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can neither predict nor control what you can-
not measure.”3

Despite metrics’ theoretical potential, effec-
tively applying them appears to be far from
mainstream in practice. For example, a recent
case study of more than 600 software profes-
sionals revealed that only 27 percent viewed
metrics as “very” or “extremely” important to
their software project decision-making
process.4 The study also revealed that most re-
spondents attempted to use metrics only for
cost and schedule estimation.

Practitioners face various barriers in apply-
ing metrics (see the sidebar “Explaining the
Gap between Software Metrics Theory and
Practice”). It’s no wonder that many practi-
tioners find it daunting to apply best practices
to their own situation. Indeed, the agile com-
munity generally argues against model-based
metrics applications, promoting softer metrics

for decision making.5 Fortunately, creating
predictive models based on historical project
data isn’t the only possible way to apply soft-
ware metrics to project management. Our
team at the Collaborative Software Develop-
ment Laboratory has developed a new teleme-
try-based approach.

Software project telemetry
According to the Encyclopedia Britannica,

telemetry is a “highly automated communica-
tions process by which measurements are
made and other data collected at remote or in-
accessible points and transmitted to receiving
equipment for monitoring, display, and
recording.” Perhaps the highest-profile
telemetry user is NASA, which has been using
it since 1965 to monitor operations from the
early Gemini missions to the modern Mars
Rover flights. At NASA’s Mission Control
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Center, for example, dozens of specialists
monitor telemetry data from sensors attached
to a space vehicle and its occupants. They use
this data for many purposes, including early
warning of anomalies indicating problems,
better insight into the mission’s status, and
gauging the impact of incremental course or
mission adjustments.

We define software project telemetry as a
style of software metrics definition, collec-
tion, and analysis with the following essential
properties:

■ The data is collected automatically by
tools that regularly measure various char-
acteristics of the project development en-
vironment. In other words, software de-
velopers work in a location that’s remote
or inaccessible to manual metrics collec-
tion activities. This contrasts with soft-
ware metrics data that requires human in-
tervention or developer effort to collect,
such as Personal Software Process or
Team Software Process metrics.6

■ The data consists of a stream of time-
stamped events where the time-stamp is
significant for analysis. Software project
telemetry data focuses on the changes over
time in measurements of processes and
products during development. This con-
trasts, for example, with Cocomo,7 where
the precise time at which calibration data
is collected generally isn’t relevant.

■ Both developers and managers can contin-
uously and immediately access the data.
Telemetry data isn’t hidden away in some
obscure database that the software quality
improvement group guards. All project
members can examine and interpret it.

■ Telemetry analyses exhibit graceful degra-
dation. Although complete telemetry data
provides the best project management
support, the analyses shouldn’t be brittle:
they should still provide value even if
complete data over the entire project’s
lifespan isn’t available. For example,
telemetry collection and analysis should
provide decision-making value even if
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The Software Metrics Best Practices report1 reveals a sub-
stantial gap between software metrics theory and its actual im-
plementation in practice. Why might this be? One hypothesis is
that most practitioners are simply uninformed. Perhaps if they
would subscribe to journals and attend conferences on software
metrics, they could immediately implement current best prac-
tices and just as quickly improve their project management de-
cision making.

All of us, theorists and practitioners alike, can always bene-
fit from additional education. However, an alternative explana-
tion is that perhaps the metrics methods that theorists use yield
results that developers can’t easily translate into practice. To see
why, consider that much metrics research involves the following
basic method:

1. Collect a set of process and product measures (such 
as size, effort, known defects, and complexity) for a 
set of completed software projects.

2. Generate a model that fits this data.
3. Claim that this model can now be used to predict 

future project characteristics.

For example, a model might predict that a future project of
size S will require E person-months of effort; another model
might predict that the implementation of a module with com-

plexity C will be prone to defects with density D. Unfortunately,
practitioners face several barriers to adopting these predictive,
model-based metrics approaches.

First, to use the model unchanged, practitioners must con-
firm that the set of projects the researcher uses to generate the
model is similar to their current projects. This is the context
problem: unless the context associated with the process and
project data in the model is sufficiently similar to the context as-
sociated with a practitioner’s projects, the model’s outputs might
not apply to the practitioner.

