PRIORITY RANKED INSPECTION:
SUPPORTING EFFECTIVE INSPECTION IN RESOURCE LIMITED
ORGANIZATIONS

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘l IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTERS
IN
INFORMATION AND COMPUTER SCIENCES

AUGUST 2005

By
Aaron A. Kagawa

Thesis Committee:

Philip M. Johnson, Chairperson
Daniel D. Suthers, Martha E. Crosby



We certify that we have read this thesis and that, in our opinion, it is satisfac-
tory in scope and quality as a thesis for the degree of Masters in Information
and Computer Sciences.

THESIS COMMITTEE

Chairperson




©Copyright 2005

by

Aaron A. Kagawa



To my family.



Acknowledgments

| will always cherish the memories of my Graduate education. It has been a long and
difficult journey, but at the same time it has also been a lot of fun and very educational. Any success
and achievements that | have accomplished are a direct result of the support of many people. To
these people, | say thank you from the bottom of my heart.

There is nothing more important to me than my family. | am eternally grateful for the
strength, support, and above all, the love that all of you have given to me.

This Master’s Thesis would have not been possible without the tutelage of Professor Philip
Johnson. Thanks for your encouragement and guidance. There is no doubt that you have greatly
influenced many of my skills in software engineering, Java programming, software design, decision
making, and team leadership.

I would also like to send out many thanks to my fellow CSDL members. You have pro-
vided an excellent environment for all of us to achieve our educational goals with your brilliant
minds and outstanding support. Most of all, thanks for all the fun times we've had together. One
day we’ll achieve our goal of being the only PGA tour members with Graduate degrees in Computer
Science! Until then, | think we should stick to hacking Java.

| would also like to thank my committee members, Professor Philip Johnson, Professor
Dan Suthers, and Professor Martha Crosby. Thank you for your guidance, criticisms, and most of
all, praise.

Last of all, | would like to thank the whole Department of Information and Computer
Sciences here at the University of Hawaii Manoa. My undergraduate and graduate studies have
been educational, memorable and believe it or not, it has been fun.



Abstract

Imagine that your project manager has budgeted 200 person-hours for the next month to
inspect newly created source code. Unfortunately, in order to inspect all of the documents ade-
guately, you estimate that it will take 400 person-hours. However, your manager refuses to increase
the budgeted resources for the inspections. How do you decide which documents to inspect and
which documents to skip? Unfortunately, the classic definition of inspection does not provide any
advice on how to handle this situation. For example, the notion of entry criteria used in Software
Inspection [1] determines when documents are ready for inspection rather than if it is needed at all
[2].

My research has investigated how to prioritize inspection resources and apply them to
areas of the system that need them more. It is commonly assumed that defects are not uniformly
distributed across all documents in a system, a relatively small subset of a system accounts for a
relatively large proportion of defects [3]. If inspection resources are limited, then it will be more
effective to identify and inspect the defect-prone areas.

To accomplish this research, | have created an inspection process called Priority Ranked
Inspection (PRI). PRI uses software product and development process measures to distinguish doc-
uments that are “more in need of inspection” (MINI) from those “less in need of inspection” (LINI).
Some of the product and process measures include: user-reported defects, unit test coverage, active
time, and number of changes. | hypothesize that the inspection of MINI documents will generate
more defects with a higher severity than inspecting LINI documents.

My research employed a very simple exploratory study, which includes inspecting MINI
and LINI software code and checking to see if MINI code inspections generate more defects than
LINI code inspections. The results of the study provide supporting evidence that MINI documents
do contain more high-severity defects than LINI documents. In addition, there is some evidence that
PRI can provide developers with more information to help determine what documents they should
select for inspection.

Vi



Vii



Table of Contents

Acknowledgments . . . . . . L v

Abstract

Listof Tables . . . . . . . . . . Xii
Listof Figures . . . . . . . . . e e e Xiv
Introduction .. . . . . . . . 1

1

11
1.2

The Problem of Limited Resources for Software Inspections . . . . ... ... .. 1
The Priority Ranked Inspection Approach. . . . . . . . ... ... ... .... 4
1.2.1 Step la: Selection of Product and Process Measures . . . . . .. .. 5
1.2.2 Step 1b: Calibration of Indicators . . . . . .. ... ... ... ...... 6
1.2.3 Step 1c: Declaring MINI and LINI documents . . . . .. ... ... ... 7
1.2.4 Step 2: Selecting a Document for Inspection Based on the PRI Ranking . .
1.2.5 Step 3: Conducting an Inspection of the Selected Document ..... . . 8
1.2.6 Step 4: Adjustment of the Measure Selection and Calibration .. .. . . . 9

1.3 Implementing PRI with Hackystat . . . . . ... ... ... ... ......... 9
1.4 Thesis Statement . . . . . . . . .. 12
1.41 ThesisClaiml . .. .. . ... . . .. e 12
142 ThesisClaim2 . . . . . . . . . . . e 12
1.43 ThesisClaim3 . . . . . . ... . . ... 14
1.5 Exploratory StudyandResults . . . . .. .. ... ... ... .. .. .. .. ... 15
151 ThesisClaiml . .. ... ... . ... .. 15
152 ThesisClaim2 . .. . . . . . . . . e 15
153 ThesisClaim3 . . . . .. . .. . . 16
1.6 Structureofthe Thesis . . . . . . . . . .. . ... . 16
Related Work . . . . . . . . o 17
2.1 TypesoflInspection . . . . . . . . . . . . 18
2.1.1 Informal Inspection Processes. . . . . . . . . .. ... ... ... 18
2.1.2 Formal Inspection Processes . . . . . . . . . .. . ... ... ... 19
2.1.3 Software Inspection and Priority Ranked Inspection.. . . . . ... .. 22
2.2 Alterations to the Inspection Process . . . . . . . . ... ... ... ...... 25
2.2.1 Eliminating Stepsininspection . . ... ... ... ... ......... 25
2.2.2 Automated Software Inspection . . . . . ... ... 26
2.3 Selection of Documents for Inspection . . . . .. .. .. ... ... ........ 28
23.1 CodeSmells . .. . .. . 29
2.3.2 Crocodile . . . . . . .. 29



2.3.3 RiskAnalysis . . . . . .. 30

3 The Hackystat System . . . . . . . . . . . . . 32
3.1 Overview of the Hackystat System . . . . . . .. ... ... ... .. .. ..... 32
3.2 Hackystat's Architecture . . . . . .. .. . ... 33
3.3 Hackystat Sensors . . . . . . . . .. 34
3.4 Some Screenshotsof Hackystat . . . . . .. .. ... ... ... .......... 35
3.5 More Information about Hackystat . .... . .. .. ... ... .......... 38

4 Implementing PRI with Hackystat . . . . . ... ... ... ... ... ......... 39
4.1 Limitations of Implementing PRI with Hackystat . . . .. ... ... ....... 41
4.2 PRIRanking Function . . . . .. ... ... . ... 41

421 PRIMeasUres. . . . . . . . 0 e e e 41
422 PRIlIndicators . . . . . . . . . e 42
4.3 Userinterface . . . . . . . . . 44
43.1 PRIAnalyses . . . . . . . . 45
4.3.2 PRIListWorkspace Analysis . . . . .. ... ... ... ... .. ..., 46
4.3.3 Project PRI Configuration Management . . . . . .. ... ... ...... 47
4.3.4 Create a Project PRI Configuration. . . . . ... ... ........... 48
4.3.5 Project PRI Configuration Management - After the Creation of a PRI Con-
figuration . . . . ... 51
4.3.6 Project PRIRanking Analysis . . . ... ... ... .. .. .. ..., 52
4.3.7 Project PRI Ranking Analysis Selectors . . . . . .. ... ... ...... 53
4.3.8 Project PRI Ranking Analysis - Detailed View . . . ... ......... 55
4.3.9 Project PRI Ranking Analysis - hackyKernel . . . . ... ... ...... 56
4.3.10 Project PRI Module Ranking Analysis .. .. . . . .. .. ... ...... 57
4.4 The Four Steps of the Priority Ranked Inspection Process .. ... . . ... ... 59
4.4.1 Step la: Selection of Product and Process Measures . . . . ... .. 59
4.4.2 Step 1b: Calibration of PRI Indicators . . . . . . .. ... ... ...... 62
4.4.3 Step 1c: Declaring MINI and LINI documents . . . . .. ... ...... 64
4.4.4 Step 2: Selecting a Document for Inspection Based on the PRI Ranking . . 65
4.45 Step 3: Conducting an Inspection of the Selected Document ..... . . 65
4.4.6 Step 4: Adjustment of the Measure Selection and Indicator Calibration . . 65
4.5 Hackystat Priority Ranked Inspection Extension ... . . . . ... ... ... .. 66
4.5.1 Design and Implementation . . ... .. ... ... ... .. .. ..... 66
4.5.2 Design and Implementation Improvements . . . . . . ... ... ... .. 73
4.6 Future Implementation Enhancements . . . . . . ... .. ... ... ....... 75
46.1 ThreatstoDataValidity . .......................... 76
4.6.2 PRIlIndicatorRanking . . ... .. ... ... ... . ... .. .. ..., 76
4.6.3 OtherlLevelsofRanking . . ... ... ... ... .. ... . ..... 76
4.6.4 Better Support for More Programming Languages ... . . . . ... .. 77
4.6.5 Link with Software Project Telemetry . . . . .. .. ... ... ...... 77
4.6.6 Automatic Calibration FeedbackLoop . . . . . . .. ... ... .. .... 77
4.7 ContributionstoHackystat ... . . . .. .. .. ... ... .. .. .. ... 78
4.8 Using the Hackystat PRI Extension . . . . . . . . ... ... .. ... ....... 79

5 Exploratory Study Procedure . . . . . . . . .. e 80

5.1 SubjectsUsedintheStudy . . . . ... .. ... .. ... .. 80



o0 w>

5.2 Study Limitations . . . . . . . . . .. 83

5.3 StudyofThesisClaims . . . . .. ... .. .. . . . .. .. 83
5.3.1 Part1-Pre-Selection Questionnaire ...... ... ............ 84
5.3.2 Part2-Package Selection . . . .. ... ... ... .. .. .. .. ... 86
5.3.3 Part3-Requestforinspection . . . ... ... ... .. ... . ..., 87
5.3.4 Part4 - Inspection of Selected Package . . . .. ... ... ........ 87
5.3.5 Part5 - Post-Inspection Questionnaire ..... . . . . ... ... ... .. 87
5.3.6 Part6 - Record Results of Inspection . . . . .. ... ... ........ 87

5.4 Study Timeline . . . . . . . . . . . . 88

Results . . . . . . . 90

6.1 Limitations Revisited . . . . . . . . . ... 91

6.2 INSPEeCtions . . . . . . . 91

6.3 Result Terminology . . . . . . . . . . . . . e 94

6.4 ThesisClaiml . .. .. . . . . . . . . e 95
6.4.1 Inspection Results by Severity. .. . . . . . ... ... .. .. ... .. 95
6.4.2 Post-Inspection-Questionnaire Results..... . . . .. . ... ... ... 97
6.4.3 Inspection Resultsby Type . . . . . . .. . . .. ... .. .. .. ..., 99
6.4.4 Inspection Results by Review Active Time . . . . . . .. ... ... ... 100
6.4.5 Inspection Results by Averages . . . . . . ... ... ... ... ... 102

6.5 ThesisClaim2 . . . .. . . . . . . 103
6.5.1 SelectionTrends . . . . .. . . . . . ... 103
6.5.2 Validity of PRI's MINland LINIranking . . . .. ... .......... 107
6.5.3 Educational Value of Inspection . . . . . . ... ... ... .. ...... 108

6.6 ThesisClaim3 . . . . . . . . . . . e 109
6.6.1 SelectionTrends . . . . .. . . . . . .. ... 110

Conclusions and Future Directions . . . . . . . . . . . . . 111

7.1 Future Directions . . . . . . . . . . .. 111
7.1.1 MoreEvaluations . . . . . .. .. 111
7.1.2 Implementation of the Hackystat PRI Extension . . . . . . ... ... ... 112
7.1.3 Howto Determine MINI-Threshold . . . . . . ... ... ... ...... 112
7.1.4 Comparison of PRI with Code Smells and Crocodile . . . ... ... ... 112
7.1.5 Use of PRI in Other Quality Assurance Situations..... . . . ... ... 113

7.2 FinalThoughts . . .. .. .. .. . . . . . . . 113

Consent Form . . . . . . . L 114

Pre-Selection Questionnaire. . . . . . . . . . . ... e e 116

Post-Inspection Questionnaire .. .. . . . . . . .. 121

Pre-Selection-Questionnaire Results. . . . . . . . . . . . .. ... .. o 0. 123

D.1 Questionl . . . . . . . . . e 124

D.2 Question2 . . . . . . . . e e e 125

D.3 Question 3. . . . . . . e e 126

D4 Question4d . . . . . . . e 127

D.5 Question5 . . . . . . . e e 128

D.6 Question 6 . . . . . . . . . . e 129

D.7 Question 7 . . . . . . . . e e e e 130
D.7.1 hackyReview . . . . . . . . . ... 130



D.7.2 hackylssue . . . . . . . ... 132

D.7.3 hackyCGQM. . . . . . . . . . 134
D.7.4 hackyZorro . . . . . . . . 137
D.7.5 hackyTelemetry . . . . . . . . . . . . . e 139
D.8 Question8 . . . . . . . e 141
D.9 Question 9 . . . . . . . e e 147
E Inspection and Post-Inspection-Questionnaire Results . . . . . . .. ... ... .. 151
E.1 Inspection 8 . . . . . . . . . . 151
E.2 InspectionQ . . . . . . . . . e e 153
E.3 Inspection 11 . . . . . . . . . . 155
E.4 Inspection 12 . . . . . . . . . e 157
E.5 Inspection 13 . . . . . . . .. 159
E.6 Inspection 14 . . . . . . . . . . e 162
E.7 Inspection 15 . . . . . . . . . 164
E.8 Inspection 16 . . . . . . . . . . . . e 167
E.9 Inspection 17 . . . . . . . . . e 170
Bibliography . . . . . . .. e e 173

Xi



List of Tables

Table Page
1.1 Step la - Example PRI ranking - After Measure Selection .. .. . . . . ... .. 6
1.2 Step 1b - Example PRI ranking - After Indicator Calibration . . .. .. .. .. .. 6
1.3 Step 1b - Example PRI ranking - After Indicator Weighting Calibration . . . . . . 7
1.4 Step 1c - Example PRI ranking - Declaring MINland LINI . . . . ... ... ... 8
4.1 Java Packages inthe hackyPRIsystem . . .. .. .. ... ... ... ....... 67
4.2 WorkspacePriMeasure Interface. . . . . . . . . ... oL 69
4.3 Description ofthe PRIMeasures. . . . . . . . . . . .. . ... 70
4.4 Theworkspace package . . . . . . . . . . . . ... 73
4.5 ProjectWorkspaceRanking algorithm . . . . . . ... ... ... ... 74
5.1 Jupiter Propertiesand Values. . . . . . . . . . ... ... L. 82
5.2 Study Timeline . . . . . . . . . . . . 89
6.1 All Inspection - Results by Severity ... . .. .. ... . ... ... ...... 92
6.2 AllInspection -Resultsby Type . . . . . . .. . . ... ... oL 93
6.3 All Inspections - Results by Typeand Severity . . . . . . . ... ... ... .. 93
D.1 Question 1 ReSPONSES . . . . . . . o v i e e e 124
D.2 Question 2 ReSPONSES . . . . . . . e 125
D.3 Question 3RESPONSES . . . . . . . . e e e 126
D.4 Question 4 RESPONSES . . . . . . . o i i e 127
D.5 Question 5Responses . . . . . . . . . e 128
D.6 Question 6 ReSpoNseS . . . . . . . . . . e 129
D.7 hackyReview Developer Ranking . . . . . . . . . . . ... .. .. ... 130
D.8 hackylssue DeveloperRanking . . . . . .. .. .. ... .. .. ... ... ..., 132
D.9 hackyCGQM Developer Ranking. . . . . . . . . .. ... ... ... ...... 134
D.10 hackyZorro Developer Ranking . . . . . . . . . . . . i 137
D.11 hackyTelemetry Developer Ranking . . . . . . . ... ... ... ... ...... 139
D.12 Question 8 Responses - Participant1..... . . . . . .. .. ... ... ..... 141
D.13 Question 8 Responses - Participant 2..... . . . . .. .. ... ... ... ... 142
D.14 Question 8 Responses - Participant3..... . . . . . . . . . ... .. ... .. 142
D.15 Question 8 Responses - Participant4..... . . . . . . .. ... ... .. ... 143

Xii



D.16 Question 8 Responses - Participant5..... . . . . . ... ... ... ... ... 143

D.17 Question 8 Responses - Participant6..... . . . . . .. .. ... ... ..... 144
D.18 Question 9 Responses - Participant1..... . . . . . ... ... ... ... ... 147
D.19 Question 9 Responses - Participant 2..... . . . . . . . . . ... .. ... .. 148
D.20 Question 9 Responses - Participant3..... . . . . .. .. ... ... .. ... 149
D.21 Question 9 Responses - Participant4..... . . . . . . . . . ... .. .. ... 149
D.22 Question 9 Responses - Participant5..... . . . .. .. .. ... ... ..... 150
D.23 Question 9 Responses - Participant6..... . . . . . ... ... ... .. .. .. 150
E.1 Inspection 8 - Package Details . . . . . ... ... ... ... ... . ... .. 151
E.2 Inspection 8- Results by Severity . .. .. .. .. .. ... .. .. .. ... 152
E.3 Inspection 8 - Results by Type and Severity ...... .. ... .......... 1562
E.4 Postinspection 8-ReSpoNsSes . . . . . . . . . i i e e 152
E.5 Inspection 9 - Package Details . . . . .. ... ... ... .. ... .. ... .. 153
E.6 Inspection 9-Resultsby Severity . .. .. .. ... ... ... .. ..., 153
E.7 Inspection 9 - Results by Type and Severity ...... ... ............ 153
E.8 PostInspection 9-ResponNses . . . . . . . . . . i i e e 154
E.9 Inspection 11 - Package Details . . . . . . .. .. ... ... ... ... ... 155
E.10 Inspection 11 - Results by Severity . . . . . . . . . ... ... ... ... 155
E.11 Inspection 11 - Results by Type and Severity ...... . . . .. ... ....... 155
E.12 PostInspection 11-ReSponNses . . . . . . . . . . . 156
E.13 Inspection 12 - Package Details . . . . . . . . .. .. ... .. .. .. .. ... 157
E.14 Inspection 12 - Results by Severity . . . . . . . . . .. ... ... 157
E.15 Inspection 12 - Results by Type and Severity ...... . . . .. .. ... ..... 157
E.16 PostiInspection 12-ReSponses . . . . . . . . . . . 158
E.17 Inspection 13- Package Details . . . . . . . ... .. ... .. .. .. .. ... 159
E.18 Inspection 13 - Results by Severity . . . . . . . . .. .. ... ... 159
E.19 Inspection 13 - Results by Type and Severity ...... . . . ... ... ... ... 159
E.20 PostInspection 13-ReSponNsSes . . . . . . . . . .. 160
E.21 Inspection 14 - Package Details . . . . . . . . . . .. ... .. .. . . ... 162
E.22 Inspection 14 - Resultsby Severity . . . . . . . . . .. ... .. .. . .. 162
E.23 Inspection 14 - Results by Type and Severity ...... . . . ... ... ...... 162
E.24 Postinspection 14 - RESPONSES . . . . . v v v v v v i e e e e e 163
E.25 Inspection 15 - Package Details . . . . . . . .. . . . ... ... ... 164
E.26 Inspection 15-Resultsby Severity . . . . . . . .. .. ... . . o L. 164
E.27 Inspection 15 - Results by Type and Severity ...... . . ... ... .. ... .. 164
E.28 PostiInspection 15-ReSpONSesS . . . . . . . . . o i e e e 165
E.29 Inspection 16 - Package Details . . . . . . . . . . . . ... ... ... 167
E.30 Inspection 16 - Resultsby Severity . . . . . . . . . .. ... .. .. .. ... 167
E.31 Inspection 16 - Results by Type and Severity ...... . . . . ... ... ..... 167
E.32 Postinspection 16 - RESPONSES . . . . . . . . v v i i i e e e 168
E.33 Inspection 17 - Package Details . . . . . . .. .. .. ... .. .. .. .. ... 170
E.34 Inspection 17 - Results by Severity . . . . . . . . .. .. ... ... L. 170
E.35 Inspection 17 - Results by Type and Severity ...... . . . .. ... ....... 170
E.36 PostInspection 17 -ReSpoNsSes . . . . . . . . . . . 171



Figure

1.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

List of Figures

Page
The PRIRanking analysis . . . . . .. ... .. . . ... . . 11
Hackystat Architecture . . . . . . . . . . . ... 34
Hackystat Sensors and Sensor Data Types . . . . . . .. .. .. .. ... ..... 35
The Hackystat Home Page . . . . . . . . . .. . . . . . .. ... . . ..... 36
The Hackystat analysiswebpage . . . . . . . . . .. .. ... ... ... ..... 36
The Hackystat preferences webpage . . . . . . . ... ... . ... ... ..., 37
PRIRankinganalysis . . . . . . . . . . . . . . . .. 40
PRIanalyses . . . . . . . . . . . e 45
Execution of the List Workspace analysis . . . . . .. ... ... ... ...... 46
Project PRI Configuration Management preference page . . . ... ... ... .. 47
Create Project PRI Configuration . . . . . . . .. ... ... . .. ... ..... 48
Project PRI Configuration Management preference page . . . . . ... ... ... 51
Execution of the Project PRI Rankinganalysis . . . .. .. ... .......... 52
Project PRI Ranking analysis selectors . . . . . . .. . ... .. ... ....... 53
Execution of the Project PRI Rankinganalysis . . . . . ... ... ......... 55
Execution of the Project PRI Ranking analysis . . . . . . .. ... ... ...... 56
Execution of the Project PRI Module Ranking analysis ...... . .. ...... 57

All Inspections - Results by Severityand Type . . . . . . . ... ... ... .. 93
Inspection Results - Severity . . . . . . . . .. . 95
Inspection Results - Average Severity. . . . . . . . . ... oL 96
Inspection Results - Severity Percentage . . . . . . ... ... ... ...... 97
Inspection Results - Average Severity Percentage. . . . . . . ... ... ... 97

Post Inspection Questionnaire - Questian.1. . . . . . . .. ... ... ... .. 98
Post Inspection Questionnaire - Question 1 - Average Respanses. . . . . . . 98

Post Inspection Questionnaire - Questian.3. . . . . . . . . ... ... ... .. 99
Post Inspection Questionnaire - Question 3 - Average Respanses. . . . . . . 99
Inspection Results - Type . . . . . . . . . . . e 100
Inspection Results - Type . . . . . . . . . e 100
Inspection Results - Review Active Time . . . . . . . . . .. ... ... ...... 101
Inspection Results - Review Active Time . . . . . . . . ... .. ... ... .... 101

Xiv



6.14 Inspection Results - Averages . . . . . . . . . . . 102

6.15 Question 8 Part 1 Responses . . . . . . . . . . . i e e e 105
6.16 Question 8 Part2 Responses . . . . . . . . . . . 106
6.17 Question 8 ComMparison . . . . . . . . . . e e e 107
6.18 Post Inspection Questionnaire - Question.2. . . . . . . ... ... ... 109
Al ConsentForm . . . .. ... . ... ... 115
B.1 Pre-Selection Questionnaire -Part1 . .. ... ... ... ... ........ 117

B.2 Pre-Selection Questionnaire -Part2 . .. . .. ... ... ... .. 118

B.3 Pre-Selection Questionnaire-Part3 . .. . ... ... ... ... ... .... 119

B.4 Pre-Selection Questionnaire -Part4 _ .. . .. ... ... L. 120
C.1 Post-Inspection Questionnaire . . . . . . . .. .. 122
D.1 Question 1 RESPONSES . . . . . . . . o o i 124
D.2 Question 2 ReSpONSES . . . . . . . . i e e e e 125
D.3 Question 3REeSpoNSeS . . . . . . . .. 126
D.4 Question 4 RESPONSES . . . . . . v o v i e e e e e e 127
D.5 Question 5Responses . . . . . . . ... 128
D.6 Question 6 ResSpoNses . . . . . . . . . . e e 129
D.7 hackyReview PRI Ranking - Inspection8 . . . . .. ... ... .. ........ 131
D.8 hackylssue PRI Ranking - Inspection9 . . . . . .. ... ... ... ........ 133
D.9 hackyCGQM PRI Ranking - Inspection 11 . . . . .. .. ... ... ...... 135
D.10 hackyCGQM PRI Ranking - Inspection 11 . . . . . . . ... ... ... .... 136
D.11 hackyZorro PRI Ranking - Inspection 12 . . . . . . .. ... ... ... ...... 138
D.12 hackyTelemetry PRI Ranking - Inspection 14 . . . . . . . . .. . ... ... ... 140
D.13 Question 8 Part 1 RESPONSES . . . . . . . . o v i e e e 145
D.14 Question 8 Part 2 ReSpoNSesS . . . . . . . . . . e 145
D.15 Question 8 Part 1 RESPONSES . . . . . . . v v i e e e 146
D.16 Question 8 Part 2 ReSponses . . . . . . . . . . 146
E.1 hackylssue PRI Ranking - Inspection 13 . . . . . .. .. .. ... ... ...... 161
E.2 hackyKernel PRI Ranking - Inspection15 . . . .. ... ... ... ........ 166
E.3 hackyStdExt PRI Ranking - Inspection16 . . . . . ... .. ... .. ....... 169
E.4 hackyStdExt PRI Ranking - Inspection 17 . . . . . . . . . . ... ... . ..... 172

XV



Chapter 1

Introduction

Software inspection is defined as: “A formal evaluation technique in which software re-
quirements, design, or code are examined in detail by a person or group other than the author to
detect faults, violations of development standards, and other problems...” [1]. Software inspection,
or software review as it is sometimes called, can have fantastic results: “Rigorous inspection can
remove up to 90 percent of errors from a software product before the first test case is run” [4, 5].

Since Michael Fagan invented the inspection technique in 1976, there have been many
variations on the general concept of inspection. We now have Fagan Inspection [6], Software
Inspection [1], In-Process Inspection [7], peer review [8], software reviews, code walkthroughs,
inspections without meetings, and many more different twists on the original concept. Each of
these techniques claims to be the best inspection method for certain circumstances. For example,
some argue that the inspection meeting is a waste of time and resources [9, 10]. Others argue
that the inspection meeting is critical for supporting social and educational aspects of inspection
[11, 12, 13, 14].

My research is complementary to traditional inspection research. Instead of investigating
how to conduct the inspection process, | investigate how to prioritize what documents need to be
inspected. In this thesis, | describe how the selection of a document for inspection can create prob-
lems for organizations with limited inspection resources. To solve these problems, | have created a
new inspection document selection technique called Priority Ranked Inspection.

1.1 The Problem of Limited Resources for Software Inspections

The use of software inspection has reported outstanding results in improving productivity

and quality. One study has found that when the inspection process is followed correctly, up to



95 percent of defects can be removed before entering the testing phase [5]. In another success
story, the Jet Propulsion Laboratory (JPL) adopted an inspection process to identify defects. After
conducting 300 inspections they experienced a savings of 7.5 million dollars [15]. This statistic is
very impressive. However, what is not emphasized is each inspection had an average cost of 28
hours. Using that average cost, the total cost for JPL's 300 inspections was 8,400 hours or roughly
4 years of work.

The study of JPL's inspection experience illustrates a fundamental problem with inspec-
tions: better results come from substantial investment [1]. Furthermore, some consider inspections
to be a “gating point” in the development life cycle of a project. A point at which there is an “op-
portunity to control the transfer of the product from one development process stage to the next”
[2, 16]. However, not all organizations have the time or the money to invest in full or complete
inspections. In most cases, organizations have limited resources that can be devoted to inspections.
For example, a manager may only have 200 hours of a project schedule to allocate towards quality
assurance including inspections. Such organizations must decide how to best utilize their limited
inspection resources. This realistic management of inspections directly contradicts the classical in-
spection adage of “when a document is ready, you should inspect it” [2]. The bottom line is that

most organizations cannot inspect every document. As an example, consider the following scenario:

An organization has enough resources available to conduct two inspections a week.
However, each week this organization creates and finishes 10 different documents. How
do they select 2 documents to inspect from the possible 10? To be fair to all developers,
they use a round-robin type approach by allowing a different developer to volunteer
a document for inspection. This approach is fairly successful and at least they are
conducting inspections. But, are they inspecting the right documents? Obviously, each
week this organization is unavoidably letting 8 documents slip through the “inspection-
gate” and could be releasing documents that have high-severity defects.

The traditional inspection process begins with the initiation phase, or sometimes called
the planning stage, in which authors volunteer their documents for inspection [1]. In addition,
an inspection leader checks the document against entry criteria to determine if the document is
ready for inspection [7, 1]. Again this process works very well for organizations, like JPL, that
have the resources to inspect every document after every significant change. However, this phase
of inspection can be a major problem for organizations that do not have the necessary resources,
because the process does not consider that some documents are “better” to inspect than others. A

simple illustration of this fact is that 80 percent of defects come from 20 percent of the system [3].



Thus, volunteering a document from the defect-prone 20 percent will likely be “more in need of
inspection” than any other part of the system.

Unfortunately, the current literature [7, 17, 1] on inspections does not provide specific in-
sights into the trade-offs between inspecting some documents and not inspecting others. However,
there are many publications describing different ways to reduce the required inspection resources.
For example, Tom Gilb and Dorothy Graham provide two recommendations to use when inspec-
tion resources are limited, sampling and emphasizing up-stream documents [1]. Lawrence Votta
Jr. found that the inspection meeting, where the inspectors meet and discuss the validity of the is-
sues found in the individual phase, is ineffective and can actually delay the inspection process days
and even weeks [10, 18]. Therefore, he proposed that the inspection meeting be totally eliminated.
An extreme process change is outsourcing the whole inspection process to a third-party company.
Jasper Kamperman states that outsourced software inspections are cheaper, easier, and greatly ben-
eficial [19]. These examples might do an acceptable job of decreasing the necessary inspection
resources, but they still do not provide an answer about the selection of document for inspection.

Inspections are supposed to be the “silver bullet” for software quality assurance. Yet, its
acceptance in the mainstream software development community has been slow. I'll conclude this
section with some quotes found in the inspection literature.

[Inspections] are extremely costly, all claims that they are cheaper than their al-
ternatives notwithstanding. In other words, inspection is a very bad form of error
removal-but all others are much worse. ... Most companies don’'t do many inspections,
and some do none at all. At best, the state of the practice is “we inspect our key com-
ponents.” At worse, its “we don’'t have the time to do inspections at all” And that’s
too bad, because the value of inspections is probably the topic on which computing
research agrees more consistently than any other [18].

[Inspection] is a double pain. First, the documents to be inspected must be pro-
duced, and we know that documentation itself is a pain. Second, inspection is one of
these unpopular activities that are the first to be scrubbed when the deadlines are loom-
ing. ... Every shred of evidence indicates that formal technical reviews (for example,
inspections) result in fewer production bugs, lower maintenance costs, and higher soft-
ware success rates. Yet we're unwilling to plan the effort required to recognize bugs in
their early states, even though bugs found in the field cost as much as 200 times more
to correct [20].

Inspection is a systematic and disciplined process that is guided by well-defined
rules. These strict requirements often backfire, resulting in code inspections that are
not performed well or sometimes even not performed at all [21].



1.2 The Priority Ranked Inspection Approach

To address some of the problems associated with conducting inspections with limited re-
sources, | propose a new inspection process called “Priority Ranked Inspection” (PRI). The primary
goal of PRI is to optimize the selection of documents for inspection by distinguishing documents
that are “more in need of inspection” (MINI) versus documents that are “less in need of inspection”
(LINI). In addition, PRI ranks each document according to this determination in hopes of prioritiz-
ing the documents that need to be inspected. The converse is also true: PRI identifies documents
that might not need to be inspected.

As | have shown in the previous section, it is extremely difficult for organizations with
limited inspection resources to inspect every document before it exits the development process.
Therefore, unlike traditional inspection processes, PRI does not require that all documents be in-
spected. Instead, PRI is intended to help these organizations in two ways. First, PRI is intended to
identify documents in the current development process that need to be inspected. This will allow
organizations to make an educated guess at what documents need to be inspected and what docu-
ments can be skipped. Second, it is unavoidable that some documents with high-severity defects
will finish the development process without being inspected. Therefore, PRI is also intended to
identify documents for inspection regardless of whether a document is currently under development
or not.

There are four primary steps in the Priority Ranked Inspection (PRI) process. The fol-
lowing list is short description of each of the steps. The following sub-sections provide a summary

description of each step.

1. The creation of the PRI ranking function, which distinguishes MINI documents from LINI
documents. The ranking function design includes three steps:
(a) Selection of product and process measures to use in the PRI ranking function.

(b) The calibration of indicators, which evaluates the values of the measures to generate a

ranking for the document.

(c) The creation of a MINI-threshold, which declares all documents above the threshold as
LINI and all below as MINI.

2. The selection of a document for inspection based on the PRI ranking.

3. The actual inspection of the selected document.



4. Adjustment of product and process measure selection and calibration of indicators based on

the results of ongoing inspections.

1.2.1 Step la: Selection of Product and Process Measures

The PRI ranking function, which distinguishes MINI documents from LINI documents,
is generated from various product and process measures. Product measures are usually obtainable
from direct analysis of source code. Lines of code, complexity, and number of children are a few
examples of product measures. On the other hand, process measures are collected from an actual
software development process. The amount of developer “effort” and the number of user-reported
defects are examples of process measures. One might ask, what specific measures should PRI
consider? The answer: it depends on the specific situation. Different projects and organizations
could have a different set of measures in defining the optimum PRI ranking function. Therefore, a
major component of the PRI process is the selection of these measures.

Software quality measures are one example of the type of product and process measures
that could be used in PRI. Software inspection has two primary goals: (1) increase quality and
(2) increase productivity. For this research | am primarily concerned with increasing quality. The
successful inspection of a document has two main results: (1) finding defects which, once removed,
increases software quality, or (2) not finding defects thus indicating high software quality. Software
quality is vaguely defined as “the degree to which software possesses a desired combination of
attributes” [22]. Some of the possible attributes of quality include: portability, reliability, efficiency,
usability, testability, understandability, and modifiability [4]. Whatever definition and attributes is
used for quality, inspections aim to increase or validate the level of quality in software. Therefore,
the same attributes that define software quality also provide good indications of what documents
need to be inspected. For example, finding documents that have unacceptable levels of portability,
reliability, efficiency, usability, testability, understandability, and modifiability would provide a good
indication that the documents are MINI.

Unfortunately, the software quality research community has not come to an agreement on
what specific software measures accurately reflect the previous mentioned quality-attributes. There-

fore, for the following example, let's assume that the measures “lines of code,” “number of defects

1 and “unit test coverage” are acceptable proxies of maintainability, reliability, and testability. Ta-

1The defects used here are user-reported defects, which is usually stored in issue management systems, for example,
Jira, Scarab, and Bugzilla. These should not be confused with the estimated number of defects that should be found after
inspecting the document.



ble 1.1 is an example of the PRI ranking of a software project that contains three documents. The

table presents the product and process meadwssociated with the three documents.

Table 1.1. Step 1la - Example PRI ranking - After Measure Selection
Document | PRI Ranking | Lines of Code | # of Defects| Coverage
Foo.java | missing 330 lines 1 49%
Bar.java missing 400 lines 4 75%
Baz.java | missing 250 lines 0 96%

Table 1.1 contains a PRI ranking after finishing Step 1a of the PRI process. Notice that
at this point in the PRI process, the PRI ranking for each workspace is missing, because we have
only selected the measures that will be used. To actually generate a PRI ranking, we must configure

indicators in Step 1b.

1.2.2 Step 1b: Calibration of Indicators

In Step 1a, we have selected the product and process measures that will be used in the
PRI ranking function. In Step 1b, we must construct and calibrate indicators, which will provide a
priority ranking of the documents. The main function of the indicators is to generate a PRI ranking
for a document based on the measures values.

One way to accomplish this is to provide individual rankings for each of the measures.
For example, an organization must agree on thresholds that evaluate the measure values and provide
ascore on a 0 to 100 scale; 0 indicating the worst possible score and 100 indicating the best possible
score. Table 1.2 shows the PRI ranking after the creation of indicators, which provides a ranking
for each measure and is aggregated to provide an overall ranking for each document. According the
PRI ranking shown in the Table, Bar.java is the highest priority document and Baz.java is the lowest

priority document.

Table 1.2. Step 1b - Example PRI ranking - After Indicator Calibration

Document

PRI Ranking

Lines of Code

# of Defects

Coverage

Bar.java

155(=60+20+75)

400 lines(ranking=60)

4 (ranking=20)

75% (ranking=75)

Foo.java

169(=70+50+49)

330 lines(ranking=70)

1 (ranking=50)

49% (ranking=49)

Baz.java

276 (=80+100+96)

250 lines(ranking=80)

0O (ranking=100)

96% (ranking=96)

ZNote that, this table only shows three product and process measures, but in normal situations any number of measures

may be used.




Some measures are more important than others when providing indicators for the PRI
ranking. For example, an organization may find that coverage has a greater positive impact on the
PRI ranking function than lines of code. Therefore, another consideration of Step 1b in the PRI
process is the calibration of the indicators’ importance. The calibration of the indicators is based
on a numerical weighting system. Each indicator should be assigned a numerical weight and be
individually calibrated.

Using the same example (Table 1.2), imagine that the organization has found coverage to
be a leading indicator in defect prevention. Therefore, the calibration is adjusted and the values of
coverage are given a higher weight than the other measures. This finding changes the PRI ranking.
Table 1.3 shows the new PRI ranking after the adjustment of the indicators’ calibration. Notice that

the coverage rankings are multiplied by 2.

Table 1.3. Step 1b - Example PRI ranking - After Indicator Weighting Calibration

Document | PRI Ranking Lines of Code # of Defects | Coverage

Foo.java | 218(=70+50+98) | 330 lines(ranking=70)| 1 (ranking=50) | 49% (ranking=49*2=98)
Bar.java 230(=60+20+150) | 400 lines(ranking=60) | 4 (ranking=20) | 75% (ranking=75*2=150)
Baz.java | 372(=80+100+192)| 250 lines(ranking=80) | O (ranking=100)| 96% (ranking=96*2=192)

As a result of the calibration, the PRI ranking for Foo.java and Bar.java have switched

places and now Foo.java is the highest priority document.

1.2.3 Step 1c: Declaring MINI and LINI documents

The final step of the PRI ranking function is the creation of a MINI-threshold, declares
each document as MINI or a LINI, by evaluating the documents’ PRI ranking. Table 1.4 shows
one interpretation of the declaration of MINI and LINI based on the documents’ rankings. In this
example, the MINI-threshold was determined to be 371, which means all documents with a ranking
lower than 371 are MINI and all rankings above are LINI. The major benefit of declaring a docu-
ment, as a MINI or LINI, is that an organization can determine how many inspections PRI suggests
are needed. Therefore, the organization can plan and reserve the necessary resources required to
inspect all the MINI documents. In this example, PRI suggests that 2 inspections are needed on
Foo.java and Bar.java.

Unfortunately, | have discovered that determining the MINI-threshold is harder than |
first envisioned. Therefore, future research must be done to determine how to make an absolute

declaration whether a document is a MINI or a LINI. However, | believe that Steps 1a and Step 1b



Table 1.4. Step 1c - Example PRI ranking - Declaring MINI and LINI

Document | PRI Ranking | Lines of Code | # of Defects| Coverage
Foo.java | MINI 330 lines 1 49%
Bar.java MINI 400 lines 4 75%
Baz.java | LINI 250 lines 0 96%

are still greatly beneficial. In a software project with hundreds or even thousands of documents the
MINI-threshold is less important, because the PRI rankings for each document provides a relative
MINI and LINI declaration. In other words, the documents with the lowest numerical rankings will

be more MINI than the documents with the highest numerical rankings and vice versa.

1.2.4 Step 2: Selecting a Document for Inspection Based on the PRI Ranking

After the PRI ranking function is in place, an organization may use PRI to select docu-
ments for inspection. To select a document for inspection they simply consult the PRI ranking and
find a MINI document (a document deemed more in need of inspection). This ranking will help
constrain the number of possible documents that can be considered for inspection.

For example, using the ranking presented in Table 1.4, an organization should select
Foo.java for inspection, because it has the highest MINI ranking of the three documents. Dur-
ing the next inspection, Bar.java should be selected. However, according to PRI the inspection of
Baz.java could be skipped, thus saving inspection resources. In this example, an organization will
save resources required to inspect a single document. For a software project with thousands of doc-
uments, PRI could save the resources required to inspect hundreds of LINI documents. Of course,
the organization can still choose to inspect all LINI documents. In this case, | would claim that PRI
is still beneficial because it will allow them to prioritize their inspection resources.

Using the PRI ranking to select documents for inspection has three primary benefits. First,
it can enhance the selection, or the volunteering process, of a document for inspection. Second, it
can identify documents for inspection that a volunteering process typically does not. Third, in-
specting a MINI document will generate more defects with a higher severity than inspecting a LINI

document.

1.2.5 Step 3: Conducting an Inspection of the Selected Document

Once the document is selected, a traditional inspection process can begin. PRI does not
have any special processes for this step. An organization can choose to use any traditional inspection

8



process (i.e., Software Inspection, Fagan Inspection, In-Process Inspection). In other words, the PRI
process is an outer layer that wraps around an already established inspection process to enhance
the selection of documents. Therefore, in this research | will not discuss or evaluate traditional
inspection concepts like, inspection leaders, preparation time, etc. However, it is best that the results

of the inspection be recorded for use in the next step.

