

Toward Accurate HPC Productivity Measurement1

Stuart Faulk
U. of Oregon

John Gustafson
Sun Microsystems

Philip Johnson
U. of Hawaii

Adam Porter
U. of Maryland

Walter Tichy
U. of Karlsruhe

Lawrence Votta
Sun Microsystems

Contact: faulk@cs.uoregon.edu

1 This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. NBCH3039002.

Abstract

One key to improving high-performance computing
(HPC) productivity is finding better ways to measure it.
We define productivity in terms of mission goals, i.e.,
greater productivity means that more science is
accomplished with less cost and effort. Traditional
software productivity metrics and computing benchmarks
have proven inadequate for assessing or predicting such
end-to-end productivity. In this paper we describe a new
approach to measuring productivity in HPC applications
that addresses both development time and execution time.
Our goal is to develop a public repository of effective
productivity benchmarks that anyone in the HPC
community can apply to assess or predict productivity

1. Introduction

Our work focuses on developing an effective approach
to characterizing and measuring software productivity in
high performance computing applications. Removing or
ameliorating productivity bottlenecks in next-generation
high-performance computing systems is a key objective of
DARPA’s High-Productivity Computing Systems (HPCS)
Program. Before we can hope to address software
productivity problems we must agree on what we mean by
“productivity” in HPCS applications, and how such
productivity can be measured. Goals of our work include:

1) Develop a common definition of HPCS
productivity that the HPCS developers, suppliers,
and buyers (e.g., government agencies) can agree
on. For our purposes, this means a definition that
is consistent with the mission-level view that
greater productivity means that more science is
accomplished with less cost and effort.

2) Develop effective measures of HPCS productivity
that encompass the overall development process—
design time as well as execution time. In
particular, we seek to develop measures that apply
to a wide range of development environments and

broadly across high-performance computing
application domains (e.g., weather prediction,
fluid dynamics, nuclear applications, etc.) to
assess, compare, or predict productivity.

3) Provide productivity measurement capabilities to
guide productivity improvement for both hardware
and software developers. Effective, objective
measurement provides the basis for systematic
productivity improvement. We seek to provide
common, public benchmarks and metrics to use in
assessing and improving productivity.

Both HPCS developers and buyers have traditionally
used standardized benchmarks (e.g., LINPACK) to guide
development choices. System developers use benchmark
results to guide platform development and subsequently
demonstrate the speed of their machines. Buyers
traditionally use such benchmarks to predict computation
times and choose among competing platforms. However,
the benchmarks and corresponding metrics employed to
date have proven to be decreasingly effective predictors of
end-to-end productivity as software development time has
come to dominate execution speed as the primary
productivity bottleneck. Traditional benchmarks focus
almost entirely on hardware speed. Thus, they typically
attempt to predict only execution-time productivity,
ignoring development time. Further, they do not measure
other properties of an application that matter to users:
reliability, repeatability, portability, reusability,
maintainability, etc.

To address these issues, we are creating a new type of
standardized benchmark that 1) encompasses the breadth
of design-time and execution time activities as well as 2)
the productivity contributions of both functional and non-
functional requirements. In addition to defining a
canonical computation problem, these “productivity
benchmarks” seek to characterize an end-to-end
productivity problem by capturing the representative
context of the computation. We will call such a multi-
dimensional productivity benchmark a productivity
benchmark suite (PBS).

2. Productivity Benchmarking Approach

A PBS comprises a canonical computation problem in
the context of behavioral and developmental requirements
representative of a particular high-performance computing
domain. In addition to the functional and non-functional
requirements, the productivity benchmark suite will
provide targeted metrics and tools for measuring
productivity in terms of overall costs and benefits across
the development cycle. The goal is to create a set of
benchmarking capabilities that, when applied, will
exercise and measure not only the execution efficiency of
a platform on a particular class of high-performance
computing problems, but all the dimensions of
development that contribute to the value of a solution.

Our long-range goal is to develop a public repository
of empirically validated PBSs that are representative of
the productivity challenges in each distinct high-
performance computing domain. Platform developers or
buyers can then apply these PBSs to assess and predict
productivity of particular high-performance computing
platforms on their domain interest.