Next, practitioners must also confirm that their future proj-
ects’ context will remain similar to their previous ones. If practi-
tioners can’t meet those two conditions, they must recalibrate
the model at some point. This involves replicating the model-
building method within a practitioner’s organization—with the
risk that the resulting model won’t work or that the organization
might change yet again, rendering future project contexts dif-
ferent from those used to calibrate the model.

Finally, practitioners must assess the cost of metrics collection
and analysis required by the model and ensure that the metrics
and their interpretation are useful enough to justify these costs.

Reference
1. P. Kulik and M. Haas, Software Metrics Best Practices 2003, tech. report,

Accelera Research, 2003.
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these activities start midway through a
project.

■ Analysis includes in-process monitoring,
control, and short-term prediction.
Telemetry analyses represent the current
project state and how it changes at various
timescales; so far, days, weeks, and
months are useful scales. The simultane-
ous display of multiple project state values
and how they change over the same time
periods allows opportunistic analyses—
the emergent knowledge that one state
variable appears to co-vary with another
in the current project context.

Software project telemetry enables an incre-
mental, distributed, visible, and experiential
approach to project decision making. For ex-
ample, if you found that both complexity and
defect-density telemetry values were increas-
ing, you could take corrective action (for ex-
ample, by simplifying overly complex mod-
ules) to try to decrease the defect-density
telemetry values. You could also monitor other
telemetry data to see if such simplification has
unintended side effects (such as performance
degradation). Project management using
telemetry thus involves cycles of hypothesis
generation (“Does module complexity corre-
late with defect density?”), hypothesis testing
(“If I reduce module complexity, will defect
density decrease?”), and impact analysis (“Do
the process changes required to reduce module
complexity produce unintended side effects?”).
Finally, software project telemetry supports de-
centralized project management: because all
project members can access telemetry data, it
helps both developers and managers engage in
these management activities.

Software project telemetry is related to in-
process software metrics, such as work done on
software testing management.8 However, such
work tends to focus on a narrow range of meas-
ures and management actions related to testing
and, as a result, is amenable to manual data col-
lection and analysis. Telemetry’s broader scope
necessitates automated collection and analysis,
with correspondingly broader management de-
cision-making support.

Software project telemetry also relates in in-
teresting ways to both the Capability Maturity
Model Integration and Agile methods. The
CMMI, a revision of the original CMM, incor-
porates lessons learned and supports more

modern, iterative development processes. In an
article on transitioning from CMM to CMMI,
Walker Royce asserts the importance of “in-
strument[ing] the process for objective quality
control. Lifecycle assessments of both the
process and all intermediate products must be
tightly integrated into the process, using well-
defined measures derived directly from the
evolving engineering artifacts and integrated
into all activities and teams.”9 Software proj-
ect telemetry appears well suited to the CMMI
vision for process improvement.

Agile method proponents are traditionally
suspicious of conventional process and prod-
uct measurements and technologies for project
decision making. Jim Highsmith frames the
problem as follows: “Agile approaches excel in
volatile environments in which conformance to
plans made months in advance is a poor meas-
ure of success. If agility is important, one char-
acteristic we should measure is that agility.
Traditional measures of success emphasize
conformance to predictions (plans). Agility em-
phasizes responsiveness to change. So there is a
conflict because managers and executives say
that they want flexibility, but then they still
measure success based on conformance to
plans.”10 Software project telemetry provides a
measurement infrastructure that isn’t focused
on achieving a particular long-range target but
on process and product measurements that
support adaptation and improvement.