1.2.6 Step 4: Adjustment of the Measure Selection and Calibration

After the inspection of a document, the results can be used to further improve the PRI
ranking function. For example, if the PRI ranking function appears to be incorrect, because it
ranked a document as MINI but no high-severity defects were found, then the PRI ranking function
should be adjusted to classify this document as LINI. This adjustment can be achieved in two ways.
First, one could add more product and process measures to make the PRI ranking function more
robust (Step 1a). Alternatively, one could calibrate the current indicators to refine and correct the
PRI ranking function (Step 1b). In either case, an incorrect PRI ranking function provides data to
help make future PRI ranking functions better. This process should be an ongoing evolving activity.

For example, consider the example presented with Foo.java, Bar.java, and Baz.java. If
an organization has found results that suggest that the number of defects is a leading indicator of

defects, then it should be calibrated with a higher weight.

1.3 Implementing PRI with Hackystat

To successfully use PRI, the determination of MINI and LINI must be obtainable for a
very low cost. In other words, if the ranking function takes three months to generate, a software
project may no longer need those specific recommendations. Therefore, the PRI rankings must be
obtainable in real-time and without introducing new costs to the inspection process.

One way of obtaining ranking function values in real-time is through the use of the Hack-
ystat system [23]. Therefore, | have decided to use the Hackystat system to implement and evaluate
the PRI process in this research. Hackystat is a framework for collecting and analyzing software
product and development process metrics in real-ime

For this research, | have created an extension to the Hackystat system called the Hackystat
PRI Extension (hackyPRI for short). hackyPRI provides a real-time PRI ranking by providing sev-
eral automated functions. First, it provides Java implementations of PRI measures, which represent

3For more information about the Hackystat system see Chapter 3.



the product and process measures that are used in the PRI ranking function. Second, it provides
Java implementations of PRI indicators, which are used in the PRI ranking function to interpret the
values of the PRI measures to provide rankings for the PRI measures and the documents. Third, it
automates and optimizes the generation of the PRI ranking function on years of Hackystat sensor
data.
Figure 1.1 provides a portion of the PRI ranking for a software project that is obtainable

from the Hackystat PRI Extension. Chapter 4 provides a detailed explanation of how to use the
hackyPRI extension and how it generates a PRI ranking for a software project. The following is a

short description of the data presented in Figure 1.1.

1. Eachrow inthe table represents a workspace within a Hackystat project. The term, “workspaces”,

generally means the directory where software code is located.

2. Each column to the right of the column labeled “Ranking,” represents the PRI measures used
in the PRI ranking function. PRI measures provide the data that will be used in the PRI
ranking function. The values of the PRI measures are presented to the user to help explain the

overall ranking for the specified workspace.

3. PRIindicators work behind the scenes to help generate a PRI ranking. PRI indicators interpret
the values of the PRI measures to calculate a ranking for a workspace. The resulting value of

a PRI ranking function is presented in the column labeled “Ranking” for each workspace.

4. This figure presents some of the LINI workspaces within a Hackystat project. These workspaces,
according to the hackyPRI extension, should not need inspection. Although not pictured,
workspaces at the bottom of the table are MINI documents, which according to the hackyPRI

extension, should be inspected by an organization.

The hackyPRI extension is implemented to fully support all 4 steps of the PRI process,
except Step 1c. It is important to note that PRI is a propgsedess therefore many different
tools can support it. Therefore, using the Hackystat PRI Extension is not required to conduct PRI
inspections. However, there are many advantages of using the Hackystat system to automate the

collection of product and process measures and the PRI ranking function [23].

1. Hackystat provides automated measure collection, therefore there is low to no overhead re-

quirements for measure collection.

2. Hackystat can support any Software project’s development process, activities, and tools.

10



05=10113 T=on S=thon (6=S1w00 \Krewwinseyepkep
k 2| 81=1N0 ‘T=sse|D) ‘z=sse| ¥002-| %002 002~ $002- '85°0=aLun) \SISAJeUR\UOWILIODXaPIS
% 00°00T T ‘0=ul '81=001 '26=001 q o 0 62T 7| des-0g| uerzr  oT T dv-60, Ue(-TT 4 0S0  U8S0 Tiedojenap 0v0T \eIs/HpeY\BIo\ISIXIPISHfRY
T=ylen Z=ylen (g=s1woo \elepIOSUSSISI|:
9T=10) ‘T=sse|D) ‘z=sse| ¥002-| 002 002~ $002- ‘LT T=ewn) \SISA[EU\UOWILIOOX3P)S!
% 00°00T T ‘o=u1 '6T=001 '08=001] q 0 0 16 2| des-og| uer-oz 9 T 1dv-90! Jdv-e0  ULTIT U/lTT Tsadojanap PYOT! \eIsAxoeyY\BIo\ISUXTPISANORY
T=UYaN 8= (TT=S1W00
T1=1N0 ‘T=sSe|) ‘p=sse| ¥00Z-| €002 002" £002- ‘29°0=awp) \deos\jauia
% v9'€9 T ‘9=ul ‘£6=001, '202=007] q o 0 Sby 7| rew-go| Aew-vo LT S| AON-GT Aep-v0  UZTI0 u8ST Tiadojanap Sv0T eIs/OpeY\BIo\Is\UIRYARY
T=Wsn S=UBN (z=s)wod \awna|yoafoid
0g=1N0] ‘T=SSe|D ‘z=sse| ¥00Z-|  ¥002- 002" 002" ‘£€°0=own) \sisAjeur\iAIoR XBPIS
% 00°00T T ‘0= ‘02=001! ‘Z€1=007] q o 0 zee €| noN-60| unr-gz 7] T uncpg, ung-pz  ULTI0  UEED Tiadojanap 8v0T WreIsfopoey\BI0\0ISUXIPIS Ry
y=ulai Ov=UlBIn (L9=S10D)
vE=In0 ‘p=SSe|0 ‘8=ss€|D S002-|  S002- 5002- 5002- ‘00°§T=awn) \eoedsyiomapounudidde
% EV'T6 v ‘sg=ul '€6=001 '885=0071 € 0 6T S8Ye 1/ adv-,T]  uer-gz 19 2| advsT Ue(:9z 4290 UBO'ST ziadojenap 80T veishioey\Bio\ais\idAfRY
T=Ua TT=Ule (2T=S1W0,
ST=1N0 ‘T=sse|D ‘p=sse| ¥002-| €002 002" £002- ‘52" 0=aur \EIEPMAUNLIS[E\UOWIODXDPIS
% 0008 T "z=ul '91=001 '211=007] q o 0 Tew € nc-oe| Aew-so oz € udy-90, Aep:s0 UEED U050 Tiadojenap 2501 VeIsfopoey\BioisuxIpISOey
T=UWsn =N (6=S1W09!
2T=N0; ‘T=sse|D ‘z=ssen ¥00Z-|  £002-! 002" £002-! ‘€8 T=aun), \uondope\sisAjeur\uiwpeyxapis|
% 00°00T, T T=u1 '0T=001 '021=001 qQ [o} 0 ford> 2/ »o-9z| AKew-go 0T, z 10-92 AeN-80  ugSl0 UlTZ Tiadojanap $S0T! \eisjoey\BIo\ISUXIPISANORY
6=UBIN 6y=UsN (TT=S1Ww00
=10 ‘z=sse|D) ‘1=5SeD ¥002-| €002 002" £002- ‘Sz"0=aw) \euehep\sisAjeued|iepuxapis
%88'28 8 ‘Sp=ul ‘6v1=001 ‘1€v=007] q 0 TIIT v 10061 Aew-so vz € wo-8T Bny-Tz  USZi0  U0S0 1adojanap 90T weisdyoey\BioisuxIpisiioey|
T1=1013 z=ue pZ=Ue
‘z=Ired 0T=1N0] ‘Z=sse|) ‘g=sse|Q 50027 ¥00Z- 002" 002" \dewasn\I0suas)auid
% 1607, ‘0=ssed| 4 ‘L=ul ‘¥5=001 ‘€62=0071 0 0 vE  EETT S @e49T| 19001 8| S| AON-8T VO8O  USZTT ULTTZ 90T eIs/OopeY\BIowIs\BUIRYARY
g=lou3g T=UBIN 6T=UIBIN (6=S1w00
‘g=Ired 6T=1N0 ‘T=sSe|D ‘z=sse| ¥00Z-| €002 002" £002- ‘85 "0=awn) \STRISIOAIBS \SISA[RUB\UILIPE\XBPIS
% Y776 T ‘T=u ‘€1=0071! ‘0v2=007] o 0 0 €S| ¢ unr-sz| Aew-g0 0T v Jdv-1z AeN-80 uzviD uE€80 Tiadojanap 990T VeIsApoey\BIo\ISUXIPIS ARy
9=UiaIy TZ=UleIN (FT=SIW0D,
zz=1no ‘p=sse|D) ‘g=sse|Q v002-| %002 002" 002" ‘29°0=awn) \MIIMPPIIXPIS
% €€°€8 8 ‘9=ul  '101=001 ‘11€=0071 0 0| uer-g vy 98 1/ non-eo| des-vg  vT T AON-TO| desiyz U000 U L90) yiedojenap 20T eishroey\bio\ois\aa.L ey
T=ylon e=ylo (£T=SIWO02| \ewinaAnoe
9z=1n0 ‘T=sse|D) ‘z=sse| ¥002-| €002 7002~ £002- '85°9=alun) \sisAjeue\AiiAnoR XaPIS
% 00'00T T ‘0=l '52=001 ‘€ET=00 o 0 180T, g unc-sz| Aew-o1  rz € unc-90, Ue(-T0 Y80l ULT'6 yiedojenap 20T elsHpey\BIo\ISIXIPISHfRY
zz=ulen TST=UIeN (¥G=SIW0D)
9T=1n0|  ‘0T=SSeID ‘9g=sse|D)| S002-| €002 5002- £002- ‘gG"g=awn) \nnyauIR
% 00°€8 9T ‘9sp=ul ‘186=001  'LTET=00] q 0 lgSy S| few-vz| Aew-vo 2Tt S| few-st AeW-v0 Y 0S|L UEELT viadojanap S80T weisiyoey\Biois\jausayoey
T=UaN y=Uisn (2T=s1w00
TT=1N0 ‘T=sSe|D) ‘p=SSeD ¥002-| €002 002" £002- ‘80°z=awI \PUBLIWIOD\[3UDY
% 2’88 T ‘T8=ul ‘01=0071! ‘187=007] q 0 ¥60T ¢ desvz| few-vo LT 2| des-ve Rew-v0  ueelp uzre Tiadojanap S60T weisiyoey\Biois\ausay ey
z=lo13 p=UiBIN Se=UIBIN (2T=S1W09)
‘0=Ires 2=1n0) ‘T=SSe|D ‘g=sse| ¥00Z-| €002 002" £002- ‘eg"z=awn) \aUeD\[BUIR
% 0£'16 ‘0=ssed| v ‘sT=u '68=001 ‘L¥€=007] q o 0 628 7| 99a-01| Aew-vo ST € 28001 AeN-v0  40SI0 uSLT Tiadojenap 00TT WeIsAopoey\BI0\0IS\[BUIBHOfRY
T=UBN S=Ulen (8=s1wo0o \awnannoeoafold
0€=1N0] ‘T=sse|D ‘z=sse| ¥00Z-| €002 002" £002- ‘00°z=awn) \SisAfeue\Ainoeyxepis
9% 00°00T T ‘0=ur '22=001 *19T=00 o 0 0T 9| non-60| Aew-0T  se| S Inc-€T Aep:60  ueslz u8S'S o €117
2= ze=e
LT=1n0 ‘T=sse|D ‘9=sse| S002-| %002 5002- $002- \ayoeoyoaloIdyXapIS!
% £9'99 z  Tr=w '2e=001 '¥62=00 o 0 Teve 9| Jew-,T| ged-GZ 8T 9 Jew-oT ged-Sz  ueg U008Z STTT \elsHpeY\BIo\ISIXIPISHfRY
L=ylen 06=Y1e (26=S1W00
9z=1n0; ‘g=sse|D) ‘TT=SSE|D) S002-| €002 5002~ £002- ‘LT pz=own), \UILpE U
% 6L°8L L ‘pri=w '98=001 '€€6=00 o 0 TZv9 g udv-zz| Aew-vg vt 9 udv-zz ReW-v0  Uzvly uBS6e Tiedojenap 8TTT els/Hpey\Biojis\ U AoRY
T=yIsn ve=uie (e2=s1w00
p=1N0] ‘T=sse|) ‘9=sse| v00Z-| €002 002" £002- ‘£8'6=9! \uodaxepis
% 0008 T gz=u ‘€1=001 ‘061=00]] o 0 2885 € Wo-sz| unc-ey szl 2| AON-OT ung:ST - 48SI0 UOSTT giadojanap 9211 \els/Opeuy\Bio\isoday ey
2z=uBN 2TE=URIN (FEE=SIW0|
16=IN0|  ‘Zg=sse|) ‘8y=sSe|D 50027 5002 5002- 5002- ‘Zb'Gg=aun) !
%216 2z ‘06=ul|  ‘068=0071|  ‘z81¥=001 T o Jrew-T 0T 6zveT 1/ adv-,T|  uer-8z  vee T advsT Ue(-,z  USZle uzv'se ziadojanap 81T weisfoppey\BIo\Is\RIdORY,
S=UaI 0z=UBIN (2G=S10D)
82=1n0) ‘Z=sse|D ‘1=ssB|D S002-| €002 5002- £002- ‘85" T=au) oofoidyxepis
% 00'8L e ‘pae=ul '96=0071|  ‘00T=00 1 o 0 zozs 9| rew-.1| Aew-90 80T L rew-or Rew-zT  uzvie ueese T o 6L1T
ma o) w Jw o9 [wi| il awi] |
Wnsay| 1sal ouap oUW anss|| anss||  -IA9Y M3 wnyd| W -wod| -wod| Nw awnl|  aANdY awiy
me_W>DU 1sel wun nun| ﬁ:mnwn_ Cl[EREEAN ElE] paso|D Cwno 1seq 8poy| -woy iseq isi4| -wo) BAY iseq Isi4 1sel BANOY H_wnx 2 m_.__v__._NN_ (812)

Figure 1.1. Workspaces are listed with its respective PRI ranking and measures.



3. Since Hackystat can collect product and process measures in real-time, the analysis of these

measures to generate useful information that can help the project are also in real-time.

1.4 Thesis Statement

The thesis statement of this research is as follows; Priority Ranked Inspection can distin-
guish documents that are more in need of inspection (MINI) from others that need inspection less
(LINI). This thesis statement can be separated into the following three main claims, which are based

on the intended benefits of PRI.

1. Documents that are deemed more in need of inspection (MINI) will generate more defects

with a higher severity than documents deemed less in need of inspection (LINI).
2. PRI can enhance the volunteer-based document selection process.

3. PRI can identify documents that need to be inspected that are not typically identified by

volunteering.

1.4.1 Thesis Claim 1

My first claim states that the inspection of MINI documents will generate defects with a
higher severity than LINI documents. This claim is very important to the PRI process because if
this claim is proven to be false, then the PRI process cannot solve the limited inspection resource
problem.

However, if a document is identified as LINI and yields many high-severity defects, then
the PRI ranking function is flawed. An organization can use this information to refine the PRI
ranking function. It is my hope that at some point after future research is conducted on PRI, | will
be able to successfully calibrate the PRI ranking function for a Hackystat project and be able to

provide a description of best practices and how they are accomplished.

1.4.2 Thesis Claim 2

My second claim states that PRI can enhance the selection process. In the traditional
inspection process, the selection process is based on a developer selecting and volunteering a doc-
ument for inspection. In most cases, developers select documents to volunteer to find any high-
severity defects before it is released. However, the current literature does not provide much guidance

on which documents should be volunteered.

12



This claim is an intended benefit of PRI, because in the traditional inspection process the
number of documents that a developer must select from can vary widely. If PRI can generate a
list of MINI documents, then the developer can focus his selection on a smaller set of documents.
Therefore, PRI enhances the volunteering process by suggesting what should be inspected. PRI can
do this in two ways. First, it can minimize the number of documents that should be considered for
inspection. Second, it provides a priority ranking of what documents would be most beneficial to

inspect.

Minimize the Number of Possible Documents

PRI can minimize the number of documents that should be considered for inspection. In
PRI, the number of possible documents is limited to MINI documents. This reduces the number of
possible inspections and can be advantageous for organizations that cannot inspect every document.

As an example of how PRI benefits an organization with limited resources consider the

following fictitious scenario:

An organization has enough resources available to conduct inspections at least
once a week. Because this organization produces more code than is possible to inspect,
they use a round-robin approach by allowing a different developer to volunteer a piece
of code to inspect. This developer must pick a small portion of the code he/she is
currently working on and this decision is primarily based solely on his/her subjective
opinions of the code.

This method works well if the developer can select the right code to inspect. However,
developers often do not know where every high-severity defect will appear. In other words, leaving
this decision up to the subjective understanding of a developer maybe error prone [16]. PRI provides
an alternative solution to this limited resource problem. Instead of leaving the decision of what code
to inspect entirely up to the developer, PRI can minimize the number of possibilities by providing a
smaller area of selection. For this fictional organization, the developer can use PRI to generate a list

of MINI documents and choose code from this smaller list.

Priority Ranking of Documents

PRI provides a priority ranking of what documents would be most beneficial to inspect.
This advantage supports the volunteering process by allowing the developer to prioritize his/her
selection of documents. The previous discussion showed how PRI minimizes the number of docu-

ments; and now that the number is reduced the developer still must select from this smaller list. To

13



support this selection, PRI ranks the documents according to the calibration and numerical ranking.
For example consider this scenario:

A developer is currently working on 10 different documents and he wants to vol-
unteer one of them for inspection. He has a rough idea of what documents he thinks
would be most beneficial for inspection but he isn’t sure. He consults the PRI rank-
ing and finds that 4 of his documents appear to be MINI. In addition, he is able to
use the rankings to select a MINI document that he believes would generate the most
high-severity defects.

This scenario illustrates how PRI can enhance the volunteering process by first minimiz-
ing the number of documents that should be considered for inspection and then prioritizing them.

1.4.3 Thesis Claim 3

My third claim states that PRI can identify documents that have completed the develop-
ment process. For an organization with limited inspection resources it is not possible to inspect
every document. Therefore, it is inevitable that some documents that require inspection have not
been. PRI can find MINI documents that are not typically identified using a volunteer-based docu-
ment selection process. An example of this benefit is illustrated in the following scenario:

As we all know there are many problems that occur in any software project; require-

ments change, clients change or better clarify the software’s functionality, and design

problems are found late in the development process. These problems are commonly
solved with new code, new patches, and quick fixes.

This situation is quite dangerous, because all software projects evolve and outdated doc-
uments may become error prone. Therefore, it is important to realize that old documents can also
be MINI. Software Inspection [1] does not address this issue of outdated documents. The com-
mon adage of Software Inspection is to inspect documents as they move through the development
cycle. This process tends to ignore documents that have already finished the development cycle.
In addition, because organizations with limited resources cannot inspect every document moving
through the development cycle, it is very likely that some documents will finish the development
cycle with high-severity defects. Therefore, ensuring that “finished” documents are included as
potential inspection candidates is very important.

14



1.5 Exploratory Study and Results

This section provides a short description of the methodologies used to study my thesis
claims and the results. Chapter 5, provides a detailed explanation of the methodologies and proce-
dures that were used in the exploratory study of PRI. Chapter 6, provides a detailed explanation of
the results.

| have studied the main thesis of this research by testing each of my three claims. In
addition, | studied the inspection process of the Hackystat system developed by the Collaborative
Software Development Laboratory (CSDL). | also used the developers of Hackystat as subjects in

my study.

1.5.1 Thesis Claim 1

My first claim states that the inspection of MINI documents will generate more high-
severity defects than LINI documents. Throughout my study | have collected information about 9
inspections. By analyzing the results of these inspections, | was able to provide supporting evidence
for this claim.

The results show evidence that inspections of MINI documents generated more overall
defects, more high-severity defects, and more Program Logic defects than LINI documents. In
addition, several other independent results validate this finding.

1.5.2 Thesis Claim 2

My second claim states that PRI enhances the volunteer-based document selection pro-
cess. To evaluate this claim, | conducted a study to understand how developers select documents for
inspection. First, | assessed the developers’ current selection process by asking them to rank a few
documents based on what documents they think are more in need of inspection without the use of the
PRI rankings. Second, | worked with the developers to select a document to be inspected by CSDL
to evaluate the developers’ skill at selecting documents and the ranking generated by hackyPRI.

The primary result of this study shows that the developers tend to select documents for
inspection based on the “age” of the document, instead of more traditional quality measures like
coverage and unit tests. This finding is surprising, because the developers have a large amount of
software measures available to them. In addition, the rankings that they provided showed large vari-
ations when ranking code they did not author recently. Based on these results, | believe that PRI can

provide the developers with more useful information, in the form of product and process measures

15



and the PRI rankings themselves, to select documents for inspection. This will hopefully, provide
more consistent results when selecting documents for inspection in areas where their subjective

knowledge is limited.

1.5.3 Thesis Claim 3

My third claim states that PRI can identify MINI documents that are not typically iden-
tified by the volunteering process. To evaluate this claim, | intended to ask CSDL to inspect a few
MINI documents that have not been inspected in the previous study.

Unfortunately, there were two major problems in gathering a sufficient amount of sup-
porting evidence for this claim. First, | believe the methodology of my study was flawed, because it
was not designed well enough to test this claim. Second, with CSDL's limited inspection resources,
it was difficult to schedule enough inspections to address this claim. On the other hand, other re-
sults associated with this claim show that developers tend to associate the document’s age with the
likelihood that it needs inspection, this may indicate that developers do not typically volunteer old
documents for inspection. This is precisely the type of problem PRI is intended to solve. Future

studies are needed to gain more insights into this claim.

1.6 Structure of the Thesis

The remainder of this research is as follows. Chapter 2 discusses previous studies that
influenced this research. Chapter 3 and Chapter 4 contains a detailed description of the Hackystat
system and the Priority Ranked Inspection (PRI) Hackystat extension. Chapter 5 discusses the
exploratory study methodology that has been implemented to evaluate the claims and benefits of
PRI. Chapter 6 discusses the results of my study of PRI and hackyPRI. Finally, Chapter 7 discusses

my conclusions and future directions of this research.

16



Chapter 2

Related Work

This chapter presents previous research that is related to Priority Ranked Inspection. The
initial invention of PRI can be attributed the current traditional inspection literature’s consistent lack
of information on the selection of documents for inspection. Previous research on software inspec-
tion has focused on the process in which inspection is conducted. Instead, my research focuses on
the selection of documents for inspection.

Inspections are one of the oldest formal software development processes. For more than
30 years, researchers have been studying many areas within the inspection domain. In this chapter,
I will discuss three research areas that are most related to my research.

First, | will discuss the different types of inspection processes. Throughout this thesis, |
use the term “inspection” to encompass processes defined as a static analysis technique that relies
on visual examination of development products to detect errors, violations of development stan-
dards, and other problems [24]. However, since Michael Fagan invented the inspection technique
in 1976, there have been many variations on the general concept. We now have Fagan Inspection
[6], Software Inspection [1], In-Process Inspection [7], peer review [8], software reviews, and code
walkthroughs just to name a few. These processes range from formal and labor-intensive activities
to informal and very cheap methods. Furthermore, each of these processes claims to be the best
inspection method for certain circumstances. This area of research is very general and is almost
entirely focused on how to conduct inspections.

Second, | will discuss some research ideas that alter the traditional inspection process
in hopes of increasing its effectiveness. These ideas generally come from the understanding that
inspections are too labor-intensive and finding a more effective method would greatly affect the re-

sults. For example, some argue that the inspection meeting is a waste of time and resources [9, 10].

17



Others argue that the inspection meeting is critical for supporting social and educational aspects of
inspection [11, 12, 13, 14]. Unlike, the previous research area, alterations to an inspection process
are more specific to an individual organization’s development process. For example, deciding to
alter an inspection process to remove meetings will work very well for an organization that is geo-
graphically dispersed. It would have less of an impact for an organization with three developers that
work in the same office.

Third, | will discuss a very small research area focused on determining the optimum
software document to select for inspection. There are very few publications that address this issue.
Unlike the first two areas, this research area primarily focuses on finding a set of measures that help
the selection process. Software measures vary tremendously from organization to organization;

therefore acceptance of this research has been relatively low.

2.1 Types of Inspection

There are many different types of inspection processes. As previously stated, they range
from very formal to very informal activities. This area of research focuses on the inspection process
and how inspections should be conducted. In this section, | introduce a few of the most widely
accepted inspection processes.

There are two major problems that account for the large variations in inspection research.
First, there is no standard or accepted definition of the inspection process. Second, even when pro-
cesses are fairly well designed they are extremely hard to follow. For example, a report in the IEEE
Transactions on Software Engineering found that 84 percent of organizations performed inspec-
tions, but O percent performed them entirely correct [25]. Thus in practice there is many different
executions of the same inspection process. These problems indicate that inspection processes have
ambiguous or unclear definitions [26]. Another reason is that there is relatively little knowledge
and theory about inspection effectiveness factors [2, 26]. Regardless of the problems listed above,
it is generally accepted that adopting any variation of the inspection process is much better than not

doing any.

2.1.1 Informal Inspection Processes

Informal inspections processes typically are loosely defined, not planned, not structured,
and not recorded. Ad hoc Review, Peer Deskcheck, Pair Programming, and Walkthrough are all

different types of informal inspection processes [17]. Most inspection literature suggests that even

18



though informal inspections are proven to find less defects than formal inspection, they are some
times the best solutions for certain situations [1, 17]. For example, informal inspections can be
used on low-risk documents and formal inspections can be used on high-risk documents [17]. The
defining factor of informal inspection processes is they generally require much less resources than
formal inspections.

Ad hoc review is by far the most informal form of inspection. It is a spur-of-the moment
request of asking a fellow developer to help look at a piece of code to solve a problem. These
reviews are not planned, not measured, and have no long-term impact on the software development
process.

Pair programming is a practice from Extreme Programming whereby two programmers
work side-by-side at one computer on the same design, algorithm, code or test. This practice is
often considered to be a continuous informal inspection process, because the creation of documents
is constantly under evaluation from the second programmer [17]. Pair programming is a relatively
new practice and is not considered to be one of the traditional inspection processes.

Walkthroughs are informal presentations in which a developer, usually the author of the
source code, describes various aspects of the document under review [17, 27]. Walkthroughs do not
have a defined procedure and the results of the process are often not recorded.

2.1.2 Formal Inspection Processes

Formal inspection processes typically are defined in detail, carefully planned, very struc-
tured, multi-step, have assigned roles for participants, and recorded. Like informal inspections,
formal inspections are most beneficial in certain situations. For example, formal inspections are
generally quite expensive as they require extensive training and up to 15 percent of the projects
resources [1].

Michael E. Fagan invented inspections in 1976 while working at IBM. “Inspection”, with
a capital “I”, or the term “Fagan Inspection” is used when referring to his technique. Using Fagan
Inspection, Bell Labs reported 14 percent productivity increase, better tracking, early defect detec-
tion, and more importantly the employees credited Fagan Inspection with an “important influence
on quality and productivity” [1].

One of the most widely accepted types of formal inspection is “Software Inspection”,
which was developed by Tom Gilb and Dorothy Graham [1] in the book of the same title. Software

Inspection is based on the Fagan-style Inspection and is generally more robust and disciplined than

19



other techniques. Since Software Inspection is one of the most widely accepted processes, | spend
the next few paragraphs explaining the process in more detail.

Software Inspection is defined as a two-part process, product Inspection and process im-
provement. According to the Software Inspection literature, product Inspection and process im-
provement cannot and should not exist without one another.

Project Inspection

There are ten lengthy steps in the product Inspection portion of the Software Inspection

process. | have provided a short description of each of the steps in the following sections.

(1) Request: Initiating the Inspection Process

The Inspection process begins with an author’s voluntary request for an Inspection. The request is
delegated to an Inspection leader. An Inspection leader is a trained-and-certified employee and is
generally not a manager. It is the leader’s responsibility to organize, plan and conduct the

inspection.

(2) Entry: Making Sure 'Loser’ Inspections don’t Start

The Inspection leader is required to check the volunteered document against an Entry Criteria.
This criterion ensures that the document is worth inspecting. The leader conducts a quick look
through the document to assess the initial quality of the document. For example, the author has
spent an adequate amount of time working on the document, there are a minimal number of minor
defects, etc. “The purpose of having entry criteria to the Inspection process is to ensure that the
time spent in Inspecting the product and associated documents is not wasted, but is well spent” [1].

(3) Planning: Determining the Present Inspection’s Objectives and Tactics

If, and only, if the document has successfully passed the entry criteria, then the Inspection leader
can begin to plan the Inspection. This includes many managerial tasks; inviting participants,
scheduling an Inspection meeting, gathering supportive documentation, establishing average

optimum checking rates, and suggesting areas of possible improvement in the document.

(4) Kickoff Meeting: Training and Motivating the Team
The purpose of a kickoff meeting is to ensure that Inspection process begins correctly. This
includes dispensing required documents and explaining the expectations of the participants. This

meeting saves time by dispensing the necessary information, which is needed to conduct the

20



Inspection. This meeting is also an opportunity to introduce process changes in the Inspection

process.

(5) Individual Checking: The Search for Potential Defects

The patrticipants, or “ inspectors”, are required to work alone to find potential major defects in the
documents provided. These defects are generally identified with the aid of rules, checklists, and
other standards of the organization.

(6) Logging Meeting: Log Issues Found Earlier and Check for More Potential Defects
This meeting has three purposes: log the issues generated in the individual checking phase,
discover more major defects, and identify possible ways of improving the inspection process. This

meeting is conducted and moderated by the Inspection leader.

(7) Edit: Improving the Product

The overall goal of Inspection is to remove the defects that were found. During this phase, the
author is given a list of the defects (issues become defects if they are deemed as valid) that were
identified and is required to make the necessary improvements to remove any defects from the

document.

(8) Follow up: Checking the Editing
The purpose of this phase is to ensure that the author correctly executed the Edit phase. The
Inspection leader must ensure that all issues are correctly classified; either as valid defects or

invalid issues and that the author has corrected all known defects.

(9) Exit: Making Sure the Product is Ready to Release

The Inspection leader consults the exit criteria to determine if the inspected document contains a
certain level of quality as defined by the exit criteria. For example, the Exit criteria can contain
rules that specify: successful Follow Up phase completion, certain metrics about this particular
Inspection was recorded and within limits, and that the nhumber of defects are below a certain
threshold.

(10) Release: The Close of the Inspection Process

This is the last phase of the Inspection process. At this point, the document can be officially
released and the Inspection process is concluded. However, if it is determined that there are some
acceptable and unavoidable defects remaining in the document, then such defects must be
documented.

21



Process Improvement

Equally important to the product Inspection portion of Software Inspection is process im-
provement. Process improvement is the continuous improvement of the entire software development
process. The idea is simple; Software Inspections can remove defects, but process improvement can
prevent defects.

In Software Inspection, process improvement can be accomplished in many ways. A low-
cost procedure could be as simple as discussing the cause of the defects. This discussion takes place
in a Process Brainstorming Meeting. “The purpose of the process brainstorming meetirdois
deal with the document and its defects. It is to deal withdiesef those defects” [1].

On the other hand, process improvement can be very expensive, for example Process
Change Management Teams. Specialized teams can be formed to collect and analyze the metrics
that are obtained from the conducted Inspections.

2.1.3 Software Inspection and Priority Ranked Inspection

The different types of traditional inspection processes explained above are quite different
from the Priority Ranked Inspection (PRI) process. The biggest difference is traditional inspection
processes provide guidelines baw to conduct inspectiorend PRI provides guidelines avhat
to inspect In fact, the PRI process does not provide any guidance on how to inspect the docu-
ments once they are selected. Instead, PRI is a document selection process that wraps around any
traditional inspection process.

There are three main areas where Software Inspection and Priority Ranked Inspection
differ. They are the selection of documents, cost cutting, and volunteering.

Lack of Discussion about Selection of Documents

In the book, “Software Inspection”, Tom Gilb and Dorothy Graham [1] provide very few
paragraphs on the subject of document selection. The following is the entire paragraph that discusses

document selection.

The starting point for any Inspection is the request from the author of a document
that the document be Inspected. Inspection is always voluntary, and authors must not
be coerced into 'volunteering’ documents against their will.

Authors are motivated to request Inspection for two reasons:

1. they will get help to upgrade their document before official release;

22



2. they must achieve exit status in order to claim that they have met a deadline, and
that the quality of their work is really good enough.

Like the Software Inspection process, most traditional inspection literature fails to address

several key areas of selecting a document for inspection.

1. What happens when an organization does not have enough resources to inspect every doc-
ument that is ready? Inspections are expensive. It can consume 15 percent of the projects
budget [1]. What happens to the volunteering process when an organization can inspect one

in every five volunteered documents?

2. What happens when two authors volunteer two different documents at the same time? Which
document should be selected? Selecting what to inspect from two documents is not difficult.
However, what if there are twenty or a hundred different documents that are waiting to be

inspected?

3. Defects can occur in documents that already “exited” the development and inspection process;
therefore can these documents be inspected? The current literature suggests a linear devel-
opment process, which documents that have been inspected and completed the development

process are never to be inspected again.

| strongly believe that the selection of documents for inspection is a complicated process

that warrants much more attention than the traditional inspection literature provides.

Cost Cutting

“The bottom line is that | [Tom Gilb] believe that it is more relevant to view In-
spection as a way to control the economic aspects of software engineering rather than
a way to get 'quality’ by early defect removal” [12].

| believe Tom Gilb is correct. If inspections do not provide an economic benefit, then why
do them at all? However, with an estimated 10-15 percent of a project’s budget that is required to
conduct successful inspections, it is difficult for organizations with limited inspection resources to
correctly implement the suggested process. The bottom line seems to be that not all organizations
can invest 10-15 percent of their budget to inspections.

In Software Inspection, there are three primary ways to reduce the resources; sampling,
inspecting up-stream documents, and focusing on major defects. The practice of sampling sug-
gest that instead of inspecting an entire document, pick one to four representative portions of the

23



document. The practice of inspecting up-stream documents suggests that requirement and design
documents need to be correct before programming can begin. Focusing on major defects suggests
that minor defects, such as code comments, are irrelevant to the customer-performance of the system
and should be ignored.

In my opinion, Software Inspection and other traditional inspection literature does not
address the most obvious way to save resources, which is minimizing the number of documents that
need to be inspected. The current literature suggests that inspections are a “gateway” to complete
the document’s development process [2, 16]. This process works well for organizations that have
the resources to treat it as such. However, for organizations with limited inspection resources, in-
specting every document is quite impossible. In contrast to traditional approaches, Priority Ranked
Inspections embraces the notion of skipping the inspection of some documents.

Volunteering

Another problem associated with the selection of documents for inspection is the notion
of volunteering. Notice the term ‘voluntary’ is emphasized in Gilb and Graham’s selection process.
Yet, in the very same book, “Software Inspections”, contains a case study of Software Inspections

used in a company where documents were required to be inspected rather than volunteered.

1. “Most who tried inspections responded with enthusiasm, but only four groups were contin-
uing to do inspections - not surprisingly, those groups in which the mamegeired them.
Most groups tried a few inspections, then interest waned as deadlines approached. A few

managers ignored inspections altogether, citing schedule pressures as the reason.”

2. “The vice president of marketing notified his department that inspectionsregueed for

approval of all mandatory documents produced.”
3. “Each year, development groups aquiredto inspect more of their pre-code documents.”

4. “Code inspections remain optional at least uh@D percenbf the pre-code documents are

inspected.”

In my opinion, many of the problems associated with volunteering is that most developers

do not have a clear understanding of what documents are best to volunteer [16].

24



2.2 Alterations to the Inspection Process

This section presents some examples of related research on alterations to traditional in-
spection processes to increase inspection effectiveness. Research in this inspection area focuses on
specific process changes and the addition of tool support. | spend most of this section discussing an
area of research aimed at using automated tools to support the inspection process, because this area
is directly related to my PRI research. However, there are many other different research findings

and suggestions that are not presented in this section.

2.2.1 Eliminating Steps in Inspection

One of the first things organizations do to save resources is alter the inspection process
by changing the required steps within the process. | present two of the many publications in this
research area. The first is a simple suggestion to eliminate the inspection meeting. The second

suggests that outsourcing the entire inspection process is beneficial.

Inspections Without Meetings

Lawrence Votta Jr. found that the inspection meeting, where the inspectors meet and
discuss the validity of the issues found in the individual phase, is ineffective and can actually delay
the inspection process days and even weeks [10, 18]. Therefore, he proposed that the inspection
meeting be totally eliminated. Of course, other publications and organizations disagree and would
rather hold inspection meetings, because they value the benefits of synergy and education over the

increased resources need to conduct inspections [11, 12, 13, 14].

Outsourcing Inspections

An extreme process change is outsourcing the whole inspection process to a third-party
company. Jasper Kamperman states that outsourced software inspections are cheaper, easier, and
greatly beneficial [19]. A company utilizing outsourced inspections would send out software code,
documentation, and a survey and receive back a list of potential defects. However, Kamperman
mentions that outsourced inspections will probably find more superficial programmatic defects than
deep design problems. In addition, according to other research, Automated Software Inspection
tools are also an effective way to detect superficial programmatic defects. | discuss these tools in
the next section.

25



2.2.2 Automated Software Inspection

Due to the rigorous and labor-intensive requirements of formal inspection processes, a
whole branch of research on inspection is aimed at automating some part of the inspection process.
There are two different ways automation can be added to an inspection process. First, add tools
that automate the inspection process, which makes it less labor-intensive to follow guidelines and
record the results [21]. Second, add tools that inspect code automatically, which replace some of
the work required of human inspectors [21]. Most of the current research focuses on the second
type of automatic software inspection. This type of automation has a very low overhead with many
potential benefits. For example, tools that support automated software inspection are less dependent
on human factors [28]. PRI implemented with Hackystat is an example of a type of automated

software inspection support.

Automated Software Inspection Tools

Automatic software inspection (ASI) tools are a relatively new way to identify defects
early in a development process. In addition, it is very useful in identifying a subset of defects
found in manual software inspection, but is not as labor-intensive. ASI tools are also known as
static analysis tools that analyze source code and provide error and warning messages similar to a
compiler.

Using ASI does not replace manual inspections. Labor-intensive manual inspections, for
example Software Inspections, will find more complex, functional, algorithmic design problems
[28]. However, ASI tools will make manual inspections more effective by allowing the inspectors
to focus on these issues. In the related research field of pre-release defect density, Nagappan and
Ball [29] had very successful findings in utilizing static analysis, which should also translate to
inspection:

1. Static analysis defect density can be used as early indicators of pre-release defect density;

2. Static analysis defect density can be used to predict pre-release defect density at statistically

significant levels;

3. Static analysis defect density can be used to discriminate between components of high and

low quality.

26



Criticisms of ASI tools state that the defects found are generally superficial programmatic
errors and cannot replace manual inspections [21]. In addition, a major problem with ASI tools is
that they can generate up to 50 false positives for every valid defect [28].

Code Smells

A unique idea to improve the effectiveness of software inspection with automation is
“code smells” [21]. Code smells are a metaphor to describe patterns that are generally associated
with bad design and bad programming practices [21]. Code smells are different from other static
analysis tools such as the ones mentioned in the previous section. Instead, it is inspired by the “code
smells” defined in [30], which describe patterns of code that requires refactoring. Like the human
sense of smell, any group of source code has a smell; the question is whether the smell is good or
bad. The following are a few examples of code smells discussed in [21]:

1. Duplicate Code

2. Methods that are too long

3. Classes that contain too much functionality

4. Classes that violate data hiding of encapsulation

5. Classes that delegate the majority of their functionality to other classes

There are three defining characteristics of code smells; what smells are detected, how the
smells are detected, and how are the smells are presented.

What smells are detected There are three general rules associated with code smells. First, like
the human sense of smell, there is no static list of all possible code smells. Different projects and
organizations can have a different set of code smells that works best for their quality assurance.
Second, code smells are subjective measures, which are based on the organization and project’s
previous experience. Code smells are parameterized to provide subjectivity on whether specific
smells are good or bad. Third, code smells do not have to be precise. In other words, code smells
do not give an absolute decision about the quality of a software document. Instead, it provides a
possible indication of problems relative to the other documents in the same software system.

These three rules are very similar to the rules in PRI. First, PRI is fully extensible and

provides the ability to add any PRI measure and PRI indicator to the ranking function. Second,

27



PRI supports subjectivity in the calibration of PRI indicators. Third, PRI does not give an absolute
determination of a software document’s MINI or LINI distinction. Instead, the MINI and LINI
distinction is relative to the other PRI rankings in the same project.

How the smells are detected Code smells are detected with a software tool that statically analyzes
source code. As | previously stated, the static analysis tool makes automated software inspection
possible. Therefore, code smells provides the possibility of lowering inspection resources by auto-
matically detecting code that has a bad smell.

Code smells are measures of a software product. PRI differs from this approach, because
it allows measures of software product and development process activities. One interesting future
enhancement to PRI is to investigate the addition of code smells to the PRI measures. One would
think that if code smells are a useful measure, then the combination of code smells with other

software product and development process measures would also be beneficial.

How are the smells are presented Code smells are presented with structural graphs. These
graphs allow the user to interact with the graphs to find “smelly” code.

Although, I haven’t used the presentation user interface, it seems that this particular choice
of graphical presentation is a little difficult to use effectively. In my opinion, users will not want to
search for the “smelly” code. Therefore, | believe the most useful presentation of code smells is a

tabular ranking similar to the ranking provided in PRI.

To conclude code smells are a unique automatic software inspection technique and has

many of the same problems and solutions that | have addressed in my PRI research.

2.3 Selection of Documents for Inspection

This section presents some inspection research on increasing the effectiveness of inspec-
tion by selecting the right documents to inspect. This is a very small area of inspection research
relative to the two previous areas discussed in the proceeding sections. In fact, in some ways it is
a much smaller branch of the “Alterations to the Inspection Process” domain. Research in this area
is almost always focused on the utilization of tool support to help aid the selection process. Since
tool support is very specific to an organization’s development process, research in this area is not as

general as the two previous areas.

