
Understanding HPC Development through Automated
Process and Product Measurement with Hackystat

Philip M. Johnson
Michael G. Paulding

Collaborative Software Development Laboratory
Department of Information and Computer Sciences

University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

mpauldin@hawaii.edu

Abstract

The high performance computing (HPC) commu-
nity is increasingly aware that traditional low-level,
execution-time measures for assessing high-end comput-
ers, such as flops/second, are not adequate for under-
standing the actual productivity of such systems. In re-
sponse, researchers and practitioners are exploring new
measures and assessment procedures that take a more
wholistic approach to high performance productivity. In
this paper, we present an approach to understanding and
assessing development-time aspects of HPC productiv-
ity. It involves the use of Hackystat for automatic, non-
intrusive collection and analysis of six measures: Active
Time, Most Active File, Command Line Invocations, Par-
allel and Serial Lines of Code, Milestone Test Success,
and Performance. We illustrate the use and interpreta-
tion of these measures through a case study of small-
scale HPC software development. Our results show that
these measures provide useful insight into development-
time productivity issues, and suggest promising addi-
tions to and enhancements of the existing measures.

1. Introduction

High performance computing systems are becoming
mainstream due to decreasing costs and increasing num-
bers of application areas with computation and/or data
intensive processing. With this interest, however, comes
new challenges. For example, recent initiatives in the
HPC community [8, 1] have concluded that low-level
HPC benchmarks of processor speed and memory ac-
cess times no longer necessarily translate into high-level

increases in actual development productivity. Put an-
other way, the bottleneck in high performance comput-
ing systems is increasingly due to software engineering,
not hardware engineering.

To make matters even more interesting, high perfor-
mance computing application development often differs
in significant ways from the systems and development
processes traditionally addressed by the software engi-
neering community:

� The requirements often include conformance to so-
phisticated mathematical models. Indeed, require-
ments may often take the form of an executable
model in a system such as Mathematica, and the
implementation involves porting to the HPC sys-
tem.

� The software development process, or “workflow”
for HPC application development may differ pro-
foundly from traditional software engineering pro-
cesses. For example, one scientific computing
workflow, dubbed the “lone researcher”, involves
a single scientist developing a system to test a hy-
pothesis. Once the system runs correctly once and
returns its results, the scientist has no further need
of the system. This contrasts with standard soft-
ware engineering lifecycle models, in which the
useful life of the software is expected to begin, not
end, after the first correct execution.

� “Usability” in the context of HPC application de-
velopment may revolve around optimization to the
machine architecture so that computations com-
plete in a reasonable amount of time. The effort



and resources involved in such optimization may
exceed initial development of the algorithm.

Fortunately, there is an emerging interdisciplinary
community involving both HPC and software engineer-
ing researchers and practitioners who are attempting to
define new ways of measuring high performance com-
puting systems, ways which take into account not only
the low-level hardware components, but also the higher-
level productivity costs associated with producing us-
able HPC applications.

This paper presents an approach to investigating the
software engineering problems associated with high per-
formance computing system application development. It
involves the introduction of technology into the HPC
development environment which unobtrusively gathers
process and product data. This process and product data
can be used for two purposes. First, it can be used to
provide a more wholistic perspective on productivity,
one that includes measures of performance, functional-
ity, and development. Second, it can be used to provide
new insight into the process of high performance system
application development, which can be used to identify
bottlenecks in the development process and assess the
consequences of process or product changes on these
bottlenecks. We have been applying this approach to
an ongoing case study of high performance computing
system application development in our laboratory, and
this paper reports on our initial results.

The remainder of the paper is organized as follows.
Section 2 introduces the technology we have developed,
called Hackystat, which supports unobtrusive collection
and analysis of product and process measures. Section
3 introduces “Software Project Telemetry“, which is the
principal approach to measurement collection and inter-
pretation we have adopted for this research. Section 4
introduces a case study adapted from the Truss Purpose-
based Benchmark (PBB) [3], which uses the problem
specification but collects and analyzes an alternative set
of metrics. Section 5 presents our initial conclusions
from the use of these metrics and our future directions.

2. Automated process and product measure-
ment with Hackystat

An important characteristic of our approach to under-
standing HPC software development and productivity is
that measures of product and process must be automati-
cally collected. This requirement limits the kinds of data
we can collect, but dramatically lowers the cost of col-
lecting these measures and provides a level of scalability
for measurement not possible with expensive, manual
data collection.