Support for telemetry: Project
Hackystat

For several years, we’ve been designing, im-
plementing, and evaluating tools and tech-
niques to support a telemetry-based software
project management approach as part of Pro-
ject Hackystat. Figure 1 illustrates the system’s
overall architecture. Developers instrument the
project development environment by installing
Hackystat sensors into various tools, such as
their editor, build system, and configuration
management system. Once installed, the Hack-
ystat sensors unobtrusively monitor develop-
ment activities and send process and product
data to a centralized Web service. Project mem-
bers can log in to the Web server to see the col-
lected raw data and run analyses that integrate
and abstract the raw sensor data streams into
telemetry. Hackystat also lets project members
configure alerts that watch for specific condi-
tions in the telemetry stream and sends an
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email when these conditions occur.
Hackystat supports the following general

classes of software project telemetry:

■ Development telemetry is data that Hacky-
stat gathers by observing the project devel-
opers’ and managers’ behavior based on
their tool usage. It includes information
about the files they edit, the time they
spend using various tools, the changes they
make to project artifacts, and the sequences
of tool or command invocations. Hackystat
provides sensors for collecting development
telemetry from editors such as Eclipse or
Emacs, Office applications such as Word or
Frontpage, configuration management
tools such as CVS, and issue management
tools such as Jira.

■ Build telemetry is data gathered by ob-
serving the results of tools invoked to
compile, link, and test the system. Hacky-
stat can gather such data from build tools
such as Ant, Make, or CruiseControl, test-
ing tools such as JUnit or CppUnit, and
size and complexity tools such as LOCC.

■ Execution telemetry is data that Hackys-
tat gathers by observing the system’s be-
havior as it executes. Hackystat provides
sensors for collecting execution telemetry
from tools that test for load or stress, such
as JMeter.

■ Usage telemetry is data that Hackystat
gathers by observing the users’ interaction
with the system. This data includes user be-

havior such as frequency, types, and se-
quences of command invocations during a
given time period in a given subsystem.

For a description of specific sensors and data
types that Hackystat supports, see the “Sen-
sors and Sensor Data Types” sidebar.

The path from sensors to the telemetry
report involves several steps. Hackystat sen-
sors collect raw data by observing behavior
in various client tools and then send it to the
Hackystat server, which persists the data in
an XML-based repository. Hackystat analy-
sis mechanisms then abstract this raw data
into DailyProjectData instances, which can
involve synthesizing sensor data from multi-
ple group members or sensors into a higher-
level representation of process or product
characteristics for a given project and day.
Sets of DailyProjectData instances are then
manipulated by Reduction Functions, which
emit a sequence of numerical telemetry val-
ues for a given project at a timescale of
days, weeks, or months.

The previous steps occur automatically as
part of the software project telemetry imple-
mentation. An important benefit of Hackystat
is its explicit support for the exploratory na-
ture of telemetry-based decision making.
We’ve designed a Telemetry Display Language
that we use with the Hackystat Web server to
interactively define telemetry streams and
specify how practitioners should compose
them together into charts and reports for pres-
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entation to developers and managers.
Figure 2 shows an example telemetry re-

port. This report illustrates the relationship be-
tween aggregate code churn (the lines all proj-
ect members add and delete from the CVS
repository) and aggregate build results (the
number of build attempts and failures on a
given day via the Ant build tool). Telemetry re-
ports are always defined without reference to
a specific project or time interval. We wait to
specify the project and its time interval until
we generate the report. Thus, project members
can run this telemetry report over differing
sets of days or change the timescale to weeks
from months to see if different trends emerge
from these alternative perspectives. In addi-
tion, once a telemetry report is defined, mem-
bers of other projects on this server could use
it to see if it adds decision-making value to
their project management activities.

Telemetry in practice: Managing
integration-build failure

As a concrete example of software project
telemetry in action, we’re currently using it to
investigate and improve our own daily (inte-
gration) build process. Hackystat consists of
approximately 95 KLOC, organized into ap-
proximately 30 modules, with five to 10 active
developers. The CVS configuration manage-
ment system stores the sources, so developers
can check out the latest version of the sources
associated with any given module and commit
their changes when finished. Developers rarely
compile, build, and test against the entire code
base; instead, they select a subset of the mod-
ules relevant to their work. An automated
nightly build process compiles, builds, and
tests the latest committed code for all modules
and sends email if the build fails. We can also
invoke this integration build manually.