28



“Few organizations have the time and commitment to inspect everything they create (un-
less contractually required to do so0), so focus your inspection resources where they will do the most
good” [17]. In this point in my thesis, I've said this many different ways. And each of the following
sections contain research that try to find the “best code to inspect.” Once again, | believe PRI is an

example of research in this area.

2.3.1 Code Smells

As | already explained in Section 2.2.2, code smells are a unique idea to improve the
effectiveness by identifying software code that needs to be refactored. In addition, code smells
can aid the inspectors’ assessment of quality software code. The research on code smells not only
provides automated tool support, but it also provides a general process of which any tool can support
the basic theory of code smells.

Although, authors of the publication [21] do not explicitly say, code smells could also
be used to aid the document selection process for inspection. Instead, they leave us with a general
statement that code smells can immediately show the maintainers if the system contains bad smells,
what parts are affected, and where the concentration of smells is the highest [21]. In addition, they
do not make any claims that the inspection of code with “really bad code smells” will detect more

high-severity defects than the inspection of code with “really good code smells.”

2.3.2 Crocodile

Crocodile [31] is another automatic software inspection tool similar in nature to code
smells. The research context of this tool is large object-oriented software systems. The publication
[31] plainly states that a large software system is often too large to be entirely inspected by humans.
Using Crocodile can concentrate inspection resources to “critical” areas of the system where in-
spection is most necessary. Therefore, unlike code smells, this research has explicitly claimed that
Crocodile can help pre-select suspicious modules for manual inspection. In addition to building a
tool, the publication [31] creates a process that utilizes the tool to support its intended design of
auditing large software systems.

The Crocodile tool quantitatively measures structural properties of an object-oriented sys-
tem. Like most automatic software inspection tools, this is done by static analysis of source code.
The measurements are then fed into a database where meta-analysis is conducted to build a quality

model of the system. The quality model is very similar to a Goal-Question-Metric graph and con-

29



sists of a goal (which is identifying software quality), factors (which are quality measures such as
maintainability and reusability), criteria (which help define and measure the factors), and metrics
(which are used to determine if the criteria is fulfilled). Each level of the quality model contains
threshold values to determine the “good” or “bad” meaning of the measures. For example, the al-
lowed threshold for the “Number of Parents” measure is 0 and 1. Although not explicitly stated, |
assume these thresholds are configurable.

The Crocodile tool and the process of its use are, in some ways, very similar to PRI. First,
they both have the same goal of trying to identify areas of a software system where inspection is
most necessary (MINI). Second, the Crocodile’s threshold limits to determine meaning of the mea-
sures are very similar to the PRI indicators, which also uses threshold limits to provide a numerical
ranking. Third, Crocodile’s process includes a phase in which the tool can be adjusted based on any
anomalies found in the results. However, there are a few differences. First, Crocodile only supports
one type of measurement, which is object-oriented metrics from static analysis. PRI supports any
type of measurement, both product and process measures. Second, like code smells, they do not
make the claim that the inspection of “critical areas” will detect more high-severity defects than the

inspection of “non critical areas.”

2.3.3 Risk Analysis

Evaluating the risk of potential defects, usually called risk analysis, within documents is
another way to select documents for inspection. Risk can be defined as the likelihood that a work
product contains defects and the potential for damage if it does [17]. Therefore, one objective of
using this approach is to reduce the risk associated with a specific document.

Karl Wiegers mentions a few high-level selection criteria in his book, “Peer Reviews in
Software: A practical guide.” [17]. According to Wiegers, an organization should select documents
to inspect that have the following properties.

1. Code that could potentially contain errors that could propagate throughout your product and

lead to expensive rework or to execution failures.
2. Code that traces back to safety- or security-related requirements.
3. Modules that has been changed many times.
4. Modules that has a history of containing many defects.

5. Fundamental and early-stage documents, such as requirements and specifications.

30



6. Documents on which critical decisions are based, such as architectural models that define the

interfaces between major system components.

7. The parts you aren't sure how to do, such as modules that implement unfamiliar or complex
algorithms or enforce complicated business rules and other areas in which the developers lack

experience or knowledge.

8. Components that will be used repeatedly.

To be able to repeatedly and reliably determine if work products contain any of these
properties, there must be a way to accurately measure the properties that indicate documents in
most need of inspection. PRI implemented with Hackystat provides the possibility to be able to

“sense” some, if not all, of these properties.

31



Chapter 3

The Hackystat System

The Priority Ranked Inspection process is a theoretical process that can be implemented in
many different ways. In this research, | utilized the Hackystat system to implement the PRI process
for a specific organization. This chapter is a brief introduction to the Hackystat system, which was
invented by Professor Philip M. Johnson, in the Collaborative Software Development Laboratory,

Department of Information and Computer Sciences, University of Hawaii at Manoa.

3.1 Overview of the Hackystat System

The Hackystat system is an open-source software framework for the automated collection
and analysis of software product and process measures. Product measures can be defined as mea-
sures that are obtainable from direct analysis of source code. For example, some product measures
include: lines of code, dependency, and the number of unit tests. Process measures can be defined
as measures that are obtainable from the actual development process, which creates the source code.

For example, some process measures include: the number of developers, the developers’ “effort”,
the number of major releases, and the number of defects.

The following list summarizes the features that Hackystat provides [23]:

1. Hackystat utilizes custom “sensors” that are “attached” to various software development tools.
Theses sensors unobtrusively collect data on various software product and development pro-

Cess measures.

2. Hackystat supports any and all software projects, development processes, software develop-

ment environments, operating systems, and development tools.

32



3. Hackystat supports in-process project management by providing a set of extendible analyses
of the product and process measures that are collect by the sensors.

4. Hackystat is well suited for empirical software development experimentation.

The Hackystat system is a mature and extendible software system. Currently, Hackystat
is being utilized by NASA's Jet Propulsion Laboratory, Sun Microsystems, IBM, lkazyo.org, Uni-
versity of Torino, University of Maryland, and of course the University of Hawaii. A few of the
many publications associated with Hackystat are the following: [32, 33, 34, 35, 36, 37, 38, 39, 40]

3.2 Hackystat's Architecture

Figure 3.1 presents one way of viewing Hackystat’s architecture. Rather than paraphrase
the information provided in Hackystat's User Guide, | provide the entire segment about Hackystat's

architecture [23].

In this view, the “clients” are development environment tools, such as editors
(Emacs, Eclipse, Vim), configuration management systems (CVS, Harvest), build tools
(Ant, Make), Unit Testing tools (JUnit), and so forth. For each of these tools, a custom
Hackystat sensor must be developed. It is “custom” in the sense that it must use the
plug-in or extension point API for the tool, and “custom” in the sense that the type of
product or process data that it collects is specific to the tool it supports.

Once data is collected by these client-side sensors, it is transmitted using SOAP to
the “server”, which is a custom web application running within a conventional servlet-
supporting web server such as Apache Tomcat. Note that the client-side sensors have
the ability to cache data in the event that a network connection cannot be made to the
server and resend it later, allowing the developers to work offline.

Upon receipt of the “raw” sensor data by the server, various analyses can be run.
Some of these analyses are run automatically by the server each day, others are run
only when invoked by developers from a Web Browser interface. The goal of these
analyses are typically to create abstractions of the raw sensor data stream that help
developers and managers to interpret the current state and trajectory of the project and
gain insight into possible problems or opportunities for improvement going forward.

In certain cases, these abstractions can be automatically emailed back to the devel-
opers on a daily basis, creating a feedback loop.

33



Sensors are tool
and data-specific

- Analysis results/URLs
Raw sensor

data is sent

V’$ s via SOAP
- EE- G-

XML

/ web Database

o 1 : Eclipse Activity
Eclipse g “Soicor
YN

.
Telemetry data and drill downs

Hackystat

Figure 3.1. Displays a high level overview of the Hackystat architecture

3.3 Hackystat Sensors

Figure 3.2 presents a mapping between Hackystat’'s sensors and sensor data types. Once
again, rather than paraphrase the information provided in Hackystat's User Guide, | provide the

entire segment about Sensor Data Types [23].

A “sensor data type” represents the structure of a single kind of software product
or process measurement. For example, the “UnitTest” sensor data type represents the
outcome of invoking a single unit test. This data typically includes the time that the unit
test was invoked, the class name of the unit test code, and the results of the invocation
(pass, fail, exception). The “Commit” sensor data type represents the occurrence of
committing a file to a configuration management repository, and thus has very different
fields associated with it that are appropriate to this kind of event. A given sensor can
collect data for one or more sensor data types.

34



IDE Sensors: Sensor Data Types:

*Emacs Vim Activity
«JBuilder Visual Studio BufferTransition
*Eclipse Review
Office sensors: FileMetric
*Excel Powerpoint .
*Word Frontpage Eu”fd
Build tool sensors: Ci:
* Ant Unix CLI .
. _ UnitTest
Metric tool sensors:
.cccc LOCC / Coverage
Testing sensors: Commit
« JUnit JBlanket Issue
Config. man. sensors:
eHarvest CVS
. Jliiizfect Tracklrgcztragsf s *Not yet implemented
*Bugzilla*

Figure 3.2. Displays the connections between the Sensors and the Sensor Data Types provided in
Hackystat.

3.4 Some Screenshots of Hackystat



) Hackystat - Site Home - Mozilla Firefox E EJ[EWE

File Edit ‘ew Go Bookmarks Tools Help
onuackysm Site Home
University of Hawaii help | home
Login: Enter the key emailed to you upon registration to access your data {more...)
Kevy: | |

Register: Request a key (or receive a copy of your current key) by email {more...)
Email; | |

Done

Figure 3.3. Displays the Hackystat home page. Hackystat is designed to protect the data of its users.
Therefore, the system requires a registration and login before using Hackystat.

©) Hackystat - Analyses - Mozilla Firefox E |g[ﬁ|rg|

File Edit ‘ew Go Bookmarks Tools Help
-~
kagawaa®@hawaii.edu 3
ﬂlincl oy Stcrt aniad® Analyses
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
Project =
Project Active Time: Shows each member's cumulative active time for the specified project and interval
{more...}
Repart Type: iTable w
Project: | hackyzo04-all v |
Interval: O pay Start [o01 |[lanuary || zo01 | End [10 »||1anuary  »|[zoo1 v
Chwesk Start | 26-Dec-2004 to 01-1an-2005 W | End | 13-Mar-2005 to 13-Mar-2005 % |
& month Start | February v || zoor v End [January || zooz v
Project File Time: Shows the files edited by each member on the specified project {mare...)
Project: | hackyz004-all w |
Interval: Cpay Start |01 % ||January v | 2001 v End |10 % |[January %[ 2001 |
O week Start | 26-Cec-2004 to 01-]an-2005 ¥ | End | 13-Mar-2005 to 19-Mar-2005 ¥ |
@ onth Start | February v || zooy v End [January v || zooz v ke
Done

Figure 3.4. Provides a listing of all available Hackystat analyses. Each analysis displays its results
with image charts, HTML tables, and downloadable files.

36



©) Hackystat - Preferences - Mozilla Firefox E IZJ[EIFZI

File Edit ‘ew Go Bookmarks Tools Help
k h ii.ed 2
agawaa@hawaii.edu 5
ﬂHﬁckySkﬂ danate Preferences
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
Project
Manage Project: Provides access to the projects that are associated with you (more.. .}
Register Project: Define a new project (mare...) L
Project PRI Ranking
Project Pri Preference: Project Pri Preferences (more...)
Telemetry
Telemetry Management: Manages telemetry streams, chart, report definitions, {mare...)
Telemetry Type: |Telemetry Charts |
N
55 | 2
Done

Figure 3.5. Provides a listing of all preferences, which allow users to set specific settings that are
sometimes required and sometimes optional to run analyses on the Hackystat server.

37



3.5 More Information about Hackystat

The Hackystat system can be downloaded for use in other software organizations by visit-
ing the Hackystat Developer Services website (http://www.hackystat.org). In addition, Hackystat's
User Guide, full source code, Java documentation, and other useful information that are required
to install Hackystat are obtainable at this website. Any questions and suggestions can be sent to
Hackystat Users email mailing list (hackystat-users-l@hawaii.edu).

38



Chapter 4

Implementing PRI with Hackystat

To successfully use Priority Ranked Inspection, the determination of MINI and LINI must
be obtainable for a very low cost. In other words, if the ranking function takes three months, or
even 20 hours of management time to generate, then a software project may no longer need those
specific recommendations. Therefore, this determination must be obtained in real-time and without
introducing new costs to the inspection process.

One way of obtaining PRI rankings in real-time and without developer overhead is through
the use of the Hackystat system [23]. Hackystat is a framework for collecting and analyzing soft-
ware product and development process metrics in realtinfer this research, | have created an
extension to Hackystat called the Hackystat Priority Ranked Inspection Extension (hackyPRI for
short). This extension provides a real-time PRI ranking. Figure 4.1 demonstrates the use of the PRI
ranking function by ranking a software project’s workspaces.

This chapter provides a detailed description of the Hackystat PRI (hackyPRI) extension.

In Section 6.1, | identify the limitations of implementing the PRI process with Hackystat. Section
4.2 provides a general introduction to the PRI ranking function. Section 4.3 provides a user level
description of how to use the hackyPRI extension. Section 4.4 discusses how hackyPRI supports the
four steps of the Priority Ranked Inspection process. Section 4.5 provides a developer level expla-
nation of the extension’s design and implementation. Section 4.6 discusses the future enhancements
that could be added to hackyPRI. Section 4.7 provides a list of contributions that | have added to
the Hackystat system as a result of my implementation of hackyPRI. Finally, Section 4.8 provides

some information for other organizations to install and use hackyPRI.

1For more information about the Hackystat system see Chapter 3.

39



05=10113 T=on S=thon (6=S1w00 \Krewwinseyepkep
k 2| 8T=1N0 ‘T=sse|D ‘z=sse| ¥002-| %002 002~ $002- '85'0=awn) \SISAJeUR\UOWILIODXaPIS
% 00°00T T ‘0=ul '81=001 '26=001 q o 0 62T 7| des-0g| uerzr  oT T dv-60, Ue(-TT 4 0S0  U8S0 Tiedojenap 0v0T \eIs/HpeY\BIo\ISIXIPISHfRY
T=ylen Z=ylen (g=s1woo \elepIOSUSSISI|:
9T=IN0 ‘T=sse|D) ‘z=sse| ¥002-| 002 002~ $002- ‘LT T=ewn) \SISA[EU\UOWILIOOX3P)S!
% 00°00T T ‘0=l '61=001 '08=001 o 0 0 16 | des-0g| uer-oz 9 T adv-90, Jdve0  ULTT uLTT Tiedojenap 0T veIsiroruy\Bio\oIsuxapIS ARy
T=UYaN 8= (TT=S1W00
T1=1N0 ‘T=sSe|) ‘p=sse| ¥00Z-| €002 002" £002- ‘29°0=awp) \deos\jauia
% v9'€9 T ‘9=ul ‘£6=001, '202=007] q o 0 Sby 7| rew-go| Aew-vo LT S| AON-GT Aep-v0  UZTI0 u8ST Tiadojanap Sv0T eIs/OpeY\BIo\Is\UIRYARY
=N s=Ulen (z=s1w00 \ownapoaloid
0g=1N0] ‘T=SSe|D ‘z=sse| ¥00Z-|  ¥002- 002" $002- ‘£€°0=own) \sisAjeur\iAIoR XBPIS
% 00°00T T ‘0= ‘02=001! ‘Z€1=007] q o 0 zee €| noN-60| unr-gz 7] T uncpg, ung-pz  ULTI0  UEED Tiadojanap 8v0T VeIsHpRY\BIoISIXAPISARY
y=ulai Ov=UlBIn (L9=S10D)
¥E=IN0] ‘p=sse|0 ‘8=sse|D S002-| 5002 5002- 5002- ‘00'GT=auun) \ooedsomapowudidde
% EV'T6 v ‘sg=ul '€6=001 '885=0071 € 0 6T S8Ye 1/ adv-,T]  uer-gz 19 2| advsT Ue(:9z 4290 UBO'ST ziadojenap 80T veishioey\Bio\ais\idAfRY
T=Ua TT=Ule (2T=S1W0,
ST=1N0 ‘T=sse|D ‘p=sse| ¥002-| €002 002" £002- ‘52" 0=aur \EJRPMBU\LIS[R\UOWILIOIIX3PIS
% 0008 T "z=ul '91=001 '211=007] q o 0 Tew € nc-oe| Aew-so oz € udy-90, Aep:s0 UEED U050 Tiadojenap 2501 VeIsfopoey\BioisuxIpISOey
T=UWsn =N (6=S1W09!
21=1N0) ‘T=sse|D) ‘z=sse| ¥002-| €002 002~ £002- ‘£8'T=aup) \uondope\sisAjeue\uipexapis,
% 00°00T, T T=u1 '0T=001 '021=001 qQ [o} 0 ford> 2/ »o-9z| AKew-go 0T, z 10-92 AeN-80  ugSl0 UlTZ Tiadojanap $S0T! \eisjoey\BIo\ISUXIPISANORY
6=UBIN 6y=UsN (TT=S1Ww00
=10 ‘z=sse|D) ‘1=5SeD ¥002-| €002 7002 £002- ‘Sz"0=aw) \euehep\sisAjeued|iepuxapis
%88'28 8 ‘Sp=ul ‘6v1=001 ‘1€v=007] q 0 TIIT v 10061 Aew-so vz € wo-8T Bny-Tz  USZi0  U0S0 viadojanap 90T weisdyoey\BioisuxIpisiioey|
T1=1013 Z=en pZ=Ue
‘z=Ired 0T=1N0] ‘Z=sse|) ‘g=sse|Q 50027 ¥00Z- 002" 002" \dewasn\I0suas)auid
% 1607, ‘0=ssed| 4 ‘L=ul ‘¥5=001 ‘€62=0071 0 0 vE  EETT S @e49T| 19001 8| S| AON-8T VO8O  USZTT ULTTZ 90T eIs/OopeY\BIowIs\BUIRYARY
g=lou3g T=en 6T=UAIN (6=S1wi00
‘g=Ired 6T=1N0 ‘T=sSe|D ‘z=sse| ¥00Z-| €002 002" £002- ‘85 "0=awn) \STRISIOAIBS \SISA[RUB\UILIPE\XBPIS
% Y776 T ‘T=u ‘€1=0071! ‘0v2=007] o 0 0 €S| ¢ unr-sz| Aew-g0 0T v Jdv-1z AeN-80 uzviD uE€80 Tiadojanap 990T VeIsApoey\BIo\ISUXIPIS ARy
9=UiaIy TZ=UleIN (FT=SIW0D,
zz=1no ‘p=sse|D) ‘g=sse|Q v002-| %002 002" 002" ‘29°0=awn) \MIIMPPIIXPIS
% €€°€8 8 ‘9=ul  '101=001 ‘11€=0071 0 0| uer-g vy 98 1/ non-eo| des-vg  vT T AON-TO| desiyz U000 U L90) yiedojenap 20T eishroey\bio\ois\aa.L ey
T=ylon e=ylo (£T=SIWO02| \ewinaAnoe
9z=1n0 ‘T=sse|D) ‘z=sse| ¥002-| €002 7002~ £002- '85°9=alun) \sisAjeue\AiiAnoR XaPIS
% 00'00T T ‘0=l '52=001 ‘€ET=00 o 0 180T, g unc-sz| Aew-o1  rz € unc-90, Ue(-T0 Y80l ULT'6 yiedojenap 20T elsHpey\BIo\ISIXIPISHfRY
zz=ulen TST=UIeN (¥G=SIW0D)
9T=1n0|  ‘0T=SSeID ‘9g=sse|D)| S002-| €002 5002- £002- ‘gG"g=awn) \nnyauIR
% 00°€8 9T ‘9sp=ul ‘186=001  'LTET=00] q 0 lgSy S| few-vz| Aew-vo 2Tt S| few-st AeW-v0 Y 0S|L UEELT viadojanap S80T weisiyoey\Biois\jausayoey
T=UaN y=Uisn (2T=s1w00
TT=1N0 ‘T=sSe|D) ‘p=SSeD ¥002-| €002 002" £002- ‘80°z=awI \PUBLIWIOD\[3UDY
% 2’88 T ‘T8=ul ‘01=0071! ‘187=007] q 0 ¥60T ¢ desvz| few-vo LT 2| des-ve Rew-v0  ueelp uzre Tiadojanap S60T weisiyoey\Biois\ausay ey
g=lou3 P=Uls| Se=eiN (2T=S1W02|
‘0=Ires 2=1n0) ‘T=SSe|D ‘g=sse| ¥00Z-| €002 002" £002- ‘eg"z=awn) \aUeD\[BUIR
% 0£'16 ‘0=ssed| v ‘sT=u '68=001 ‘L¥€=007] q o 0 628 7| 99a-01| Aew-vo ST € 28001 AeN-v0  40SI0 uSLT Tiadojenap 00TT WeIsAopoey\BI0\0IS\[BUIBHOfRY
T=UBN S=Ulen (8=s1wo0o \awnannoeoafold
0€=1N0] ‘T=sse|D ‘z=sse| ¥00Z-| €002 002" £002- ‘00°z=awn) \SisAfeue\Ainoeyxepis
9% 00°00T T ‘0=ur '22=001 *19T=00 o 0 0T 9| non-60| Aew-0T  se| S Inc-€T Aep:60  ueslz  u8s's o €117
2= ze=e
LT=1n0 ‘T=sse|D ‘9=sse| S002-| %002 5002- $002- \8yoeayoBfoIdXapIS!
% £9'99 z  Tr=w '2e=001 '¥62=00 o 0 Teve 9| Jew-,T| ged-GZ 8T 9 Jew-oT ged-Sz  ueg U008Z STTT \elsHpeY\BIo\ISIXIPISHfRY
L=ylen 06=Y1e (26=S1W00
9z=1n0; ‘g=sse|D) ‘TT=SSE|D) S002-| €002 5002~ £002- ‘LT pz=own) \UILpE U
% 6L°8L L ‘pri=w '98=001 '€€6=00 o 0 TZv9 g udv-zz| Aew-vg vt 9 udv-zz ReW-v0  Uzvly u8S6E Tiedojenap 8TTT els/Hpey\Biojis\ U AoRY
T=yIsn ve=uie (e2=s1w00
p=1N0] ‘T=sse|) ‘9=sse| v00Z-| €002 002" £002- '£8'6=0 \uodaxepis
% 0008 T gz=u ‘€1=001 ‘061=00]] o 0 2885 € Wo-sz| unc-ey szl 2| AON-OT ung:ST - 48SI0 UOSTT giadojanap 9211 \els/Opeuy\Bio\isoday ey
2z=uBN 2TE=URIN (FEE=SIW0|
16=IN0|  ‘Zg=sse|) ‘8y=sSe|D 50027 5002 5002- 5002- ‘Zb'Gg=aun) !
%216 2z ‘06=ul|  ‘068=0071|  ‘z81¥=001 T o Jrew-T 0T 6zveT 1/ adv-,T|  uer-8z  vee T advsT Ue(-,z  USZle uzv'se ziadojanap 81T weisfoppey\BIo\Is\RIdORY,
S=UaI 0z=UBIN (2G=S10D)
82=1n0) ‘Z=sse|D ‘1=ssB|D S002-|  €00Z- 5002- £002- ‘85" T=au) oofoidyxepis
% 00'8L e ‘pae=ul '96=0071|  ‘00T=00 1 o 0 zozs 9| rew-.1| Aew-90 80T L rew-or Rew-zT  uzvie ueese T o 6L1T
ma o) w Jw o9 [wi| il awi] |
ynsay| 1saL JUBIN JUIBIN anss|| anss| -lnay M3| uinyd i -woo -wod i awl | BNV |l |
WEN_W>DU 1sel wun nun| Ucmnwn_ Cl[EREEAN ElE] paso|D Cwno 1seq 8poy| -woy iseq isi4| -wo) BAY iseq Isi4 1sel BANOY H_wnx 2 m_.__v__._NN_ (812)

Figure 4.1. The PRI analysis. Workspaces a1@ listed with its respective PRI ranking and measures.



4.1 Limitations of Implementing PRI with Hackystat

Certainly, utilizing the real-time and low-developer-overhead collection and analysis fea-
tures of Hackystat is not perfect for every organization. There are many adoption barriers that come
with a PRI process implemented with Hackystat. For example, the barriers could include the initial
cost of setting up and using Hackystat to collect process and product measures, the configuration of
the ranking function, the devotion required to ensure that Hackystat provides accurate information,
privacy issues associated with collecting information on developers, and possibly many more. In
addition, although it is yet to be studied, | hypothesize that PRI will not be instantaneously benefi-
cial to an organization. In other words, if an organization installs, configures, and uses hackyPRI
for only one week, then | believe the rankings will not be as beneficial as compared to another
organization that has collected 3 years of Hackystat data.

| have designed the general theory of the Priority Ranked Inspection process to be in-
dependent of any specific means of collection, analysis, and ranking. However, | have chosen to
use Hackystat to implement PRI in this research, because the organization that | am studying has
already faced and found solutions for the barriers listed above.

4.2 PRI Ranking Function

The PRI ranking function is the most important and most complicated component of hack-
yPRI. There are two fundamental components in the PRI ranking function that must be understood
by both users and developers of hackyPRI. They are the PRI measures and the PRI indicators. The

following sections introduce these concepts.

4.2.1 PRI Measures

PRI measures represent the product and process measures that are the basis for determin-
ing whether a document is a MINI or a LINI. In addition, they are used to help generate the rankings
of documents and help explain the rankings by displaying the measure values. To better illustrate
this, see Figure 4.1. This figure presents a PRI ranking obtainable from hackyPRI. The figure con-
tains a listing of the project’'s workspaces and its associated values collected from the PRI measures.
In theory, PRI measures can be associated with any granularity level of a software artifact; for ex-
ample, documents, packages, workspaces, and modules. Currently, | have only implemented a set

of PRI measures that work for workspaces within a project.

41



Collection of PRI Measures

PRI measures provide the values of product and process measures associated with each
document. In the general theory of the Priority Ranked Inspection process, PRI measures can be
collected by any means. In hackyPRI, the Hackystat system is used to automate the collection of the
PRI measures. In Hackystat, product and process measures are represented by three components.
They are the Sensor Data Type, Sensor, and DailyProjectData components. A Sensor Data Type
defines the attributes associated with a measure. A Sensor is used to collect the measures and send
that information to a Hackystat server. The DailyProjectData provides a project-level representation
of the low-level data that was collected by the Sensors. hackyPRI requires the use of these three
components; therefore one must have the necessary Hackystat knowledge to successfully implement
a PRI measure. In addition to the three Hackystat components, hackyPRI implements another com-
ponent that represents a PRI measure, which is used within the PRI ranking. Section 4.5 explains
the implementation of PRI measures in detail.

Aggregate and Snapshot PRI Measures

There are two different types of PRI measures. They are Aggregate and Snapshot mea-
sures. An Aggregate PRI measure is the result of the summation of calculated values obtained from
processing one or more days of Hackystat Sensor Data. For example, the Active Time PRI measure
is an Aggregate measure because it adds the values of active time over a specified time period. If a
developer has generated 1.2, 1.0, and 2.0 hours of active time on three successive days, the Aggre-
gate Active Time measure would return 4.2 hours. Snapshot measures are not aggregated. Instead,
they represent the most recent value of a measure from one or more days. For example, the LOC
(lines of code) measure does not make sense as an Aggregate measure. If the system size was 1000,
1100, and 1200 on three successive days, then the aggregate of those numbers (3300) is not useful.
Therefore, LOC is a Snapshot PRI measure, and in this example 1200 is returned. In hackyPRI,
Aggregate and Snapshot measures must be implemented differently. Therefore, the decision of the
type of PRI measure (either Aggregate or Snapshot) must be made carefully.

4.2.2 PRIl Indicators

PRI indicators use one to many PRI measures to provide a ranking for each document. PRI
indicators provide indications of whether documents are MINI or LINI. For example, the Testing

PRI indicator provides indications on whether a document has adequate testing. This indicator

42



accesses the Unit Test, Coverage, and Test Code Active Time PRI measures to evaluate the level of
testing for the document.

PRI indicators have the following characteristics. First, PRI indicators determine whether
a document is a MINI or a LINI. Second, each PRI indicator can use the data from one or many PRI
measures. Third, each PRI indicator returns an integer value between 0 and 100. Fourth, different
weights can be assigned to different PRI indicators.

The calibration of the PRI indicators’ ranking and weights is a very important step when
using hackyPRI. Each individual PRI indicator can and should be calibrated differently to provide
a PRI ranking that best represents a MINI and LINI determination for a specific project. The cali-

bration of a PRI indicator includes four steps.

1. 0 to 100 indicator ranking - Once a PRI measure has gathered and calculated data from the
product and process measures obtainable from Hackystat, its values are used within PRI indi-
cators to return a ranking from 0 to 100. A zero ranking indicates the worst possible ranking
and a hundred ranking indicates the best possible ranking. For example, in the Coverage (the
percentage of code exercised by test cases) PRI indicator, one could imagine that O ranking
would indicate 0 percent coverage and a 100 ranking would be reserved for 100 percent cov-
erage. To calculate a ranking, certain thresholds must be identified that are specific for each
PRI indicator. This is hard for some indicators and easy for others. In the Coverage PRI indi-
cator, this is relatively straight forward, because the indicator relies on a single PRI measure
and the coverage percentage is already on a 0-100 scale. On the other hand, the thresholds
for the Testing PRI Indicator are less clear. The Testing PRI Indicator uses three different
measures, the PRI Unit Test measure, the PRI Coverage measure, and the PRI Active Time
measure. In addition, the values of these measures, when combined, do not fit nicely into a
0-100 scale. Currently, calculation of the indicator rankings is implemented with Java code
within the hackyPRI system.

2. Weights are assigned to each indicator It is possible that each PRI indicator affects the
ranking differently. Therefore, each indicator can be given a different weight to reflect that
difference. For example, an organization may find that coverage is the leading indicator of
MINI documents and can weight coverage higher than any other PRI indicator. Weights can
range from O to any integer. If an indicator has a weighting of O, then this indicator will be
“disabled” from the ranking function. These weighting are configurable through the hackyPRI

43



user interface for each project within Hackystat and all indicators are defaulted to a weighting
of 1 in the initial configuration of a Project PRI Ranking.

3. Compute aggregate ranking for all indicators- Once the independent ranking and weights
are in place, the system will automatically compute an aggregate ranking per document. A
very simple example is the following: a document has these indicator rank8®s100,

30, 15 and these respective indicator weightifiy 1, 1, 2. The aggregate ranking of this
document would be (92*1) + (100*1) + (30*1) + (15*2) = 252.

4. MINI and LINI declaration - The final step of this process is the declaration of MINI and
LINI for each document based on the aggregate ranking. Currently, | have not implemented
the facilities to make a declaration of MINI and LINI, because this has proven to be more
difficult than | first envisioned. | will leave this as a future implementation and research task.
However, the current system does provide a 'relative’ ranking: a workspace with a higher PRI
ranking is “more MINI” than all workspaces with a lower PRI ranking. In addition, Hacky-
stat projects generally have hundreds, if not thousands, of different workspaces, therefore a
relative ranking is sufficient for this current research.

4.3 User Interface

This section contains a description of important hackyPRI user interface components.
It should be noted that, like most Hackystat user interface components, the interface components
associated with hackyPRI have not been thoroughly tested for usability problems using traditional
Human Computer Interaction evaluation techniques. However, the developers of Hackystat have
informally reviewed the user interface.

Each description of the hackyPRI user interface components in this section will be ac-
companied by a screenshot.

44



4.3.1 PRI Analyses

%) Hackystat - Analyses - Mozilla Firefox
File Edit Wew Go Bookmarks Tools  Help

Project PRI Ranking

List Workspace: Lists the workspaces associated with the specified project (maore...)
Project: [ hackyz004-a1l v

PRI Module Ranking: Provides the PRI ranking for each module in the specified project, (mare...)
Project PRI hacky2004-all v

Configuration:

Refresh [ He [

Calculation?:

PRI Ranking: Provides the PRI ranking for each workspace in the specified project. {more...}

Project PRI [ hackyzo04-all v
Configuration:

Package Filter:

Refresh [ He ]
Calculation?:

Sort By PRI [Me ]
Ranking?:

Is detailed?: | He |

Done

Figure 4.2. Presents the analyses that are provided by the hackyPRI system.

This screenshot shows the Hackystat analyses that the hackyPRI system provides. The
List Workspace analysis, the first Hackystat analysis in the screenshot, allows users to validate the
set of workspaces associated with a specific project. Because, the PRI ranking provides rankings for
workspaces it is important to ensure that all workspaces within your project are used in the PRI rank-
ing. Therefore, it is very important that all the project’s workspaces, including child workspaces,
are identified by this analysis.

The Project PRI Module Ranking analysis, the second Hackystat analysis in the screen-
shot, displays the PRI ranking for top-level workspaces, or modules. This analysis ranks the mod-
ules by the average PRI rankings for all workspaces within the modules.

The Project PRI Ranking analysis, the third Hackystat analysis in the screenshot, provides
the PRI ranking for workspaces within the selected Project. The execution of this analysis results in
a table that ranks workspaces within the project according to the PRI ranking function described in

Section 4.2.2. Before using this analysis, you must configure the PRI ranking, see Section 4.3.3.

45



4.3.2 PRI List Workspace Analysis

©) Hackystat - List Workspace - Mozilla Firefox E |ZJ[E|FE|
File Edit Wew Go Bookmarks Tools  Help
-~
ﬁ IﬂCkyﬁgﬂ kagawaa@hawaii.edu List Workspace 3
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
List Workspace: Lists the workspaces associated with the specified project {more...3
Project: | hackyz004-all ~|

Workspaces (1564):

hackyAnthsrch,

hackyAnthsrchorgh,
|hack\;Ant\src\org\hackystat\
hackyantysrchorghhackystathant',
hackyantsrchorgihhackystathantsensory,
|hack\;Ant\srC\org\hack\;stat\stdext\
|hack\;Ant\src\org\hack\;stat\stdext\build\
hackyAnthsrchorghhackystatistdextibuildysdt,
hackyantisrchorghhackystatistdextisensor,

hackyantysrchorghhackystatistdextisensoriant®,

hackyantsrchorghhackystatistdextisensorantybomly v
4 | b

Done

Figure 4.3. Presents an example execution of the List Workspace analysis.

This screenshot shows the result of the Hackystat List Workspace analysis. This analysis
allows users to validate the set of workspaces associated with a specific project. Because, the PRI
ranking provides rankings for workspaces it is important to ensure that all workspaces within your
project are identified.

This screenshot provides a table of all workspaces within a project. In this particular
execution, there are 1564 workspaces associated with the hacky2004-all Project. These are the
workspaces that will be ranked by the PRI Ranking analysis. However, due to configurations that
specify the programming language used in the hacky2004-all project, workspaces without Java
software code are ignored from the ranking. Therefore, most of the 1,564 workspaces will not be

ranked.

46



4.3.3 Project PRI Configuration Management

©) Hackystat - Project Pri Preference - Mozilla Firefox E@ [:J@rg|
File Edit Wew Go Bookmarks Tools  Help
-~
k h ii.ed 5 =
ﬁﬂackys,m meauRdshaaiied Project Pri Preference
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
Project PRI Configuration(s) (Projects that you own)
Name File Extension |Ignored Workspace |[Indicator Weighting |Configuration Status |Action
Pattern(s)
|CLEW 1.0 Mo Configuration Exist Craate
|crest Mo Configuration Exist Create
|hack\;5tdExtEDD4—aII Mo Configuration Exist
|CIew2—UH | | | |No Configuration Exist | Create

Project Project PRI Configuration(s) (Projects that you are a member of)

MName [owner File Extension Ignored Workspace |Indicator Weighting |Configuration Status
‘ Pattern(s)

|csdIZDD4—aII johnson@hawai.edu | Mo Configuration Exist

|hacky2004—a|l Hohnsandhawai.edu | Mo Configuration Exist

PRI Indicator Descriptions

I I
Done

Figure 4.4. The Preference page that presents the Project PRI Configuration management.

This screenshot presents the Project PRI Configuration Management page. The configura-
tion management is accessible on the Hackystat preferences page, shown in the screenshot in Figure
3.5. All software projects are different; therefore the purpose of the configuration management page
is to configure the PRI ranking function for a specific project.

There are two different sets of configurations shown in this screenshot. The first table
shows the PRI configurations associated with Hackystat Projects that you own. The second table
shows PRI configurations associated with projects that you are a member of. The configuration
management only allows users to create PRI configurations for the projects that they own. For
example, | must contact johnson@hawaii.edu, the Project Owner for hacky2004-all, to create a PRI
configuration for the hacky2004-all project. Once a Project PRI configuration is created, then the

Project Owner can modify and delete the configuration.

47



4.3.4 Create a Project PRI Configuration

" &
) Hackystat - Create Project PRI Configuration - Mozilla Firefox E@ E][EHSJ
File Edit “ew Go Bookmarks Tools Help
i - A
ﬁHﬁckySfcﬂ johnson@hawaii.edu Create Project PRI
Configuration
University of Hawaii analyses | preferences | alerts | extras | help | home
Project Name (see the project's details below): hacky2004-all
File Extension: |java
Ignored Warkspace Pattern{s): selector G |
hackyCourse
hackyPrijdize
hackyCocomo
hacky3QI L=
hackyJPLEBuild -
Mote: Each workspace must appear on its own line,
Indicator weighting: Expert: [ | |
Active Time: [ |
Last active Time: [x |
active Time Contributions: i1 |
Caommit: |1 |
First Commit; [ |
Last Commit: [1 |
Commit Contributions: [ |
Review: [ |
Last Review: [ |
Issue: [1 |
File Metric: i1 |
Test File Metric: =1 |
Dependency: [ |
Unit Test; [1 |
Unit Test Result: |1 |
Coverage: [ |
PRI Indicator Descriptions =
D:one I ’ ’

Figure 4.5. The Create a PRI Configuration page.

In the previous section, | explained that only a Project Owner has the authority to create
a PRI configuration. Therefore, in this example, I've contacted the project owner and requested the
creation of the PRI configuration for the hacky2004-all Project. This screenshot presents the Create
Project PRI Configuration webpage. To create a configuration, we must provide the following

information:

48



1. File Extension - this setting allows the specification of the type of programming language
that is used in the PRI Ranking for this Project. Valid entries are file extensions that contain
a “” followed by any number of characters. For example, a valid entry could be “.java”,
“.cpp”, “.html”, or whatever programming language file extension is associated with your
project. There are some problems associated with this setting. First, this setting does not
support Projects that are implemented with more than one programming language. Second,
the Hackystat product and process measures implemented within Hackystat best support the
Java Programming language. Other programming languages, like C and C++, are supported
but not to the extent of Java. Furthermore, | did not test the generation of PRI racking for other
programming languages other than Java. Of course, the hackyPRI and Hackystat systems
can be fairly easy to extend to fully support any programming language. However, for this

research | will leave these issues as a future enhancement.

2. Ignored Workspace Pattern(s)- this setting allows the specification of workspaces that
should be ignored in the PRI ranking. Simply put, | have found that some workspaces in
a Project do not need to be inspected. This can happen for a couple of reasons. First, some
workspaces contain code that is no longer released. Second, some code, for example, auto-
matically generated code, could be ignored. This is a debatable use of the ignored workspace

pattern, but it is provided to the user as an option.

In this screenshot, the “hackyCourse”, “hackyPrjSize”, “hackyCocomo”, “hackySQI”, and
“hackyJPLBuild” are parent workspaces that should be ignored. The configuration will
also ignore any child workspace under those parent workspaces. The “selector” ignored
workspace pattern, specifies that any workspaces that contains the string “selector” shall also
be ignored. For the hacky2004-all project, selector code is an anomaly that generally does

not need to be inspected.

3. Indicator Weighting - this setting allows the specification of the weights associated with
the PRI indicators. By default, all PRI indicator weights are set to 1. Any positive integer,
including zero, are valid weights. The indicator weights are used to calibrate the individual
PRI indicator rankings, Section 4.2.2 explains this in detail. If a weight is set to zero, then
the PRI indicator will not affect the PRI ranking. If an indicator’'s weight is set to 2, and all
other weighting remain at 1, then the indicator will have twice the significance as the other

indicators. Indicator weighting is useful to correctly configure the indicators’ importance in

49



the PRI ranking. For example, if Coverage is a leading factor in the PRI ranking, then it

should be weighted higher than the other indicators.

50



4.3.5 Project PRI Configuration Management - After the Creation of a PRI Config-
uration

©) Hackystat - Project Pri Preference - Mozilla Firefox E |g[ﬁ|rz|

File Edit Wew Go Bookmarks Tools  Help
. M 5
ﬁﬂmkys,m TohsEhmhasgitedy Project Pri Preference
University of Hawaii analyses | preferences | alerts | extras | help | home
Project PRI Configuration(s) (Projects that you own)
Name File Ignored Indicator Weighting Configuration Action
Extension Workspace Status
Pattern{s)
hacky2004-all |, java hackyMDS Expert: weighting = 1 Configuration Exist Madify
hackyCourse Active Time: weighting = 1
hackyJPLBuild Last active Time: weighting = 1
hackyPriSize Active Time Contributions: weighting
selectar =3
hackysSQlI Commit: weighting = 1
hackyCocomao First Commit: weighting = 1
Last Commit: weighting = 1
Cammit Contributions: weighting = 1
Review: weighting = 1
Last Review: weighting = 1
Issue: weighting = 1
File Metric: weighting = 1
Test File Metric: weighting = 1
Dependency: weighting = 1
Llnit Test: weinhtinn = 1 B
Done

Figure 4.6. The Preference page that presents the Project PRI Configuration management.
This screenshot presents the Project PRI configuration management webpage after the

creation of a PRI configuration. Provided in the webpage are the details of the configurations that
have been created. In addition, the Project Owner can modify and delete the configuration.