For the past several years, we have been developing a
framework for automated software development process
and product metric collection and analysis called Hack-
ystat. This framework differs from other approaches to
automated support for product and process measurement
in one or more of the following ways:

� Hackystat uses sensors to unobtrusively collect
data from development environment tools; there is
no chronic overhead on developers to collect prod-
uct and process data.

� Hackystat is tool, environment, process, and appli-
cation agnostic. The architecture does not suppose
a specific operating system platform, a specific in-
tegrated development environment, a specific soft-
ware process, or specific application area. A Hack-
ystat system is configured from a set of modules
that determine what tools are supported, what data
is collected, and what analyses are run on this data.

� Hackystat is intended to provide in-process project
management support. Many traditional software
metrics approaches are based upon the “project
repository” method, in which data from prior com-
pleted projects are used to make predictions about
or support control of a current project. In contrast,
Hackystat is designed to collect data from a current,
ongoing project, and use that data as feedback into
the current project.

� Hackystat provides infrastructure for empirical ex-
perimentation. For those wishing to compare al-
ternative approaches to development, or for those
wishing to do longitudinal studies over time, Hack-
ystat can provide a low-cost approach to gathering
certain forms of project data.

� Hackystat is open source and is available to the aca-
demic and commercial software development com-
munity for no charge.

The design of Hackystat [6] has resulted from of prior
research in our lab on software measurement, begin-
ning with research into data quality problems with the
PSP [5] and which continued with the LEAP system for
lightweight, empirical, anti-measurement dysfunction,
and portable software measurement [7].

To use Hackystat, the project development environ-
ment is instrumented by installing Hackystat sensors,
which developers attach to the various tools such as their
editor, build system, configuration management system,
and so forth. Once installed, the Hackystat sensors
unobtrusively monitor development activities and send
process and product data to a centralized web service. If



a user is working offline, sensor data is written to a local
log file to be sent when connectivity can be established
with the centralized web service. Project members can
then log in to the web server to see the collected raw data
and run analyses that integrate and abstract the raw sen-
sor data streams into telemetry. Hackystat also allows
project members to configure “alerts“ that watch for spe-
cific conditions in the sensor data stream and send email
when these conditions occur.

Hackystat is an open source project with
sources, binaries, and documentation available at
http://www.hackystat.org. There is also a public server
available at http://hackystat.ics.hawaii.edu. Hackystat
has been under development for approximately three
years, and currently consists of around 900 classes and
60,000 lines of code. Sensors are available for a variety
of tools including Eclipse, Emacs, JBuilder, Jupiter,
Jira, Visual Studio, Ant, JUnit, JBlanket, CCCC,
DependencyFinder, Harvest, LOCC, Office, and CVS.

3. Software Project Telemetry

A major application of Hackystat has been the de-
velopment of a new approach to software measurement
analysis called “Software Project Telemetry“. We de-
fine Software Project Telemetry as a style of software
engineering process and product collection and analysis
which satisfies the following properties:

Software project telemetry data is collected automat-
ically by tools that unobtrusively monitor some form of
state in the project development environment.In other
words, the software developers are working in a “remote
or inaccessable location“ from the perspective of metrics
collection activities. This contrasts with software met-
rics data that requires human intervention or developer
effort to collect, such as PSP/TSP metrics [4].

Software project telemetry data consists of a stream
of time-stamped events, where the time-stamp is signif-
icant for analysis. Software project telemetry data is
thus focused on evolutionary processes in development.
This contrasts, for example, with Cocomo [2], where the
time at which the calibration data was collected about
the project is not significant.

Software project telemetry data is continuously and
immediately available to both developers and managers.
Telemetry data is not hidden away in some obscure
database guarded by the software quality improvement
group. It is easily visible to all members of the project
for interpretation.

Software project telemetry exhibits graceful degrada-
tion. While complete telemetry data provides the best
support for project management, the analyses should
not be brittle: they should still provide value even

if sensor data occasionally “drops out“ during the
project. Telemetry collection and analysis should pro-
vide decision-making value even if these activities start
midway through a project.

Software project telemetry is used for in-process
monitoring, control, and short-term prediction.Teleme-
try analyses provide representations of current project
state and how it is changing at the time scales of days,
weeks, or months. The simultaneous display of multiple
project state values and how they change over the same
time periods allow opportunistic analyses—the emer-
gent knowledge that one state variable appears to co-
vary with another in the context of the current project.