Our approach to developing PBSs is based on the
empirical derivation of canonical workflows [1] and
purpose-based benchmarks [2]. Together with associated
non-functional requirements, value function, and metrics,
these sufficiently constrain a benchmark problem that
different developers will be able to apply the benchmark
and generate productivity measures that can be
meaningfully compared. The key components are:

Canonical Workflows: Briefly, canonical workflows
are used to characterize and constrain the process context
of a productivity benchmark. A canonical workflow
characterizes both the development process and the
execution workflow associated with creating and using a
high-performance computing application to meet an
overall set of mission goals. It characterizes the process
steps and work products associated with characteristic
development paradigms in the high-performance
computing community. An initial set of canonical
workflows have been defined [1] and will be validated
and refined through analysis of development efforts in
different HPC domains.

Purpose-based benchmarks (PBB): PBBs are
computational problems that accurately embody the
design and execution time challenges of real applications
in a domain. Unlike traditional benchmarks, PBBs are
designed to exercise both the development process and the
development platform in essentially the same manner
(with reduced size) that real development problems do in
a particular application domain. A detailed discussion of
PBBs is given in [2].

Non-functional requirements: The benchmark will
include representative execution time and developmental

requirements with their associated metrics of completion
and effectiveness. These include any requirements on the
development process, administration, static-design, and
run-time behavior characteristic of the application
domain.

Characteristic value function: Associated with the
requirements is a representative value function. The value
function characterizes a value proposition (i.e., relative
values of the different requirements) associated with
applications in the domain interest.

Productivity metrics and tools: A set of standardized
metrics, algorithms and tools for measuring productivity
associated with both development time and execution time
activities and goals.

We will derive the properties and content of PBBs
based on observation of real developers and from
carefully controlled experiments. For example, we will
obtain the application properties of interest and their
relative values directly from developers in particular HPC
domains by direct inquiry or by observation. A more
complete description of our development approach will be
published in [3]. The following gives a brief overview of
key parts of our approach.

3. Purpose-Based Benchmarks

Currently, HPCS solutions are typically compared in
terms of operations per second for certain well-known
programs, such as those found in LINPACK or the
STREAM benchmarks. We refer to these programs
collectively as “activity-based benchmarks.” As vendors
and users of HPCS systems, we find that activity-based
benchmarks are inadequate. In our experience user needs
are never expressed solely in terms of processor speed.
Rather, they are expressed in terms of simulations to be
done, scientific questions to be answered, bridges to built
- work to done. Processor rate affects these issues, but in
the final analysis, it is not a measure of productivity.

In contrast to activity-based benchmarks, we are
proposing a new class of benchmark called purpose-based
benchmarks. A purpose-based benchmark (PBB) is a
detailed description of a realistic, application-level goal,
constraints on how that goal is met, and infrastructure for
measuring how well the goal is met. Executing the
benchmark means doing the end-to-end work needed to
satisfy the specified need. By measuring this work across
different HPCS solutions, we gain insight into the
productivity offered by different solutions in different
contexts. Because the PBBs must be executed on different
HPCS solutions, they must be architecture- and
programming language-independent so as not to unfairly
preclude or disadvantage novel or nontraditional HPCS
solutions. Specifically, the PBB includes:

• Application statement: This is a problem of
direct interest to an HPCS user. For example,
minimize the drag coefficient of a particular
shape-constrained vehicle.

• Scientific background: To facilitate comparisons
among different benchmark implementers, the
PBB will contain a general description of the
preferred scientific or mathematical solution
approach. For instance, solve this problem using
the following system of linear equations.

• Solution constraints and requirements: This is a
statement of development and operational
constraints, such as: the 24-hour weather forecast
can take no longer than 3 hours to compute, or the
software must meet certification standards for use
in safety-critical environment A particular level of
security might be required, as defined by codified
government standards.

. Figure 1 illustrates a representative truss-design
problem from mechanical engineering. In this problem the
truss is to be attached at three points to a wall and must
support a load at a given distance from the wall. The truss
must support its own weight and each joint requires extra
steel. The exact attachment points, load, and joint weights
are unknown until run begins. The user’s functional goal
is to find the pin-connected structure that has the lowest
weight.

To support their development and use, we are
developing an open PBB repository. Our goal is to
provide an open forum for developing, evaluating, and
improving credible and repeatable PBBs. We are

beginning to populate the repository by
identifying specific HPCS application areas
from which to draw candidate problems.
These areas include: Nuclear Applications,
Life Sciences, Mechanical Design, Crash
Simulation, Fluid Dynamics, Weather and
Climate Modeling, Signal/Image
Processing, and Financial Modeling.