At the end of 2004, we discovered that our
integration-build failure rate was significant.
For the 300 daily integration-build attempts
during that year, the build failed on 88 days
with a total of 95 distinct build errors. This
high failure rate substantially impacted our
productivity. Each failure generally required
one or more team members to stop concurrent
development, diagnose the problem, determine
who was responsible for fixing it, and often
wait until the corrections were committed be-
fore checking out or committing additional
code.
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Hackystat provides an extensible architecture with respect to both sen-
sors, the software plug-ins associated with development tools, and sensor
data types, which describe a given type of raw metric data’s structure. This
mapping isn’t one-to-one: for example, the Eclipse sensor can send Activity,
File-Metric, and Review sensor data types, and both Integrated Development
Environment and Size metric sensors can collect the File-Metric sensor data
type. The following lists describe the range of available sensors and sensor
data types; each organization can decide whether to enable these facilities
or implement their own custom extensions to facilitate their needs.

Hackystat sensors are currently implemented for the following tools:

■ interactive development environments, including Eclipse, Emacs,
JBuilder, Vim, and Visual Studio;

■ office productivity applications, including Excel, Word, PowerPoint, and
Frontpage;

■ build tools, including Ant and the Unix command line;
■ size measurement tools, including CCCC and LOCC;
■ testing tools, including JUnit and JBlanket;
■ configuration management, including Concurrent Versions System and

Harvest; and
■ defect tracking tools, including Jira.

Hackystat sensor data types include

■ Activity, which represents data concerning the active time developers
spend in their IDE;

■ BufferTransition, which represents the sequence of files that developers visit;
■ Review, which represents data on review issues generated during code

or design inspections;
■ FileMetric, which represents file size information;
■ Build, which represents data about software build occurrences and 

outcomes;
■ Perf, which represents data about the occurrence and outcome of per-

formance analysis activities such as load testing;
■ CLI, which represents data about command line invocation occurrences;
■ UnitTest, which represents data about unit test invocation occurrences

and outcomes;
■ Coverage, which represents data about the coverage that unit testing

activities obtain;
■ Commit, which represents data about developers’ configuration man-

agement commit events; and
■ Defect, which represents information about posting defect reports to de-

fect tracking tools by developers or users.

Hackystat is an open source system that’s freely available for download
and use. We encourage interested theorists and practitioners to visit the de-
veloper services Web site at www.hackystat.org for access to source code,
binaries, and documentation. To try out Hackystat, we also maintain a pub-
lic server at http://hackystat.ics.hawaii.edu.

Sensors and Sensor Data Types



To reduce the integration-build failure rate
in 2005, we needed to better understand how,
when, and why the previous builds had failed
in 2004. To do this, we embarked on a series
of analyses involving several Hackystat sensor
data streams: Active Time, Commit, Build,
and Churn. This revealed many useful insights
about our build process:

■ We could partition the 95 distinct build
errors into six categories: coding style er-
ror (14), compilation error (25), unit test
error (40), build script error (8), platform-
related error (3), and unknown error (5).

■ We found substantial differences between
experienced and new developers with re-
spect to integration-build failures. For ex-
ample, the least experienced developer
had the highest integration-build failure
rate—an average of one build failure per
four hours of Active Time. In contrast,
more experienced developers averaged
one build failure per 20 to 40 hours of Ac-
tive Time. 

■ The two modules with the most depend-
encies on other modules also had the two
highest numbers of build failures, and to-
gether they accounted for almost 30 per-
cent of the failures.

■ We found that the 88 days with build fail-
ures had, on average, a statistically signif-
icant greater number of distinct module
commits than days without build failures.

■ We found (somewhat unexpectedly) that
there was no relationship between build
failure and the number of lines of code
committed or the amount of Active Time
before the commit. In other words, whether
you worked five minutes or five hours be-
fore committing, or whether you changed
five or 500 lines of code, didn’t change the
odds of causing a build failure.

These findings yield numerous hypotheses
regarding ways of reducing integration-build
failure, including increased support for new
developers (such as pair programming) and
refactoring modules to reduce coupling and
frequent multimodule commits. The most
provocative hypothesis, however, is that 82
percent of the integration failures in 2004
could have been prevented if the developers
had run a full system compile and test before
committing their changes.