Software Project Telemetry enables a more incre-
mental, distributed, visible, and experiential approach to
project decision-making. It also creates perspectives on
system development that can provide new insight into
HPC development processes, as we illustrate in the case
study below.

4. Process and Product measures for HPC
utilizing Hackystat

The development of an HPC system from a software
engineering perspective raises many interesting ques-
tions. How long does such a system take to develop? Do
some components take longer to develop than others?
How much of the system is devoted to the sequential
code, and how much is devoted to the parallelization of
this code? How did the developer allocate their time dur-
ing development to these activities? Do different choices
of HPC tools and technologies lead to different answers
to these questions? Would a different application area
lead to similar or different results?

We believe that automated infrastructure for the col-
lection and analysis of product and process data is an
important first step toward enabling the HPC commu-
nity to generate answers to these questions, and then use
these answers to improve the tools and techniques for
HPC development. The question is, what process and
product measures can be both automatically collected
and used to provide interesting insight into the ques-
tions raise above? This case study investigates the use of
the following measures: Active Time, Most Active File,
Command Line Invocations, Parallel and Serial Lines of
Code, Milestone Test Success, and Performance.

The following sections describe each of these mea-
sures and illustrate them with sample data from a one
week “snapshot” of development of the Optimal Truss
Design problem in our case study.



4.1. The Optimal Truss Design problem

Our case study focuses on the development of a sys-
tem for optimal truss design. Specifically, the system
finds a pin-connected steel truss structure that uses as
little mass as possible to support a load connected from
three attachment points on a wall to the load-bearing
point away from the wall. This problem was originally
developed for use in research on Purpose-Based Bench-
marks (PBBs) [3]. PBBs gather a different and comple-
mentary set of metrics in order to assess productivity in
terms of acceptability to the customer.

The system is being implemented by one of the au-
thors, Michael Paulding, and thus generally conforms to
the “lone researcher” workflow for HPC development.
The system development process and associated case
study started in the Spring of 2004 and is still ongo-
ing. To date, the implementation of the Optimal Truss
Design problem consists of approximately 1,200 source
lines of code.

The solution to the Optimal Truss Design problem
developed in this case study involves several compo-
nents. The first component is termed the “sequential
workhorse”, which includes the task of solving a truss
once all of its elements are defined. Solving a truss in-
cludes the calculation of its mass, which is determined
by summing the mass of each of its components (e.g. all
steel joints and members). In addition to mass calcula-
tion, solving a truss also includes verifying equilibrium
and deformational constraints. Equilibrium constraints
require that all forces and moments within a truss net
zero magnitude, thus ensuring that the truss is not ac-
celerating. Deformational constraints require that the
length of members (strut or cable) used in the truss do
not exceed construction safety limits. These limits are
defined and known prior to runtime.

Figure 1. An unoptimized solution to the
Truss problem

The second component of the Optimal Truss system
generates the permutation of all possible truss topologies
within the domain space, ensuring that the configuration
with minimal mass is a global minimum. The domain
space for the initial implementation is a 2-dimensional

Figure 2. An optimized solution to the
Truss problem

mesh of points, defining the rectangle formed between
the attachment points and the load bearing point. Ex-
ploring all possible configurations results in a combina-
torial explosion as the mesh size is increased and this
served as the first point of parallelism in the implemen-
tation. The task of parallelizing topology generation can
be equally divided among the available nodes. This can
be accomplished in an “embarrassingly parallel” man-
ner, where each row of the mesh is assigned to a differ-
ent processor to permute.

The third component of the system performs geome-
try assignment for all trusses. After generation, a topol-
ogy defines the path of each truss from the attachment
points to the load bearing point, but it does not spec-
ify what type of member connects each joint. In this
stage, either a strut or a cable is substituted for each
member, flushing out all permutations. Once the geom-
etry has been assigned, it can be given to a processor to
compute the mass of the truss and to determine whether
the topology is valid under the equilibrium and deforma-
tional constraints.

Now that the description of the Optimal Truss Design
problem, used in our case study, has been explained, it is
prudent to illustrate and investigate the measures applied
to the problem.