4. Productivity measurement

The economic definition of productivity

is the output per unit-of-work. However,
the mutable, intangible nature of both the
processes and the products of software
development make the outputs and units-of-
work difficult to define or measure. The
default has been to choose metrics that are
relatively easy to measure, but that bear
only a loose relationship to the value of
what is produced (e.g., source lines of code
[4] or function points [5])

Our goal is to address these issues by providing a
framework for characterizing and measuring the perceived
value of the output to system stakeholders. We define the
output to include any properties of the system that
consume work and have stakeholder value, including
those that have no direct physical analog in the code (e.g.,
usability).

Initial work has shown that we can characterize the
overall value of a solution in terms of the set of properties
of interest to stakeholders typically defined as functional
or non-functional requirements (e.g., security, availability,
locality, portability, maintainability, and so on). We can
capture this by representing the total relative value as a
vector over the values of the properties of interest using
the following framework. We associate with each property
of interest i:

1) A metric of completion Ci
2) A relative value weight vi

Briefly, the metric of completion Ci denotes the degree to
which the realization of property i meets stakeholder
requirements for that property. The relative value weight
vi represents the importance of the property i relative to
the other properties of interest. The value of some set of
properties i = 1 to n is given by the vector:

VA = (v1C1, v2C2, …, vnCn) (1)
Assuming independence and that we can normalize

each of the viCi to a common metric (e.g., labor or cost),
we can express the total value as the sum.

VA = v1C1 + v2C2 + … + vnCn (2)

Figure 1: Truss Benchmark

For example, we could calibrate each Ci such that Ci =

1 whenever property i meets its design goals, and vi gives
the relative importance of property i expressed as a
percentage such that ∑n

i=1(vi) = 100 and VA = 100 exactly
when all the Ci are satisfied. Relative productivity is then
given by the value produced divided by the work
consumed to produce it:

P = VA / W (3)

Equivalently, we can say that the greater the value of VA
for a given amount of work, the higher the productivity.
This corresponds to our intuitive view that greater
productivity implies greater value per unit of work.

By design, our value function must be used in the
context of a computing application that establishes the
value space of interest. For productivity benchmarking,
this context will be given by the PBS. The definition of
the PBS will include the definitions of the properties of
interest, corresponding metrics of completion, and
representative value weights. Appropriate properties and
values will be obtained from empirical studies of
representative development efforts in the application area
of the benchmark. An example illustrating the
applicability of the model on a real HPC development is
given in [3]. In [3] we also illustrate an approach to
measuring non-functional attributes like maintainability.

5. Measuring development efforts

There are two major goals of empirical measurement in
the context of our benchmarks:

1) Characterization: The first goal of process
measurement is to better understand what actually
happens during such development including
identification of potential problems and
bottlenecks in HPCS development, clarification of
the similarities and differences between the
various workflows for development, and the
potential creation of predictive models for
required resources and product quality.

2) Control: Once a baseline set of measures has been
obtained measurement can begin to support
project management activities. Model outputs can
be used to help guide the new development.

We will measure HPCS development in both
qualitative and quantitative ways. Our measurement
techniques will include structured interviews, time and
motion studies, and automated measurement. Each of
these techniques has different strengths and weaknesses.
By employing all of these techniques, we can ameliorate
the weaknesses present in each form and improve the
overall validity of the results.

Structured Interviews: In structured interviews, a
researcher talks directly with members of the development
team to learn more about the developer’s view of the
development process and its strengths and weaknesses.
Structured interviews are useful for general
characterization of a workflow, gaining insight into the
kinds of quantitative measures that would be useful to
collect, and collecting examples of process problems and
solutions. Structured interviews will be used to conduct
case studies of past HPC development efforts and to
understand what kinds of computational problems and
non-functional requirements characterize each application
domain.

Time and Motion Studies: In time and motion studies
the observer spends time “shadowing” one or more
members of the development team, recording the times
and tasks performed. Time and motion studies have the
advantages of supporting fine-grained models of how
developers spend their time, and surfacing issues in the
development process that may not be perceived by the
developers themselves. The data that is collected is thus of
generally higher quality and fidelity than that collected by
structured interviews (though far more labor intensive to
collect) [6]. Thus time and motion studies will be used to
corroborate the results of structured interviews, identify
sources of systematic bias, identify additional issues, and
provide detailed data on workflows and units of work.