51



4.3.6 Project PRI Ranking Analysis

- — —a
©J Hackystat - PRI Ranking Analysis - Mozilla Firefox |’1@ E]@|®
File Edit “ew Go Bookmarks Tools Help
ﬁ kagawaa®@hawaii.edu PRI Ranking Analvsis
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
PRI Ranking: Provides the PRI ranking faor each warkspace in the specified project, (mare...)
Project PRI [ hackyz004-all v |
Configuration:
Package Filter: !_
Refresh | Mo _\_rl
Calculation?:
Sort By PRI [ves
Ranking?:
Iz detailed?: | Mo _\_rl
Workspaces (187): Ranking Expert
hackyReporthsrohorgihackystathstdextyreporty, Q96 d hiaw aiied
{activeTime=9.83,
hackyKernelsrochorgshackystatikerneladmin®, 939 i Dhawaii. et
{activeTime=24.0¢
hackykernelsrochorgshackystatikernelhcachey, Qa7 i mhawaii, e
{activeTime=2.33,
hackyTDDYsrchorgihackystathstdexthtddyiew?, Qa7 i 1@hawaii. ¢
{activeTime=0.67,
hackyStdExtysrchorgvhackystathstdexthactivityhanalysis\projectactivetime’, 926 i Ji@hawaii.
{activeTime=2.00,
hackyYCShsrchorghhackystathapphocommithsensorcountert, a1 i hhawaii.ed
{activeTime=0,25,
hackykernelhsrohorghhackystathkernehocommandy, a78 i mhawaii, e
{activeTime=2.08,
hackyStdExthsrohorgshackystathstdest projecty, !961 i Dhawaii. ety
b | Ed
[rone

Figure 4.7. Presents an example execution of the Project PRI Ranking analysis.

After a Project PRI configuration has been successfully created and configured in the
previous sections, then you can run the PRI Ranking analysis. The analysis is obtainable on the
analyses page (Figure 3.4) in the Project PRI Ranking section (Figure 4.2).

This screenshot presents the rankings of the hacky2004-all project. This project contains
the product and process measures that have been collect during the development of the Hackystat
system. | will be using this Hackystat project to evaluate the hackyPRI system.

52



Due to page width constraints, the screenshot does not show the values of the numerous
PRI measures and all the workspaces available. Normally, in this table you will be able to view the
workspace, the aggregate ranking, and all the values of each of the PRI measures. This particular
execution of the analysis ranks each workspace by its associated aggregate PRI ranking. It sorts the
highest ranked workspaces (LINI) to the top of the table and the lowest ranked workspaces (MINI)

to the bottom of the table.

4.3.7 Project PRI Ranking Analysis Selectors

¥ Hackystat - PRI Ranking Analysis - Mozilla Firefox E@ E@|z|
File Edit ‘ew Go Bookmarks Tools  Help
k h ii.ed <
agawaa@hawaii.edu = =
{zmcw PRI Ranking Analysis
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
PRI Ranking: Pravides the PRI ranking for each workspace in the specified project. (maore...}
Project PRI [ hackyzoos-all v |

Configuration:
Package Filter:

Refresh | Mo v
Calculation?:
Sart By PRI [ves v
Ranking?:
Is detailed?: Yas (W
' L
£ >

Dane

Figure 4.8. Presents the selectors that are available in the Project PRI Ranking analysis.

This screenshot presents the user interface for the PRI Ranking analysis. There are five

different selectors that users can set to determine the PRI Ranking that they would like to generate.

1. Project PRI Configuration - users should use this selector to select what PRI configuration
they would like to be used in the PRI ranking. A PRI configuration has a one-to-one corre-
spondence with Hackystat Projects, thus when you select a PRI configuration you are also
selecting what Project data to use in the PRI ranking. PRI configurations must be created
using the PRI Configuration Management preference interface before a PRI ranking can be
generated (See Section 4.3.3 and 4.3.4).

2. Package Filter- users should use this selector to show workspaces that contain a value of the

string they enter into the textbox. For example, if a user wants to generate the PRI ranking

53



only for the hackyKernel module, then they should enter in “hackyKernel” into the Package
Filter selector. Section 4.3.9 contains a screenshot of an example use of this selector. In
addition, if a user wants to rank only analysis code, then the user can enter in “analysis” and
all workspaces that contain that value will be ranked.

. Refresh Calculation? - users should use this selector to either re-generate the PRI ranking
or use the last PRI ranking stored in the system. This is an unusual and unique behavior for
the standard set of analyses provided by Hackystat. However, since the PRI ranking takes an
unusual amount of time to generate, in some instances two to five minutes, users will want to
be able to play with the selectors without having to wait for the re-generation of the ranking.
For example, users could sort by ranking, use the Package Filter, or see the detailed view,

without wanting to re-generate the PRI ranking.

. Sort By PRI Ranking? - users should use this selector to sort the workspaces by PRI rank-
ing or by the workspaces. Selecting “Yes,” will sort the highest ranked (LINI) workspaces
to the top of the table and sort the lowest ranked (MINI) workspaces to the bottom of the
table. Selecting “No,” will sort the table by workspaces, which groups all similar workspaces
together.

. Is Detailed? - users should use this selector to view detailed information about the PRI
ranking. Selecting “Yes,” will provide the weighted-rank for each PRI indicator. This will
hopefully aid the indicator weighting configuration process. An example screenshot of the
detailed view is shown in Section 4.3.8. Selecting “No,” will provide the standard output seen
in Section 4.3.6.

54



4.3.8 Project PRI Ranking Analysis - Detailed View

©) Hackystat - PRI Ranking Analysis - Mozilla Firefox E |g[ﬁ|rz|

File Edit Wew Go Bookmarks Tools  Help

] Ranking Expert Active Last Active |Active Time Commit |First Last 5
Time [Time Contributions Commit Commit =
996 [Expert=50] ahawaii,edu 11.50 |10-Mow-2004 |2 127 13-Jun-2003 |[27-0ct-2

[Active Time=16] |(activeTime=9.83,commits=73) |h
[Last active
Time=100]
[Active Time
Contributions=20]
[Commit=62]
[First
Commit=100]
[Last
Commit=100]
[Cammit
Contributions=30]
[Review=0] [Last
Review=0]
[I=sue=100] [File
Metric=8a] [Test
File Metric=100]
[Dependency=52]
[Unit Test=100]
[Unit Test
Result=0]
[Coverage=80]

45 &
Done

Figure 4.9. Presents an example execution of the Project PRI Ranking analysis.

This screenshot presents the results of a Project PRI Ranking with the “Is Detailed?”
selector set to “Yes”. The detailed view shows information that is not available in the regular view
and it is intended to help the user understand how the rankings are computed, what workspaces are
ignored, and what workspaces do not have Java implementation. What is shown in this screenshot
is the detailed information about the PRI indicator ranking (see Section 4.2.2 for a description of
PRI indicators). This information will hopefully help the Project Owner in the configuration of the
PRI indicator weighting (discussed in Section 4.3.3).

55



4.3.9 Project PRI Ranking Analysis - hackyKernel

©) Hackystat - PRI Ranking Analysis - Mozilla Firefox

File Edit Wew Go Bookmarks Tools  Help
| - | 7 [ B
hackykernehsrohorgihackystatikernelhshelhcommandy, ||840 Dhaw aii, edu 1.17 h ||14-Mov-2004 |4
{activeTime=0,67,commits=0)
hackykernelsrohorghhackystatikernelhsoapy, Q39 i Shawaii.edu 1.58 h |[15-Mov-2004/[5
{activeTime=0.67,commits=11)
hackykernelsrochorgyhackystatikernelhtesty, 817 i Thawaii.edu 18.58 |[25-Jun-2004+ 3_
{activeTime=17.75,commits=24) h
hackykernehsrohorgihackystathkernelstimer', 812 I Dhawaii.edu 0.17 h ||06-1an-20058 1_
{activeTime=0,17,commits=7)
hackyKernelsrohorghhackystat\kernelhuser’, Q33 @hawaii.edu 2,75 h [11-Mov-2004/[3
{activeTime=2.33,commits=26)
hackyKernelsrchorgihackystathkernelhutily, 315 i @hawaii.edu 17.33 |[18-mar-2005 |5
{activeTime=8.58,commits=53) |h
[stats |
|Auerage PRI Rankiing |EIE|?.29 B
b
55 | ?
[rone

Figure 4.10. Presents an example execution of the Project PRI Ranking analysis.

This screenshot presents the results of the Project PRI Ranking analysis with the “Package
Filter” selector set to “hackyKernel”. The most interesting use of the Package Filter is the Average
PRI Ranking information obtainable at the bottom of the webpage. The Average PRI Ranking
provides the average ranking of all workspaces shown in the table. For hackyKernel workspaces the
average ranking is 867.29. The ranking of other workspaces will differ. In my research, | will be
addressing the PRI Rankings of workspaces, however the PRI rankings can be attainable for whole
modules as well.

56



4.3.10 Project PRI Module Ranking Analysis

©) Hackystat - PRI Ranking Analysis - Mozilla Firefox |E |;”E|FZ|
File Edit “ew Go Bookmarks Tools  Help
m 5

ﬂﬂackyﬁﬂ kagawaa@hawaii.edu PRI Ranking Analysis I
University of Hawaii admin | analyses | preferences | alerts | extras | help | home
PRI Module Ranking: Provides the PRI ranking for each module in the specified project. (more...}
Fraject PRI [ hackyzaoa-all v |

Configuration:

Refrash [Ha |

Calculation®:

Module (38): Average PRI Ranking

hackyStatistics 883.00

hackykernel B867.18

hackyHPCS 855.50

hackyRepaort 861,75

hackyStdExt 818,82

hacky%CS 511.50

hackyDependency 791.25

hackyPerf 77975

hackyant 776.82

hackyTDD F52.00

hackyTelemetry TET.58

hackyReportExample 742,00

hackyim 688.00 =
hackyReview 685.91

hackylssue 607.50

hackyCli E47.60

hackyEclipse £27.00

hackyJupiter 512,00

hacky CGOM 503.24

hackyIBuilder 464,00

hackyVisualStudio 7

hacky TelemetryViewer 7

hackyYIM 7

i T = # hd
Done

Figure 4.11. Presents an example execution of the Project PRI Module Ranking analysis.

The concept of average rankings, shown in Section 4.3.9, received a lot of interest within
CSDL. Therefore, | implemented another Hackystat analysis that provides the average rankings for
all top-level workspaces, also referred to as modules. This screenshot presents the results of the
Project PRI Module Ranking analysis.

Currently, the hackyPRI system cannot generate a true PRI ranking for modules. In-
stead, the hackyPRI system can only rank workspaces. However, | was able to implement a facility

57



that uses the average ranking feature shown in Section 4.3.8. In the future, | hope to support all
granularity-levels of PRI rankings, for example, modules, packages, single documents, and even
methods.

The current results of this analysis are quite interesting. First, the ranking order seems
to be congruent with the kernelized architecture of Hackystat. Hackystat is comprised of many
different modules that are built in a kernelized fashion, meaning that there are base modules and
modules that extend the functionality of the base modules. For example, hackyKernel is a base
module that almost all other modules utilize. In this screenshot, the main base modules are ranked
the highest: hackyKernel, hackyStatistics, hackyReport, and hackyStdExt. This is a positive finding.
One would hope that the closer we move to the kernel of the system the higher the code quality
becomes, because the base modules are the most used and most important modules.

There are a few missing rankings, indicated by a “?”. Some of these modules are ignored
via the ignore workspace pattern, some of them have no FileMetric data so the system can't tell if
they no longer exist, and some of them contain no Java files. For example, the hackyVisualStudio
and hackyVIM modules presented in the screenshot do not contain any Java files. Therefore, the
current hackyPRI implementation does not know how to generate a PRI ranking for these modules.
This is also interesting. Should Java code be ranked differently from other programming languages?
Can they even be compared? | will address these questions in the future. For this current research,
| have only focused on generating PRI rankings for Java code.

58



4.4 The Four Steps of the Priority Ranked Inspection Process

Hackystat PRI Extension supports the four steps of the Priority Ranked Inspection pro-

cess. The following list is the four steps of the PRI process.

1. The creation of the PRI ranking function, which distinguishes MINI documents from LINI

documents. The ranking function design includes three steps:

(a) Selection of product and process measures to use in the PRI ranking function.

(b) The calibration of PRI indicators, which evaluates the values of the measures to generate

a ranking for the documents.

(c) The creation of a MINI-threshold, which declares all documents above the threshold as
LINI and all below as MINI.

2. The selection of a document for inspection, based on the PRI ranking function.
3. The actual inspection of the selected document.

4. Adjustment of product and process measure selection and calibration of PRI indicators based

on the results of the inspection.

The following subsections detail how hackyPRI supports the four steps of the Priority

Ranked Inspection process.

4.4.1 Step la: Selection of Product and Process Measures

Step 1 of the Priority Ranked Inspection process states that the creation of a PRI ranking
function will distinguish MINI documents from LINI documents. Step la concentrates on the se-
lection of the PRI measures, which provide the data for the PRI ranking function. This selection
process will not be the same for all software projects. Therefore, different software groups must be
able to add new product and process measures to their own Hackystat installation.

A PRI measure is implemented with a WorkspacePriMeasure, explained in Section 4.5.1,
and the following Hackystat-related components: a Sensor Data Type, a Sensor, and a DailyProject-
Data representation. The Hackystat system provides a set of various product and process measures
and | will utilize a subset of the available measures to create the PRI measures. Table 4.3 contains
a description of the PRI measures that are implemented in hackyPRI. Each measure is collected for

each workspace within a specified project.

59



The next two sections provide a detailed illustration of how to add and remove PRI mea-
sures to and from the system.

Adding a new PRI measure to the system

This section provides a detailed description of the required steps to add a new hypothetical
Runtime Execution PRI measure to the system. This measure represents the total number of runtime
executions for a specific piece of code during the span of 24 hours. Although this measure is
currently not obtainable in the current set of Hackystat measures, it has many practical applications.
For example, a Hackystat analysis can map out the areas of a project that are executed most often
during normal usage. This would be a great measure to incorporate into PRI, because one would
assume that if classes in package Foo are executed ten times more often than classes in package Bar,
all other measures being equal, then package Foo could have a higher MINI ranking than package
Bar.

Step 1 - Create a Runtime Execution Sensor Data Type All Hackystat measures are concretely
defined in a Sensor Data Type. This representation specifies the exact information that is required to
allow useful, interesting, and correct interpretations of the measure. Essentially, it is the schema that
defines the data. Therefore, the first step is to define the attributes of a Runtime Execution Sensor
Data Type.

Step 2 - Create a Hackystat Runtime Execution SensorLike all Hackystat measures, there

must be some way of collecting the Runtime Execution measure. Utilizing the Java Management
Extension (JMX) is one of the many possibilities for creating a Runtime Execution sensor. In any
case, imagine such a software tool exist such that a Hackystat sensor can extract the necessary
information required by the Runtime Execution Sensor Data Type. Once the Sensor and Sensor
Data Type have been implemented, Runtime Execution data can be sent to a Hackystat server.

Step 3 - Create a DailyProjectRuntimeExecution representation After the completion of steps

1 and 2, we should have Runtime Execution Sensor Data stored in Hackystat. This fine-grained data
is meaningless if we are unable to associate the data to a specific Hackystat project. At this point,
the creation of the DailyProjectRuntimeExecution representation is needed. The purpose of this

representation is to provide coarse-grained information about Runtime Execution data at the project

60



level. For example, the number of executions during June 14, 2005 for the package Foo in project
Baz.

Step 4 - Create a WorkspacePriRuntimeExecution class Up until this point we have not imple-
mented a PRI measure. Instead, we have been implementing various Hackystat-related components
that the PRI measure requires. Now we are ready to create the WorkspacePriRuntimeExecution
class, which is the hackyPRI Java representation of the Runtime Execution PRI measure. During
the implementation of this class, a critical question must be answered; should this measure be an
Aggregate or Snapshot measure? In other words, should the executions be aggregated over time
or should the number of executions be obtained from the last set of Runtime Execution Hackystat
sensor data. This decision is debatable.

Step 5 - Add the WorkspacePriRuntimeExecution class to the WorkspacePriMeasureClass-

Info class This step requires the addition of two lines of code. Simply add an instance of the
WorkspacePriRuntimeExecution to the collection of PRI measures that are used in the PRI rank-
ing. In addition, you must add the instance to the collection that creates the presentation of the PRI
Ranking. This process can be streamlined in the future with the addition of configurable XML files
that define PRI measures and its presentation components. However, | will leave this to a future

implementation task.

We are done! After finishing these five steps you have successfully added a new product measure
to the PRI ranking function. You should now move on to Step 1b in the four step Priority Ranked
Inspection Process (Section 4.4.2) to create and calibrate a PRI indicator that uses this PRI measure
within the PRI ranking.

Removing a PRI measure from the system
This section provides a detailed description of the required steps to remove a PRI measure

from the system.

Step 1 - Remove the WorkspacePriRuntimeExecution class from the WorkspacePriMeasure-
Classlinfo class In normal situations, removing a measure from the PRI ranking is as simple as
not calculating the measure. To do this, simply comment out the lines added in Step 5 of the in-

structions to add a PRI measure to the system. In the future, this process could become much more

61



user friendly and robust by creating a user interface configuration of PRI measures. The goal of this
enhancement would allow the addition and removal of PRI measures at runtime and not require any
developer programming to make the change.

We are done! After finishing this one step you have successfully removed a PRI measure from the
PRI ranking function. Of course, one could delete all Java implementation of the PRI measure you
want to remove. This is quite simple but not suggested, because you might want that PRI measure

in a future PRI ranking.

4.4.2 Step 1b: Calibration of PRI Indicators

The PRI ranking function, which is comprised of PRI measures and PRI indicators are
implemented in the hackyPRI extension. The process of determining the rankings is not shown in
Figure 4.1, however the calibration and ranking function works behind the scenes.

To make the important distinction of MINI and LINI involves a multi-step process. The
first step is to identify thresholds to generate a O to 100 indicator ranking. The second step is
assigning weights for each indicator, which is configurable for each Project through the hackyPRI
user interface. See Section 4.2.2 for a detailed explanation of the PRI indicators.

The next three sections provide a detailed illustration of how to add, remove, and calibrate
PRI indicators.

Adding a new PRI indicator to the system

This section provides a detailed description of the required steps to add a new hypothetical
Runtime Execution PRI indicator to the system. In addition, I'll describe how to utilize a PRI
measure within a PRI indicator to create a ranking and weighting. Recall that PRI indicators use
the values of one or more PRI measures to calculate a ranking. However, in this particular example,
lets assume that the Runtime Execution PRI measure is the only measure that will be used in the

Runtime Execution PRI indicator.

Step 1 - Ensure that all PRI Measures Are Implemented PRI indicators are built on top of

the PRI measures. Therefore, you must ensure that the PRI measures that you intend to use are
completely implemented and working in the system. If not, you must revert to Step la in the
Priority Ranked Inspection process. For this example, lets assume that you have already created the
Runtime Execution PRI measure.

62



Step 2 - Create the RuntimeExecutionPrilndicator Since PRI indicators are built on top of PRI
measures, the majority of the work is already provided by the measures. The job of a PRI indicator
is to obtain the PRI measure values and provide a ranking according to certain thresholds. All
indicators must return a ranking with values from 0 to a 100. The implementation of this ranking is
the most critical and important part of a PRI indicator.

Step 3 - Add the RuntimeExecutionPrilndicator to the PrilndicatorClassinfo class This step
requires the addition of two lines of code. Simply add an instance of the PriRuntimeExecutionPri-
Indicator to the collection of PRI indicators that are used in the PRI ranking. In addition, you must
add the instance to the collection that creates the presentation of the PRI Ranking. This process can
be streamlined in the future with the addition of configurable XML files that define PRI indicator

and its presentation components. However, | will leave this to a future implementation task.

We are done! After finishing these three steps, you have successfully added a new PRI indicator

to the system. You should now ensure the calibration of the PRI indicator is correct.

Removing a PRI Indicator from the system

This section provides a detailed description of the required steps to remove an indicator

from the system.

Step 1 - Change the PRI Indicator Weighting in the Project PRI Configuration to Zero In
normal situations, to remove a PRI indicator from the PRI Ranking you simply need to set that indi-
cator’s weighting to zero. See Section 4.3.3 and Section 4.3.4 for more information about changing

the PRI configuration for a Project.

We are done! Atfter finishing this one step, you have successfully removed a PRI indicator from
the PRI ranking function. Of course, one could delete all Java implementation of the PRI indicator
you want to remove. This is quite simple, but not suggested, because you might want that PRI

indicator in a future PRI ranking.

Calibrating a PRI Indicator

This section provides a detailed description of the required steps to calibrate the Runtime

Execution PRI indicator. This indicator has a one-to-one correspondence with the Runtime Exe-

63



cution PRI measure. However, other indicators could have a one-to-many relationship with PRI
measures.

The Runtime Execution PRI indicator would be a great indicator to incorporate into PRI,
because one would assume that if package foo is executed ten times more often than package bar,
all other measures equal, then package foo could have a higher MINI ranking than package bar.

Step 1 - Take an initial guess In the previous paragraph, | hinted at an initial guess of one pos-
sible calibration of the Runtime Execution PRI indicator. This step requires that the creation of a
calibration based on either an initial guess or even hard evidence. The calibration of the Runtime
Execution PRI indicator requires the definition of certain thresholds. For example, 50 executions
could represent the threshold for a high ranking and 10 executions could represent the threshold for

a low ranking. Each PRI indicator returns a value of 0 to 100 to represent low and high rankings.

Step 2 - Run the PRI analysis and analyze the results Do not spend a great deal of time con-
templating the definition of the thresholds in Step 1, because a calibration is useless unless you have
concrete data. Therefore, Step 2 requires that you run the PRI ranking on a real software project
to analyze the results of your initial calibration. The amount of effort that is put into validating the
calibration of the indicators will directly affect the effectiveness of the PRI ranking. To thoroughly
calibrate a PRI indicator, one must conduct inspections on a sample of the rankings to determine its
validity.

Step 3 - Monitor inspection results over time Software products and development processes
evolve over time; therefore the calibration of the PRI indicators that represent them must evolve as
well. Monitoring the inspection results and comparing them to the calibration of PRI indicators is
a continuous requirement. For example, if you find that Runtime Execution information does not

have as much of an affect as previously determined, then the calibration must be adjusted.

We are done! After finishing these three steps you have successfully calibrated a PRI indicator.

4.4.3 Step 1c: Declaring MINI and LINI documents

As previously mentioned in Section 1.2, creating a mechanism to declare a document as
MINI and LINI has not been solved. Therefore, hackyPRI implements Steps 1a and 1b to provide a
priority ranking of the documents. Although, the declaration of MINI and LINI is very important, |

64



believe that my current research is not limited by my inability to solve this problem. Simply because
in a Hackystat project of hundreds of documents, it is possible to claim that a few documents with
the lowest rankings are more MINI than a few documents with the highest rankings.

4.4.4 Step 2: Selecting a Document for Inspection Based on the PRI Ranking

Using the Hackystat PRI Ranking analysis (Figure 4.7), an organization should select a
document at the bottom of the PRI ranking table for inspection. The higher the document is in the
table, the less it is in need of inspection.

In my initial studies, | have found that simply picking the highest priority MINI document,
or the document that is at the very bottom of the table, will probably not be the “best” document
to inspect. In most cases, | have found that the PRI ranking aids the selection of a document, but
it does not select the document automatically. In other words, it is more useful to consider a few
MINI documents and take an educated guess as to which document needs inspection more.

4.45 Step 3: Conducting an Inspection of the Selected Document

Once a document is selected it can be inspected. One interesting side effect of the PRI
ranking is that specific statistics and measures can be presented during the inspection process. For
example, if a document is selected because it has low coverage, then the inspection can focus on
why the coverage is low. However, in my study of this research, | will keep all PRI information a
secret.

The Hackystat PRI Extension or the PRI process does not support the actual inspection
of the document. Therefore, an organization should consult traditional inspection processes (i.e.,
Software Inspection, Fagan Inspection, In-Process Inspection, etc). As mentioned previously, the

PRI process is an outer layer that wraps around an already established inspection process.

4.4.6 Step 4: Adjustment of the Measure Selection and Indicator Calibration

If a document is shown to be incorrectly ranked, then an adjustment of the PRI ranking
function is necessary. In hackyPRI, this can be accomplished by adding more PRI measures (Step

1a) or recalibrating the PRI indicator (Step 1b).

65



4.5 Hackystat Priority Ranked Inspection Extension

This section describes the design and implementation of the Hackystat PRI Extension
(hackyPRI). My development of the hackyPRI system has been an ongoing process with many
different revisions and enhancements. It has taken me three major evolutions to obtain the level of
functionality described in the previous sections. The software has gone from a very simple and very
slow-processing system, to an optimized and robust system, and then finally to configurable system
that can support different projects and organizations.

This section provides a detailed description of the design and implementation of the sys-
tem. Knowing this low level information provides relatively little advantage in respect to actually
using hackyPRI. However, the design and implementation is presented in detail to provide future
developers with the necessary information to continue the work that | have started.

The hackyPRI system is written entirely with Java technologies and is fully compatible
with the Hackystat system. The system is currently installed and running on the Collaborative
Software Development Laboratory’s Public Hackystat Server (http://hackystat.ics.hawaii.edu). The
source code, Javadocs and other useful information about the system are freely obtainable on the
Hackystat Development Website (http://www.hackystat.org).

4.5.1 Design and Implementation

The Hackystat PRI Extension has a fairly complicated design. It consists of numerous
classes organized by eleven different Java packages. See Table 4.1 for a listing and description of
all the packages. In the next sections, | describe the design and implementation of some of the
important hackyPRI packages.

Package org.hackystat.app.pri.model.workspace.measure

This package provides Java classes that represent PRI measures. Each measure imple-
ments the WorkspacePriMeasure Interface, shown in its entirety in Table 4.2. The purpose of this
interface is to standardize the functionality of each and every measure. For example, each measure
must be able to calculate its value and return the calculated value in a readable form. The stan-
dardization of the functionality of PRI measures greatly improved the configurability of the system.

In addition, the interface defines four methods: isAggregateMeasure, isCacheEnabled, writeCache,
and readCache, which provide the ability to save the results of a measure for future use. Once the

measure is calculated it should not need to be re-calculated.

66



Table 4.1. Java Packages in the hackyPRI system

Package

Description

org.hackystat.app.pri.admin.analysis.remove

Provides administrative facilities for deleting th
PRI measure persistent caches.

org.hackystat.app.pri.analysis.listworkspace

Provides the List Workspace analysis, which si
ply lists the workspaces within a Project.

org.hackystat.app.pri.analysis.module

Provides the Project PRI Module Ranking ang
sis, which provides the PRI ranking for top-lev
modules within a specified project.

e

m-

ly-
el

org.hackystat.app.pri.analysis.workspace Provides the Project PRI Ranking analysis, which
provides the PRI ranking for workspaces within a
specified project.

org.hackystat.app.pri.analysis.workspace.selector Provides various selectors used in the Project
Workspace Ranking analysis.

org.hackystat.app.pri.model.configuration Provides the Project PRI Configuration represen-

tation, which models the configuration of PRI at-

tributes for a specific Project’s PRI ranking.

org.hackystat.app.pri.model.configuration.selector

Provides various selectors that allow the sel

tion of Project PRI Configuration in the Hackystat

analyses.

org.hackystat.app.pri.model.workspace

Provides the Project Ranking Workspace rep
sentation, which calculates, stores and ranks
PRI ranking for a specified project.

org.hackystat.app.pri.model.workspace.measures

re-
the

Provides the implementation of various PRI mea-

sures, which are used in a Project’s PRI rankin

org.hackystat.app.pri.model.workspace.measures.he

plerovides classes that aid in the calculation of
PRI measures.

org.hackystat.app.pri.model.workspace.measures.ing

i¢aovides the implementation of various PRI ind

cators, which are used in a Project’s PRI rankin

org.hackystat.app.pri.prreference.configuration

Provides a set of Project PRI Configuration pref
ence commands, which allows the user to cre
modify, and delete Project PRI Configurations.

org.hackystat.app.pri.util

Provides utility classes that aid the processing
PRI calculations.

67

g.
the



The use of a persistent cache greatly reduces the processing time required to provide a
real-time PRI ranking for a specified Project. PRI measure persistency is the first level of optimiza-
tions in the hackyPRI system. The second and third level is described in the workspace package.
Optimization is an important aspect of hackyPRI, because the PRI rankings span across the lifetime
of the Project, which includes all Hackystat Sensor data associated with the Project. As you can
imagine, without some sort of persistency and optimization, generating a PRI ranking will be quite
computationally expensive.

A specific example of one of the PRI measures is the Commit Contribution measure.
Like all PRI measures provided by hackyPRI, the Commit Contribution measure implements the
WorkspacePriMeasure Interface and therefore provides a standard set of functionality. However,
each PRI measure has its own specific defining characteristics. First, the Commit Contribution
measure is an Aggregate PRI measure. Therefore, its isAggregateMeasure and isCacheEnabled
measure both return the boolean true. Second, it is obvious that each measure is calculated dif-
ferently. Therefore, the Commit Contribution measure accesses specific Hackystat components to
obtain the values of the product and process measures.

Table 4.3 presents a description of all the PRI measures in the hackyPRI system.

68



Table 4.2. The WorkspacePriMeasure Interface that defines the functionality of all PRI measures.

o
* Returns the label of this measure.
* @return The label of this measure.
*/
public String getLabel();

/**

* Determines if the measure is an aggregation of past data. If this method returns true,

*  then this indicates that each day since the start day of the project is used to calculate
*  the measure’s value. If this method returns false, then the measure is calculated from
*  the last build day.

* @return True if the measure is an aggregate calculation, false otherwise.

*

public boolean isAggregateMeasure();

o
* Determines if the cache is enabled. Generally, measures that are calculated in an aggregation
* of past data is cached.

* @return True if the cache is enabled, false otherwise.
Wi
public boolean isCacheEnabled();

/**

* Calculates and returns the value of the PRI measure for the specified workspace and day.
* @param workspace Specifies the workspace to calculate the measure for.

* @param day Specifies the day to calculate the measure for.

* @throws Exception If a problem occurs.

*/

public void calculate(String workspace, Day day) throws Exception;

/**

* Returns the formatted String of the calculated value.

* @param workspace The workspace to get the calculated value.
* @return The formatted value.

Wi

public String formatCalculatedValue(String workspace);

/**

* Returns the Day of the earliest cached value. This day should be used
*  to start calculating the measures values.

* @return The Day object of the earliest cached value for this measure.
*

public Day getEarliestCacheDay();

e
* Writes out the cache objects associated with this instance of the measure

* object. The collection of caches are stored in the Project owner’'s partitions.
* @throws Exception If a problem occurs.

Wi

public void writeCache() throws Exception;

/**

* Reads in the cache objects associated with this instance of the measure

* object and creates an internal representation of the cache. The collection of caches
* are stored in the Project owner's partitions.

* @throws Exception If a problem occurs.

*

public void readCache() throws Exception;

69



Table 4.3. Summary description of all the PRI measures within the hackyPRI system

PRI Measure

Description

WorkspacePriActiveTime

Represents the total aggregate active time for each workspac
project.

2 in a

WorkspacePriActive TimeContributiorn

Represents the total aggregate number of active time member
tributions for each workspace in a project.

con-

WorkspacePriActiveTimeFirst

Represents the first day active time was recorded for each works
in a project.

pace

WorkspacePriActiveTimeLast

Represents the last day active time was recorded for each work
in a project.

space

WorkspacePriActiveTimeTest

Represents the total aggregate active time for test code in
workspace in a project.

each

WorkspacePriCommit

Represents the total aggregate number of commits for
workspace in a project.

pach

WorkspacePriCommitContribution

Represents the total aggregate number of commit member con
tions for each workspace in a project.

tribu-

WorkspacePriCommitFirst

Represents the first day commit information was recorded for ¢
workspace in a project.

pach

WorkspacePriCommitLast

Represents the last day commit information was recorded for
workspace in a project.

each

WorkspacePriCodeChurn

Represents the total aggregate code churn for each workspac
project.

eina

WorkspacePriCoverage

Represents the latest snapshot of the method level coverage pe
age for each workspace in a project.

rcent-

WorkspacePriDependency

Represents the latest snapshot of the number of inbound ang
bound dependency references for each workspace in a project.

out-

WorkspacePriExpert

Represents the project member who has the most active time
commits for a each workspace in a project.

2 and

WorkspacePriFileMetric

Represents the latest snapshot of the number of lines of code,
ber of methods, number of classes for each workspace in a pro

num-
ect.

WorkspacePriFileMetricTest

Represents the latest snapshot of the number of lines of test
number of test methods, number of test classes for each works
in a project.

code,
space

WorkspacePrilssueOpen

Represents the latest snapshot of the total number of open issu
each workspace in a project.

es for

WorkspacePrilssueClosed

Represents the latest snapshot of the total number of closed i
for each workspace in a project.

ssues

WorkspacePriReview

Represents the total aggregate number of review issues for
workspace in a project.

each

WorkspacePriReviewlLast

Represents the last day review issues was recorded for
workspace in a project.

each

WorkspacePriUnitTest

Represents the latest snapshot of the number of executed uni
for each workspace in a project.

tests

WorkspacePriUnitTestResult

Represents the aggregate of the results of unit test invocation
each workspace in a project.

70

s for




Package org.hackystat.app.pri.model.workspace.indicator

This package provides Java classes that represent PRI indicators. Each indicator imple-
ments the Prilndicator Interface. Much like the WorkspacePrilnterface, the Prilndicator Interface
standardizes the functionality of each and every PRI indicator within the system. The main func-
tionality provided by a PRI indicator is the 0 to 100 ranking for each workspace. Although PRI
indicators only provide a single function, creating the indicator ranking is quite complex. Essen-
tially, a PRI indicator ranking is analogous to making a testable hypothesis about the workspace’s
MINI or LINI determination. For example, if you, the developer, believe that a certain PRI measure
value is “bad”, then the Java implementation of the PRI indicator should be able to understand a
“bad” value and return a low ranking.

As previously mentioned, PRI indicators are designed to be able to use one-to-many PRI
measures to provide a ranking for a specific workspace. However, most of the current set of imple-
mented PRI indicators within the hackyPRI system has a one-to-one relationship with the available
PRI measures. Currently, each PRI measure explained in Table 4.3 has an associated PRI indica-
tor. | made this design decision simply because a one-to-one implementation provides flexibility
and simplicity for this research. However, | have not evaluated which technique provides the best
results.

The following sections contain descriptions of a few PRI indicators in the hackyPRI sys-

tem.

Expert PRI Indicator The calibration of this indicator ranking looks at the email address of
the expert, determined by the Expert PRI measure. Currently, the Expert PRI indicator ranks a
single developer as the highest ranked expert and any other expert is given a lower ranking. The
justification for this calibration is as follows. This developer is the most experienced developer that
is contributing to the project. In addition, most of the developer’'s implementation is technical passes
over the code to ensure that the code is of high software quality. Therefore, code that this developer
creates is ranked higher than code developed by other developers.

One major problem associated with this indicator ranking, is that the string that represents
the email address of the highest ranked developer is hard coded into the Java code that implements
the Expert PRI Indicator ranking. Currently, | have proposed several solutions to this problem,
however, it seems that none of the solutions are very elegant. Therefore, a future solution could be
the JESS tool [41], explained in Section 4.6.2.

71



Active Time PRI Indicator All other indicators being equal, the workspace with the highest
active time would seem to be the highest ranked workspace. Therefore, this indicator calculates a
ranking by accessing the Active Time PRI measure to determine the maximum active time for all
workspaces and the active time associated with a specific workspace.

One major problem with this ranking is having an excessive amount of active time could
indicate that the workspace is defect prone. This fact leads me to believe that some sort of statistics
should be used in this ranking, to normalize the existence of a workspace with excessive amounts
of active time (the outliers). | am currently searching for the right statistical method to use for this
ranking

First Active Time PRI Indicator If a workspace has a recent first day of active time, then it

can be determined that the code is relatively new. Therefore, all other indicators being equal, if a
workspace has recent active time, then that indicates new code being added to the workspace. In
most cases, one would assume that new code is more defect-prone than old code. Of course there
seems to be the notion that very old code can become default prone as well.

Active Time Contribution PRI Indicator  All other indicator being equal, the more developers

that looks at the code and adds to its code base, then the code’s quality will improve. This ranking

suggests that if one developer is only developer to work on the code, then it could be defect prone.
Of course, this ranking also could cause problems. For example, what if seven out of the eight

developers in a project work on the code, then comes along a very inexperienced developer and
adds defects, the ranking would actually improve.

Package org.hackystat.app.pri.model.workspace

This package is the workhorse of the system. It implements the PRI ranking function,
which uses and manages PRI measures and PRI indicators. This package’s most important tasks
are to control the PRI ranking generation, PRI measure computation, PRI indicator rankings, and
saving the PRI measures to a persistent cache at specific times during the processing of a PRI
ranking. Table 4.4 provides a summary description of all classes in this package.

An important class in this package is the ProjectWorkspaceRanking class. This class im-
plements the algorithm presented in Table 4.5. This algorithm is the second level of optimization in

hackyPRI system. Itis optimized to quickly calculate the PRI rankings for a Project. The algorithm

72



Table 4.4. Summary description of all classes in the org.hackystat.app.pri.model.workspace package
Class Name Description
ProjectWorkspaceRankingManager | Provides the management of a collection of Project-
WorkspaceRanking objects.

ProjectWorkspaceRanking Provides the facilities to calculate PRI measures and
create a ranking based on the calculated results.
WorkspaceRanking Provides a representation of the ranking for a gpe-

cific workspace, which contains a collection of mea-
sure values and a collection of PRI indicator ramk-
ings. Used primarily for presentation purposes.
PriRankComparator Provides a comparator that compares the PRI rank-
ing value from two WorkspaceRanking objects.

determines when to process the PRI measures, when to persistently store them, when to gather the
PRI indicator rankings, and when to process Aggregate or Snapshot measures.

In addition, the ProjectWorkspaceRanking class generates the aggregate PRI ranking for
each workspace. For a single workspace, the ProjectWorkspaceRanking class generates an aggre-
gate ranking by accessing each independent PRI indicator ranking and using the weights configured
in the Project PRI configuration. A very simple example is the following: a workspace has these
indicator rankings{92, 100, 30, 15 and these respective indicator weightifiy, 1, 1, 2. The
aggregate ranking of this workspace would be (92*1) + (100*1) + (30*1) + (15*2) = 252.

Another important class in this package is the ProjectWorkspaceRankingManager. This
class manages ProjectWorkspaceRanking classes. It determines whether or not a PRI ranking was
already calculated for a specified Project, whether or not to re-calculate the PRI ranking, and
whether or not the Project and Configuration information have changed. These determinations
are part of the last level of optimization in the hackyPRI system. The basic idea behind this opti-
mization is that once a correct PRI ranking has been calculated, the system should not re-calculate
the ranking. However, to ensure correct results the ProjectWorkspaceRankingManager is able to

determine when a re-calculation is necessary.

4.5.2 Design and Implementation Improvements

As | previously stated, the Hackystat PRI Extension (hackyPRI), has evolved significantly
as | discover new ways to optimize the calculations necessary to create a PRI ranking and to better

support configuration for different projects and organizations.

73



Table 4.5. ProjectWorkspaceRanking algorithm

FOR each day starting from the project’'s end day to the project's start day
IF the daily build is buildSuccessful
successfulBuildDay = currentDay
BREAK
END IF
END FOR

Determine optimized startDay to start processing Sensor Data
Determine endDay to stop processing Sensor Data
Determine cacheDay to cache the aggregate PRI measures

FOR each day starting from the startDay to the endDay
process aggregate WorkspacePriMeasure objects
IF day is equal to successfulBuildDay
process snapshot WorkspacePriMeasure objects
END IF
IF day is equal to cacheDay
cache aggregate WorkspacePriMeasure objects
END IF
END FOR

Create presentation WorkspaceRanking objects
Filter presentation WorkspaceRanking objects

Optimization is one of the major features that | have recently implemented. In previous
designs, the system’s execution time, the duration of time required to create a Project’'s PRI ranking,
were unacceptable. In the first version of hackyPRI, the system required 60 minutes to execute a
complete PRI ranking for the hacky2004-all Hackystat project, which contains 2 years of Sensor
Data gathered from 9 different Hackystat users (approximately 14 thousand Hackystat XML sensor
data files, roughly equal to 956 Megabytes of data). This result was collected on a computer with a
3.4 GHz Pentium 4 processor with Hyperthreading and 1.00 GB of RAM. Furthermore, the system
required 60 minutes to process the same project’s data for each and every execution even though the
data and ranking did not change. In my opinion, this execution time violates the intended design
of “real-time” PRI rankings. In addition, this slow execution time hampers the ability to properly
calibrate the PRI indicators.

Therefore, in subsequent versions of the system, the computation time has been greatly
improved. Under normal situations the execution time has been reduced from 60 minutes to exe-
cution times that range from a fraction of second to 5 minutes for the same Hackystat project and
on the same 3.4 GHz computer. Using the longer duration of 5 minutes, | achieved a 92 percent

decrease in processing time from the previous version. In my opinion, | have achieved the goal

74



of a “real-time” PRI ranking. A simple persistent caching of the calculated values accounted for
the majority of the dramatic decrease in execution time. However, there are two situations where
the execution time will become quite lengthy. First, when the persistent caches are non-existent.
Second, when the persistent caches are deleted. In these two cases, the system must calculate and
persistently store the caches. This action requires approximately 50 minutes on the same computer.
However, once this action is executed, the system does not need to re-calculate the measure caches.
Therefore, under normal situations the execution time ranges from a fraction of a second to 5 min-
utes. Of course, execution times will vary depending on the Hackystat server’'s speed, memory, and
on the amount of project data.

The second area of development focuses on the ability to configure hackyPRI for other
organizations and projects. In previous versions of the system, it was quite impossible to extend and
configure for other software projects without a significant amount of developer effort. For example,
in a previous version, it definitely could be the case that another organization would have to redesign
the entire system in order to create a PRI ranking that works best for them. Obviously, this was a
major problem that needed to be resolved. Step 1 of the Priority Ranked Inspection process states
that various product and process measures must be selected and calibrated to best distinguish MINI
documents from LINI documents. This selection process will not be the same for all software
projects. Therefore, it is quite obvious that a properly designed system will allow the configuration
of different product and process measures without having to completely redesign the system. For
hackyPRI to be successful, different software projects should be able to easily extend the current set
of PRI measures.