4.2. Active Time

Active Time is a measure of the time spent by de-
velopers editing source code (or other files) related to
the system. Active Time can be collected automatically
through the use of sensors attached to the editor used
by developers. The sensors collect active time via a
timer-based process inside the editor that wakes up ev-
ery 30 seconds and checks to see if the active buffer has
changed in identity or size since the last 30 seconds.
If so, a timestamped “statechange” event is sent to the
Hackystat server. Active Time does not reflect effort
spent by developers on the project that does not involve
editing files, including time spent viewing a file without
performing editing actions. Support for non-editing ac-



tivities such as “reading” is a subject of future research,
but even the restricted definition of Active Time appears
useful in the HPC context as a proxy for overall effort.
For example, it helps a development team answer ques-
tions such as:“How much of the overall development
effort was spent editing files?”or “Did all team mem-
bers devote equal time to writing code?”or “When
was team effort focussed on code development during
the project?”

Figure 3 shows the Active Time associated with de-
velopment of the Optimal Truss Design application for
a sample period in May, 2004.

4.3. Most Active File

A measure related to Active Time is the “Most Ac-
tive File”. One way to abstract the raw event stream sent
from an editor-based Hackystat server begins by repre-
senting each day as a sequence of 288 five minute in-
tervals. If a developer actively edits one or more files
within a five minute period, then determine which file
was edited most during that five minutes, and assign the
“credit” for that five minute interval to that file and that
file alone, which we call the “Most Active File”. (We
performed a calibration study which found this to be a
reasonable abstraction.) The Most Active File abstrac-
tion may be useful in the HPC context as a way of de-
termining what specific files were the focus of developer
attention, and how that focus of attention changed over
the course of development.

For example, Figure 4 shows the Most Active Files
associated with Optimal Truss Design during the first
few days of this time interval.

4.4. Command Line Invocations

In addition to time spent editing files in an editor,
HPC development frequently involves extensive use of
shell processes to invoke programs such as make, gcc,
etc. We have implemented a sensor for the Unix com-
mand shell (based upon the ’history’ shell mechanism)
to record these command line invocations. Command
Line Invocation data can be useful in the HPC context
as a way of providing further insight into the types of
activities performed by developers during the develop-
ment of the HPC code. For example, if the HPC devel-
oper spends significant time working at the command
line without concurrent editing of code, then it might be
useful to develop an enhanced representation of Active
Time that accounts for this type of effort as well. While
the current sensor only captures command invocations
and not their results, it might be useful to extend the sen-
sor to capture the results of command line invocations in

certain circumstances. For example, recording whether
or not a compilation succeeded or failed as well as what
types of run-time errors occur could help identify poten-
tial development bottlenecks.

Figure 5 illustrates Command Line Invocation data
for a portion of one day during the development of the
Optimal Truss Design system.

4.5. Parallel and Serial Size

To understand HPC software development, it helps
to be able to represent both “serial” and “parallel” code.
We have enhanced our size measurement tool, LOCC,
with a token-based counter for C++ that allows us to
count non-comment source lines of code, and determine
for each line of code whether or not an MPI directive oc-
curs on it. Thus, for HPC programs built using C++ and
MPI, we can determine (a) the total number of files in the
system, (b) the total non-commented size of each file in
the system; (c) whether or not a file consists purely of se-
rial (non-MPI) code or not; (d) for files containing MPI
directives, the frequency of occurrence of each MPI di-
rective; and (e) for files containing MPI code, what per-
centage of the non-comment source lines of code con-
tained an MPI directive.

Figures 6, 7, and 8 provide perspectives on size data
for the Optimal Truss Design system.

4.6. Functionality

We have defined a process for measuring the func-
tionality of an HPC application and tracking its develop-
ment progress through the use of unit testing. We have
termed this approach “Progress Assessment through
Milestone Tests” (PAMT).

Essentially, PAMT is a process in which HPC appli-
cation designers draft the specification for the system as
a set of unit tests prior to development. Each unit test
is defined such that it represents a milestone, or signifi-
cant aspect of application functionality. Quantitative in-
terpretation of “significant” is determined by the appli-
cation designer or program manager and is expected to
vary between HPC projects. Defining the set of mile-
stone tests prior to development provides a specification
for the system and also serves as a mechanism to pro-
mote test driven design.

