage such efforts
by interested independent researchers and practitioners.

5. Lessons Learned and Future Directions

Our first lesson is that the Hackystat-UH configuration
does provide practical automated process and product met-
ric collection and analysis in a classroom setting. This case
study confirms and extends results from our previous re-
search, in which we compared prior experiences with Hack-
ystat to our experiences with the LEAP automated toolkit
and with the Personal Software Process [11].

A second lesson is the need to learn more about the re-
lationship between Hackystat’s representation of developer
activity and overall developer effort. To that end, one future
direction is to ask developers to manually keep paper-based
logs of their total effort on a software project for short pe-
riods of several days, and then compare these logs to the
sensor data to look for relationships between Active Time
and overall developer effort. As noted above, another fu-
ture direction is to develop additional representations for
developer effort such as Review Time and Pair Program-
ming Time.

A third lesson is the need to better understand privacy is-



sues in automated measurement collection. The level of pri-
vacy in Hackystat depends upon the configuration: a config-
uration like Hackystat-JPL maintains complete developer-
level privacy, while the Hackystat-UH configuration cre-
ates a level of transparency regarding activities that is novel
to most developers. A final future direction is to investi-
gate the organizational contexts that influence developer at-
titudes towards measurement privacy, and ways in which to
make effective measurements without exceeding developer
privacy comfort levels.

References

[1] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, edi-
tors. SWEBOK: Guide to the Software Engineering Body of
Knowledge. IEEE, 2001.

[2] J. M. Agustin. Improving software quality through extreme
coverage with JBlanket. M.S. Thesis CSDL-02-06, Depart-
ment of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, May 2003.

[3] J. Borstler, D. Carrington, G. Hislop, S. Lisack, K. Olson,
and L. Williams. Teaching PSP: Challenges and lessons
learned.IEEE Software, 19(5), September 2002.

[4] S. Chidamber and C. Kemerer. A metrics suite for object-
oriented design.IEEE Transactions on Software Engineer-
ing, 20(6), June 1994.

[5] M. K. Daskalantonakis. A practical view of software mea-
surement and implementation experiences within Motorola.
IEEE Transactions on Software Engineering, November
1992.

[6] N. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous
and Practical Approach. Thomson Computer Press, 1997.

[7] W. S. Humphrey. A Discipline for Software Engineering.
Addison-Wesley, New York, 1995.

[8] W. S. Humphrey.Introduction to the Team Software Process.
Addison-Wesley, New York, 2000.

[9] P. M. Johnson. The Hackystat-JPL configuration: Overview
and initial results. Technical Report CSDL-03-07, Depart-
ment of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, October 2003.

[10] P. M. Johnson. Results from qualitative evaluation of
Hackystat-UH. Technical Report CSDL-03-13, Depart-
ment of Information and Computer Sciences, University
of Hawaii, Honolulu, Hawaii 96822, December 2003.
http://csdl.ics.hawaii.edu/techreports/03-13/03-13.html

[11] P. M. Johnson, H. Kou, J. M. Agustin, C. Chan, C. A. Moore,
J. Miglani, S. Zhen, and W. E. Doane. Beyond the per-
sonal software process: Metrics collection and analysis for
the differently disciplined. InProceedings of the 2003 In-
ternational Conference on Software Engineering, Portland,
Oregon, May 2003.

[12] H. Kou and X. Xu. Most active file measurement in Hack-
ystat. Technical Report CSDL-02-09, Department of Infor-
mation and Computer Sciences, University of Hawaii, Hon-
olulu, Hawaii 96822, December 2002.