The current version of hackyPRI implements smaller and more configurable pieces. Un-
der this new design, when a new PRI measure is added to the system only a few lines of code must
change. In addition, swapping different PRI measures and PRI indicators in and out of the PRI
ranking is now very simple. See Sections 4.4.1 and 4.4.2 for a detailed description of the steps
required to add and remove PRI measures and add, remove, and calibrate PRI indicators.

4.6 Future Implementation Enhancements

The development of the hackyPRI extension is by no means complete. Rather, it is just in
its very beginning stages. There are many improvements that can be made to the system to better
support the Priority Ranked Inspection process. The following is short list of some possible future

implementation enhancements.

75



4.6.1 Threats to Data Validity

Currently, the PRI rankings are calculated for the entire life span of projects. Since
projects can exist for years, this requires certain optimizations that make the calculations quicker.
One of the optimizations that | have constructed is a persistent caching of PRI measures. This fea-
ture ensures that years of Hackystat Sensor Data will not be continually processed by the system. It
also shortens the calculation time from hours to seconds.

However, there are a few tradeoffs that come with this optimization feature. First, chang-
ing or adding Hackystat data to a date that occurs before the date the cache was created will be
problematic, because the new data will not be included in the cache. There are a couple of solu-
tions. Solution one, a Hackystat administrator can rebuild the caches, which could take a long time
(50 minutes for the hacky2004-all project). Solution two, we can choose to ignore the data, simply
because at the grain size of years a couple of new data points would not affect the rankings that
significantly. In any case, a solution needs to be found to ensure the validity of the PRI ranking.

The second problem occurs not only in hackyPRI but also in the whole Hackystat system.
Refactoring is a major threat to data validity. For example, if a developer spends 50 hours work-
ing on a workspace, then decides to change its name; the 50 hours won't be attached to the new
workspace name. This could be a major threat to data validity, because if every single workspace
in the PRI rankings were refactored, then the workspaces’ measures will be empty and no rankings
will be generated. On the other hand, this action is very unlikely.

4.6.2 PRI Indicator Ranking

Currently, the PRI indicator ranking (the 0 to 100 ranking provided by each PRI indicator)
is implemented with Java code in the hackyPRI system. | have chosen to do this at this time, simply
because creating a configurable indicator ranking would be too time consuming. Furthermore, I'm
not totally convinced that users of PRI should be able to change these low level rankings. In my
current model, users are allowed to represent their own calibration by changing the indicators’
weights. If | find that a configurable indicator ranking is needed, then one possible solution could
be the JESS tool [41].

4.6.3 Other Levels of Ranking

Currently, hackyPRI only supports a PRI ranking for workspaces. Other levels of PRI

rankings could be possible. For example, ranking modules, Java Classes, or even methods with in

76



a Java class. It is not known if there are any advantages of providing different levels of rankings
at this time. Furthermore, | currently do not know the level of programming difficulty that would
come with adding these different levels. However, | anticipate that this will not be difficult.

4.6.4 Better Support for More Programming Languages

Currently, the implementation of the PRI measures and indicators are best suited for the
Java programming language. Although Hackystat and hackyPRI are both programming language
agnostic, they both currently provide the more support for Java than any other programming lan-
guage. However, because Hackystat and hackyPRI are easily extendible, adding more support for
any another programming should be trivial.

4.6.5 Link with Software Project Telemetry

Currently, hackyPRI is not well designed for tracking changes over time. For example,
if a developer suddenly adds 200 lines of code to a Java class that was previously 50 lines of code,
then that could indicate a possible problem. A large and unusual addition such as this should affect
the MINI and LINI determination for that Java class. Therefore, | believe that adding the variation
of trends into the PRI ranking function will be a huge contribution to its overall robustness. In
addition, | believe that tracking the trends of the determination of MINI and LINI and the validation
of its correctness by conducting inspections over time will be a useful analysis, which could aid the
calibration of the PRI ranking function.

Software Project Telemetry [34] is a new approach to software project management,
which uses Hackystat to provide high-level development trends. This infrastructure is an excel-
lent way to provide trends in the values of PRI measures, trends in PRI indicator ranking, and trends
in the of the correctness of the MINI and LINI determination. | believe it would be possible to create

the necessary Telemetry components to make this possible.

4.6.6 Automatic Calibration Feedback Loop

| believe it could be possible to automatically calibrate the PRI ranking function. This
is a possibility, because Hackystat can collect validation data in the form of inspection data. If
enough inspections are conducted then Hackystat could automatically determine the best possible
calibration to identify the best possible inspection results. There are many human factors that can

jeopardize this possibility. For example, if the amount of time spent on each inspection varies, then

77



it would be difficult for the automatic processor to determine how to calibrate the measures with

inconsistent data.

4.7 Contributions to Hackystat

PRI ranking is a brand new way to represent software product and development process
measures in Hackystat. PRI rankings are a novel idea and | believe it is a positive contribution to
the possibilities of Hackystat. On the other hand, without the Hackystat framework, | am not sure it
would be possible to create a usable PRI ranking implementation.

I have been a major contributor to Hackystat throughout my Master’s studies and have im-
plemented many components in the system. Throughout my contributions | have found that adding
a new feature to Hackystat often requires a fix or implementation of another area of the system.
Creating the hackyPRI extension was no different. Throughout my design and implementation of
the hackyPRI extension, | have positively contributed to the Hackystat project in many ways. For
example, during the design of the PRI ranking function, | have made contributions in the following

areas:

1. Snapshot Sensor Data Type Enhancements [42] - | identified and fixed a major flaw in seven

Sensor Data Types within the Hackystat system.

2. hackyDependency - | implemented Hackystat components to obtain dependency or coupling
software product measures. This includes a Sensor Data Type, Sensor, and various other

Hackystat components that allow this measure to be useful to all Hackystat analyses.

3. hackylssue - Burt Leung and | implemented the Jira Issue sensor and Project-level infrastruc-

tures to support software issue measures.

The last two contributions are real examples of Step 1a, Selection of product and process
measures to use in the PRI ranking function, of the Priority Ranked Inspection process (Section
4.4.1). Dr. Johnson and | both agreed that a previous PRI ranking function that | built, needed
to consider Dependency and Issue measures, both of which were not implemented. Therefore, |

implemented the necessary Hackystat components to be able to create the respective PRI measures.

78



4.8 Using the Hackystat PRI Extension

The Hackystat Priority Ranked Inspection extension can be downloaded for use in other
software organizations by visiting the Hackystat Developer Services website (http://www.hackystat.org).
In addition, Hackystat's User Guide, full source code, Java documentation, and other useful infor-
mation that are required to install Hackystat and the hackyPRI system are obtainable at this website.
Any questions and suggestions can be sent to Hackystat Users email mailing list (hackystat-users-
I@hawaii.edu) or directly to me (kagawaa@hawaii.edu).

79



Chapter 5

Exploratory Study Procedure

This chapter discusses the exploratory study procedures conducted in this research. The
main thesis of this research is that Priority Ranked Inspection (PRI) can distinguish documents that
are more in need of inspection (MINI) from those less in need of inspection (LINI). This chapter

will describe how the main thesis was studied.

5.1 Subjects Used in the Study

| studied the implementation and inspection process of the Hackystat Systaraloped
in the Collaborative Software Development Laboratory (CSBLESDL is a research laboratory
within the Department of Information and Computer Sciences at the University of Hawaii. Cur-
rently, CSDL is comprised of Professor Dr. Philip Johnson and seven graduate Computer Science
students, including myself. Our mission is to provide a physical, organization, technological, and in-
tellectual environment conducive to collaborative development of world-class software engineering
skills. CSDL’s current focus is on the development of Java software systems that support software
development research. Hackystat [23], hackyPRI, Jupiter [43], LOCC [44] are examples of soft-
ware we have developed. All eight members are highly experienced Java programmers and have
been practicing high quality software development. We use tools such as Eclipse, Jakarta Tomcat,
Apache Ant, and CVS. In addition, we practice several development techniques such as Extreme
Programming and inspection.

In the exploratory study of the Priority Ranked Inspection process, | focused on studying
PRI's effectiveness in aiding CSDL's inspection of Hackystat related software code. Like most

! See http://www.hackystat.org for more information about the Hackystat System.
2See http://csdl.ics.hawaii.edu for more information about CSDL projects and members

80



organizations, CSDL’s inspection resources are limited and therefore inspections are conducted, if
at all, on a weekly basis regardless of the number of “ready” documents. CSDL primarily inspects
source code grouped by Java packages; therefore, | will use the term 'packages’ when referring to
CSDL's use of PRI. I will use the term 'documents’ when referring to the general idea of inspections.

Although | am a member of CSDL and have been contributing to Hackystat, | minimized
any possible data contamination by doing two things. First, | ensured that the inspection participants
are “blind” to the document selection method. There are two methods of selection that were used
in this study, selection with and without aid of PRI. | worked with individual authors to select
documents based on their subjective selection or with the aid of PRI and kept that decision a secret
from the rest of the participants. Second, although | participated in the inspections, the defects that
| discovered will not be used in the study.

CSDL has been conducting and studying inspections since the early 1990’s. CSDL’s
inspection process has gone through the use of many different tools and processes. Our current
inspection guidelines are published in the Hackystat Developer Documentation: Software Review
Guidelines [45]. The term “review” used in CSDL'’s process equates to the term “inspection”. The
primary goals of the current process includes creating an educational process that allows partic-
ipants to learn new techniques and practices about developing high quality software design and

implementation and to remove defects. The process is lightweight and includes 5 simple steps:

1. Announcement (or Review Request} In this step, an author sends an email requesting
that the group inspect the specified software. In addition, the author lists several questions
to help direct the participants’ attention to what the author thinks is most important. This

announcement should be sent 24 hours before the meeting.

2. Preparation - In the hours between the announcement and the meeting, the review partici-
pants must individually examine the software listed in the announcement and log any issues

that are found. Preparation time is limited to no more than one hour.

3. Meeting - At the scheduled time the group gathers to discuss the validity of the issues that

have been discovered in the preparation step.

4. Revision - After the review meeting, the valid issues that were discovered must be fixed. In

this step, the author or assigned developer must resolve these issues.

5. Verification - After the revision, a quick determination is required to ensure that all the issues
have been resolved.

81



Note that the CSDL inspection process does not specify how to determine what software
should be inspected. The process simply starts with an announcement. This missing step is evident
in all traditional software inspection processes.

Currently, CSDL utilizes the Jupiter Eclipse Review Plugjid3] to support our inspec-
tion process. Jupiter is a lightweight tool that supports, to a varying degree, all steps of the CSDL
inspection process. For example, individual inspectors use Jupiter during the Preparation phase to
log issues that he/she has found. In addition, Jupiter collects various properties of the review issues
generated in an inspection process. The review issue properties that have been collected and used
in this study are severity, type, and resolution. These properties allow the inspectors to specify ad-
ditional information about the discovered issue to accurately discuss them in future phases of the
inspection process. Table 5.1 provides a full listing of the properties and their values that were used

in this study.
Table 5.1. Jupiter Properties and Values
Property Meaning Values
Severity Allows the inspector to note the impor-Critical, Major, Normal, Minor,
tance of the issue. Trivial
Type Allows the inspector to note what typeCoding Standards, Program
of issue he/she has found. Logic, Optimization, Usability,

Clarity, Missing, Irrelevant,
Suggestion, Other

Resolution | Allows the team to determine the va-Valid Needs Fixing, Valid Fix
lidity and necessary actions requiredth.ater, Valid Duplicate, Valid
resolve the issue. Won't Fix, Invalid Won't Fix,
Unsure Validity

| used the issues’ property value information to analyze the validity of several claims.
For example, | was able to count the number of high-severity issues that were discovered by the
inspection. For this study, high-severity is defined as defects with a severity equal “Critical” or
“Major” and a resolution not equal to “Invalid Won't Fix” and “Valid Duplicate”. A major problem
that | did not address in this research and study is the subjective opinion used when inspectors assign
values to specific properties. For example, one inspector’s subjective opinion of a Severity value

could differ from another inspector’s opinion.

3Takuya Yamashita, who is also a CSDL member, developed the Jupiter software.

82



5.2 Study Limitations

The use of CSDL resources in my study indicates a major limitation on this research. The
most accurate and thorough evaluation of PRI should inggeddcumentso evaluate PRI’s classi-
fication of MINI and LINI documents. However, because | am using CSDL’s inspection resources,
which are limited, this was not possible.

Currently, Hackystat and its extensions are comprised of 218 packages. At best this will
take 2 hours per inspection per member, therefore totaling 3,488 hours of inspection. Requiring the
use of that many hours is an unrealistic demand on CSDL resources. Therefore, my exploratory
study investigated a small percentage of the system in hopes that a cross-section provided adequate
and acceptable results. Furthermore, CSDL conducts inspections to increase quality and spread
knowledge. It would be detrimental to this development group, if | required the inspection of many
packages that did not provide that return on investment.

It is important to note two other limitations of this research. First, | am not defining a
set of PRI measures and PRI indicators that represent the PRI ranking function for all software
projects. Instead, by using hackyPRI | will be able to go through a methodology to best calibrate
the ranking functions to accurately reflect the determination for the project | am studying. Second,
PRI is more beneficial for organizations that have limited inspection resources. PRI is of less use
for organizations that have the necessary resources to thoroughly inspect every document, although
this is yet to be studied.

5.3 Study of Thesis Claims

To study this thesis, | separated it into three claims based upon the three intended benefits
of PRI.

1. MINI documents will generate more high-severity defects than LINI documents.
2. PRI can enhance the volunteer-based document selection process.

3. PRI can identify documents that need to be inspected that are not typically identified by

volunteering.

To evaluate my thesis claims, | created a six-part study procedure. The study includes;

guestionnaires, working with authors to select documents for inspection, and the analysis of an

83



inspection log and results. The different portions of the study procedure do not necessarily correlate
one-to-one with the three thesis claims. Instead, each procedure provides supporting evidence for
all of my thesis claims. The following is a short summary of the steps of the study procedure. The

following sections explain each of the steps in more detail.

1. Pre-Selection Questionnaire | administered a questionnaire to obtain the developers feel-
ings assessing the usefulness of inspection and the methods they use to select documents for
inspection. In addition, | asked each developer to provide rankings, based on their current sub-
jective opinions, for three different sets of workspaces. First, they ranked each top-level mod-
ule within the Hackystat system (i.e., hackyKernel, hackyStdExt, hackyReview, etc). Second,
they identified the top five packages throughout the whole Hackystat system that they thought
were MINI and LINI. Last, | asked them to rank packages they have authored based on their

opinions of what packages are MINI and LINI.

2. Package Selection| worked with individual developers to select a package for inspection.

The selection of packages can be made with or without the aid of PRI.

3. Request for Inspection After a package was selected for inspection, | instructed the author
to send an email-based request for inspection to our fellow Hackystat developers. | ensured

that this email “blinded” the selection method.

4. Inspection of the Selected PackagdJsing the CSDL code review (inspection) process, the
inspection participants inspected the package individually and met to discuss the issues that
were discovered. The author of the package, who is also the developer | worked with in Step

2, did not inspect his/her own code.

5. Post-Inspection Questionnaire Following the inspection | administered a questionnaire that

asked the participants whether they believed the package was MINI or LINI.
6. Record Results of Inspection | recorded the results of the inspection, the PRI ranking of
the package before and after the inspection, and other PRI and inspection results.
5.3.1 Part1 - Pre-Selection Questionnaire

The first study procedure that was used is a questionnaire. The goal of the questionnaire
to obtain the authors’ opinions about inspections in general, their document selection process, and
their subjective rankings of the modules, packages, and packages that they have authored.

84



Appendix B contains the Pre-Selection Questionnaire. This questionnaire contains three
different sections; two general inspection questions about CSDL’s inspection process, four questions
assessing the developers’ document selection method, and three tasks which gathered the develop-
ers’ subjective rankings of various packages.

The first section contains general questions about the CSDL inspection process. These
guestions do not directly correlate to my thesis claims. However, | will use this information to help
validate the data that | collect. For example, if the developers find an insignificant number of issues
in both MINI and LINI documents, then | can correlate that finding with their enthusiasm towards
inspection. In addition, one of the questions asks whether finding defects are the most important
outcome of the CSDL inspection process and the data collected will aid future directions of this
research. It is my future-hypothesis that PRI can also aid the selection of documents for purposes
other than finding the most defects. For example, an inspection process can be used as training or
education and PRI could aid the selection of documents that best suit that goal.

The second section contains questions about the developers’ current document selection
method. This section provides important information on the process in which developers select
documents for inspection. In addition, it provides supporting qualitative data for the quantitative
data provided in the last section.

The last section of the questionnaire asked the developers of Hackystat to provide a nu-
merical ranking, based on their subjective opinions, of three different sets of packages. First, they
were asked to rank the top-level workspaces, or modules, within Hackystat according to their sub-
jective opinion of the quality of the modules. Hackystat contains many different modules that can
interchange depending on the situation of fis&econd, they ranked the top five packages in the
entire Hackystat project that they thought were MINI and LINI. Last, they ranked the packages
that they would volunteer for inspection. The packages used in this last set were packages that the
developer has authored.

When analyzing the results of the developers’ subjective rankings, | will be able to com-
pare the developers’ subjective rankings against the PRI ranking. This comparison will indicate
whether PRI is really needed. The findings could indicate that developers can correctly distinguish,
using their own subjective reasoning, what packages need to be inspected. There are three possible
results from this study. First, | may find that developers automatically have a sense of what code is
MINI and what code is LINI. This would indicate that PRI provides little added value. Alternatively,

I might find that, developers have no idea what code needs to be inspected. The third possible result

“See the Hackystat Developer Website (http://www.hackystat.org) for a listing of the modules in the system.

85



represents a middle ground between the two previous results, sometimes the developers are correct
and sometimes they are wrong. The last two results will indicate that PRI provides some benefit. Of
course, these results will need to be validated with the actual inspection of the document to validate

both the developers’ subjective rankings and the PRI rankings.

5.3.2 Part 2 - Package Selection

The second study procedure that was used is the selection of packages for inspection. The
goal of this procedure is to study the effectiveness of the MINI and LINI determinations and PRI’s
ability to help the selection process.

In this portion of the study, | worked closely with the various authors who contribute to
the Hackystat project to select a package for inspection. To accomplish this, | created a weekly
inspection schedule (See 5.2). Each week | worked closely with a different Hackystat developer to
select one package for inspection. This selection process was designed with the following steps:

1. Explain to the developer that the goal of this collaboration is to find the document that is most
in need of inspection. Therefore, using PRI is not required.

2. Ask the developer if they have a package they would like to be inspected. If so, record the
package name and the MINI or LINI ranking and skip to step 6. If not, continue to the next

step.

3. Present the developer with a list of MINI packages that he/she has authored. Work with the
author to select a package from this listing. If a document is selected, then move to step 6. If

not, continue to the next step.

4. Present the developer with a list of LINI packages that he/she has authored. Work with author
to select a package from this listing. If a document is selected, then move to step 6. If not,

continue to the next step.

5. If we have reached this step, then it can be determined that the author does not believe he/she
has authored any packages that are more in need of inspection. Therefore, | will select a
document from the MINI listing. According to the author this package should not generate
many high-severity issues. However, according to PRI this package should generate high-

severity issues. The results will be recorded.

86



6. Once a document has been selected, the author is required to send a request for inspection to

the inspection participants (generally all current CSDL members).

This process was designed to “blind” the method used in selecting the package. The
inspection participants, who include all CSDL members excluding the author and myself, did not
know how the package was selected. This “blinding” of the selection method was created to ensure

that the participants did not consciously or unconsciously persuade the results of the inspection.

5.3.3 Part 3 - Request for Inspection

After a package has been selected in Part 2, the author is required to send an email request
for inspection. Again, this email “blinded” the selection method from the participants. It simply
stated that the author requests the inspection of a particular package and provides the necessary
information that is required to successfully inspect the package. This request announcement was

congruent with CSDL's inspection process [45].

5.3.4 Part 4 - Inspection of Selected Package

This part of the study procedure required little change from CSDL’s original inspection
process defined in the Hackystat Software Review Guidelines [45]. The participants conducted the
Preparation and Meeting phases of the inspection process.

The Jupiter review tool [43] was used to gather the issues generated in the Preparation
phase. In addition, the Jupiter tool is used in the Meeting phase to record the validity and severity

of the issues.

5.3.5 Part5 - Post-Inspection Questionnaire

The fifth part of the study procedure is a quantitative questionnaire. Appendix C contains
the Post-Inspection Questionnaire. The goal of this questionnaire was to obtain the developers’
opinions of the MINI or LINI determination. The results of the inspection and the developers’

opinions helped to determine if the PRI ranking for the package was correct.

5.3.6 Part 6 - Record Results of Inspection

There are two possible results of this portion of this study. First, the packages that were
selected were correctly categorized by PRI. Second, the packages that were selected did not reflect

the PRI ranking function. These findings will provide evidence for claim 3 of my thesis statement.

87



During this study, CSDL has conducted nine inspections. However, in addition to the
inspections conducted under this study, | have recorded data about eleven other inspections. In
total, | have data on twenty inspections and information on the PRI ranking functions.

Throughout my exploratory study of PRI, | monitored the validity of the PRI ranking
function throughout each inspection. To accomplish this, I collected specific pieces of information

when conducting inspections. The following is a specific list of the information collected:

¢ Inspection date

e Hackystat module, package, and inspection ID

e PRI determination (MINI or LINI)

e PRI measure values and PRI indicator ranking and weighting

e Subijective discussion of the validity of the PRI ranking function before the inspection

e Number of issues generated and the categorization of these issues according to severity

e Retrospective discussion after the inspection was conducted to indicate possible areas of im-

provement.

This information helped me keep track of the progress of the inspections and the validity
of the PRI ranking function. As | previously stated, the calibration of the PRI ranking function is
an ongoing and evolving process. Collecting these types of information will help an organization
keep track of that evolution. The end goal of the continued study of PRI is to create a best practices
recommendation of the types of process and product measures and their calibration that will provide

the best PRI results for different projects.

5.4 Study Timeline

The following table provides a timeline for the exploratory study of this thesis. The de-

veloper names used in this timeline are hidden to protect the developers’ identity.

88



Table 5.2. Study Timeline

Timeline Study Activity

April 6, 2005 Package Selection: Developer 5
Pre-Selection Questionnaire: Developer 5
Review Request: Developer 5

Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

April 13, 2005 Package Selection: Developer 6
Pre-Selection Questionnaire: Developer 6
Review Request: Developer 6

Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

April 20, 2005 Package Selection: Developer 9
Pre-Selection Questionnaire: Developer 9
Review Request: Developer 9

Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

April 27, 2005 Package Selection: Developer 7
Pre-Selection Questionnaire: Developer 7
Review Request: Developer 7

Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

May 4, 2005 Package Selection: Developer 4
Pre-Selection Questionnaire: Developer 4
Review Request: Developer 4

Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

May 11, 2005 Package Selection: Developer 3
Pre-Selection Questionnaire: Developer 3
Review Request: Developer 3

Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

June 1, 2005 Package Selection: Aaron Kagawa
Review Request: Aaron Kagawa
Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

June 8, 2005 Package Selection: Aaron Kagawa
Review Request: Aaron Kagawa
Review of Selected Code: CSDL
Post-Inspection Questionnaire: CSDL

June 15, 2005 Finished analyzing the results.

89




Chapter 6

Results

This chapter presents the results of this research. The procedure | used in my exploratory
study is explained in Chapter 5. In this study, | tested three of my thesis claims. The following list

states my thesis claims and their associated results:

Thesis Claim 1: Inspecting MINI documents will generate more high-severity defects than in-

specting LINI documents.
- The results show supporting evidence for Thesis Claim 1.
Thesis Claim 2: PRI can enhance the volunteer-based document selection process.
- The results show supporting evidence for Thesis Claim 2.

Thesis Claim 3: PRI can identify documents that need to be inspected that are not typically iden-

tified by volunteering.

- The results are inconclusive for Thesis Claim 3.

The sections of this chapter are organized in the following manner. In Section 6.1, | revisit
some of the limitations that hinder the results of this study. In Section 6.2, | summarize the results
of the conducted inspections. In Section 6.3, | explain a few terms that will help explain the results.
In the next three sections, Sections 6.4, 6.5, and 6.6, | provide supporting evidence for my thesis
claims. These three sections are organized by presenting the strongest evidence first. Therefore,
the order is Thesis Claim 1 (Section 6.4), Thesis Claim 2 (Section 6.5), and finally Thesis Claim 3
(Section 6.6). In Appendix D, | present the raw data results from the Pre-Selection-Questionnaire. In

Appendix E, | present the raw data results from the inspections and Post-Inspection-Questionnaire.

90



6.1 Limitations Revisited

As explained in the previous chapter, there are many limitations associated with the study
of this research. Most notably is the absence of sufficient inspection resources within the CSDL
organization, during the time period of my study, to thoroughly inspect a wide spectrum of MINI and
LINI documents to determine the correctness of the PRI rankings. As expected, this limitation of
the exploratory study also limits the results presented in this chapter. Unfortunately, this limitation
has affected my ability to come to a definitive answer to my third thesis claim, which states that PRI
can identify documents that need to be inspected that are not typically identified by volunteering.

6.2 Inspections

Throughout the duration of this research, starting in September 2004 till June 2005, I led
CSDL in 20 different inspections. On average 5 to 6 CSDL members participated in each of the
inspections. In addition, with an estimated cost of 2 hbpes inspection per member, CSDL spent
about 220 hours dedicated to inspection. Although 220 hours seems substantial, I've estimated that
we would require about 3,500 hours to inspect the entire Hackystat system, which would be a very
unrealistic demand on CSDL’s resources for this research. Therefore, as I've previously stated, my
study investigated a small percentage of the system in hopes that a cross-section provides adequate
and acceptable results.

Ten of the twenty inspections were designated to be part of the methodology used evaluate
my thesis claims. Unfortunately, one of the 10 inspections that were designated for the study, namely
Inspection 10, had to be excluded from the results, because the code that was inspected was written
entirely in C++ and could not be ranked by PRI

Table 6.1 displays a general overview of the inspection results for each inspection con-
ducted under the study procedure. Taking a closer look at the inspection results shows that the
inspections have found a considerable amount of valid defects. Furthermore, notice that a large
percentage, 40.2 percent to be exact, of the defects are high-severity defects. High-severity defects
are defined as defects with a severity equal to “Critical” or “Major” and with a resolution not equal
to “Invalid Won't Fix” and “Valid Duplicate”. See Section 5.1 for a discussion on how defects are

collected using CSDL'’s inspection process and the Jupiter tool.

! According to CSDL’s inspection process, each member should spend about an hour individually inspecting the
document. Another hour is spent in the inspection meeting.

2| allowed developers to select any code they were most concerned about, therefore in this instance the inspection
could not be used in my study.

91



Table 6.1. All Inspection - Results by Severity

Inspection Critical Major Normal Minor Trivial Total
8 1 7 11 2 3 24
9 16 13 4 4 37
11 1 14 13 14 1 43
12 13 12 6 31
13 1 7 1 2 11
14 1 13 12 26
15 1 6 2 1 10
16 3 4 3 10
17 7 6 1 3 17
Total 4 81 78 34 12 209
Percentage | 1.9 % 38.8 % 37.3% 16.3 % 57%

Using the Type property associated with the valid defects provides a different view of the
inspection results. Table 6.2 shows the results listed by different defects types provided by Jupiter.
Note that the types “Missing”, “Irrelevant”, and “Other” were omitted from this table, because the
use of these types were very limited, accounting for only 12 of the 209 defects. According to
these results, Coding Standards and Program Logic account for more than half the valid defects
discovered in CSDL's inspections. Although not officially stated in CSDL’s inspection process and
is largely based on the developers’ subjective opinion, Coding Standards defects are generally re-
served for defects resulting in defects in code formatting, variable and method naming conventions,
Javadoc documentation, and the alike. Program Logic defects are generally problems associated
with Object-Oriented design, algorithmic, calculation errors, and other problems associated with
the actual functionality of the software code.

Further analyzing the Type and Severity properties of the defects shows that Program
Logic defects are of more concern than any other type. According to Table 6.3 and also shown
in Figure 6.1, Program Logic defects account for the majority of the high-severity defects. On the
other hand, Coding Standard defects account for the majority of the low-severity defects. This result
indicates that Program Logic defects are generally high-severity problems. Therefore, an inspection

that finds more Program Logic defects generally also has a larger number of high-severity defects.

92



Table 6.2. All Inspection - Results by Type

Inspection Coding Program | Optimi- Usability | Clarity Suggestiorn
Standards | Logic zation

8 10 6 1 2 5

9 9 13 3 4 3 4

11 22 7 3 2 7

12 14 4 1 4 6 2

13 5 6

14 9 4 1 8 1 2

15 6 2 1

16 2 1 3 3

17 2 2 5 2

Total 77 44 16 21 21 18

Total 36.8 % 21.1% 7.7 % 100% | 10.0% | 8.6%

Table 6.3. All Inspections - Results by Type and Severity

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical 3 1

Major 13 28 11 8 6 10

Normal 31 12 4 12 13 4

Minor 24 1 1 1 4

Trivial 9 1

Total 77 44 16 21 21 18

@Program Logic ~ ECoding Standards OOptimization OUsability mClarity  BSuggestion

Critical Major Normal Minor Trivial

Figure 6.1. All Inspections - Results by Severity and Type

93



6.3 Result Terminology

Throughout the rest of this chapter, | will be using the tektiI-p, MINI-d, and LINI-p
These terms represent three different groups of packages that were inspected in this study. | will use
these three different groups of packages to explain the results and charts presented in the following

sections.

- MINI-p represents inspections 8 and 9. According to the PRI rankings generated by the
Hackystat PRI Extension, these inspections were conducted on MINI packages. In addition,
according to the developers’ rankings, these were also MINI packages. The developer rank-

ings were obtained in the Pre-Selection-Questionnaire.

- MINI-d represents inspections 11, 12, and 14. According to the developers’ rankings, these
inspections were conducted on MINI packages. The developer rankings were obtained in
the Pre-Selection-Questionnaire. However, according to the PRI rankings generated by the
Hackystat PRI Extension, these packages were LINI. This group is interesting, because the

developers and PRI ranking disagreed.

- LINI-p represents inspections 13, 15, 16, and 17. According to the PRI rankings generated by
the Hackystat PRI Extension, these inspections were conducted on LINI packages. However,

no developer rankings were obtained for these packages.

In addition, to distinguish between the two different methods used in this study to rank
packages, | will use the terngdVINI, dLINI, pMINI, and pLINI These terms distinguish between
packages that were ranked by the Hackystat PRI Extension and packages that were ranked by the
developers. The termlINI and LINI will still be used with discussing the general meaning of

More In Need of InspectioandLess In Need of Inspection

- dMINI and dLINI represents the MINI and LINI packages according to the developers’

opinion.

- pMINI and pLINI represents the MINI and LINI packages according to the Hackystat PRI

Extension.

94



6.4 Thesis Claim 1

Claim: MINI documents will generate more high-severity defects than LINI documents.

The results presented in this section will provide evidence to support this claim. The
supporting evidence for this claim is apparent in four separate results. The first supporting evidence
is the results shown in Figure 6.2, which charts the total number of defects and the number of
high-severity defects. Second, the results shown in Figure 6.6, which charts the responses from the
Post-Inspection-Questionnaire. Third, the results shown in Figure 6.10, which charts the various
defect types. Fourth, the results shown in Figure 6.12, which charts the average review active time
from all participants. Each of these results is independent supporting evidence that provides varying

levels of support for Thesis Claim 1.

6.4.1 Inspection Results by Severity

Figure 6.2 shows the results of the Severity property associated with the defects found in

the inspections conducted on the three different groups, MINI-p, MINI-d, and LINI-p.

[ Total Number of Issues mNumber of High-Severity Issues |

43

10 10
10
5 1 3

Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection
8 9 11 12 14 13 15 16 17
MINI-p MINI-d LINI-p

Figure 6.2. Inspection Results - Severity

Figure 6.3 provides the average number of defects and average number of high-severity
defects in the MINI-p, MINI-d, and the LINI-p groups. The results in the Figure show that on
average the MINI-p group generated about 18 more defects of any severity compared to the LINI-
p group. Furthermore, on average the MINI-p group have generated about 8 more high-severity
defects than the LINI-p group. This result provides supporting evidence for Thesis Claim 1. The
fact that the MINI-p and MINI-d groups generated more defects than the LINI-p group provides

supporting evidence that the Hackystat PRI Extension and developers can identify MINI documents.

95



However, in the case of the MINI-d group, where the developers indicated a MINI ranking but PRI
indicated a LINI ranking, the results provide evidence that the developers were correct and the PRI
ranking was incorrect. In other words, this data suggests the presence of possible ‘false negatives’
by PRI. More inspections and evaluations are needed to determine if PRI can correctly rank the
packages in the MINI-d group.

‘ DAverage Number of Issues W Average Number of High-Serverty

350 - 333

30.0 4
25.0 4
20.0 4
15.0 12.0
10.0

50 4

0.0

30.5

12.0

MINI-p MINI-d LINI-p

Figure 6.3. Inspection Results - Average Severity

Figure 6.4 shows the percentage of high-severity defects over total defects for each of
the inspections. Figure 6.5 shows the average percentage for the MINI-p, MINI-d, and LINI-p
groups. According to Figure 6.5, there does not appear to be a significant difference between the
three groups in terms of the percentage of high-severity defects. However, it is my contention that
this percentage is not useful in determining the correctness of the MINI and LINI determination,
because the number of total defects does not stay constant throughout each inspection. For example,
Inspection 13 has the highest percentage, however referring back to Figure 6.2 will show that this
inspection contained the third lowest number of total defects and fourth lowest number of high-
severity defects. Therefore, | believe that this percentage should not be used to compare the results

of individual inspections.

96



80.00

70.00 A

60.00 -

50.00 A

40.00

30.00 A

20.00 A

10.00 4

0.00

42.5
42.0
41.5
41.0
40.5
40.0
39.5
39.0
385

38.0 4

6.4.2 Post-Inspection-Questionnaire Results

Figure 6.6 provides the results obtained by Question 1 in the Post-Inspection-Questionnaire.
| administered this questionnaire after the meeting for each inspection and this question asks the
participants whether the package, under inspection, needed to be inspected. Yes, indicates that the
package needed to be inspected. No, indicates that the package did not need to be inspected. Figure
6.7 provides the average number of responses for the MINI-p, MINI-d, and LINI-p groups.

The results shown in Figures 6.6 and 6.7 continues the trend shown in Figure 6.2 and
further confirms that the packages in the MINI-p and MINI-d groups were in fact MINI and the
packages in the LINI-p group were in fact LINI. In addition, the results associated with the MINI-d
group is interesting because it shows that the PRI ranking function can lead to false negatives. In
other words, in the MINI-d group, PRI ranked the packages as LINI when the data indicates that

O High-Severity Issues / Total Issues

43.24

33.33

34.88

41.94

53.85

72.73

10.00

41.18

30.00

[

Inspection Inspection
9

MINI-p

Inspection
11

Inspection
12

MINI-d

Inspection
14

Inspection
13

Inspection Inspection Inspection

15

16 17
LINI-p

Figure 6.4. Inspection Results - Severity Percentage

39.3

@ High-Severity Issues / Total Issues

42.0

39.6

MINI-p

MINI-d

LINI-p

Figure 6.5. Inspection Results - Average Severity Percentage

they were actually MINI.

97




OYes ENo

ORFRr NWNU DN ®

Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection
8 9 11 12 14 13 15 16 17

MINI-p MINI-d LINI-p

Figure 6.6. Post Inspection Questionnaire Question 1 - Provides responses to the qii&stion;
package needed to be inspected@s, indicates that the package needed to be inspected. Not,
indicates that the package did not need to be inspected.

‘ ONeeds to be inspected mDidn't need to be inspected

5.7

2.8
23

MINI-p MINI-d LINI-p

o r N W A~ OO N

Figure 6.7. Post Inspection Questionnaire - Question 1 - Average Responses

Figure 6.8 provides the results obtained by Question 3 in the Post-Inspection-Questionnaire,
which asks the participants whether the package’s software quality will increase after the defects that
were found are fixed. Figure 6.9 provides the average number of responses for the MINI-p, MINI-d,
and LINI-p groups. Although, the 25 percent of the participants felt that the inspection of LINI-p
group packages would not increase the quality of the package, the majority felt that the MINI-p,
MINI-d, and LINI-p groups would increase in quality. It is also interesting to note that regardless
of the participants’ opinions about the package needing to be inspected (Figures 6.6 and 6.7), the
majority of the participants felt that the package would improve in quality once the defects are re-
solved. This appears to mean that even LINI packages can improve in quality, which is something |
had not considered previously.

98



0

ORP NWMUUON®

Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection
1 2 14 13 15 16 17

MINI-p MINI-d LINI-p

Figure 6.8. Post Inspection Questionnaire Question 3 - Provides responses to the gaéstidime
discovered defects are fixed, the package’s software quality will increass?indicates that the
package’s software quality will increase. No, indicates that the package’s software quality will not
increase.

@ Will Increase in Quality B Will Not Increase in Quality

4

1
0 0.3

MINI-p MINI-d LINI-p

O RPN ®WANU O N

Figure 6.9. Post Inspection Questionnaire - Question 3 - Average Responses

6.4.3 Inspection Results by Type

Figure 6.10 provides the number of Program Logic and Coding Standards defects found
in each of the inspections. Figure 6.11 provides the average number of Program Logic and Coding
Standards defects for the MINI-p, MINI-d, and LINI-p groups. The results in Figure 6.11 show
three interesting findings. First, the MINI-p group has about 7 more Program Logic and 6 more
Coding Standards defects than the LINI-p group. Second, the MINI-d group has 2.5 more Program
Logic and 12 more Coding Standards defects than the LINI-p group. Third, the MINI-p group has
about 4.5 more Program Logic and about 6 less Coding Standard defects than the MINI-d group.
The variation of the Program Logic and Coding Standard defects between the two MINI groups
could indicate that the selection method, PRI or developer ranking, could identify documents that
have different types of defects. Obviously, more inspections using both selection techniques will be

needed to provide statistically viable results.

99



@Program Logic ~ EmCoding Standards

25
20
15 13
10

5 2 2 2

0 0

0
Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection

8 9 11 12 14 13 15 16 17
M|N|-p MINI-d L|N|-p

Figure 6.10. Inspection Results - Type

The main supporting evidence for Thesis Claim 1, provided by Figure 6.11, is that the
MINI groups generated more Program Logic and Coding Standards defects than the LINI-p group.
For example, Inspection 9, which is in the MINI-p group, has the highest number of Program Logic
defects and one of the highest percentages of Program Logic to Total Defects than any other single
inspection. As previously stated, Coding Standards defects are generally considered to be a violation
of standard coding styles. For example, the CSDL organization strives to follow the rules defined in
the book, “The Elements of Java Style.” Code Standards defects, although obviously very important
to CSDL, generally do not cause runtime defects in software. On the other hand, Program Logic

defects can cause possible runtime defects.

‘ @ Program Logic mCoding Standards

16.0 - 150
14.0
12.0 -
100 | 9.5 9.5
8.0
6.0 5.0
4.0 25 33
0.0 - -

MINI-p MINI-d LINI-p

Figure 6.11. Inspection Results - Type

6.4.4 Inspection Results by Review Active Time

Hackystat provides various sensors for Interactive Development Environments (IDES),

like JBuilder, Eclipse, Emacs, and Visual Studio .Net. One of the measures collected by these

100



sensors is Active Time. The Active Time measure is a proxy of development effort spent interacting

with a specific tool, in this case an IDE. A sensor for the Jupiter tool is also available, which provides

an alternative to the traditional active time concept called Review Active Time. Review Active Time

measures the time spent interacting with Jupiter during the preparation phase of CSDL’s inspection

process. Figure 6.12 presents the average active time (in minutes) that inspectors spent during their

individual preparation phase for each of the inspections.

45.00
40.00
35.00
30.00
25.00

38.40

39.96

42.50

‘DAverage Review Active Time ‘

39.20
30.96

29.88
24.12

18.4¢ 3
50.00 8.40 18.30
15.00
10.00

5.00

0.00 1 | 1 |

Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection
8 9 11 12 14 13 15 6 17
MINI-p MINI-d LINI-p

45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0 4

Figure 6.12. Inspection Results - Review Active Time

39.2

DAverage Review Active Time

37.6

22.7

MINI-p

MINI-d

LINI-p

Figure 6.13. Inspection Results - Review Active Time

An interesting result is shown in Figure 6.13. According to the figure, the average review

active time is about 15 minutes longer for the MINI-p and MINI-d groups than the LINI-p group.

However, be aware that the review active time only provides the amount of time interacting with

Jupiter. It does not account for the total time required to do an inspection. For example, an inspector

might spend time reading code, documentation, searching for related code, and the alike without

having to interact with the Jupiter tool. Therefore, this figure, in some ways, validates that the

101



Jupiter to log these defects.

Inspection Results by Averages

LINI-p group contains the least amount of defects, because less time was required to interact with

Figure 6.14 provides a consolidated look at the previous four independent results to sum-

O Average Number
of Issues

B Average Number
of High-Serverty

32.2

13.2 120

4.8

marize the supporting evidence for Thesis Claim 1.

ONeeds to be
inspected

mDidn't need to
be inspected

5.8

2.8
2.3

dOProgram Logic
B Coding Standards

OAverage Review
Active Time

<1 6.8

25 3.3

38.2

22.7

0.8

MINI LINI

00 | o
MINI LINI MINI LINI MINI LINI

Figure 6.14. Inspection Average Results - Provides the averages of the previous inspection results.
Each section represents an individual result obtained by analyzing inspection data.