Automated Measurement: A third form of
measurement involves collection of data using the artifacts
of development itself. For example, if development uses a
source code control system, then the system logs can be
analyzed to understand the patterns of developer
interaction with the source files over time. Automated
measurement has the advantages of collecting more
objective measures of the process and products of
development that are not filtered through the perceptions
of developers. It is also low cost, but tends to be less
complete than the other forms of measurement. For this
effort, we are developing new approaches to automated
measurement, based on [7], targeted to the specialized
nature of HPCS development. Automated tools tailored to
processes and products of specific domains will then be
provided as part of each PBS to support productivity
measurement of the benchmark’s development.

6. Benchmark Development

We are in the process of developing an initial set of
benchmarks, metrics and tools to validate our conceptual
approach to productivity measurement for HPCS. Our
development approach is iterative:

1) Identify a community of developers who will use
the benchmark for productivity measurement or
prediction,

2) Develop productivity measurement infrastructure
appropriate for that community, e.g., define
benchmarks, define workflows and corresponding
functional- and non-functional requirements,
create and install measurement instruments and
analysis techniques,

3) Observe and measure developers as they execute
the benchmark using the previously-defined
infrastructure components, and

4) Analyze benchmark performance and evaluate and
improve infrastructure.

We have initiated the process with two developer
communities: one non-professional group consisting of
graduate students at the University of Maryland, the other
consisting of professional software developers working
remotely from Russia. Both communities are beginning
work on an initial version of the Truss Benchmark each
following a different canonical workflow.

7. Summary

Ensuring that next-generation HPC platforms

significantly improve real productivity in terms of the
science accomplished will require new approaches to
characterizing, measuring, and predicting productivity.
Current productivity metrics and benchmarks fall short.
Our goal is to establish, apply, and validate an effective
approach to assessing and predicting productivity that
spans both development and execution time. We seek to
provide these capabilities in a form that supports platform
buyers in choosing the best system and platform
developers in providing technology that addresses real
productivity problems.

Carefully controlled experiments will help us better
understand precisely where developers spend their time
and how different platform features might increase the
efficiency those activities. From this we expect to develop
detailed canonical workflows representative of different
development environments. Detailed knowledge of
problem characteristics, requirements, values, and
workflows will be combined to develop tailored,
productivity benchmarks for key HPCS domains. These
benchmarks will provide not only a representative
computation problem, but representative non-functional
requirements that will exercise the entire development
process across a value space appropriate to the domain

and provide metrics and tools for measuring productivity
throughout the development cycle.

Our long-range goal is to develop a public repository

of well-validated PBSs that are representative of the
productivity challenges in each distinct high-performance
computing domain. Platform developers or buyers can
apply these PBSs to assess and predict productivity of
particular high-performance computing platforms on their
domains of interest

8. References

[1] J. Kepner, “HPC Productivity: an Overarching View,”
International Journal of High Performance Computing
and Applications: Special Issue on HPC Productivity (ed.
Kepner), vol. 18, no. 4, Winter 2004.
[2] J. Gustafson, “Purpose-Based Benchmarks,”
International Journal of High Performance Computing
and Applications: Special Issue on HPC Productivity (ed.
Kepner), vol. 18, no. 4, Winter 2004
[3] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W.
Tischy, and L. Votta,. "Measuring HPCS Productivity”,
International Journal of High Performance Computing
and Applications: Special Issue on HPC Productivity (ed.
Kepner), vol. 18, no. 4, Winter 2004.
[4] B. Boehm, Software Engineering Economics, Prentice
Hall, 1981.
[5] A. Albrecht, and J. Gaffney, “Software function,
source lines of code, and development effort prediction: a
software science validation,” IEEE Transactions on
Software Engineering, vol. 9, no. 6, pp. 639-648, 1983.
[6] D. Perry, N. Staudenmayer, and L. Votta,
"Understanding and Improving Time Usage in Software
Development," in Trends in Software: Software Process,
Wolf and Fuggetta, eds., John Wiley & Sons, 1996.
[7] P. Johnson, H Kou, J. Agustin, C. Chan, C. Moore, J.
Miglani. S. Zhen, and W. Doane, “Beyond the Personal
Software Process: Metrics collection and analysis for the
differently disciplined,” Proceedings of the 2003
International Conference on Software Engineering,
Portland, Oregon, May, 2003.