Once the milestone tests have been defined, the de-
velopment team has a concrete set of tests to implement
that, together, represent the functionality of the entire
system. The development team can then implement the
milestone tests in any order and their progress through
the application can be monitored. System progress and
functionality is measured by investigating the number



Figure 3. Active time

Figure 4. Most Active File



Figure 5. Command Line Invocations

Figure 6. Parallel vs. sequential constructs



Figure 7. Parallel vs. Sequential Files

Figure 8. Parallel vs. Sequential SLOC



of milestone tests passing in ratio to the total number of
milestone tests representing the system. In most cases, a
development team will begin implementation with zero
milestone tests passing and finish development when all
milestone tests pass.

For the Optimal Truss Design problem, a set of 10
milestone tests were defined prior to implementation.
Individually, each test represents a significant function-
ality of the application and together they provide a spec-
ification for the entire system. For the Optimal Truss
problem, the milestone tests were written in CppUnit, a
unit test framework for the C++ programming language.
Below is an example of a single milestone test for the
Optimal Truss problem.

Milestone Test 4: This test verifies that the
application is capable of representing a 2-
dimensional topology. In the Optimal Truss
specification, a topology is defined as a set
of 2 trusses that individually connect the 2 at-
tachment points to the load bearing point. In-
terconnections (members) between the trusses
are allowed. Therefore, for this milestone test,
given 2 attachment points, a load bearing point
and the number of joints, the application must
be able to query:

1. Each of the trusses connecting the 2 at-
tachment points to the load bearing point

2. The set of members composing one of
the trusses in the topology

3. Given a truss, whether it is part of the
topology

From this chart is is evident that during the develop-
ment period from 04-May-2004 through 11-May-2004
that the Optimal Truss application progressed from 1
milestone test passing at the beginning of the interval
to 5 milestone tests passing at the end. It is important
to note that this interval represents a sample of the de-
velopment period and does not capture start to finish.
In addition, this trend indicates a consistent increase in
passing milestone tests. However, it is quite possible
for development to lower the number of successful mile-
stone tests, indicated by a negative slope in the trend.

4.7. Performance

The high performance computing community has de-
veloped a broad range of standard measures to charac-
terize parallel performance, including degree of paral-
lelism, average parallelism, speedup, redundancy, and
utilization. In this research, we are not attempting to

specify the “right” performance measure for any partic-
ular application area. Instead, we advocate that perfor-
mance be measured regularly throughout development
using as many metrics as necessary to best characterize
the application.

Performance measures are not generally interesting
as absolute numbers, since the absolute values are obvi-
ously dependent upon current hardware and other phys-
ical resources. Performance measures are interesting as
relative numbers, in the sense that the way they change
over time tells us whether or not and to what extent de-
velopers could tune an initial implementation to improve
its performance, how the code evolved to obtain this per-
formance increase, and whether or not functionality was
sacrificed in order to do so.

Figure 10 shows the execution (wall time) perfor-
mance of the Optimal Truss Design system developed
in the case study for a sample time interval.

5. Conclusions

After accumulating the data trends provided by the
Hackystat system, we are able to gain insights that as-
sist in understanding the development of HPC applica-
tions. From the graphs presented earlier, we are able to
make interpretations about development activities, de-
velopment progress and application performance and
functionality tradeoffs.

5.1. Development Activities

From the data presented in Figure 5 we are able to
interpret the developer activities of that particular day.
The daily dairy for 06-May-2004 lists all the commands
issued to the console on that day. Figure 5 is a sample of
all the command line invocations issued, but it provides
insight to the developer activities on that day.

For example, from the command line invocations
and most active file data for 06-May-2004, we can ob-
serve that the developer devoted the most time on the
test distribution.ccfile. It so happens that this file im-
plements the distribution of 2-dimensional mesh from
which the truss topologies are constructed. Furthermore,
the distribution of topologies is a significant function
of the Optimal Truss problem and has been designated
as a milestone test of the system. Therefore, from this
data, an observer can conclude that the developer was in-
vesting his efforts on implementing functionality on this
day, rather than on increasing performance by optimiz-
ing code.

In addition, an observer, such as a project manager or
the developer himself, can observe the active time trend
in Figure 3 to understand the time invested to implement



Figure 9. Progress Assessment through Milestone Tests

Figure 10. Truss Execution Time Performance



a particular milestone. For example, in Figure 3 on 06-
May-2004, it is evident that the developer spent over 5
hours editing code to implement the topology distribu-
tion milestone.

5.2. Development Progress

The data presented in Progress Assessment through
Milestone Tests (PAMT) chart, as illustrated in Figure
9, provides a clear illustration of the real-time progress
being made on the Optimal Truss problem.