Each section of the chart contains the average values obtained from the inspections. To
summarize the findings and to look specifically at the difference between MINI and LINI results, |
have combined the MINI-p and MINI-d groups. The first section shows that the average number of
issues and the average number of high-severity issues are considerably higher for MINI packages
than LINI packages. The second section shows that the developers thought (on average, 6 of 7
responses) that the MINI packages needed inspection. In addition, the developers thought (one
average, 3 of 5 responses) that the LINI packages did not need inspection. The third section shows
that the average numbers of Program Logic and Coding Standards defects are much higher for MINI
packages than LINI packages. The fourth section shows that the average review active time spent
by each inspector was 16 minutes longer for MINI packages than LINI packages.

102



6.5 Thesis Claim 2

Claim: PRI can enhance the volunteer-based document selection process

The results presented in this section will show supporting evidence for this claim. As
my Thesis Committee pointed out during my proposal of this thesis research, I've carefully stated
this claim with the word “can.” | used the word “can” instead of “will,” because | felt that CSDL's
current volunteer-based selection process was entirely based on the developers’ subjective opinion
of code and therefore | had little knowledge on how PRI would affect that opinion. In addition, |
believed that the factors that are used in deciding to select a document would have a large variation.
In fact, the results of the study have shown strong evidence of this. Therefore, I did not have much
confidence in sayingill opposed ta@an Furthermore, it turns out that my study procedure, which
allowed developers to decide whether they wanted to use PRI or not was flawed. In all cases where
the developers selected a package for inspection, they already had a good idea on what package the
felt needed inspection and did not use PRI to help make that decision. Regardless of the procedure
flaw, the goal of my study was to understand the developers’ selection process. In my opinion, the
portion of the study procedure to accomplish this goal was designed well.

The supporting evidence that PRI can aid the selection process is apparent in the selection
trends of the participants, PRI’s ability to correctly rank package as MINI and LINI, and educational

value of inspections.

6.5.1 Selection Trends

Traditional inspection processes state that developers have to volunteer their code for in-
spection. Yet, little is known about the mental decisions required to select and volunteer a particular
piece of code. The results presented in this section, show evidence that developers have extremely
varying ideas of how to select documents for inspection. And one can only conclude that an in-
consistent approach will cause inconsistent results. Therefore, | believe PRI can aid the selection
process by providing a priority ranking of workspaces, product and process measures, and a more
consistent approach to selecting documents for inspection.

The Use of Hackystat to Select Documents for Inspection

Ironically, even though the CSDL developers have an immense amount of software prod-

uct and process data about their software in our Hackystat system, not one developer used it in the

103



past to gain any insights about their code before volunteering a package for inspection (See Ques-
tion 5 in the Pre-Selection Questionnaire, Section D.5). This result leads me to believe that most

developers have a very good understanding of their own code, or at least they think they do.

Factors that Influence their Selection

Question 3 and 4 in the Pre-Selection Questionnaire (See Sections D.3 and D.4), also
provide evidence that developers use their own subjective opinions over actual software product
measures. In these questions, there were only 3 of 12 responses that suggest software code that has
low coverage, no unit tests, or high dependencies have any consequences on the likelihood that the
code needs to be inspected. In addition, at least one participant selected code to inspect based on
their knowledge of build failure3.

The most consistent factor used by developers to select code for inspection is the “age” of
the code. According the results, 9 of 12 responses indicate that newly created code, code that was
developed by a new developer, and code that no one has seen before are the most frequent deciding
factors when selecting code for inspection. This trend is also present in Question 8 in the Pre-
Selection Questionnaire (See Section D.8). 11 of the 25 responses to Question 8, indicates “New
Code” as the primary reason why they ranked a particular packageMB\a*. On the other hand,
old code and code that no one uses are the most frequent deciding factors for not select a document
for inspection. 12 of the 19 responses indicated these two factors when ranking a particular package
as adLINI®.

Based on these results, | believe that PRI can provide the developers with more useful
information, in the form of product and process measures and PRI rankings, to select documents for

inspection.

Ranking Modules and Workspaces

The Pre-Selection-Questionnaire contained three questions that asked the participants to
provide their subjective dMINI and dLINI rankings for top-level modules, all workspaces in the
system, and workspaces they have recently authored. Not surprisingly, the results of these rankings
vary from participant to participant. However, there were a few instances where the results were

consistent.

3part of Hackystat’s development process includes a continuous build occurring every night to ensure that the system
compiles and passes various levels of testing.

1dMINI represents MINI packages ranked by developers.

SdLINI represents LINI packages ranked by developers.

104



Question 7 in the Pre-Selection-Questionnaire (See Section D.7), asks the participants to rank
all workspaces in the system that they have recently authored. The results of this question do not
have any variation because the responses were specific to each participant. A common result is that
participants were able to rank their own code without much trouble. This supports my previous
finding that the developers have an understanding of their own code. However, the question remains

as to whether their understanding is correct.

Question 8 in the Pre-Selection-Questionnaire (See Section D.8), asks the participants to rank the
top 5 dMINI modules® and the top 5 dLINI modules. Figure 6.15 shows the number of dMINI
responses for each module. The modules with the most dMINI responses are hackyCGQM, hack-
ylssue, and hackyZorro. The results for these modules are very consistent, accounting for 15 out
of 25 responses. However, the remaining responses were spread across of 9 different modules. In
addition, there were 5 blanks (indicated by “??"), which means that the participants could not iden-
tify a module as a dMINI. According to these results, the participants can agree only on a couple
of dMINI modules. Furthermore, the rest of the responses show too much variation to be able to

identify the remaining top 5 dMINI modules.

[ENumber of Responses

OoORLNWhOION

Figure 6.15. Question 8 Part 1 Responses - Provides the total number of responses that the partici-
pants felt were dMINI modules. ?7? indicates that the participant did not know which module were
dMINI.

Rankings of dLINI modules showed a larger variation. Figure 6.16 shows the number of
dLINI responses for each module. The modules with the most responses are hackyStatistics and
hackyReport. The rest of the responses are spread across 8 different modules. Furthermore, 11

SModules are top-level parent workspaces that divide the Hackystat system into different portions. Usually, a single
developer is responsible for a module.

105



responses were either blank (indicated by “??”) or N/A (which is interpreted as no module should
be declared as a dLINI). These results are similar to the top 5 dMINI presented in the previous

paragraph, but it appears that the developers have even less agreement in ranking dLINI modules.

‘D Number of Responses

ORrNWARUIITON

‘(\

Figure 6.16. Question 8 Part 2 Responses - Provides the total number of responses that the partici-
pants felt were dLINI modules. ?? indicates that the participants did not know which modules were
dLINI. N/A indicates that the participants felt no module should be declared dLINI.

Comparing Figures 6.15 and 6.16 yields the results shown in Figure 6.17. This figure
helps illustrate two results. First, the highest level of agreement between the developers occurred in
ranking the dMINI modules. The hackyCGQM module received a 100 percent (6 of 6 responses)
agreement that it is a dMINI. And the hackyZorro module received an 83 percent (5 of 6 responses)
agreement that it is a dMINI. On the other hand, highest agreement for the dLINI modules was 66
percent (4 of 6 responses). Second, there were 4 modules were the developers disagreed on the dec-
laration of dMINI and dLINI. For example, hackyStdExt, hackyCli, hackyEclipse, and hackyKernel
all had responses that they were both dMINI and dLINI. This result shows another way in which

the developers ranked workspaces inconsistently.

Question 9 in the Pre-Selection-Questionnaire (See Section D.9), asks the participants to rank the
top 5 dMINI and top 5 dLINI workspaces in the entire system. Of the three questions, this is by far
the hardest task, because there are about 218 different workspaces in the system. It should be noted
that almost all developers have authored code in other areas of the system that were not ranked in
Question 7. For example, one developer has the most commits and active time for 22 workspaces
in the system other than the workspaces used in Question 7.

To help the participants, | provided them with a full listing of all the workspaces. Even

with that list, half of the participants either could not identify a fully qualified workspace and or just

106



OMINI mLINI

Figure 6.17. Question 8 Comparison of Responses - Provides the total number of responses that the
participants felt were dMINI and dLINI modules.

simply provided a module name. In fact, several participants complained that they had no idea how
to rank workspaces that they did not author. Furthermore, for an unknown reason, the factors of
their decisions changed from using the “age” of the documents in Questions 3, 4, and 8, to guessing
at the documents level of quality. Needless to say, the results of the rankings for both dMINI and
dLINI workspaces were extremely varied. Only one workspace out of the 60 possible responses
occurred more than once. This result indicates that while developers can rank workspaces that they
have authored, they cannot provide much consistency for workspaces where their understanding is
limited.

As previously stated, if PRI can provide more useful information, in the form of the
PRI measures and PRI rankings, then that might lead to more consistent results when selecting
documents for inspection in areas where their subjective knowledge is limited.

6.5.2 Validity of PRI's MINI and LINI ranking

Although, none of the participants used PRI to select packages for inspection, I've de-
signed the study procedures to be able to validate whether PRI could have helped the selection
process. I've done this by doing two things. First, by obtaining the developers ranking of packages
that they have authored according to their subjective opinion of the likelihood that the packages
needed inspection (dMINI and dLINI). Second, by comparing the developer ranking with the PRI
rankings generated by hackyPRI (pMINI and pLIfil The results of this study show that two rank-

ings agreed and three rankings disagreed (See Section D.7). The two rankings that agreed with one

"pMINI and pLINI represents MINI and LINI packages that were ranked by the Hackystat PRI Extension.

107



another were for the hackyReview and hackylssue modules. By agreed, | mean both the developer
rankings and PRI rankings were very similar, although not exactly the same. The three rankings that
disagreed with one another were for the hackyCGQM, hackyZorro, and hackyTelemetry modules.

By disagreed, | mean that the developer rankings and PRI rankings did not have any significant

similarities.

It is interesting to note a couple of things about these modules. First, the hackyReview
and hackylssue modules implement very similar functionalities compared to each other. Second,
the hackyCGQM, hackyZorro, and hackyTelemetry modules implement very different functionali-
ties compared to any other modules in Hackystat. Obviously, these results do not have any statis-
tically verifiable meaning at this point. But, this result shows that the PRI ranking function can be
calibrated correctly for some modules and not for others.

As previously explained, the major limitation of this research is the lack of resources to
thoroughly inspect a large percentage of the Hackystat system to validate MINI and LINI deter-
minations. Therefore, because of this limitation | cannot conclude whether the developer rankings
or PRI rankings were correct. More inspection resources would have been useful in studying the
following situation. In some cases, the MINI and LINI rankings were flipped. For example, in the
hackyZorro module, the developer ranked org.hackystat.stdext.zorro.control as a very high priority
dMINI package and PRI ranked the same package as a low priority pLINI package. This package
was inspected by CSDL (Inspection 12) and the results shown in the previous sections indicate that
this package was a MINI. However, according to the PRI rankings there are many other packages
in hackyZorro, which need inspection more. It would have been greatly beneficial to inspect a
PRI-declared pMINI package to determine the correctness of the PRI rankings.

6.5.3 Educational Value of Inspection

Like traditional inspection processes, CSDL’s current inspection process is based on a vol-
unteering process. However, unlike most organizations, CSDL's members do not feel that the main
goal of their inspection process is to remove defects, as evidence by their responses to Question 2
in the Pre-Selection-Questionnaire (See Section D.2 and Figure D.2). According to these results,
most CSDL members do not agree with the statem&he most important goal of the CSDL in-
spection process is to remove defedtsfact, educational aspects of inspections are very important
to CSDL. This is very apparent in Figure 6.18, which shows the results from Question 2 in the Post-
Inspection Questionnaire that asks the inspectors if they have learned something from participating
in the inspections.

108



3 3 3

1 1 1

ORr NWAMOEO DN ©

Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection Inspection
11 12 14 13 15 16 17

MINI LINI

Figure 6.18. Post Inspection Questionnaire Question 2 - Provides responses to the question;
learned something by participating in this inspectiory2s, indicates that the developer learned
something. Not, indicates that the the developer did not learn something.

In almost all cases, the majority of the inspectors learned something regardless of whether
many defects were found. Furthermore, it seems that the educational value does not correlate to
the number of defects found, the type of the defects, or the severity of defects. Therefore, one
can conclude that inspecting high quality documents, for example packages in the LINI-p group,
can provide as much educational value as inspecting packages in the MINI-p and MINI-d groups.
This educational value could result in fewer defects in future code development, which is greatly
beneficial in lowering the resources needed to inspect future documents [1]. Inspecting a document
with very elegant coding, excellent documentation, and totally defect free could provide as much or
even much more educational benefits than inspecting a MINI document.

This result indicates a couple of things. First, it might be the case that PRI is less beneficial
for CSDL than other organizations that do not stress educational aspects in their inspection process.
Second, the PRI ranking function that was created for this study, and specifically for CSDL, is
incorrect. Instead of trying to identify MINI and LINI packages in the context of finding high-
severity defects, maybe | should have focused more on the educational benefits of inspection.

6.6 Thesis Claim 3

Claim: PRI can identity documents that need to be inspected that are not typically identified by

volunteering.

Unfortunately, after analyzing the results, | have realized that | have failed to create a

viable study procedure to thoroughly evaluate this claim. It appears that the study procedures were

109



too centered on determining whether MINI documents contain more high-severity defects than LINI
documents to leave much room for investigating evidence for this claim. Once again, | believe if
I had conducted more inspections, then | would have more inspection results and be better able to

address this issue.

6.6.1 Selection Trends

As previously discussed, developers have a much easier time selecting documents that
they have authored. In addition, they tend to select packages based on the age of the code, regardless
of the quality level indicated by various product and process measures available to the in their
Hackystat server (excluding hackyPRI rankings). In fact, a large majority of developers did not
mention anything about software quality when selecting packages. In addition, developers seem to
struggle when selecting documents in which their subjective understanding of code was limited.

The only supporting evidence for this claim is that the developers view new code as MINI
and old code as LINI. Based on the results, it seems that they most of the developers believe old
code should never be inspected, which directly contradicts my thesis claim. Therefore, | still believe
that there is some hope of validating my claim that PRI can identify MINI documents that are not
typically identified by volunteering.

110



Chapter 7

Conclusions and Future Directions

The research conducted on the Priority Ranked Inspection process has shown supporting
evidence that it can be beneficial for organizations with limited inspection resources. However, the
conducted evaluation is very preliminary. In addition, there are a number of other future directions

that are required to further the research of the PRI process.

7.1 Future Directions

The research presented on PRI in this thesis is the first of many possible steps that are
needed to validate the potential of the Priority Ranked Inspection approach. Although PRI is cen-
tered on inspections, many other research fields, like software quality, defect prevention and pre-
diction, software metrics, and the alike, play an equally important role. For example, the when
calibrating PRI indicators, one can consult various software metrics and defect prediction literature
to determine the threshold values that produce the best rankings. This section presents the many
different future directions of this research.

7.1.1 More Evaluations

This research contains many limitations. Most notably the evaluation of PRI and hack-
yPRI is constrained to only one specific software project. This fact raises many issues of adoption.
For example, how hard would it be to implement PRI at another organization? How hard would
it be to calibrate PRI for another set of product and process measures? This adoption issue can be
addressed by future evaluations of PRI in other organization settings and other software projects.
This issue will be left as a future direction. However, | believe the evaluation that was conducted

111



during this research was necessary to provide evidence that PRI is a worthy concept to try at other

organizations.

7.1.2 Implementation of the Hackystat PRI Extension

In addition, future work is needed to generalize the hackyPRI extension so that it is pos-
sible for other organizations and projects. Currently, hackyPRI probably best supports the CSDL
organization and the Hackystat project. Also, there were many future tasks associated with the im-
plementation of the Hackystat PRI Extension that I've mentioned at the end of Chapter 4 that can

still be addressed in future research. For example:

=

. Solving the threats to data validity in hackyPRI.

2. Providing a configurable PRI indicator ranking with the JESS tool.

3. Providing other levels (i.e., modules, Java classes, methods) of rankings.
4. Linking PRI with Software Project Telemetry to track changes over time.

5. Implementing an automatic feedback loop of inspection results to help automatically calibrate

indicators.

7.1.3 How to Determine MINI-Threshold

A major part of the PRI process that was not solved in this research is Step 1c. Step 1c
is the third step in creating a PRI ranking function and states that the PRI ranking function should
create a MINI-threshold, which declares all documents below the threshold as MINI and all above
as LINI. The solution to this problem will be a major benefit to the PRI process, because it will
provide an organization with the exact number of documents that should be inspected. They can use
this information to schedule and plan inspections. For example, an organization can find that they

must inspect 100 of their 500 documents and request the necessary inspection resources to do so.

7.1.4 Comparison of PRI with Code Smells and Crocodile

In Chapter 2, | explained that the PRI process is very similar to two software tools, Code
Smells and Crocodile, which help identify the right areas of a system to inspect. A future direction
of this research is the evaluation of the results obtained by all three approaches. For example, one

112



could generate the “rankings” from all three approaches on the same software system and pick dif-
ferent areas to conduct inspections on to determine the validity of each approach. Another possible
evaluation could be studying the cost-effectiveness of each approach.

On the other hand, the PRI process is more robust than the two approaches, because it can
include any type of product measures into the ranking function. Therefore, another possible future
direction is the incorporation of the Code Smell and Crocodile measures into PRI.

7.1.5 Use of PRI in Other Quality Assurance Situations

Priority Ranked Inspection was originally created for purposes that span a number of
quality assurance techniques other than software inspections. Originally, | proposed a technique that
could identify the lowest cost approach to increase quality of a particular piece of code. | envisioned
a Hackystat extension that could identify the right “quality tool” that is needed to increase quality.
For example, if the ranking showed that Unit Tests are a problem area, then the right “quality tool”
could be increasing the number of Unit Tests for that particular piece of code. However, for this
research | have obviously decided to focus on one “quality tool”, namely software inspection. |
chose inspections because the quality assurance literature suggests that this process is the most
effective way to increase quality. Another future direction for this research is to evaluate if Priority

Ranked Inspection can also identify the right “quality tool” to use in specific situations.

7.2 Final Thoughts

The results of this research shows that it is very challenging to thoroughly evaluate PRI. It
is also a little ironic that the sole purpose of PRI is to aid the inspection processes of organizations
with limited resources, but at the same time, to evaluate PRI a thorough inspection of all ranked
documents would provide the best results.

| firmly believe that the concept of PRI, which tries to identify the right documents to
inspect, has promise, although future research is needed to provide more supporting evidence for
that belief. Hopefully, one day Priority Ranked Inspection will be as well known and evaluated as
much as other inspection processes like Software Inspections.

113



Appendix A

Consent Form

114



Consent Form

| understand that | am voluntarily participating in a University of

Hawaii research project with the Collaborative Software Development
Laboratory (CSDL). This project will evaluate the Priority Ranked
Inspection process and the Hackystat Priority Ranked Inspection

Extension. My participation includes completing pre- and post-

guestionnaires. | am one of approximately 8 subjects involved in

this research.

| understand that | can withdraw from this project at any time and
have the information provided in my questionnaires be removed in

entirety from the research project. This decision will not affect
me in any manner academically.

| understand that all gathered data will be kept confidential to the

extent provided by law, and that any and all references to

information about me or my data will be kept anonymous to the extent

provided by law.

For any questions relating to this research, | may contact:
Collaborative Software Development Laboratory (CSDL)
1680 East-West Road, POST 307B

Honolulu, HI. 96822

Aaron A. Kagawa kagawaa@hawaii.edu
Philip Johnson johnson@hawaii.edu

For and questions about my participants rights, | may contact:

Committee on Human Studies

The researchers foresee no risks to participating in this project.

956-6920
956-3489

956-5007

Figure A.1. Consent Form

115



Appendix B

Pre-Selection Questionnaire

116



Questionnaire for the Priority Ranked Inspection
Process

Thank you for your participation. As a reminder, your
participation in this research is voluntary. All references to
data gathered will be made anonymously. Please indicate your
level of agreement to the following statements the best of your
ability. In the following statements, the terms Inspections and
Code Reviews are used interchangeably.

1. Inspections are an important part of the CSDL development
process. (circle one)

(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly
Agree

2. The most important goal of the CSDL inspection process is to
remove defects. (circle one)

(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly
Agree

3. Which of the following would most likely contain the most
critical defects: (circle all that apply)

(1) Newly created code

(2) Code that has no (or very few) unit tests

(3) Code that has low coverage

(4) Code that was developed by a new developer
(5) Code that only one developer has worked on
(6) Code that has a large number of dependencies
(7) Old code

(8) Other:

4. When | request an inspection, | generally volunteer code that
is: (circle all that apply)

(1) Newly created code

(2) Code that has low coverage

(3) Code that no one has seen before
(4) Code that has no unit test

(5) Old code

(6) Other:

5. When | request an inspection, | use Hackystat to help me pick
a piece of code to inspect? (circle one)

(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly
Agree

6. Inspection should only occur on newly created code. Old code
that has already been released does not need to be inspected.
(circle one)

(1) Strongly Disagree (2) Disagree (3) Neutrid'](Z) Agree (5) Strongly
Agree



7. Please provide a numerical ranking of the packages provided
that represents what packages you believe should be inspected.
For example, the following table shows that package
com.example.bar is the highest priority package that should be
inspected. And com.example.bax has the lowest priority ranking.

Ranking Package
2 com.example.foo
1 com.example.bar
3 com.example.baz

Enter your own subjective rankings in this table. Please use
values from 1 through 13 and do not use one number twice. After
finishing the rankings we will discuss you justifications for

those rankings.

Ranking

Package

org.hackystat.app.telemetry.analysis

org.hackystat.app.telemetry.analysis.selector

org.hackystat.app.telemetry.config

org.hackystat.app.telemetry.config.core

org.hackystat.app.telemetry.processor.evaluator

org.hackystat.app.telemetry.processor.parser

org.hackystat.app.telemetry.processor.parser.impl

org.hackystat.app.telemetry.processor.query

org.hackystat.app.telemetry.processor.query.expression

org.hackystat.app.telemetry.processor.reducer

org.hackystat.app.telemetry.processor.reducer.impl

org.hackystat.app.telemetry.processor.reducer.util

org.hackystat.app.telemetry.processor.stream

When finished wait for further instructions.

After finishing the rankings we will discuss you justifications
fo r those rankings.

Ranking Justification

1

2

3

4

5

6

7

8

9
10
11 118
12

=
w




8. To the best of your knowledge, please provide the top 5
modules that you think need to be inspected and the top 5 modules
that you think do NOT need to be inspected. Below is a list of

all Hackystat modules.

Modules that need to be inspected

Ranking Module Justification

1

Al | W N

Modules that do NOT need to be inspected

Ranking Module Justification

1

Q| | W N

Hackystat Modules

o hackyAnt
hackyCGQM
hackyCli
hackyDependency
hackyEclipse
hackyHPCS
hackylssue
hackyJBuilder
hackyJupiter
hackyKernel
hackyPerf
hackyPRI
hackyPrjSize
hackyReport
hackyReview
hackyStatistics
hackyStdExt
hackyTDD
hackyTelemetry
hackyVCS
hackyVim
hackyZorro

OO0 000000000000 O0OO0OO0ODO0OO0OO0OO

119




9. To the best of your knowledge, please provide the top 5
workspaces that you think need to be inspected and the top 5
workspaces that you think do NOT need to be inspected. Attached
is a list of all Hackystat workspaces.

Workspaces that need to be inspected

Ranking Workspace Justification

1

Workspaces that do NOT need to be inspected

Ranking Workspace Justification

1

120



Appendix C

Post-Inspection Questionnaire

121



Questionnaire for the Priority Ranked Inspection
Process

Thank you for your participation. As a reminder, your participation

in this research is voluntary. All references to data gathered will

be made anonymously. Please indicate your level of agreement to the
following statements the best of your ability. In the following
statements, the terms Inspections and Code Reviews are used
interchangeably.

1. This package needed to be inspected

(1) Yes
(2) No

2. | learned something from this inspection

(1) Yes
(2) No

3. The inspection of this package increased its quality (once all
the issues are resolved/fixed).

(1) Yes
(2) No

122



Appendix D

Pre-Selection-Questionnaire Results

This section contains the results from the Pre-Selection-Questionnaire. Sections D.1 and
D.2 contains the results from the general questions about CSDL’s inspection process. Section D.3
to Section D.6 contains the results from the questions about the developers’ document selection
method. Section D.7 to Section D.9 contains the results from the developers’ subjective rankings of

three separate sets of packages.

123



D.1 Question1

Question 1.Inspections are an important part of the CSDL development process. (Choose One)
(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly Agree

Table D.1. Question 1 Responses

Participant

Response

Strongly Agree

Strongly Agree

Strongly Agree

Agree

Strongly Agree

OO B W N

Agree

45 -

35

25

15 4

0.5

0

B Number of Responses

0 0

Strongly Disagree

Disagree Neutral Agree Strongly Agree

Figure D.1. Question 1 Responses

124



D.2 Question 2

Question 2. The most important goal of the CSDL inspection process is to remove defects. (Choose
One)
(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly Agree

Table D.2. Question 2 Responses

Participant Response
Neutral
Agree
Neutral
Disagree
Agree
Neutral

OO W N

@ Number of Responses

35 -

25 4

15 4

0.5 4

0 0

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure D.2. Question 2 Responses

125



D.3 Question 3

Question 3.Which of the following would most likely contain the most critical defects (Choose all
that apply)

(1) Newly created code

(2) Code that has no (or very few) unit tests

(3) Code that has low coverage

(4) Code that was developed by a new developer

(5) Code that only one developer has worked on

(6) Code that has a large number of dependencies

(7) Old code

(8) Other:

Table D.3. Question 3 Responses
Participant Response

(1), (@), (3), (4), (5)

1),(2), 3,4

(1), (4), (6)

Other: Strongly Refactored Code
4)

4)

OO B W N

O Number of Responses

5

oRrNWAMUOO

Newly
Created
No Unit
Tests
Low Coverage
New
Developer
One
Developer
Large Number
of
Dependencies
Old Code
Other

Figure D.3. Question 3 Responses

126



D.4 Question 4

Question 4.When | request an inspection, | generally volunteer code that is: (Choose all that apply)
(1) Newly created code
(2) Code that has low coverage
(3) Code that no has seen before
(4) Code that has no unit tests

(5) Old code
(6) Other:
Table D.4. Question 4 Responses
Participant Response
1 1), (3), (5)
2 1), (3)
3 1), (3
4 Other: Fulfills a critical mission; is to be used by others
5 3
6 Other: Code | have no confidence in. Code that | feel is badly
designed
B Number of Responses
45 - 4
4
35 | 3
3
25 4 2
2]
15 4 1
14
0.50 B | 0 | | 0 | |
Newly Created Low Coverage No One Seen No Unit Tests Old Code Other

Figure D.4. Question 4 Responses

127



D.5 Question 5

Question 5. When | request an inspection, | use Hackystat to help me pick a piece of code to
inspect? (Choose one)
(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly Agree

Table D.5. Question 5 Responses

Participant Response
Disagree
Disagree
Disagree
Disagree
Disagree
Disagree

OO W N

B Number of Responses

0 0 0 0

o B N W~ 00O N
L L L L L L )

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure D.5. Question 5 Responses

128



D.6 Question 6

Question 6. Inspection should only occur on newly created code. Old code that has already been
released does not need to be inspected. (Choose one)
(1) Strongly Disagree (2) Disagree (3) Neutral (4) Agree (5) Strongly Agree

Table D.6. Question 6 Responses

Participant Response
Strongly Disagree
Agree

Disagree
Disagree

Neutral

Neutral

OO W N

B Number of Responses

25 4

15 4

05 -

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure D.6. Question 6 Responses

129



D.7 Question7

Question 7. Please provide a numerical ranking of the packages provided that represent what
packages you believe should be inspected. Enter your own subjective rankings. Please use values
from 1 through N (N denotes the number of packages in the developers list of packages) and do not

use one number twice.

D.7.1 hackyReview

The response to this question contains two results. First, a developer ranking, which is
provided in Table D.7. Second, a PRI ranking, which is provided in the Figure D.7. Furthermore,
the results of the developer rankings were used to help aid the developer in selecting a package
for inspection. Therefore, for Inspection 8, the packages org.hackystat.stdext.analysis.stream and
org.hackystat.stdext.analysis.cache were selected.

In this particular case, the developer ranking and PRI ranking agreed that those two pack-

ages were MINI packages, relative to other packages in the same module.

Table D.7. hackyReview Developer Ranking

Ranking | Package
org.hackystat.app.review.analysis.stream
org.hackystat.app.review.analysis.cache
org.hackystat.app.review.analysis
org.hackystat.app.review.analysis.comparison
org.hackystat.app.review.analysis.summary
org.hackystat.app.review.issue.reducer
org.hackystat.app.review.activity.reducer
org.hackystat.app.review.issue.dailyproject
org.hackystat.app.review.activity.dailyproject
org.hackystat.app.review.issue.dailyanalysis
org.hackystat.app.review.activity.dailyanalysis
org.hackystat.app.review.issue.std
org.hackystat.app.review.activity.std

OO NOO| O AW N -

[ =Y
o

=
=

[Eny
N

[ =Y
w

130



Figure D.7. hackyReview PRI Ranking - Inspection 8

mm.«wmi Bujuey 14d wmmhw>i
| sieis|
E€=PUIdBNI 6Y=PUBIN (L1=S1W00
6E£=IN0| ‘T=sse|D ‘1=sse|D 5002 5002-| 5002-| S002-| ‘,T'g=aWn) \uostredwoo\sisAfeue\mainandde
% T6°0, T ‘Tg=ul  '9e1=001 ‘8v/=0071 0 0 0 T 4dv-v0  d9d-vz LT T J1dv-g0 g9o4:€2  U8ST ulT8 gladojanap 595 VeIsAoeY\BIoIS\MBINEYARRY
6=10113 OT=PYaN Se=pwaN (FT=s1w00
‘86=Ired 62=1N0 ‘p=sse ‘g=sse|Q 5002 002 5002- 5002- ‘g€°0T=awn), \ayoea\sisAreue\mainadde
% £7'96 ‘0O=ssed| 89|  ‘0T=w|  ‘82T=001 ‘9.y=0071 0 0 0 1 adv-po|  rew-og T T Jdv-so N6z UEET UEEOT giadojanap 985 \elsHopeY\BIoIs\maInad ey
0=lo13 y=PUIBIN oT=pyIBN (8=s1W0d
‘0z=Ired ‘z=sse|o ‘p=sse|D 5002 002 5002~ 5002- ‘Zb"z=awn) \weans\sishfeue\mainandde:
% 00°00T ‘0=ssed|  ve '15=001 '841=001 0 0 0 1/ adv-zo|  rew-og 8 1| Jdv-s0 N6z UBSI0 UzrT giadojenap 185 VeIsoey\BIoWISWMaINaYRY
G=lou3 T=PyIeN 0T=PyIBN (T=s1W0d
‘9T=lrey ‘T=sse|D ‘z=sse|D 5002 S002- 5002~ 5002- ‘80"0=auun) \sisAfeueAjiep\anssiymainandde:
% 00°00T ‘o=ssed| /T ‘er=001 'SET=001 0 0 0 1 rew-lz|  rew-zz T T few-sz fepN2z 4000 U800 giadojenap 709 A
§/T=1013 £=puleN TZ=PWaN (9g=s1W09;
‘0=l Gg=no ‘T=sse|y ‘p=sse|0 5002 5002-" 5002- 5002- ‘£8'9=awn) ewwnssisAjeueywainandde
% vL'v6 ‘0=ssed LT ‘g=ul '€2=001! ‘Try=007 o} 0 0 2 Jdv-v0|  g94-8T g T 1dv-70 994-vT  u8SlE  UuEgy Gladojanap 1¥9 Weisyoey\Bio\is\mainay ey
T1=i043 2=PuIaN 0z=pulaN
‘62= 82=1n0 ‘z=ssel ‘p=sse|y 5002 002 5002- 002" \sisAreueA|rep\Kianoe\mainandde
% 00°00T ‘0=ssed|  ve ‘9=ul ‘€8=001 ‘TT7=001 0 0 0 g/ advzo| des-TT 61 z|  Tew-oe POS0  UBOO UEBT 859 eIsopeY\BioIs\maInay ey
89=i013 L=PyIaN 6=pUIBIN
‘Ly= ‘7=sse|Q ‘z=sse|D 5002 002 5002~ 002" \eonpanAunnoe\mainandde!
% 00°00T ‘o=ssed S8 '¥21=001 '252=001 0 0 0 € few-0e| PO-IT 6 z|  ren-vz PO80  ULTO YSTO 119 A
£6=1013 L=PyeN Sy=pWeN (8T=SIW0D)
‘L€T=Ireo ‘z=sse|n ‘p=sse|0 S002-" 002~ 5002- 002~ ‘85'0T=alun), \osloidAjrep\enssiymainandde
% Or'18 ‘o=ssed| S8 '901=001 '868=001 0 0 0 z| rew-0g das-TT 62 z  Jew-z dasvz  uEesT u009T giadojenap 602 VeIspory\BIo\aIs\MaInaY ARy
9=puiaI 92=PUIdN (8T=S1W09)
Tg=no ‘T=sse|y ‘z=sse|0 5002- 7002-" 5002-" 002" ‘00" =) \WafoidArep\Aianoe\mainadde;
% 29'T6 89 ‘Z=u  ‘121=001 ‘vS5=0071 T 0 0 g/ advzo| des-TT €2 z|  ren-gz desivz U 0S/0  u8s8 giadojanap TTL elsopey\Biois\maInay ey
zp=iou3 8=puloN TL=PYION (56=S1W09)
‘TST=IreS S€=1N0 ‘p=ssel ‘0T=SSE|D) 5002 5002 5002- 5002- *19°09=awn), \sisAreue\wainandde|
% TTv6 ‘0=ssed  L0T|  ‘Oz=ul  '96T=007  'z801=0071 0 0 0 1/ adv-y0|  ga4-8T 6/ T Jdv-so G94pT  UEB'E U L909 giadojanap 9TL vershroey\biojaIsywmalnaxAey
6z=1013 y=PUIBIN PT=PWeN (9=s)w0d
‘ze=lred T1=1N0 ‘7=sse|D ‘g=sse|y 5002 002 5002~ $002- ‘80" T=awn) ups\dianoe\mainandde
% 00°00T ‘o=ssed T ‘6=ull  'eT1=001 '1€2=001 0 0 0 7| rew-gz| des-T 2| T Jew-60 des:/0  u0S/0 us0T giedojenap 8TL elsfopey\Biois\manadfoey
6vT=103 ST=pUiBIN 6T=PWEN (6T=SIWO0)
‘ez=ied ‘z=ssely ‘p=SSe|) 5002 002 5002- ¥002- ‘£g°0=aw) \iaonpasanssimainaidde
% 00°00T ‘o=ssed 18T ‘T¥2=001 '£25=001 T 0 0 g sew-0g das-TT 1z € Jew-0g daSTT  U0S/0 UO0ST] giadojenap 28l eIspry\BIo\aIs\maInaYAoRY
z1=i013 2=puIaN 6T=PUION (L=s1W0d)
‘ze=Ired 0T=1N0 ‘T=sse|D ‘g=sse|Q 5002 002 5002- 5002 ‘2 0=awn) ups\enssimainasdde
% 00°00T ‘o=ssed  vE|  ‘TI=ul ‘2L=001 ‘122=001 0 0 0 1 few-og| des-iT A T w6 NIz 4000 Uzro) giadojanap €L VeIshroey\BiojaIswmalnaxAey
MBIIA oD awi] i awi] |
Insay| 1sal RINEN ouwap|  enss| enss| oy main 0D NWWOD| W) awil| eAlOY| Ay aAloy|  awil
abeianod 1891 yun|  wun puadaqg 9|4 1S9 a|i4| pasolp| uado| ise] 8y nwwod 1807 1S114 NWwod BANIY 1se Isi4 181 BANDY yadx3 Bupjuey :(102) sevedsxyiopm

131



D.7.2 hackylssue

The response to this question contains two results. First, a developer ranking, which is
provided in Table D.8. Second, a PRI ranking, which is provided in the Figure D.8. Furthermore,
the results of the developer rankings were used to help aid the developer in selecting a package for
inspection. Therefore, for Inspection 9, the package org.hackystat.stdext.issue.reducer was selected.

In this particular case, the developer ranking and PRI ranking agreed that the package was

a MINI package, relative to other packages in the same module.

Table D.8. hackylssue Developer Ranking

Ranking | Package

1 org.hackystat.stdext.issue.reducer

2 org.hackystat.stdext.issue.dailyproject

3 org.hackystat.stdext.issue.analysis.issueprojectdetails
4 org.hackystat.stdext.issue.sdt

132



Figure D.8. hackylssue PRI Ranking - Inspection 9

mh,mhmi pjuey [4d mum_w>$
| sieis|
0=lou3 0=pyIaIN 8=pule (z=s1w0d
‘0=lred 0z=1n0 ‘0=sse| ‘T=sse|D 5002~ 5002- 5002-" 5002 ‘zv'gT=aln) \I0NPANANSSIIXaPIS
%TTTT ‘0=ssed| 0 ‘0=ul ‘0=001  '6€2=001 0 4 0 T|  TeW-0T  JeW-60 Z T Jdv-50 994:82 U 00/0 Uz¥'8T 9ladojana) 18 |
p=lou3 Z=PyBN 0e=pyrain
‘9=|red T1=1n0 ‘T=sse|D) ‘9=sse|D 5002~ 5002-" 5002-" 5002 \IPS\aNssIXapls
% LT°TS! ‘0=ssed| o4 ‘g=ut '£9=001 '79€=001 T 0| 0 2| JTeN-0T 994-80 6T 4 4dv-G0| g84-0T yeyo UEese T6S! |
4=1013 y=PUIBN|  8T=PUBIN
‘Te=led ‘T=sse|0 ‘g=sse|n 5002~ 5002- 5002-" 5002 \afoidAprepianssixapis
% 00°00T ‘0=ssed or, '99=0071|  '685=001 0 0 0 2| Jew-0T  G34-vT ST 2 Jdv-50 99467 UBS0 YSL'ST 659 veisyoey\BioaisianssiApoey|
p=iou3 T=pya S=puB (6=SIW0d \s|reapioaloidans:
‘0=lred Tg=no ‘T=sse10 ‘g=sse| 5002~ 5002- 5002-" 5002 ‘LT g=own) \SISA[eUR\aNSSINXapIS!
% 00°00T ‘0=ssed ot ‘T=U1 ‘2€=0071|  '822=001 T 0 0 T/ 9ed-ze  9ed-0¢ 6 T Jdv-p0 Q46T UZTI0 ULTE ziadojanap 789 veisyoey\BioaisianssiApoey|
o9 i i | [ |
ynsay| 1sal EIRET RINEN anss|| anss|| mainay W00 NWWOD| NWWOoD awnl|  aAndy anY  aAndY awiy
abeianod 1891 wun|  wun puadaq E=RECTN paso|p| uadQ! 1Se7 MaIARY|  NWwWoD 1se7 1114 Nwwod ANNOY| 1se7 1S4 1S9 AANDY yadx3 Bunjuey :(y02)

™
™
i



D.7.3 hackyCGQM

The response to this question contains two results. First, a developer ranking, which is
provided in Table D.9. Second, a PRI ranking, which is provided in the Figure D.9. Furthermore,
the results of the developer rankings were used to help aid the developer in selecting packages for in-
spection. Therefore, for Inspection 11, the packages org.hackystat.app.cggm.interfaces.executables,
org.hackystat.app.cggm.interfaces.results, and org.hackystat.app.cggm.implementations.executables
were selected.

In this particular case, the developer ranking and PRI ranking disagreed that the packages
were MINI packages, relative to other packages in the same module. However, because only one

inspection was conducted in this module, it is not known whether the developer rankings or PRI

rankings were incorrect.