The most simple—and most intrusive—
process improvement following from this hy-
pothesis is to require all developers to run a
full system compile and test locally before
every commit. However, even though some
untested commits result in an integration-
build failure, many other untested commits do
not. Given that a full compile and test can take
over 30 minutes and that multiple developers
often perform multiple commits per day, this
process improvement’s productivity cost could
actually exceed the benefits of reducing the
level of integration-build failures. Other
generic changes, such as moving to continuous
integration, also tend to move build failure
costs around without necessarily reducing
them.
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Figure 2. A telemetry
report that compares
code churn (lines added
and deleted) to build 
results (number of build
attempts and failures).
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Our current approach to managing integra-
tion-build failure comes from recognizing that
the decision to invest the time to perform a full
build and test before any particular commit
depends on many factors. The decision in-
volves developer familiarity with the system,
the actual changes made to the code, and
other developers’ commits. To improve our
productivity, we need to give developers tools
and feedback to better decide when to precede
a specific commit with a full build and test. To
assess whether the feedback is working, we
can use software project telemetry.

Our analyses demonstrate that understand-
ing why any given integration build succeeds
or fails requires multiple forms of process and
product information, including the occurrence
of local builds, the integration build’s success
or failure, the failure type, the modules that
were committed, the developers responsible,
the dependency relationships among modules,
and the Active Time associated with the work
prior to commits. Unfortunately, we haven’t
discovered any analytical models that can au-
tomate the decision-making process and tell
developers before they commit whether they’ll
need full or partial testing. However, using
software project telemetry, we can track the
absolute level of integration-build failures
over time, as well as the number of failures
due to any particular cause, and even the num-
ber of failures that we could have prevented
with a full build and test. 

Using Hackystat’s alert mechanism, we can
give developers a detailed summary of the
process and product state, including the fac-
tors we’ve identified as relevant, whenever an
integration-build failure occurs. Our hypothe-
sis is that, given appropriate feedback, each
developer will naturally learn over time to be
more sophisticated in deciding when to per-
form a full build and test. New developers
might quickly learn to do it almost always,
while more experienced developers might be-
gin to recognize more complex indicators.
One of our project goals for 2005 is to test this
hypothesis and measure the results using inte-
gration-build failure telemetry streams.

The Telemetry Control Center
For even a moderately large, complex proj-

ect, the number of possible telemetry charts
and reports quickly explodes. For example, al-
most a dozen different sensor data streams

monitor the Hackystat development project
across 30 modules, from five to 10 active de-
velopers. Given that each telemetry stream can
be composed from one or more sensor data
streams, project modules, and developers, you
can see the problem: which of the literally
thousands of possible charts should we be
monitoring?

Our development group decided to address
this problem by creating a new interface to the
telemetry data that would let us passively mon-
itor telemetry in a way that a standard Web
browser wouldn’t allow. We call this interface
the Telemetry Control Center (see figure 3).

The TCC consists of a standard PC with a
multihead video display card that’s attached to
nine 17-inch liquid crystal display panels,
mounted on the wall in our laboratory. We im-
plemented a new client-side software system
called the TelemetryViewer, which periodically
requests telemetry reports from the Hackystat
server, retrieves the resulting image file, and dis-
plays it on screens. The TelemetryViewer reads
in an XML configuration file at startup, which
tells it which reports to retrieve, where to dis-
play them, and how long to wait before retriev-
ing the next set of reports. The Teleme-
tryViewer’s default behavior is to automatically
and repeatedly cycle through the set of teleme-
try scenes in the XML configuration file.

The TCC frees us from the “tyranny of the
browser” by making a sequence of telemetry
report sets continuously available without any
developer action. It also lets us more easily
look for relationships between telemetry
streams, because the system can display nine
telemetry reports simultaneously. Finally, it
provides a new kind of passive awareness
about the project’s state to all developers;
rather than having to decide to generate a re-
port or wait for a weekly project update meet-
ing, developers can simply glance at the TCC
whenever they’re passing though the lab to get
a perspective on the state of development. In-
dividuals can still get all TCC reports on their
local workstations if they so desire, although
without the simultaneous display.