There are two trends presented in this figure, one rep-
resenting the total number of milestone tests defined for
the Optimal Truss problem and the other representing
the number of milestone tests passing at the conclusion
of each day.

In the Optimal Truss problem, the total milestone
tests are represented by the horizontal line fixed at 10
unit tests. This indicates that there are 10 milestone tests
encompassing the Optimal Truss problem and that the
project manager has not added or removed any of these
milestones during this time interval. It is quite possi-
ble that a project manager may have to alter milestones
in order to meet deadlines and this analysis provides a
trend for this purpose. For example, if the total mile-
stone tests is altered, the total tests trend on the chart
will move up or down accordingly.

The PAMT chart also allows an observer to track the
progress made through the application. For example,
in this figure, the lower trend represents the number of
milestone tests passing on each day. Every time a new
milestone test passes, it indicates that another unit of
functionality has been added to the system provided that
all previously passing tests still pass after the change.

Coupling the PAMT data with the active time data in
Figure 3, an observer is also able to interpret a quanti-
tative measurement of how much development time was
devoted to a particular unit of functionality. For exam-
ple, on 06-May-2004, approximately 5 hours of editing
were invested to add one unit of functionality to the ap-
plication. This is indicated by the number of passing
milestone tests increasing from one to two on this day.
In addition, an observer can quickly understand the per-
centage complete of the system. On 06-May-2004, the
Optimal Truss problem has 2 out of 10 milestone tests
passing and is therefore 20% complete.

5.3. Application Performance and Functionality
Tradeoffs

When one combines the data presented in the Perfor-
mance chart in Figure 10 with the PAMT Functional-
ity chart in Figure 9, it reveals an example of the inter-

actions between performance and functionality in HPC
development.

One of the primary objectives of HPC development is
to obtain the fastest possible execution time of the sys-
tem. This goal influences developers to frequently (if
not constantly) think about or perform optimization on
their code.

However, as functionality is added to the application,
it is common for the performance of the system to de-
crease, indicated by an increase in execution time.

The data presented in figures 10 and 9 reveal this per-
formance and functionality tradeoff. For example, ex-
ecution time between 04-May-2004 and 07-May-2004
increaseses roughly from 30.0 hours to 32.5 hours. On
the other hand, 3 additional milestone tests, represent-
ing system functionality, are implemented successfully
during this interval. This indicates that three units of
functionality have been added at the cost of an addition
of approximately 10% in execution time.

Data presented in these figures allow project man-
agers to understand how functionality increases affect
system performance. It also gives them a starting point
to determine which functionality should be optimized in
the case where the performance degradation is not ac-
ceptable. Trends such as these enable project managers
and developers to understand the development process
and make in-process decisions to affect the development
outcome.

In conclusion, we have found that Active Time, Most
Active File, Command Line Invocations, Parallel and
Serial Lines of Code, Milestone Test Success, and Per-
formance constitute an interesting set of process and
product measures that can be automatically collected
during HPC development. As our case study continues,
we will look for other opportunities to use this measures
to gain insight into opportunities to improve high perfor-
mance computing.

6. Acknowledgements

We would like to thank the University of Hawaii and
MHPCC (Maui High Performance Computing Center)
for their continued support of and interest in our re-
search.

References

[1] The DARPA high productivity computing systems pro-
gram. http://www.highproductivity.org/.

[2] B. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[3] J. Gustafson. Purpose Based Benchmarks.International
Journal of High Performance Computing Applications,
12(1):14, 2004.



[4] W. S. Humphrey.A Discipline for Software Engineering.
Addison-Wesley, New York, 1995.

[5] P. M. Johnson and A. M. Disney. The personal software
process: A cautionary case study.IEEE Software, 15(6),
November 1998.

[6] P. M. Johnson, H. Kou, J. M. Agustin, C. Chan, C. A.
Moore, J. Miglani, S. Zhen, and W. E. Doane. Beyond the
personal software process: Metrics collection and analy-
sis for the differently disciplined. InProceedings of the
2003 International Conference on Software Engineering,
Portland, Oregon, May 2003.

[7] P. M. Johnson, C. A. Moore, J. A. Dane, and R. S. Brewer.
Empirically guided software effort guesstimation.IEEE
Software, 17(6), December 2000.

[8] D. A. Reed, editor.The Roadmap for the Revitalization of
High-End Computing. Computing Research Association,
2003.