Table D.9. hackyCGQM Developer Ranking

Ranking | Package

1 org.hackystat.app.cggm.interfaces.executables

2 org.hackystat.app.cggm.interfaces.results

3 org.hackystat.app.cggm.implementation.executables

4 org.hackystat.app.cggm.implementation.results

5 org.hackystat.app.cggm.common.classloaders

6 org.hackystat.app.cggm.utils

6 org.hackystat.app.cggm.datamodel.cggm

8 org.hackystat.app.cggm.datamodels.cggm.goals

9 org.hackystat.app.cggm.datamodels.cggm.metric

10 org.hackystat.app.cggm.datamodels.cggm.question

11 org.hackystat.app.cggm.manager

12 org.hackystat.app.cggm.telemetry.reducer

13 org.hackystat.app.cggm.testbase

14 org.hackystat.app.cggm.utils.freemarker

15 org.hackystat.app.cggm.webinterface

16 org.hackystat.app.cggm.webinterface.selector

17 org.hackystat.app.cggm.datamodels.cggm.common

18 org.hackystat.app.cggm.datamodel.cggm.goal.goalDimension
19 org.hackystat.app.cggm.datamodel.cggm.goal.sheetComponents
20 org.hackystat.app.cggm.common.jiBx

21 org.hackystat.app.cggm.common.exceptions

22 org.hackystat.app.cggm.datasource

23 org.hackystat.app.cggm.telemetry.webHookDataSource

24 org.hackystat.app.cggm.telemetry.webHookDataSource.describer

134




Figure D.9. hackyCGQM PRI Ranking - Inspection 11

0=louz 0=pyan LE=PYBN (2Z=s1w09 \12Q119S9P\32IN0SEIEAY00HGAaM

‘o=lred £=1n0 ‘0=sse|0 ‘g=sse|0 5002- 5002- 5002~ 5002~ ‘Zb'0=2wWn) \Knawajenwbbo\ddeyeisiioey

% 000 ‘0=ssed 0 ‘TI=u ‘0=001 '852=007] 0 0622 T JeN-9T)  JBN-TT Lz T W9t JeST Y0000 YZyo Liadojenap 809 \Bio\urewenel\aIs\Nd9IAHeY
0=PUIBIN 0E=pWeN (9=s1w0d

zamo,  ‘p=ssely ‘p=SSel 50027 5002 5002 5002 ‘£8'0=aun) uowiwod\wbBo\ddeyeisioey

% EE'ES, 0 ‘9=u1 ‘0=001 '21€=001 Q q 118 T Jew-sz|  Jew-sT 9 T fewTez JeN-TZ U000 UEB0 Liadojanap 19 \Bio\ureweneloIs\NO9IMtRY
£=PUIBIN 6T=pUIaN (pz=s1wi0d

0=no|  ‘z=sse|d ‘G=sSe|D S002-| 5002 5002 5002 ‘0G°6=aun) \wainsano\uIBnd

% 00°SL € ‘0=ul '¥8=001 'vE¥=007] 0 669 1) Jdv-gz|  dv-0T) vZ 1) udv-gT Jdv-60 4260 U056 213dojanap 119 \WODIURW eABNIS\NODOANRY
L1=1013 0=pUIBIN T=PUIBIN (6=S1wo0)

‘Ly=Ired 720, ‘0=ssel) ‘T=sse| 5002- 5002 5002- 5002 ‘LTz=awn) \eaInoserep\wbBo\ddeyelsiioey

% 00°00T ‘0=ssed| 0 ‘T=u ‘0=001 '9=001 q q 0  sog T JeW-8T| JeW-TT 6 T 9940 de4¥0 U000 UlTZ 21adojanap 29 \BiourewenehaIs\Nd9/RRY

=013 0=pyiIsn L=pyBN (gT=S1W02 \suonsanb\sa|qeinoaxe

‘o=lred 9=1no ‘0=sse|D ‘Z=ssen 5002~ 5002- 5002~ 5002~ ‘LT T=0wn) \saoepaunwbBo\ddeyelstioey

% 00°00T ‘0=ssed 0 ‘6=ul ‘0=001 '65=001 9 0 00T T dv-gz]  rew-oz ST T Jdv-p0 JeNBT Y0010 U LTT 21adojana) €9, \BiourewenefaIs\nd9/RY

z=iou3 Z=pyeN TI=PWPenN (Tz=suw00 \s1apeojssep

‘0=lred 9=1no ‘gz=sse|o ‘p=Sselo 5002~ 5002~ 5002~ 5002~ ‘00" T=aun) \uowuwod\wbBo\ddeyelsioey

% 00'SL. ‘0=ssed 4 ‘o=ul  ‘0p=001 '2L1=001 q o 0 Iv6 1| Jdv-gz]  few-8T 24 T Jdv-z0 Jdv-T0 U80j0 U 00T Liadojenap 9v9) \Bio\urewenel\aIs\NO9IAHRY
g=i013 9=puIaIN L8=PWAN (18=s100

0=no|  ‘g=sse|d ‘TT=SSe|D 5002- 5002 5002~ 5002- ‘52’ 1=own) \saInjre=ipjing\utnid

% LS'8L. ot ‘0=l ‘g0z=001,  ‘8y0T=001 0 ot0% 1| Jdv-gz]  adv-g0 8 T Jdv-zz Jdv-10 ulTT usze L1adojenap 259 \WOD\URW BABIS\NODDA1RY
T=PWsN 9S=puIsN (ep=s1wod

gT=no|  ‘T=ssely 'g=sse|D S002-| 5002 5002 5002 ‘00°g=aun) \wbBo \sjapowrerep\wbBo\ddeyeisioey

% 000 T ‘Te=u '0§=001 '856=007] 0 262z T| Jdv-Gz|  Iew-TT 34 T dv-pT JeN-60  UZTIT 400§ 213dojanap 199 \BIo\urewenefdIs\NOD0A4RY
y=PUIBIN yZ=PueN (z9=s1w00

0=In0; ‘p=sse|n ‘6=Sse10 5002- 5002-" 5002-" 5002- ‘€€ z=awn) \uowwioo\uibnid

% 00°00T L ‘0=u  ‘121=001 '709=007] 0 SSov T| Jdv-Gz|  rew-Tg 29 T Jdv-oz Jdv-G0  U8S0 UEET 21adojanap 199 \WODIURW BABNIS\NODOAR0RY
Lz=1013 2=PuIBIN y=PUIBIN (8T=s1W00

‘0=lred 0z=no|  ‘z=sse|y ‘p=sse| 5002- 5002 5002- 5002 ‘£8'z=aun) \eoepaluIgamwbBo\ddeyelsiioey

% 00°00T ‘0=ssed 4 ‘0=  'z=001 ‘€T1=0071 o o 0 €09 T dv-gz  few-ST 8T T Jdv-gT TeNST  UEBD U EBT 21adojana) 189 \BlourewenefaIs\nd9/RY
Te=i0u3 £=puIBIN £p=PWAN (Le=s1w00

‘Te=led Sz=no ‘z=sse|D ‘g=sse|0 5002- 5002- 5002- 5002- ‘£8°L=aw) \iabeuew\wbBo\ddeyelshoey

% T6°06! ‘0=ssed 2 ‘st=u  ‘sp=001 ‘159=007] 0 0 2892 T dv-gz]  few-9T L8 T JdvrT JeN9T U LTIT Y €8s L1adojena) 669 \BiourewenefaIs\Nd9HRY
0Oz=lou3 LT=PWeN|  6vT=PUIBIN (95=s1w00

‘9g=lted pe=no|  ‘9=sse|o ‘9T=sse|D 5002- 5002 5002- 5002- ‘LTET=0wWn) \sinnwbBo\ddeyeisixoey

% 26'9L. ‘o=ssed /T  ‘'Te=u| 'T0E=D01|  '68YT=00T 0 1885 1| Jdv-gz]  JeN-6T 95 T Jdv-iz JBNBT  UZ6lE ULTET L1adojenap o1 \Bio\urewenel\aIs\NO9IAH0RY

0=i0113 Z=pyen S=pyiaiN (0T=S100 \82In0SeIeaX00HgBM

‘0=lted =m0, ‘z=ssery ‘g=sse| 5002- 5002 5002- 5002 ‘80" 0=oun) awajanwbBo\ddeyeisioey

% 00°0] ‘0=ssed| z ‘T=u|  '0/=001 '£91=0071 q q o /6l T Jdv-8T)  JeN-TT ot T eW-ST JBST Y0010 U800 Liadojenap [aft \Bio\urewenefoIs\NO9AHRY

0=lou3 Z=PyIsN PS=PUIBIN (zp=s1w0d \S3|qeIN0axa

‘ zI=mn0|  ‘z=sselo ‘g=sse|D S002-| 5002 5002 5002 ‘8g'g=aun) \seoepRIuNwbBo\ddeyelsiioey

%9228 ‘0 2| ‘ze=w '65=001 ‘02v=007] Q9 TIYE T| Jdv-gz|  rew-0z 44 T udv-ge JeN-0z  UEEID usSE 21adojanap 1473 \Bo\urewenefdIs\NOD0A4RY

0=l013 2=Pyle Ly=pwsN (zp=siwod \slinsa1

‘0=lreq Zz=no ‘z=sse|)n 'pT=sse|D 5002~ 5002~ 5002~ 5002~ ‘0G'z=own). \saoepsuNwWbBo\ddeyelsiioey

% 0T°€6 ‘0=ssed z ‘ge=u1 ‘T2=001 ‘286=007 0 068z T Jdv-sz|  rew-gT k44 T 1dy-GT Jdv-#0 4800 Y0SZT L1adojanap 818! \Biourewerefis\WdDILH0RY

0=iou3 Z=puIaiN 9T=pWeaN (9T=s1W00 \suondaoxa

‘o=lred G=Ino ‘T=sse|0 'G=sse[ 5002~ 5002~ 5002- 5002~ ‘£9°0=awn) \uowwod\wbBo\ddeyershoey

% 65°0L. ‘0=ssed 2 'Bs=u|  ‘8z=001 '66=001 o o 0 v9§ T dv-8T|  uer-eg oT T W0z ue(-zz  YlTI0 U190 L1adojena) 0€6 \BiourewenehaIs\Nd9HRY

nsay pIDEIL] M oD || auwi] | il
1s8l 1sal JBN anss| anss| 8y MaIA wnyD! JuoD | JWwo) | Hwwod |l | DAY BANIY| DAY awl|
mmm._m>DU nun nun| _ucwmmﬁ_ 3 8s0|D Ewmo 1se7] 29y |9pod wiwod iseq Isi4 ywwod| DAY ise iS4 1seL BANY tm&x 3 m_.__v_r_mw_ (812)

135



Figure D.10. hackyCGQM PRI Ranking - Inspection 11

wm.vai Buimjuey 14d mmﬁmzi

| seg|

0=lou3z 0=pyain 0=PWyaiN \SOLIBU\SB|(RINIaXd

‘0=Ireq4 =10 '0=sse|D ‘T=sseD 5002 5002 \saoepialunwbBo\ddeyelsiyoey

% 000 ‘0=ssed| ‘6=ul ‘0=001 ‘7=001 96 1dv-gz TeN-0Z 4 U000 Y000 66€; \Biourew-enefais\nd9/eY

0=lou3 0=pylan T=PUdIN \oaw\wbBo

‘0=lreq T=no ‘T=sse|D 5002~ G002~ \s|apowrerep\wbBa\ddeyeisixyoey

% 000 ‘0=ssed| ‘9=ul '1=001 26 TeN-62 JeN-TT S U000 Y000 sev| \Blo\ureweAefo1s\WODIAHRY

Gg=lou3 T=puain S=PYIBN \uowiwod\whB

‘0=Ireq £=1no ‘7=sse;D ‘g=sse;n 5002~ 5002~ \sjopoweyep\wbho\ddeyeisisoey

% 000, ‘0=ssed ‘z=ul 'ST=001 '€¥=001 91Z, 1dy-8T Je-TT 0T 4000 Y000 99| \Bio\urew-eael\ais\WO DDA NoRY

0=l0113 0=PYIBN L=PYIBN| (8=s1W02 \reob\wbbo!

‘0=lred yT=n0 ‘0=sse|y ‘T=sse|Q 5002-" 5002- S002- 5002-" ‘gz'0=own) \siapowrerep\wbboddeyersiioey

%000 ‘0=ssed| ‘g=ul ‘0=001! '69=007] 243 Jdv-Gz|  tew-TT 8 Jdv-20) TeN-TT Y000 USZO L1adojanap 16V, \Bio\urew ene\2Is\NOD0A4RY

0=lo13 0=pylan S=pyiIsin (FT=SIWw00 \uonsanb\wbBho!

‘0=lred £=10] '0=sse|0 ‘1=sse|0 5002~ 5002~ 5002-" 5002- ‘GL°0=awn) \sjapourerep\wbbo\ddeyeisioey

% 000 ‘0=ssed| ‘L=l ‘0=001 ‘L8=001 15 1dv-Gz|  JeW-TT T TeN-TZ TeN:60 Y0010 YSLO L1adojenap Jass \Bio\ureweneo1s\WdDIMHRY
=10113 vI=PyBIN (p=s1w0d

“0=lre p=ino ‘g=sse| S002- 5002 5002 5002~ ‘05°0=on) !

% 058 ‘0=ssed| ‘g=ul '9€T=007] T8 1dy-eT)  Jdv-zT 7] Jdv-eT 1dv:0T 4000 U050 L1adojanap €15 \BIo\urew-enehoIs\ndDIRY

0=PUIoIN (g=s1w0d \s|eoB\sa|qeinoaxa’

€10 ‘z=sse) 50027 S00Z- S002- 5002 ‘Sz°0=auin) \seoejalunwbBo\ddeyelsiioey

% 00°00T ‘z=u '6=001] 80T, Jdv-Gz|  1dv-Go S Jdv-10) Jdv-v0 4000 U SZ0 L1adojanap €8 \Biourew enef\dIs\NOD040RY
9T=PYBN (g=s1w0d

TT=IN0] ‘g=sse| $002- 5002 S002-] 5002- ‘gg°0=own) \oseqisanwbBorddeyessiroey

% 16°06 ‘pe=ul '£91=007] ey Jdv-zz|  adv-gT S Jdv-02] Jdv-8T 4000 4850 L1adojanap s \Bio\urew ene\oIS\NODOA1RY

T=pPYlan| S=pyraiN (0T=S1Wo?! \J@anpai

0g=1n0 ‘1=5s8|0 ‘z=sse|0 5002- 5002- 5002-" 5002~ ‘G T=8Wn) \Knewsajenwbbo\ddeyeisiioey

% 000 ‘0=ul ‘$2=001 '251=001 09v| adv-gz|  TeN-TT OoT! 1dy-8T Jdv-yT  UsZjo USLT L1adojenap ¥SS| \Bio\ureweAeR2IS\ND D DA10RY
Z=PWON|  ETT=PUBIN (8T=S1W00

0=no|  ‘T=sse|D '6=5Se0 50027 S00Z- 5002 5002- ‘z6'g=own) \odonmainianouibnid

% S8'ES ‘o=ul  '81=001 '586=00] €8¢ ady-gz|  adv-zT 81 Jdv-gT WV TT  ulTo uze'Ee L1adojanap 995 \WOD\UIRW BARTDISINO DDANRY

0=lou3 0=PYIBN 8=PYBIN (6T=SIW0D \sjuauodwoDaays\eob\wbbo!

‘0=| £=1N0] ‘9=sse| S002- 5002 5002 5002- ‘5z°0=own) \sjapowrerep\wbbo\ddeyelsiroey

% 000 ‘0=ssed| ‘zT=ul ‘24=001 9zg TeN-9T|  JeN-TT 6T JeN-TT NTT Y000 USZO L1adojanap) 709, \Bio\urewenehoIs\NdDIRY

0=lou3 LT=PYaN (TZ=S1wo0d \uoisuawigreob\reob\wbBb!

‘0=lred 9=1no0 ‘1=sse|D 5002- 5002- 5002- 5002- ‘80°0=awn) \sjapourerep\wbBo\ddeyeisioey

% 000 ‘0=ssed| ‘pT=ul '88=001 0V JeN-9T|  FBN-TT, 1 JeN-TT JeN:TT Y000 4800 L1adojenap 709 \Blo\urew-eneo1s\WdDIMHRY

136



D.7.4 hackyZorro

The response to this question contains two results. First, a developer ranking, which is
provided in Table D.10. Second, a PRI ranking, which is provided in the Figure D.11. Further-
more, the results of the developer rankings were used to help aid the developer in selecting pack-
ages for inspection. Therefore, for Inspection 12, the packages org.hackystat.stdext.zorro.control,
org.hackystat.stdext.zorror.control.stream, and org.hackystat.stdext.zorro.model.action were selected.
It appears that the developer selected the control.stream and model.action packages to provide ex-
amples of the use of control package.

In this particular case, the developer ranking and PRI ranking disagreed that the package
was a MINI package, relative to other packages in the same module. However, because only one
inspection was conducted in this module, it is not known whether the developer rankings or PRI

rankings were incorrect.

Table D.10. hackyZorro Developer Ranking

Ranking | Package

1 org.hackystat.stdext.zorro.analysis

2 org.hackystat.stdext.zorro.control

3 org.hackystat.stdext.zorro.control.tokenizer

4 org.hackystat.stdext.zorro.jess

5 org.hackystat.stdext.zorro.action.file.refactoring

6 org.hackystat.stdext.zorro.model.episode

7 org.hackystat.stdext.zorro.model.action.command
8 org.hackystat.stdext.zorro.model.action.file.edit

9 org.hackystat.stdext.zorro.control.stream

10 org.hackystat.stdext.zorro.model.action.file

11 org.hackystat.stdext.zorro.model.action

12 org.hackystat.stdext.zorro.common

13 org.hackystat.stdext.zorro.control.tokenizer.selector
14 org.hackystat.stdext.zorro

137



Figure D.11. hackyZorro PRI Ranking - Inspection 12

mﬁ.mhg Buipjuey 14d mmm_m\i
| swes|
0=lou3 0=pylaN Z=PyIaiN (T=s1W0d
‘0=lred 0=1n0 ‘0=sse|D ‘T=sse|D 5002-| 5002 5002- 5002~ ‘80" 0=0wWn), \0110Zyx3pIS|
% 000 ‘0=ssed| o ‘/1=w ‘0=007, '6=001 o 0 0 0g; T/ rew-80  rew-80 T 1 rew-so feN:80 U000 U800 yiadojenap 8Y9) elshyoey\Biojis\ouozAtoey
z=loug S=pyleiN £6=pyeN (g=s1W0D. \BuLioloejaxa)
‘0=lre4 0T=1n0] ‘g=sse|D ‘g=sse|y S002-| 5002 5002 5002- '80"0=0WN), \UOIIIB\[3POW\OLIOZ\IXBPIS
% L'68 ‘0=ssed 0T ‘6=ul|  ‘00T=001 '102=001 Q o 0 209 1| udv-v0]  Jdv-v0 8 1 udv-eo Jdv-€0 4000 U800 yiadojenap 089, elshyoey\Bio\is\ouozAtoey
0=l013 Z=puieiN L=pusIN (8=s1wod
‘0=lred 0g=1n0] ‘z=sse|D ‘g=5Se|D S002-| 5002 5002 5002 ‘05°9=aun) \SisA[eur\01102\1xopis
% 0S'LE ‘0=ssed 14 ‘o=ul '21=0071 '€12=00] qQ o} q LEY| T ddv-gT]  adv-zT 8 T 1dy-gT Jdv-2T  U.Ti0 Y059 piadojanap [472 \eisjoey\Bio\dis\oL0ZANoRY
] 0T=puiBIN T9=PUIBN (£T=SIW0)
‘0=lres £T=1N0] ‘G=sse|D ‘£T=Sse|D)| S002-| 5002 5002 5002 ‘05°0=awn) \BI\UONIB\[BPOLL\OLIOZ\XOPIS
% EE'EY) ‘0=ssed 0z ‘ge=u1 ‘eyT=001 ‘LLy=00 o} [ IR T 1dv-p0|  dv-p0 €T T 1dy-g0 Jdv-T0 Y000 Y050 piadojanap Lzl \elsjoey\bioais\ouozAory
9=lou3 9=puyleiN 9p=pyeN (2=s1w00 ipo
‘e=lred 610 ‘g=sse|D ‘L=sse|D S002-| 5002 5002~ 5002- ‘Zv-0=own) \|l\UONOB\|3POL\OLIOZ\X3PIS
% 9€°98 ‘o=ssed|  zI|  ‘ST=ul '66=001 '288=001 o o 0 vz’ 1| udv-v0]  Jdv-v0 2| 1 adv-zo 1dv20 4800 uzro yiedojenap 0gL] welshyoey\Bio\is\ouozAtoey
zg=ion3 ZT=puIan ZT=PWenN (8=s1w00
‘06=lted ST=IN0] ‘T=sse|D ‘T=sse| S002-| 5002 5002~ 5002- '80"€=0n), \ssal\o1i0zyxapis:
% 00°00T ‘0=ssed 0T ‘0=l '90z=001 '902=007] Q 0 sver T Jdv-80|  JeW-20 g 1/ udv-go N0 UBOlE UBO'E piadojenap 8LL] weishyoey\Biojis\ouozAtoey
/=lou3 8=PUIBIN L2=PYIBIN (9g=s)w00
‘gz=Ired 6T=1N0] ‘p=sSe|D ‘6=SseID S002-| 5002 5002 5002 ‘85°g=auun) \I9ZIUBXON[0IU0D\0LI0Z\XOPIS
% 59'G6 ‘0=ssed! 8 ‘Tr=u|  ‘21€=007 ‘915=007] 9 Q61T T adv-go|  rew-gq %€ T udv-g0 BN-Z0 U LT[z UBSS) y1edojanap 8LL WeIshyoey\Biojis\ouozAtRy
£/=1013 (25=s100
‘69=Ired §=IN0 ‘0T=sseID) ‘Tg=sse|D)| S002-| 5002 5002- 5002 ‘LT TT=0wn) \WEBIS|[0AU0\0LIOZ\XBPIS|
% 00°00T ‘O=ssed 8z  ‘lg=w|  'p0€=D01  ‘S6TT=00] o 0 vree T adv-z0]  rew-ez 15 1 adv-z0 Nz 400y ULTTT 8LL] iRy
8z=iou3 9=puyleiN SZ=pWeN (Le=S1W0)
‘ze=ired 6£=1N0] ‘g=sse|D) ‘g=sse| 5002- 5002 5002 5002 ‘19 Tz=own) \|02IUOJ\OLI0ZX3PIS
% 8v'18 ‘0=ssed S ‘g=ul  'g91=001 '899=007] o 0 6082 T adv-pT)  en-T0 e 1 vyt 9e4:82  UBS'z UL9TZ yiedojenap 208 elshyoey\Biojis\ouozAtoey
0=lou3 £=puleiN 62=PWeN (2T=SIW09)
‘0=lred 9=1n0 ‘g=sse|D ‘9=sse| S002-| 5002 5002~ 5002- '85"0=on), !
% L5'8L ‘0=ssed 9 ‘g=ul '6=001 '902=001 o o 0 2s T Jdv-20  idv-p0 2t T udv-20 1dv-v0  U80j0  UBSD iadojanap €18 weishyoeu\Biojis\ouozAtoRy
z1=1013 S=puiBIN TZ=PuleN (T=s1W00
‘p=ired 610 ‘Z=sse|)) 'G=sSe|D 50027 5002 5002- 5002 ‘05°z=auwin) 10posida\[Bpow\0LI0Z\XapIS|
% 9826 ‘0=ssed 0T ‘gT=ul '88=001 ‘89T=001 Q q 0 8sy T Jdv-90  IeW-TO ST 1 adv-90 9949z uzyT u0ST 918 iRy
0=iou3 T=PUiBIN Z=PuiBIN (9=s1wod
‘T=lred =10 ‘T=sse|D ‘z=sse|o S002-| 5002 5002- 5002- ‘g€"0=awn), \UOLIWO\0LI0Z\IXBPIS
% 00'GL ‘0=ssed| 4 ‘g=ul ‘91=001 ‘08=001 Q o 0 €8T T/ rew-90]  rew-T0 9 1 ged8z 924182 4000 UEED yiadojenap 6v8 weishyoey\Biojis\ouozAtey
8g=lou3 2=puleiN zz=pWen (6€T=SIW0d
£21n0 ‘T=sse|D ‘p=sse| S002-| 5002 5002 5002- ‘g€’ T=own) \UOIIIB\[3POUWNOLIOZ\IXBPIS
% 00°00T v ‘ve=ul ‘=001 ‘Z€1=007] q Q9605 T Jdv-90 @+ 6ET! T udv-90 4zz  UEs9 UEeLT iadojanap 996, weishyoey\Bioris\ouozAtoRy
unsay MBIA 0D awil awiy awi
1s91| 1sal QUL JIBN anss| anss| 9y MaIA| unyd Juo)| Jwwoy Jwwod [ | BANOY DAY BNY
abesanod n| wun puadeqg EEREETN 9|l4| eso|p uado| 1se7| 8y 8pod| NWWoD 1se7 1S4 NWWoD AANOY 1se7 191 yadx3 Bupjuey: :(812) seoedsyiom

138



D.7.5 hackyTelemetry

The response to this question contains two results. First, a developer ranking, which is
provided in Table D.11. Second, a PRI ranking, which is provided in the Figure D.12. Furthermore,
the results of the developer rankings were used to help aid the developer in selecting a package

for inspection. Therefore, for Inspection 14, the package org.hackystat.app.telemetry.config was

selected.

In this particular case, the developer ranking and PRI ranking disagreed that the package
was a MINI package, relative to other packages in the same module. However, because only one

inspection was conducted in this module, it is not known whether the developer rankings or PRI

rankings were incorrect.

Table D.11. hackyTelemetry Developer Ranking

Ranking

Package

org.hackystat.app.telemetry.config

org.hackystat.app.telemetry.analysis

org.hackystat.app.telemetry.config.core

org.hackystat.app.telemetry.processor.reducer.impl

org.hackystat.app.telemetry.processor.parser.impl

org.hackystat.app.telemetry.processor.evaluator

org.hackystat.app.telemetry.processor.reducer.impl

org.hackystat.app.telemetry.processor.query

O ONOO|O A WDNF-

org.hackystat.app.telemetry.processor.parser

org.hackystat.app.telemetry.processor.query.expression

org.hackystat.app.telemetry.processor.reducer

org.hackystat.app.telemetry.processor.stream

139




Figure D.12. hackyTelemetry PRI Ranking - Inspection 14

Nﬁ.mmmf Buimjuey 14d mmﬂ?i

| swis|
o=iou3 O=PUIBIN|  90T=PUldIN (6E=S109|

A Gg=no 0=sse|0 ) 5002-" 002", 7002- ¥002-" ‘80"0=awn) \ldwi uasredyossaooid\knawajandde!

% 2559 ‘0 0 ‘L= ‘0=001 '8£67=007] 0 590/ 2| Jdy-Tg| unc-20) oy 1 Aew-og! Aen-0e 40010 U800 £ladojanap 08 A 1Ax0eY
662=10413 LT=PUIBIN 12=PWON (ep=s1w0d

‘gTT=lIed £2=1n0 ‘g=sse| ‘G=sse|0 5002-" 002", S002- ¥002-" ‘Zt6=own) \asreduossaooid\knawajandde;

% 99'68 ‘0=ssed 1] eT=u '91€=001 ‘€€v=007] 0 0.8T, 2| udv-tz|  AKew-iz] vy T Jdv-1g] Aew-Tz U199 uzv'e gladojanap 688 A 1AxoeY
T=iou3 T=PUIBIN 6T=PUION (5T=S1W00

‘0=Ires 8=10) ‘T=sse|) ‘g=sse|) S002- Y002 700" $002- ‘5, T=awn) \i2onpaiiossaooid\knawiejendde

% 05'28] ‘0=ssed| T pr=w ‘11=001 ‘€81=0071 o v 0 08S € W8T unc-To /T T Inc-10) ung:s0  Uzyio USLT iadojanap 068 A 1LAopRY
9T=I043 TI=PUIBIN £v=pUON (zz=s1w0d

‘9z=Ired Sz=1n0 ‘p=sse|y ‘0T=sse|0 S002-| Y002 5002 002" ‘LT g=own) \Inn\igonpaJ \lossaooid\Anawaandde

% 00'GL ‘0=ssed| 6 ‘le=u ‘S¥2=001 '268=007] 9 0 28T Z| Wz unc-T0 b2 T rew-rz Ae-TE  UEET ULTE ladojanap 26/ A 1LAopRYy

T=lo13 L=PpdN LS=PUIBIN (£g=s1W02| \uoissaidxa\fianb!

‘z=Ires ST=IN0 ‘p=sse|y ‘6T=SSe|0 S002°|  $002 5002 002" ‘26'0=auwin) \lossaooid\Anawajandde

% TT V6| ‘0=ssed| 9 ‘ev=u ‘£0T=0071 ‘16€=007] 9 0 995T z| rew-6T  Aew-TZ  vS € Jew-Te Aep:-Tz 42910 u80'T ladojenap 6v6! A LAopRY
z1=I043 LT=PUIBIN 06=PLaN (zv=suu00

‘ZT=Irey pz=Ino ‘9=sse|Q ‘LT=Sse|D S002-| 002 5002 002" ‘00°ZT=0wn) \0100\Byuod\knawajendde

% 1068 ‘o=ssed| €T ‘lz=w '€96=001  ‘¥9¥T=007] 0 9g9€g T| JeN-zZ|  AON-TO  Zb T rew-zz 006z USLE Y00ZT eledojenap 796 Vesfyoey\Biojis\Knawaja L Ajoey|
0=lou3 S=pulaiN SZ=pWeN (8T=S1W00

‘z=Ires z1=1N0 ‘g=sse|y ‘L=sse|D S002-| 002 5002 $002- ‘80" =) \weansuossaooid\knawsjandde

% 00°00T ‘0=ssed| v ‘eg=ul '901=001 '852=0071 Q o 0 016 Z| Wy unc-TO 02 2| rew-vT Aep-0e YOO LTV eledojenap €16 Velsfyoey\Biojis\Knawaje L Ajey|
ST=l0u3 ZT=PWeN £2=PUION (0g=s1w00

‘og=|red £€=1n0. ‘g=sse|D)! ‘9=sse|D 5002- 002~ 5002 002~ ‘00"6=aLI1 \lojenjena \lossaooid\Anawajandde.

% 9968 8 ‘ee=ul '80€=0071 '212=007] 0 ez v| JeW-vZ|  unc-L0 9€ v Jew-vz ung:90 Y O0SlE U .96 ledojenap 9.6 VelsAyoey\Biojis\Knawaja L Apoey|
T=PWeN £E=PUIBN (80T=s1W00

9T=1N0 ‘T=sse|y ‘L=sse|D S002-| 002 5002 002" '00°9z=on) \Byuoo\knawajendde

% SLEY| T T=w '6=001 'e6=007] 0 ovoL z| rew-gz|  unC€T OTT 2| Jew-6T ung-0T Y O0S'E UB0'OZ, eladojonep 1201 Veshyoey\Biojis\Knawaja L Apoey
T=lou3z L=pUydIN cE=PUIBIN (T9=s1Wo00|

‘T=lred 21=1n0 ‘g=5Se|Q ‘8=sseID S002-| 002" 002" 002 ‘LT°9=aun) \uenbuossasoid\Anawajandde

% 2’88 ‘0=ssed L) ‘se=ul '/§T=001 '686=007] 0  66.2 2| few-61| Aew-ig) 29 2| Ro-TE Kew-1z  yosit usz9 gladojanap 6201 A 1Ax0ey
9z=lon3 L=pyBIN T=PuBN (0€T=S1WI00

‘9g=lted £9=1n0) ‘p=sSel) '6=Sse|D 50027 002" S002- 002 ‘e€'6Z=0w) \sisAjeue\Anawajandde!

% £9'98! ‘0=ssed L ‘g=uy '667=0071 '¥§8=007] (o[ 72 2| few-gz| idv-97 zeT 2| fen-ez Jdy-9z  ussly U8s6e £ladojanap 9v0T A 1Ax0eYy
S9T=10413 6Y=PUION SL=pUIBN (8T=S1W0)

£p=1N0 ‘0T=sse|D ‘0g=sse|0 S002-| Y002 5002 ¥002- ‘85-€g=aur \idwi \1sonpaiviossaooidiAnawsjandde!

% 00°00T 6z ‘eT=uj  '€121=001 '0802=00 7 0 89601 9| Wz  unc-10 29T v Jew-6z AeN:TE U EE6 UBO'LZ iadojonap 1507 A 1AoRY

M3IA pli[e] oD awl | |awl] | awil |
nsay| 1sal JUBIN IDEN anss| anss| 9Yy| MaIA  uInyd W Jwwo) Jwwod| yw awi] | BAY BAY BAY [ |
abe1ano)! 1S9 wun nun| puadaq 9|4 1S9 | 94| @so|p| uado iseq Yy 8pod wod iseq 1sli4 wod BANIY| Iseq Isi4 S8l DAY uadx3 Bunjuey :(LT2) seoedsyiom|

140



D.8 Question 8

Question 8. To the best of your knowledge, please provide the top 5 modules that you think need
to be inspected and the top 5 modules that you think do NOT need to be inspected.

The Tables D.12, D.13, D.14, D.15, D.16, and D.17 present the results of this question.
Each table is one participants response. When available, | provide the participants justification for
giving a module a specific ranking. “??” means that the participant could not provide an module.
“N/A” means that the participant does not believe there is an appropriate module.

Figures D.13, D.14, D.15, and D.16 provide a graphical view of the responses.

Table D.12. Question 8 Responses - Participant 1

Ranking | Module | Explanation
Modules that need to be inspected

1 hackyCGQM New code
2 hackyZorro New code
3 hackylssue New code
4 hackyDependency New code
5 ??

Modules that do not need to be inspected

1 hackyKernel Old code
2 hackyStdExt Old code
3 hackyStatistics Old code
4 hackyReport Old code
5 ??

141



Table D.13. Question 8 Responses - Participant 2

Ranking | Module | Explanation

Modules that need to be inspected

1 hackyCGQM Causes many build failures

2 hackylssue Knows there are defects in this code
3 hackyZorro New code

4 ??

5 ??

Modules that

do not need to be inspected

—

1 hackyJupiter Fairly old code. No new developmer
Worked last year.

2 hackyKernel Core module. Used a lot. If there are prab-
lems, then it would show up somewhere fast.

3 hackyStdExt Same as previous explanation

4 ??

5 ??

Table D.14. Question 8 Responses - Participant 3

Ranking | Module | Explanation

Modules that need to be inspected

1 hackyCGQM Frequently fails build. New code.

2 hackyZorro Code has not been reviewed.

3 hackyHPCS Code has not been reviewed.

4 hackyKernel Important code

4 hackyOffice None of the office sensors work properly

Modules that

do not need to be inspected

N/A

No code should be excluded from inspection

N/A

N/A

N/A

W NP

N/A

142



Table D.15. Question 8 Responses - Participant 4

Ranking

| Module

| Explanation

Modules that need to be inspected

1 hackyEclipse | don't trust the code.

2 hackyCGQM New code

3 hackyZorro New code

4 hackylssue New code

5 hackyPRI New code

Modules that do not need to be inspected

1 hackyStatistics Works fine.

2 hackyVIM No one uses it. Who cares?

3 hackyTDD No one uses it (after the new hackyZorro re-
placed it). Who cares?

4 hackyCLI No one uses it. Who Cares?

5 hackyJBuilder No one uses it. Who Cares?

Table D.16. Question 8 Responses - Participant 5

Ranking | Module | Explanation

Modules that need to be inspected

1 hackyStdExt Large module and has many dependencies.

2 hackyCGQM New code and new developer.

3 hackylssue | want to learn about the code.

4 hackyTelemetry Important code. Used a lot.

5 hackyCLI Could be useful, but we haven't paid any at-
tention to it.

Modules that do not need to be inspected

1 hackyKernel Important code, but we can detect errors
quickly.

2 hackyStatistics Small module and its not used a lot.

3 hackyReport Been stable for a while. No new development.

4 hackyEclipse Been refactored. Has high use, so defects will
be found quickly.

5 hackyPrjSize No one uses it. Who Cares?

143



Table D.17. Question 8 Responses - Participant 6

Ranking | Module | Explanation

Modules that need to be inspected

1 hackyCGQM Always fails the build.
2 hackyZorro Always fails the build.
3 hackyStdExt Always fails the build.
4 ??

5 ??

Modules that do not need to be inspected

1 hackyStatistics Never fails the build.
2 hackyReport Never fails the build.
3 ??

4 ??

5 ??

144




B Number of Responses

OoOrRrNWhUOION

Figure D.13. Question 8 Part 1 Responses - Provides the total number of responses that the partic-
ipants felt were MINI modules. ?? indicates that the participant did not know which module were
MINI.

BENumber of Responses

OoORrNWAUUION

S,
) %
%,

Figure D.14. Question 8 Part 2 Responses - Provides the total number of responses that the partici-
pants felt were LINI modules. ?? indicates that the participants did not know which modules were
LINI. N/A indicates that the participants felt no module should be declared LINI.

145



B Number of Responses

urea
01 juep

J1adojanag
MaN

pamainay
10N 9poD

1SNnIL ON

sasn
auQ ON

a|NpoN
juenodw)

Apoaiod
SHIOM

sp95ea
umou

sainred
piing oN

sainjreq
ping Auep

SINPON
llews

SINPON
abreq

9poJ PIO

apoD MaN

Figure D.15. Question 8 Part 1 Responses - Provides the total number of similar explanations used

when ranking the top 5 MINI modules.

‘DNumber of Responses

N |

o

———t
~NOWLSOMNAO

urea
O1]luep\

Jadojanag
MaN

pamainay
10N 8pod

1SNIL ON

sasn
auQo oN

a|npon
juenodw|

Apoaiiod
SHIOM

[SLEIET|
umouy|

sainred
piing ON

sainjreq
ping Auew

3INPON
llews

3INPON
abie

3pod pIo

9poD MaN

Figure D.16. Question 8 Part 2 Responses - Provides the total number of similar explanations used

when ranking the top 5 LINI modules.

146



D.9 Question 9

Question 9. To the best of your knowledge, please provide the top 5 workspaces that you think
need to be inspected and the top 5 workspaces that you think do NOT need to be inspected.

The Tables D.18, D.19, D.20, D.21, D.22, and D.23 present the results of this question.
Each table is one participants response. When available, | provide the participants justification
for giving a workspace a specific ranking. “??” means that the participant could not provide an

workspace. “N/A” means that the participant does not believe there is an appropriate workspace.

Table D.18. Question 9 Responses - Participant 1

Ranking

| Module | Explanation

Workspaces that need to be inspected

1 hackyCGQM/src/java.main/cGQM/ ply-High Coverage
gin/common

2 hackyCGQM/src/org/hackystat/ High Coverage
app/cggm/interfaces/executables/goals

3 hackyCGQM/src/org/hackystat/ High Coverage
app/cggm/interfaces/executables/questions

4 hackyCli/src/org/hackystat/ High Coverage
app/cli/dailyanalysis

5 ??

Workspaces that do not need to be inspected

1 hackyVCS/src/org/hackystat/ Low Coverage
app/commit/analysis/projectchurn

2 hackyVCS/src/org/hackystat/ Low Coverage
app/commit/dailyanalysis

3 hackyStdExt/src/org/hackystat/ Low Coverage
stdext/bufftran/dailyanalysis

4 ??

5 ??

147




Table D.19. Question 9 Responses - Participant 2

Ranking | Module | Explanation

Workspaces that need to be inspected

1 hackyCGQM/src/java.main/org/hackystat/ | Package name seems ir
app/cggm/manager portant

2 hackyCGQM/src/java.main/org/hackystat/ | Package name seems it
app/cggm/telemetry/webHookDataSource | portant

3 hackyCGQM/src/java.main/org/hackystat/ | Package name seems ir
app/cggm/telemetry/webHookDataSource/ portant
describer

4 hackylssue/src/org/hackystat/ New code. Known issues.
stdext/issue/reducer

5 hackyAnt/src/org/hackystat/ New code. Importan
stdext/sensor/ant/jira code.

Workspaces that do not need to be inspected

1 hackyKernel/src/org/hackystat/kernel/shell| Important code.

2 hackyKernel/src/org/hackystat/kernel/shell/ Works correctly.
command/

3 hackyKernel/src/org/hackystat/kernel/soap| Works correctly.

4 hackyKernel/src/org/hackystat/kernel/util | Works correctly.

5 hackyKernel/src/org/hackystat/kernel/timer] Works correctly.

148



Table D.20. Question 9 Responses - Participant 3

Ranking | Module | Explanation

Workspaces that need to be inspected

1 hackyCQGM (any workspace) No idea which
workspace, but we
should inspect something
in this module.

2 hackyZorro (any workspace) No idea which
workspace, but we
should inspect something
in this module.

3 hackyHPCS/src/org/hackystat/ Developed quickly.

app/hpcs/dailyproject

4 hackyKernel/src/org/hackystat/kenrel/sdt | Before new improve
ments are implemented

5 hackyOffice (activity package) Known issues.

Workspaces that do not need to be inspected

1 N/A No code should be ex-
cluded from inspection

2 N/A

3 N/A

4 N/A

5 N/A

Table D.21. Question 9 Responses - Participant 4

Ranking | Module | Explanation

Workspaces that need to be inspected

1 ?? | have no idea.

2 ??

3 ??

4 ??

5 ??

Workspaces that do not need to be inspected

1 ?? | have no idea.

2 ??

3 ??

4 ??

5 ??

149



Table D.22. Question 9 Responses - Participant 5

Ranking

\ Module

Explanation

Workspaces that need to be inspected

1 hackyAnt/src/org/hackystat/ Known issues.
stdext/sensor/ant/junit

2 hackyCGQM (any workspace) Code standards.

3 hackylssue/src/org/hackystat/ sdKnown issues.
text/issue/reducer

4 hackyReview/src/org/hackystat/ Improvements from last
app/review/analysis/cache inspection.

5 hackyZorro/src/org/hackystat/sdtext/zorro/jeEsmown issues.

Workspaces that do not need to be inspected

1 hackyKernel/src/org/hackystat/kernel/util | Used widely.
2 hackyKernel/src/org/hackystat/kernel/user | Used widely.
3 hackyStatistics (any workspace) Not being used. Simplg
code.
4 hackyReport (any workspace) Used widely.
5 hackyEclipse (any workspace) Used widely.
Table D.23. Question 9 Responses - Participant 6
Ranking | Module | Explanation

Workspaces that need to be inspected

A%

—F

—F

1 hackyCGQM (any workspace) Many build failures. No
idea which workspace
but we should inspec
something in this module.

2 hackyZorro (any workspace) Many build failures. No
idea which workspace
but we should insped
something in this module!.

3 ??

4 ??

5 ??

Workspaces that do not need to be inspected

hackyStatistics (any workspace)

hackyStatistics (any workspace)

hackyStatistics (any workspace)

hackyStatistics (any workspace)

W NP

hackyStatistics (any workspace)

150



Appendix E

Inspection and

Post-Inspection-Questionnaire Results

E.1 Inspection 8

Table E.1. Inspection 8 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Package org.hackystat.stdext.review.analysis.cache
Module hackyReview

Developer Ranking MINI (See Table D.7)

PRI Ranking MINI (See Figure D.7)

Product and Process Measures See Figure D.7

Inspection Date April 6, 2005

Jupiter Review ID ReviewAnalysisCache

Number of Inspectors 5

Meeting Attendance 7

151



Table E.2. Inspection 8 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 1 1 2

2 2 2 4

3 2 1 2 5

4 1 3 4 8

5 2 2 1 5
Total 1 7 11 2 3 24

Table E.3. Inspection 8 - Provides the valid defects found by the participants grouped by Type and
Severity.

Coding Program | Optimi- Usability | Clarity Suggestiorn
Standards | Logic zation

Critical 1

Major 2 3 1 1

Normal 5 2 2 2

Minor 1 1

Trivial 2 1

Total 10 6 1 2 5 0

Table E.4. Inspection 8 - Provides the responses from the Post-Inspection-Questionnaire

Question Yes No
Did this package needed to be inspected? 5 2
Did you learned something from this inspection?| 5 2
Did the inspection of this package increase its levél 0
of quality (once all the issues are resolved)?