Lessons learned
Our first lesson learned is that software

project telemetry can help support project
management decision making. In addition to
our work on integration-build failure, teleme-
try data has also revealed to us a recent, subtle
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slide in testing coverage over the past six
months that has co-occurred with two signifi-
cant refactoring episodes (and resulting code
churn). As a result, we’re allocating additional
effort to software review with a focus on as-
sessing new modules’ test quality. We hope that
this project management decision will eventu-
ally reverse the declining coverage trend.

Hackystat provides an open source refer-
ence framework for software project teleme-
try, but it isn’t the only technology available.
Commercial measurement tools can also pro-
vide infrastructure support, or your organiza-
tion could decide to develop technology in-
house. The key issue is to preserve software
project telemetry’s essential properties.

We’ve learned that having an automated
daily build mechanism adds significant value to
software project telemetry. It provides not only
a convenient hook into which you can add sen-
sors to reliably obtain daily product measures
information but also a kind of heart beat for the
development project that makes all the metrics
more comparable, accessible, and current.

As with any measurement approach, you
must consider social issues. It’s possible to misin-
terpret and misuse software project telemetry
data. For example, telemetry data is intrinsically
incomplete with respect to measuring effort.
Hackystat implements a measure called Active
Time, which is the time developers and managers
spend editing files related to a given project in
tools such as Eclipse, Word, or Excel. However,
many legitimate and productive activities, includ-
ing meetings, email, and hallway conversations,
are outside the telemetry-based measurement’s
scope. Telemetry can’t measure effort in its broad-
est sense, so a project member with little Active
Time could still be contributing significantly to
the project. Indeed, some organizations might de-
cide not to collect measures such as Active Time,
simply because it’s susceptible to misinterpreta-
tion and abuse. For an excellent analysis of these
and other forms of “measurement dysfunction,”
see Robert Austin’s Measuring and Managing
Performance in Organizations.11

Adopting a software project telemetry ap-
proach to measurement and decision making
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Figure 3. The 
Telemetry Control 
Center, which shows
one scene consisting of
nine telemetry reports.
The associated 
TelemetryViewer 
software controls the
TCC by automatically
cycling through a set of
scenes at a predefined
interval. This telemetry
viewer is configured to
show a dozen separate
scenes, each displayed
for two minutes.
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tends to exert a kind of gravitational force to-
ward increased use of tools for managing
process and products. For example, a small de-
velopment team might begin by informally man-
aging tasks and defects using email or index
cards. As the team adopts telemetry-based deci-
sion making, it will inevitably want to relate de-
velopment process and product characteristics
to open tasks and defect severity levels. How-

ever, it won’t be able to unless it moves to an is-
sue management tool such as Bugzilla or Jira
that can support sensor-based measurement.

D oes software project telemetry provide
a silver bullet that solves all problems
associated with metrics-based soft-

ware project management and decision mak-
ing? Of course not. While software project
telemetry does address certain problems inher-
ent in traditional measurement and provides a
new approach to more local, in-process deci-
sion making, it provides its own issues that fu-
ture research and practice must address.

Telemetry data’s decision-making value is
only as good as the data that sensors can ob-
tain. Clearly, some threshold exists for sensor
data beneath which the telemetry’s decision-
making value is compromised. But what is this
threshold, and how does it vary with the kinds
of decision making the development group re-
quires? What sets of sensors and sensor data
types are best suited to what project develop-
ment contexts?

What are telemetry-based data’s intrinsic
limitations? A good way to investigate this
question involves qualitative, ethnographic re-
search, in which a researcher trained in these
methods observes a software development
group to learn what kinds of information rel-
evant to project management decision making
occur outside the realm of telemetry data.

While manual investigation of telemetry
streams and their relationship to each other is
certainly an important and necessary first step,
the sheer number of possible relationships and
interactions means that only a small percent-
age of them can be inspected and monitored
manually on an ongoing basis. An intriguing
future direction is exploring whether using
data mining and clustering algorithms can re-
veal relationships in the telemetry data that
manual exploration might not discover.

What are the costs associated with initially
setting up software project telemetry using a
system like Hackystat? Unfortunately, we
can’t use Hackystat to measure the effort in-
volved with installing Hackystat. Further-
more, some organizations will require devel-
opment of new sensors or analyses not
available in the standard distribution. Better
understanding of these costs will aid adoption
of this technology and method.
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