152



E.2 Inspection 9

Table E.5. Inspection 9 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Package org.hackystat.stdext.issue.reducer
Module hackylssue

Developer Ranking MINI (See Table D.8)

PRI Ranking MINI (See Figure D.8)

Product and Process Measures See Figure D.8

Inspection Date April 13, 2005

Jupiter Review ID IssueReducer

Number of Inspectors 6

Meeting Attendance 7

Table E.6. Inspection 9 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 7 7

2 1 3 4

3 2 2

4 2 7 9

5 5 5

6 2 5 1 2 10
Total 0 16 13 4 4 37

Table E.7. Inspection 9 - Provides the valid defects found by the participants grouped by Type and
Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical

Major 2 7 3 1 2

Normal 1 5 4 2 1

Minor 2 1 1

Trivial 4

Total 9 13 3 4 3 4

153



Table E.8. Inspection 9 - Provides the responses from the Post-Inspection-Questionnaire

Question Yes No
Did this package needed to be inspected? 7 0
Did you learned something from this inspection?| 7 0
Did the inspection of this package increase its lgvél 0
of quality (once all the issues are resolved)?

154



E.3 Inspection 11

Table E.9. Inspection 11 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.app.cggm.interfaces.executables,
org.hackystat.app.cggm.interfaces.results,
org.hackystat.app.cggm.implementations.executables

Module hackyCGQM

Developer Ranking MINI (See Table D.9)

PRI Ranking LINI (See Figure D.9)

Product and Process Measures
Inspection Date April 27, 2005
Jupiter Review ID cGQMinterfaces
Number of Inspectors 6

Meeting Attendance 7

See Figure D.9

Table E.10. Inspection 11 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 1 1 2 1 5

2 5 2 7

3 10 10

4 6 6

5 5 3 1 9

6 2 3 5
Total 1 13 14 14 1 44

Table E.11. Inspection 11 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical 1

Major 2 6 2 1 3

Normal 8 1 1 3

Minor 11 1

Trivial 1

Total 22 7 3 2 0 7

155



Table E.12. Inspection 11 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 6
Did you learned something from this inspection?| 7
Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

ool

156



E.4 Inspection 12

Table E.13. Inspection 12 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.stdext.zorro.control
org.hackystat.stdext.zorro.control.stream,
org.hackystat.stdext.zorro..model.action

Module hackyZorro

Developer Ranking MINI (See Table D.10)

PRI Ranking LINI (See Figure D.11)

Product and Process Measures See Figure D.11

Inspection Date May 04, 2005

Jupiter Review ID DevelopmentStream

Number of Inspectors 5

Meeting Attendance 6

Table E.14. Inspection 12 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 3 4 1 8

2 2 3 1 6

3 3 3 1 7

4 2 2 3 7

5 3 3
Total 0 13 12 6 0 31

Table E.15. Inspection 12 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical

Major 1 4 1 2 3 2

Normal 7 2 3

Minor 6

Trivial

Total 14 4 1 4 6 2

157



Table E.16. Inspection 12 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 5
Did you learned something from this inspection?| 3

Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

Rlwlk

158



E.5 Inspection 13

Table E.17. Inspection 13 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.stdext.issue.reducer
Module hackylssue

Developer Ranking Second review of this package
PRI Ranking LINI (See Figure E.1)

Product and Process Measuresg See Figure E.1

Inspection Date May 4, 2005

Jupiter Review ID IssueReducer2

Number of Inspectors 4

Meeting Attendance 6

Table E.18. Inspection 13 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 1 1

2 5 1 6

3 1 0

4 1 2 3
Total 1 7 1 2 0 11

Table E.19. Inspection 13 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical 1

Major 3 4

Normal 1

Minor 2

Trivial

Total 5 6 0 0 0 0

159



Table E.20. Inspection 13 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 3
Did you learned something from this inspection?| 3
Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

N W W

160



Figure E.1. hackylssue PRI Ranking - Inspection 13

oc.mowf Buipjuey 14d mmm_m\i
| siers|
J=10113 v=PUIBW|  8T=PyION
‘Te=lred €¢=1n0 ‘T=sse|n ‘z=sse;n 5002~ G002 S002- S002- \1afoidAjrep\anssiuxaps:
% 00°00T ‘0=ssed T ‘g=ul '99=001 '9€5=007] Q Q LLET 4 Jdv-Go 984-vT| 8T, 4 J1dv-62 9o4-€T U850 YegIT 8LL eIsAey\BIo\us\enss|oey
6=I0413 T=puysn G=pyBIn (TT=S)wo; \s|rejopioaloidans:
‘0=Ired Te=no ‘T=sse|;n ‘z=sse|n 5002~ G002~ S002- S002- ‘LT°g=aun) \sisA[eue\anssiixapis
% 00°00T € ‘T=ur '2e=001 '822=00 T Q 0 619 T Jdv-Go 994-0¢ T T 1dv-y0 994761 U.LTI0 ULTE ziadojanap €6L VeIsApey\BIo\Is\enss|Oey
€=pus L=pyan (9=s1w09,
¥2=1no ‘T=sse|0 ‘z=sse|n S002- 5002 5002 5002 S002- 'L Lz=awn) \18onpa.\anssiuxapis
% 00°00T 9 T=ul '79=0071 '1€2=001 0 4 Jdv-/3 8¢ LLTT T dv-TT TeN-60| 9 4 1dv-62 go4-82 Yyzerle U008e 91adojanap T06! weispoey\Bioyais\anssifoey
Zr=loL3 =Py 2e=pus (8T=S1IWO02|
‘eT=lred €T=1N0 ‘g=sse|0 '8=sse|0 5002~ 5002 G002 5002 S002- ‘Zy"e=aum) \IPS\aNSSINXaPIS!
% 818! ‘0=ssed [43 ‘9=ul '16=0071 '26€=001 T 0 1dv-62 89 8EET 4 Jdv-TT 994-80 €€g| Z adv-22 994-0T 4Y26/0 U 00! 91adojanap 886 veisyoey\Bioyais\anssifoey
Jnsay! BIEN MBIA 0D awil awil Enm
1591 1s91 ol ome| enss|| anss| 8y MaIA| unyd| JUOD| HWWOD| HWWOD)! oWl  eANOY|  9ANdY|  SANIY| awi |
abesanod wun|  wun| pusadag 1591 84| @so;p| uado 1se7| 8y 8poD| Nwwo); 1se7 1SI4 JWWoD|  dANdY 1se7 15114 1591 anY uadx3 Bunjuey :(812)

161



E.6 Inspection 14

Table E.21. Inspection 14 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.app.telemetry.config
Module hackyTelemetry

Developer Ranking MINI (See Table D.11)

PRI Ranking LINI (See Figure D.12)

Product and Process Measures See Figure D.12

Inspection Date May 11, 2005

Jupiter Review ID TelemetryWebConfig

Number of Inspectors 6

Meeting Attendance 6

Table E.22. Inspection 14 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 1 4 5

2 1 2 3

3 1 2 3

4 3 4 7

5 4 1 5

6 2 1 3
Total 1 13 12 0 0 26

Table E.23. Inspection 14 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical 1

Major 3 1 1 5 2

Normal 6 2 3 1

Minor

Trivial

Total 9 4 1 8 1 2

162



Table E.24. Inspection 14 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 6
Did you learned something from this inspection?| 6
Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

[ellelle]

163



E.7 Inspection 15

Table E.25. Inspection 15 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.kernel.cache

Module hackyKernel

Developer Ranking N/A - hand selected via PRI ranking
PRI Ranking LINI (See Figure E.2)

Product and Process Measuresg See Figure E.2

Inspection Date June 1, 2005

Jupiter Review ID KernelCache

Number of Inspectors 6

Meeting Attendance 5

Table E.26. Inspection 15 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 0

2 1 1

3 2 2

4 3 2 5

5 0

6 1 1 2
Total 0 1 6 2 1 10

Table E.27. Inspection 15 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical

Major 1

Normal 3 1 1

Minor 2

Trivial 1

Total 6 2 0 0 1 0

164



Table E.28. Inspection 15 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 2
Did you learned something from this inspection?| 4

Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

RiRlw

165



Figure E.2. hackyKernel PRI Ranking - Inspection 15

Bumjuey 1¥d mew\i

177007
| swes|
p=ioi3 (pz=sww0d
‘v1=led y=Ino 0=sse|D ‘p=sse| S002-| 002" 5002 002" ‘)", T=own) sonjeuIsy
% EE'E6. ‘0=ssed o ‘gg=ul ‘0=001 '995=007] Q q 692 € Aew-oz udv-90 oz fen-zt JeN-6T U 9)0 U8S6T T1adojenep s8L Sy
0=lou3 0=pyaiN €=pysn (6=s1w0d
6=Ino ‘0=sse[D ‘z=sse p00Z-| €002 002" £002- *19°0=auwin) \Uo[RPIDY
% 00'5Z 0 ‘g=ul ‘0=001 '89=007] o o o 112 2| ddv-tz]  Aew-vo 2T Jdv-1¢] Rew-0e 40010 uESD! Tiadojanap 288 Sy
0
=10 ‘9=sse| $00Z-| €002 $002- £002- \PUBLILIOD\([2YS\[3UIa
% ¥6°2S o ‘Te=u *182=001 q q 0 eg9 S| MON-ST  Aew-v0 LT NON-PT| ABW-S0 4000 ULT'T 168 Shopoe
=| (zT=s1Ww0d
g=Ino ‘p=sSe|D S002-| €002 5002 £002- *19°T=auwn) ups\jeuis
% 89°EL 0 ‘trr=w ‘21r=007] o (o[ 4 €| Jldv-so| Aew-v0 oz Jdv-G0! ARew-90 40010 uEEE! Tiadojanap 168 MHRY|
0=PWaN 2Z=pyan (6=s1w0d
9=Ino ‘0=sse|D ‘g=sse|D S002-| €002 5002 £002- *LT0=awn) \I0SUBS\[aUIB
%8LLL 0 ‘e=ul ‘0=001 ‘06T=001 q q 0  ssg Z 90T Aew-vo  zT 94-0T 0O-Z0 400D YLTO T1adojenep 116 Sy
0=PWaN vZ=puysin (2z=s1w09|
6=Ino ‘p=sse|y ‘9=sse|D $002-| 002" 002" 002 ‘gG°9=aun) \ieBBojowauIax;
% 9v'8E. o ‘ot=u ‘0=001 ‘0€2=007] Q g 8IIT € 1WOSz uergz 9 100-52 UB(-9Z 40010 U269 giadojonep 186 SHopoe
0=puIeN 0/=PUIdBN (ze=siwo
TZ=In0 ‘0=sse|D ‘g=sse|D S002-| €002 5002 £002- ‘Gz p=aun) \eIBPIOSUBS\[UIS
% 22TL 0 ‘eer=ul ‘0=001 ‘019=007] Q q  s8T € udv-so  Aew-v0 S 1dv-6T ung-Zo 400l  uzr's T1adojenep ov6 SHhpoe
0=PUIBIN L=PYIBIN (=s1w0d
z=Ino ‘0=ssely ‘z=sse S002-| €002 5002 002 *LT0=0wn) \Jowimauid
% EE°E8 0 ‘p=ul ‘0=001 '29=001 Q q 0 goT z uer-90 Aew-vo 6 ueC-90 Kep-ez U000 ULTO Tsadojenep 596 ©
0=lou3 0=pUIBIN £r=pulaN (6=s1wo) o
‘0=lred zT=I0 ‘0=sse[D ‘g=sSe|D 002 $00Z-| €002 002" £002- ‘26°€=awn) -
% 98'29) ‘0=ssed 0 ‘og=ul ‘0=001 ‘¥89=001 0 Z 1006 T 088T S| MONST  Aew-v0 T2 NON-20] Kew-zz U000 us8S8 Tiedojanap 620T
0=lou3 T=PUlBIN 8=pUIBIN (TT=s1W00
‘p=Ied 11=I0 ‘T=SSe[Q ‘p=SSe| $002-| €002 002" £002- *19°0=awn) \deos\jausax
% ¥9°€9) ‘0=ssed z ‘9=ul ‘8€=001 ‘202=001 Q q 0 sé] z w80 Aew-vQ LT NON-GT| Aep-v0  ULTD  U8ST Tiedojanap PYOT SHopoe
z=lou3 £=pulBIN SS=pulBN (9z=s1w0d
‘g=lled g=Ino ‘z=sse[D ‘g=sse|D S002-| 002" 5002 002 ‘gg°z=awn) \lasn\aua
% V6'€6. ‘0=ssed 9 ‘vey=ur ‘02=001 ‘795=00] 1 0 g 609T € IeWN-J0  uer-0z 62 1dv-6T UB[:0Z U800 YOO Tsadojonap 2507 Moroe
Gz=lou3 T=PUIBIN Lz=puleN (Tpy=s1wo0d
‘6e=lred ST=IN0 ‘T=sse[) ‘g=sse|D S002-| €002 5002, £002- ‘19 p=own) \oAwauIdY
% LT'6L. ‘0=ssed 2z 'seT=ul '6=001 '695=00] Q g e0zz v| adv-T0|  Aew-v0 .S TeN-62 Ken-v0  usziD U809 Tiedojanap 90T SNy
TT=1013 Z=pulBiN yz=pulen
‘z=lted ot=Ino ‘z=sse[D ‘8=sse|D 7002 S002-| 002" $002- 002 \dewasn\I0suas\jaud
% T6°0. ‘0=ssed v ‘L=u ‘¥§=001 ‘e62=001 0 0 100 vg  €erT S| 9ed9T  WO-0T 8 NON-8T| 0080 USZT YLTTZ 60T Sy
=i013 T=PUlBIN pr=pulaN (zT=s1W00
‘0=lted T1=I0 ‘T=SSe[Q ‘p=sSe|D $002-| €002 $002- £002- ‘80°z=aun) \PUBLILIOD\[2UIDY
% ¥2'88 ‘0=ssed| 4 ‘z8=ul ‘01=001 ‘18v=007] o Q9 ¥60T 2| des-vz| Aew-v0 /T des-vz ReW-v0  U€eD  uzve TJadojanap ¥60T Sy
z=lou3 y=PUIBIN Se=pulaN (eT=s1W00
‘0=lred z=Ino ‘T=sSe[Q ‘g=sse| y00Z-| €002 002" £002- ‘gg°z=awn) \8UoED\[BUIDY
% 0E'T6. ‘0=ssed 8 ‘st=ul '58=001 ‘1v€=001 q q o  6eg z| 9a0T Aew-v0 ST 290-0T| ReN-v0  U0S0 USLT Tsadojonap 00TT Moroe
£97=1013 2Z=PUBIN|  TST=PUIBIN (p5=s1w0d
‘6=lted 9T=IN0 ‘0T=sse|D) ‘9g=sse|D)| S002-| €002 5002 £002- ‘g5'g=auuin) \nnyBuIRY
% 00°98! ‘0=ssed  zg|  ‘9gp=ul ‘18€=001 ‘LT€T=007] Q q  gs% S MWz Aew-yQ 2TT TeN-8T AeN-v0 U 0SIL UEELT piadojanap 6vTT SRy
L1=1013 0T=PuIBIN S6=PUIBIN (86=s1w00
‘9z=lted 9z=1n0 ‘g=SSeQ “TT=sse|D)| S002- S002-| €002 5002 £002- ‘05'Gz=awn) \uIIpE\[2UIaY|
% 8208 ‘0=ssed oz| ‘srT=u ‘ST1=001 '886=001 14 2| adv-/g T €859 S| Aew-zt| Aew-vg zsT Kew-zt Aey S uszey TJadojanap x4 MHRY|
M3IA 0D |awiL
Insay| 1S9l OB JUBN| 8nss| anss| ay| maiA| wnyd NW| JWwWoD| Nwwod| Nw BANOY|
abeianod 191 wun|  wun puadaq 159 Ell aso|p|  uado jseq|  9y| 8pod| wod 17 1SU14| WoD)! 18114 uadx3 Bunjuey :(1zz) seoedsyiom




E.8 Inspection 16

Table E.29. Inspection 16 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.stdext.project
Module hackyStdExt

Developer Ranking N/A - hand selected via PRI ranking
PRI Ranking LINI (See Figure E.3)

Product and Process Measuresg See Figure E.3

Inspection Date June 1, 2005

Jupiter Review ID Project

Number of Inspectors 5

Meeting Attendance 5

Table E.30. Inspection 16 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 1 2 1 4

2 0

3 1 1

4 1 1 2

5 1 2 3
Total 0 3 4 3 0 10

Table E.31. Inspection 16 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical

Major 1 1 1

Normal 1 2

Minor 1 2

Trivial

Total 0 0 2 1 3 3

167



Table E.32. Inspection 16 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 3
Did you learned something from this inspection?| 4

Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

RPN

168



Figure E.3. hackyStdExt PRI Ranking - Inspection 16

G=louz T=PYsN G=pYIBIAI (0T=s1w00
‘ 01=1n0, ‘T=sse|D ‘g=sse|D) $002-|  €00Z- $002- £002- ‘Z'z=own) 1pBIJUOD \St I
% 00'00T ‘0 4 ‘T=u '01=001 '98=007] o o 1174 T unc-gz| WO-¥T 0T T Aew-6z PO-ET  USZlo uzre Tiadojanap 8201 veishyoey\Bio\IsuxapisAioey
o 0=PUIBIN 62=PUION (TT=SIW0D,
0 yT=In0 ‘0=sse| ‘p=SSe|D $002-| €002 002" £002- ‘Zv"0=awn) \sisAeueAirepyxepis
% 00°06 ‘0 0 ‘6= ‘0=001 ‘2€2=007 qQ [o} o] 8T. v Bnv-1e] Aew-so 9z v Kew-9z, AeN:SO 400/0 YLITT TJadojenap ¥EOT weIsiory\Bio\0isuxapISAoey
Tg=i0u3 T=PyleIN 2=Pule (9=s1W00
‘eT ‘T=sse|) ‘Z=sse|D $002-| 002 002" 002" ‘LT°0=awn) !
% 00°00T 0 z '01=001 '5/=001 o 0 0 59 2| des-0g uer-0z /| 1/ 1dv-e0 Jdy£0 U LTI0 ULTO Tiadojenap SE0T ersroey\Bio\aisuxapisoey
0g=lou3 T=PUIaN S=puleiN (6=51w00
‘g1=lted 81=1n0 ‘T=sseD ‘z=sse|) $002-|  00Z- 7002 002 ‘8G°0=awn) 1
% 00°00T ‘0=ssed 4 ‘0= '81=001 '26=007] o o 621 ¢/ des-og| uerzy 0T T 1dv-60 uer-TT  40Si0 Y80 Tiadojanap ovotT veisOpey\Biowisuxapishioey
9g=lo3 T=pyleN Z=Pylan (G=s)wioo,
‘sz=Ired 9T=1n0 ‘1=sse|) ‘z=sse|D $002-| 002" $002- $002- ‘LT T=own) \BIBPIOSURSISI| \SISA[EUR\UOWILIOIIXBPIS!
% 00°00T 4 ‘0=ut ‘61=001 ‘08=001 o o 0 16 2| des-og| uer-oz 9 T Jdv-90! Jdve0  UZTIT  UITT Tiadojanap vv0T veisyoey\Bio\IsuxapisAioey
T=PUIBIN 6=PUIBIN (LT=S1W0D,
yT=1N0 ‘T=Ss€1D ‘z=sse|0 $002-| €002 002" £002- ‘Sz'9=awn) \sisAeueAjrepyoaloiduxapis
% 058 Z ‘T=ul  'zz=001 ‘6ET=00" o 0 s9zT v uncgz| Bnv-.T)  vE g unrzz bny-4T  yoSiT usoL g1adojenap L1107 vershiory\Bio\aisuxapisiioey
1G=1013 8=pUlaiN SL=PUIaiN (5g=s1W00
‘9z=Ired £2=1n0 ‘g=sse|y ) 5002-| €002 5002 £002- ‘G/°g=awn) \eoedS3IoMuXapIS|
% St'S6 ‘0=Ssed| 9T ‘zpT=u '€62=001  '€90T=00 2 [o|IA 72 y| dedzz| Aew-90 .6 9 w60 AeN:50 Y osiz USLTT 80T
g=lou3z T=pusn S=pus (2=s1wo02! \ewnajposfoid
‘vT=lted 0z=1n0 ‘T=sse|D ‘z=sse|) $002-| 002" $002- $002- ‘£€°0=awn) \SISA[RURVAIATORXBPIS|
% 00°00T ‘0=ssed 4 ‘0=ut ‘02=001 '2€1=007] o o 0 44 €| NON-60| unc-sg 1) T unc-yg| ung-vz  UZTI0 Y EE0 Tiadojanap 8Y0T veisyoey\Bio\IsuxapisAioey
geg=lou3 T=pPuein TT=PUIB| (zT=s1w00
‘pT=Ied ST=IN0 ‘T=sse|) ‘p=sse|D $002-|  €00Z- $002- £002- ‘Sg"0=ewn) \BJEPMBU\LIB[\UOWILIOI\IXBPIS,
% 0008, ‘0=ssed z ‘z=u|  '9T=001 ‘Z11=007] Q q 0 Tey € Inc-og Aew-so oz g 1dv-90 AeN-SO  UEED Y 0SO! Tiadojanap 2501
9=lo13 T=pyleiN p=pUIBIN (6=s1w00
‘6T=lted z1=1N0 ‘T=sse|) ‘z=sse|D $002-| €002 002" £002- ‘eg'T=awn) \uondope\sisAjeue\uipeyxapis
% 00°00T ‘0=ssed| z ‘T=u  ‘01=001 '021=007] 0 o 0 ezg 2 1909z Aew-80 0T Z 1009z AeN-80  UBSI0 Y LTZ Tiadojenap 50T
Z=lou3 6=PyleN Bv=PUIBIN (TT=S1W00
‘0=lte- $=1n0 ‘z=sse|0 ‘L=SSe|D ¥002-| €002, 002" £002- ‘Gz’ 0=aLun) \KeureAep\sisAjeueA|repuxapis
% 88'L8 ‘0=ssed 9T/  ‘Gy=ul ‘6¥1=001 ‘TEp=00" 0 TITT y| PO-6T Aew-so vz g wo-sr bny-Tz  UyszZio U050 pi1adojenap 90T \eISA%0RY\BI0\0ISUXIPIS ARy
G=lo3 T=PUBN 6T=PUIBN (6=s)ui09,
‘g=lle: 61=1N0 ‘T=sse|) ‘Z=sse|D $002-| €002 $002- £002- ‘8G°0=own) \STeISIoAIBS\SISAfeUB\UILUpRYIXOPIS
% vv'v6 ‘0=ssed 4 ‘T=ul ‘€1=001 ‘0v2=007] [v o o LES 2| unc-gz| Aew-80 o1 v Jdv-Tg, Rew:80  uzvjo u€so Tiadojanap S90T veishyoey\Bio\isuxapisAioey
Lp=10113 T=PUBIN £=puiBN (€T=S1W0D,
‘90T=Ired 9z=1n0, ‘T=sse|D ‘Z=sse|D $00Z-| €002 002" £002- ‘85"g=awn) \own\sisAfeue\Ainnoexepis
% 00°00T ‘0=ssed| z ‘0=ul  'sz=001 ‘€ET=00 q 0 1897 € unc-gz Aew-o1| .2 € unr-90 ue(-T0  Y80E ULT6 yiadojenap 20T veishioey\Bio\aisuxapisiioey
0z=lou13 T=pyleIN S=puyla (8=s1w00
‘9p=ired 0g=1n0, ‘T=sse|) ‘z=sse|D $002-| €002 002" £002- '00'z=awWn) \owmoaaloud \sisAjeue\Aianoeyxapis
% 00°00T z ‘0=u  'zz=001 '£91=00 0 ot 9 MoN-60 Aew-01) sz S INC-€T! ReN-60  U€glz  U8SS: piadojenap 2Tl eIsiory\BI0\0IsUXIPIS ARy
2=PuleiN ze=pulan
LT=IN0 ‘T=sse| ‘9=sse|D) 5002 ¥00Z- 5002- 002 \ayoeaoaloIdyxapIs!
% £9°99) v Tp=u  ‘ze=001 '762=00 126 9| [eW-LT ge4-57 S8T 9 Jew-or, 9e4-S2  UEgy 40087 SLTT eIstory\BI0\0ISUXIPIS ARy
Tz=lou3 S=pUiBIN 0L=puiBIN (25=s1W09)
‘ez=lred 82=1n0 ‘z=sse|D 1=sse|D) 5002 £002- ‘85" LT=owWn), woeloidyxepis
% 00'8L ‘0=ssed 9 ‘zee=ul  '96=001  'SO0T=00 1 9 0 zozs 9 2 ot ReN-ZT  uzyie uee'se Tsadojenap 62T vershroey\Bio\aisuxapishioey
MBIA oo 0D [l | il [l
nsay| 1sal] IDET IDET anss| anss| 8y Mal  uwnyd i awl| BANIY| BANIY| BANIY| |l |
abesanod 1seL 0N, wun puadaq E=RECTR oll4| @so|p| uado| 1se1 @y| epod| wod BANOY se 804 191 BANOY uadxg Bupnjuey :(122) sevedsyiom|

169



E.9 Inspection 17

Table E.33. Inspection 17 - Package Details - Provides various information about the package that
was inspected. See other Tables and Figures in this chapter for more detailed information about the
package.

Packages org.hackystat.stdext.project.cache
Module hackyStdExt

Developer Ranking N/A - hand selected via PRI ranking
PRI Ranking LINI (See Figure E.4)

Product and Process Measures See Figure E.4

Inspection Date June 8, 2005

Jupiter Review ID ProjectCache

Number of Inspectors 5

Meeting Attendance 4

Table E.34. Inspection 17 - Provides the valid defects found by the participants grouped by Severity.

Participant | Critical Major Normal Minor Trivial Total
1 1 3 4

2 1 1

3 3 1 1 2 7

4 1 2 1 4

5 1 1
Total 0 7 6 1 3 17

Table E.35. Inspection 17 - Provides the valid defects found by the participants grouped by Type
and Severity.

Coding Program | Optimi- Usability | Clarity Suggestior
Standards | Logic zation

Critical

Major 2 2

Normal 1 3 2

Minor

Trivial 1

Total 2 2 5 0 2 0

170



Table E.36. Inspection 17 - Provides the responses from the Post-Inspection-Questionnaire
Question Yes No

Did this package needed to be inspected? 2
Did you learned something from this inspection?| 3
Did the inspection of this package increase its lgvél
of quality (once all the issues are resolved)?

Ol FIN

171



Figure E.4. hackyStdExt PRI Ranking - Inspection 17

T=l0413 L=PyBN £E=puIBN (zT=s1Ww0d
0T=In0 ‘g=ssern 'G=sse|0 ¥002- ¥002- S002- 002" ‘Gg'z=awn) \uianed\aoedsyiomyxapis
% L0°VL. 4 ‘vL=U|  ‘T12=001 '00£=007] Q 0 SOET 2| NoN-gZ|  InC-0Z €T €| TeW-60 INg:TZ UEET  uzre gladojanap 620T vershpoey\Bio\isuxapisAioey
0=10413 ZT=PUdDN Tr=PyoN (Tp=s1wod
‘09=Ire- 6z=1n0 ‘z=sse|n ‘p=sse|0 S002-| €002 5002- £002- ‘8G'ZT=aun) \dewenefdew\aoedsyiomuxapis
% 05°L6 ‘0=ssed 9¢ ‘yI=u|  ‘T2z=001 ‘2L1=007] ¥ Q g 6tz €| few-,1) Aew-90  zg§ € Tew-LT] AeW-90 Y EEE uzyvT ziadojanap SEOT weisfoey\Biowisyxams ey
z1=l043 T=PyIaN 6=pUioN (LT=s1W02
‘eT=led ¥1=1n0 ‘T=sse|) ‘z=sse|0 ¥002-  £00Z- 002" £002- ‘Gz'9=awn) \sisAreueAirepyosloidyxapis
% 00°SL! ‘0=ssed v T=u ‘22=001 ‘6£1=007] Q g s9zT v| unp-zz| Bnv-iT e €| unc-zg, Bny-/T  YOST u80L £ladojanap SEOT weisfpey\Biowisyxams ey
Te=10u3 T=PudN Z=puen (9=s1w02 \Suljereplosuas|
‘eT=led 01=1n0 ‘T=sse|D ‘z=sse0 ¥002-|  ¥00Z- 002" ¥002- *LT°0=awn) \SISA[eUB\UOWIWOXaPIS
% 00°00T ‘0=ssed v ‘0=ul ‘01=001 '6/=001 q 0 0 59 2| das-0g) uer-oz /| 1 Jdv-g0) Jdv-e0 Y 4TI0 U LTO Tiadojanap SE0T WeIsAyoey\BI0\0ISUXIPISAfORY|
0g=loL3 T=PYaN S=pya (6=s1W02| \Arewwnseyepkep
‘gT=|1es 81=1n0 ‘T=sse|D ‘z=sse0 ¥002-|  ¥002- 002" ¥002-" '8G"0=aLun) \SisAjeue\uOWIWOyXapIS
% 00°00T ‘0=ssed 4 ‘0=ul '81=001 '26=001 [o 0 o 621 2| des-0g/ uer-zr  OT! T 1dv-60 Uef-TT Y 0S/0 U850 Tiadojanap ovoT weishyoey\Bio\aisuxapishioey
9g=i013 T=PUisBN Z=PUBN (g=s1wo09
‘gz=lred 91=1n0 ‘1=sse0 ‘z=sse|;n 002~ 002~ 002" 002"/ ‘LT T=awn) \SISAeuB\UOWIWIODXDPIS
% 00°00T ‘0=ssed 14 ‘0=ul '61=001 ‘08=001 o o 0 16 2| das-0g uer-oz 9 T Jdv-90 Jdv-e0  YZITT  uITT Tiadojanap ¥v0T Vershpoey\Bio\isuxapisAioey
£=10413) T=PUBN S=PuBIN (z=s1w09 \8! REIGIG]
‘vT=led 0z=no ‘T=sse|D ‘z=sse|0 ¥002-| 002" 002" ¥002- ‘€€"0=awn) \SisAleue\AiAnoeXapIS
% 00°00T ‘0=ssed v ‘0=u ‘02=001 ‘2€1=007 o [o o 44 €| NON-60/ unr-Gz ) T unc-pg, unt-vz - Y.TI0 Y EE0 Tiadojanap 8¥0T vershpey\Bio\isuxapisAioey
£z=lo13 T=PyaN TI=PUBN (2T=s1W02
‘pT=lred §T=10 ‘T=sse|) ‘p=sse|0 ¥002-  £00Z- 002" £002- ‘Sz 0=awn) \BEPMBU\LI3[e\UOWIOXPIS
% 00°08 ‘0=ssed v ‘z=u ‘91=001 ‘211=0071 o ey €| Inc-0g Aew-so 02! € Jdv-90 ReW-60  YEED Y 0S0 Tiadojanap 2501 weisfopey\Biowisyxams ey
9=l0413 T=PUIBIN r=PUIBN (6=s1w02
‘6T=le- Z1=1n0 ‘7=sse|D ‘z=sse0 ¥002- €002 ¥002- £002- ‘e8 T=own) \uondope \sisAjeue\uiipeyxaps
% 00°00T 14 ‘T=ul ‘01=001 ‘021=0071 [o 0 0 £2€ 2| 10-9z) Aew-80  OT! 2| 00-9Z ARen-80  uBSi0 YLiTZ Tiadojanap ¥S0T weispey\Biowisyxams ey
8=pLIaN SL=PUIBIN (55=S1w02
£2=10 ‘G=sse| ‘ZI=sse|D 50027 €002 5002 £002- ‘G 'g=awn) \00RdS}IOMUXaPIS
% ¥6'€6 (43 ‘erT=ul '€62=001 '€907=007] S T q LT v| Qed-ze| Aew-90 /6 9 JBIN-60! Rew-50  Uyo0Siz USLTT y1adojanap T90T veisOpey\Biovisuxapishioey
6=PUIBIN 6Y=PUIBN (TT=s1Wwod
=1n0] ‘g=ssel '/=sseD ¥002- £002- 002"/ €002~ ‘Gg"0=awn) \KeureAep\sisAjeueA|repuxapis
% 88'L8 (43 ‘Sp=ut '6vT=001 ‘1€r=007] Q TT1T v| 10061 Aew-so vz € 1P0-8T bnv-Tz  uszio u0so yiadojanap 90T veisOpey\Biovisuxapishioey
§=1013 T=pPuiBN 6T=PUIBN (6=s1W09
‘g=led 61=10 ‘T=sse|D ‘z=sse|0 002 £00Z- 002" £002- ‘8G"0=awn) \SIeISIaNIBS \SISAleue\UILIPRIXPIS,
% vV, ‘0=ssed v ‘T=ul ‘€1=001 ‘0v2=007 o o o €8] 2| unc-gz| Aew-80  OT! v|  Jdv-Tg] Rew-80  uzwjo ueso Tiadojanap S90T
Ly=10413 T=PyIB £=PUIBN (£T=S1W02
‘90T=lres 9z=no ‘T=Sse|) ‘z=sse|0 ¥002-|  £002- 002" £002- ‘85'9=aun) \owi\sisAreue\KiAtoewXapis
% 00°00T ‘0=ssed v ‘0=ul '62=001 ‘€€1=007] Q g 1891 €| unc-gz)| Aew-ot /g €| unr-9o Uer-10  YBOlE Y LT'6 yiadojanap 2.0t
T=pUIBIN S=PUIBN (8=s1w02
0g=1no ‘T=sse|D ‘z=sse|0 ¥002-  £002- 002" £002- ‘00°Z=wn) \awmoalod \sisAjeue\Aianoeyxapis
% 00°00T 14 ‘0=ul ‘22=001 ‘£91=007] Q Q. oT 9| NON-60 Aew-0T S| S InC-€7 ReW-60 UEBjz UBS'S yladojanap (4941 weisfopey\Biowisyxams ey
£z1=lou3| 2=puIBI 2e=pulBN
‘g/=Ie- 2T=10 ‘7=sse| ‘9=sse(0 S002-|  ¥00Z- S002- ¥002- \eyoeowoaloidyxaps
% L9°99) ‘0=ssed 8 ‘Tr=ul ‘2€=001 'v62=007] Q g Teve 9| [few-/T) 094Gz S8T! 9| ITew-oT] 9o4-Gz  UESY Y0087 61T weisfopey\Biopisyxams ey
Te=lou3 S=pLIon 0L=PuIBIN (zg=s1W02
‘gg=lted 8¢=1N0 ‘g=ssel0 '/=sse|D 5002~ S002- €002~ S002- £002- '8G°LT=aw1) oafoidyxapis
% 00°8Z; ‘0=ssed et ‘zse=u '96=001  '001=0071 T 0| unc-Ti 8T 2025 9| Jew-,T/ Aew-90 80T! 4| unc-10 Rew-zt  uewe uze'se Tiadojanap 9/€T weishpoey\Biojisuxapishioey
MaIA o ! woo Enm awiL awi |
Wnsay| 1saL. RIBETH JWBN| anss|  anss| 8y Man wnydl  Ww|  wod|  wod Ww owil|  9AMdY|  8ANdY auwn |
abesano))| L uun|  wun| pusdeq| a4 isel ai4| @so;p| usdo 1se7|  8d| epod| wod 157 1Si4|wod| Ay 157 1si14 1591 e uadx3 Bupjuey (gz2)

172



Bibliography

[1] Tom Gilb and Dorothy GrahantSoftware InspectianAddison-Wesley, 1993.

2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

Robert G. Ebenau. Predictive quality control with software inspectioggoss Talk: The
Journal of Defense Software Engineeridgne 1994.

Barry Boehm and Victor R. Basili. Software defect reduction top 10 IIBEE Computer
2001.

R. L. Glass. Facts and facilities of software engineering?earson Education, Inc., Boston,
MA, 2003.

Martin Bush and Norman E. Fenton. Software measurement: A conceptual frameleark.
nal of Systems and Softwad2:223-231, 1990.

Michael E. Fagan. Design and code inspections to reduce errors in program develd@ivent.
Systems Journal5(3):182—-211, 1976.

Susan H. Strauss and Robert G. Eberaoftware Inspection ProcesslcGraw-Hill, 1994.

Karl E. Wiegers. When two eyes aren’t enougboftware Developmen®(10), March/April
2001.

Philip M. Johnson and Danu Tjahjono. Assessing software review meetings: A controlled
experimental study using CSRS. HRroceedings of the 1997 International Conference on
Software Engineeringpages 118-127, Boston, MA., May 1997.

Lawrence G. Votta Jr. Does every inspection need a meetingProeceedings of the ACM
SIGSOFT 1993 Symposium on Foundations of Software Engineeohgne 18(5) ofACM
Software Engineering Notegages 107-114, December 1993.

Tom Gilb. Optimizing software inspection&rosstalk (3), March 1998.

173



[12] Tom Gilb. Software inspections are not for quality, but for engineering econonieSE
Software on Inspectiqri999.

[13] Philip M. Johnson and Danu Tjahjono. Does every inspection really need a meédtongtl
of Empirical Software Engineering(1), January 1998.

[14] Philip M. Johnson. Reengineering inspection: The future of formal technical re@iemmu-
nications of the ACM41(2), February 1998.

[15] Marilyn Bush. Formal inspections—do they really help? Pioceedings of the Sixth Annual
Conference of the National Security Industrial Associgtéfilliamsburg, VA., April 1990.

[16] Karl E. Wiegers. Seven deadly sins of software revie@sftware Developmen(3), March
1998.

[17] Karl E. Wiegers.Peer reviews in software: A practical guiddddison-Wesley, Boston, MA,
2002.

[18] Robert L. Glass. Inspections-some surprising findinG@mmunications ofthe ACMI2(4),
1999.

[19] Jasper Kamperman. How to jump-start inspection by outsour@tigkyMinds.com2005.

[20] Daniel M. Berry. The inevitable pain of software development: Why there is not silver bullet.
In RISSEF pages 50-74. Springer, 2004.

[21] Eva van Emden and Leon Moonen. Java quality assurance by detecting code smells. In
Proceedings of the 9th Working Conference on Reverse Engined&B§ Computer Society
Press, Oct 2002.

[22] Software Engineering Technical Committee of the IEEE Compter Society. IEEE standard
glossary of software engineering terminolodgiy EE-STD-729-1983 (New York; IEEE)983.

[23] Philip Johnson. Hackystat framework. Technical report, Collaborative Software Development
Laboratory, Department of Information and Computer Sciences, University of Hawaii, January
2005.

[24] The IEEE. IEEE standard for software reviews and audits. ANSI/IEEE STD 1028-1988, IEEE
Computer Society, 1988.

174



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

David B. Bisant and James R. Lyle. A two-person inspection method to improve programming
productivity. IEEE Transactions on Software Engineeririé(10):1294-1304, October 1989.

Danu Tjahjono.Exploring the effectiveness of formal technical review factors with CSRS, a
collaborative software review systemh.D. thesis, Department of Information and Computer
Sciences, University of Hawaii, August 1996.

D. P. Freedman and G. M. Weinbergandbook of Walkthroughs, Inspections and Technical
Reviews Little, Brown, 4th edition, 1990.

Nachiappan Nagappan, Laurie A. Williams, John P. Hudepohl, Will Snipes, and Mladen Vouk.
Preliminary results on using static analysis tools for software inspectidBSIREpages 429—
439, 2004.

Nachiappan Nagappan and Thomas Ball. Static analysis tools as early indicators of pre-release
defect density. InThe International Conference on Software Engineeripages 580-586,
2005.

Martin Fowler. Refactoring: Improving the Design of Existing Codeldison-Wesley, 1999.

Gerd Kohler, Heinrich Rust, and Frank Simon. An assessment of large object oriented software
systems: A metrics based approachQlpject-Oriented Product Metrics for Software Quality
Assessment Workshop on 12th European Conference on Object-Oriented Prograpamesy
16-23, 1998.

Philip M. Johnson and Michael G. Paulding. Understanding HPCS development through auto-
mated process and product measurement with hackyst&edond Workshop on Productivity
and Performance in High-End Computing (P-PHEEgbruary 2005.

Michael G. Paulding. Measuring the processes and products of HPCS development: Initial
results for the optimal truss purpose-based benchmark. Technical Report CSDL-04-13, De-
partment of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii
96822, September 2004.

Philip M. Johnson, Hongbing Kou, Michael G. Paulding, Qin Zhang, Aaron Kagawa, and
Takuya Yamashita. Improving software development management through software project
telemetry.IEEE Softwarge August 2005.

175



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Qin Zhang, Aaron Kagawa, and Takuya
Yamashita. Practical automated process and product metric collection and analysis in a class-
room setting: Lessons learned from hackystat-uhPioceedings of the 2004 International

Symposium on Empirical Software Engineeribgs Angeles, California, August 2004.

Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Christopher Chan, Carleton A. Moore,
Jitender Miglani, Shenyan Zhen, and William E. Doane. Beyond the personal software pro-
cess: Metrics collection and analysis for the differently disciplined.Pioceedings of the

2003 International Conference on Software Engineerigrtland, Oregon, May 2003.

Philip M. Johnson. The Hackystat-JPL configuration: Overview and initial results. Techni-
cal Report CSDL-03-07, Department of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, October 2003.

Aaron Kagawa and Philip M. Johnson. The Hackystat-JPL configuration: Round 2 results.
Technical Report CSDL-03-07, Department of Information and Computer Sciences, Univer-
sity of Hawaii, Honolulu, Hawaii 96822, May 2004.

Stuart Faulk, Philip M. Johnson, John Gustafson, Adam A. Porter, Walter Tichy, and Larry
Votta. Measuring HPC productivityinternational Journal of High Performance Computing
Applications December 2004.

Aaron Kagawa. Hackystat MDS supporting MSL MMR. Technical Report CSDL-04-06,
Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii
96822, June 2004.

JESS, The Rule Engine for the Java Platfornkhttp://http://herzberg.ca.
sandia.gov/jess/>

Aaron A. Kagawa. Snhapshot Sensor Data Type Enhancemetitsp://hackystat.
org/hackyDevSite/doc/SnapshotEnhancements.html>

The Jupiter Code Review Eclipse Plugkhttp://csdl.ics.hawaii.edu/Tools/
Jupiter/>

LOCC code counter<http://csdl.ics.hawaii.edu/Tools/LOCC/>

Philip  Johnson. Software Review Guidelines. <http://hackystat.org/

hackyDevSite/doc/Review.html>

176



