
Studying Micro-Processes in Software Development Stream

Hongbing Kou
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822

hongbing@hawaii.edu

Abstract

In this paper we propose a new streaming tech-
nique to study software development. As we observed
software development consists of a series of activities
such as edit, compilation, testing, debug and deploy-
ment etc. All these activities contribute to development
stream, which is a collection of software development
activities in time order. Development stream can help
us replay and reveal software development process at
a later time without too much hassle. We developed a
system called Zorro to generate and analyze develop-
ment stream at Collaborative Software Development
Laboratory in University of Hawaii. It is built on the
top of Hackystat[11], an in-process automatic met-
ric collection system developed in the CSDL. Hackys-
tat sensors continuously collect development activities
and send them to a centralized data store for process-
ing. Zorro reads in all data of a project and constructs
stream from them. Tokenizers are chained together to
divide development stream into episodes (micro itera-
tion) for classification with rule engine. In this paper
we demonstrate the analysis on Test-Driven Develop-
ment (TDD) with this framework.

1. Introduction

Software development is a very complex process
from requirement analysis to project deployment. It
requires developers understand domain knowledge
well and have enough skills to produce high-quality
code following a certain process. Traditionally this

process is heavy and evaluated by standards such as
ISO9001 or Capability Maturity Model (CMM). The
recent trend in software process is agile process, which
advocates light incremental iterative development with
rapid feedback. Extreme programming [1] is one kind
of agile process. Unlike plan-driven processes such as
Rational Unified Process(RUP), Team Software Pro-
cess (TSP), extreme programming depends on devel-
opers’ self-control and internal discipline for process
compliance. In eXtreme Programming (XP) pair-
programming provides support for process compliance
because of pair-pressure and pair-learning [18]. It
will entirely depend on individual developer’s self con-
trol and discipline while pair-programming is not ap-
plied. Personal Software Process (PSP), the founda-
tion of Team Software Process(TSP) [9] suffers the
same problem as extreme programming because devel-
opers have to stop on-hand work frequently to record
process data manually or semi-automatically, which
lowers data quality as Disney and Johnson discovered
[4].

There are many case studies on Test-Driven Devel-
opment, one of the core component of extreme pro-
gramming. George et al [7] and M¨uller [14] et al
did researches on Test-Driven Development (TDD)
[2], one of the central practices of extreme program-
ming. George et al found that TDD developers pro-
duced higher quality code [7] while M¨uller et al con-
cluded TDD does not accelerate the implementation
and improve the product quality [14]. There are other
studies drew either positive [15, 5], neutral [8] or neg-
ative [16] conclusion on quality and productivity. In
these experiments, researches conducted the studies



based on their understandings of TDD and test sub-
jects were told to do Test-Driven Development. Fi-
nal projects were submitted for comparison study with
projects developed by controlled group. George et al
pointed out that test subjects had limited training on
TDD and pair-programming in their study [7]. Test-
Driven Development is very disciplined and writing
test first is not always an easy task even with the help
of xUnit [2] framework. Discipline of TDD was often
ignored in the experiments, which may deteriorate the
conclusions.

Hackystat[10], an automatic in-process unobtrusive
metric collection system, was designed and developed
to collect development process data as well as on-
going metrics of the artifact being worked on to lower
process data collection overhead. Hackystat sensors
[13] are installed in Integrated Development Environ-
ment(IDE) such as JBuilder, Eclipse and Emacs, and
also build utilities such as ANT, Unix Shell, Version
Control System (VCS) and issue tracking system to
collect development process data automatically. IDE
activities such as file edit, refactoring, unit test execu-
tion, debug and build data etc are all interested data
to Hackystat sensors. These data are sent to the cen-
tralized Hackystat server for analyses such as in-time
development management support software telemetry
[12] and continuous Goal-Question-Metric (cGQM).

We developed a system called Zorro on top of
Hackystat to drill down into fine-grained process data
to study micro-process of software development. In
Zorro we generate development stream out of sensor
data. The stream is tokenized and classified for pro-
cess compliance study.

2 Related Work

3 System Infrastructure

Zorro is built on top of Hackystat platform. Devel-
opment activity data is grouped together for develop-
ment streaming, stream tokenization and episode clas-
sification. Development stream is divided into small
episodes with the help of tokenizer. Each episode is a
series of continuous activities that are isolated by to-
ken activities. For instance, test-pass episodes are cre-
ated when there is a successful unit test invocation. All
development activities happened between two continu-

ous successful test invocations belong to this test-pass
episode. We evaluate episode with pre-defined rules
using JESS [6] rule engine system.

3.1 Development Stream

Hackystat sensors collect both process of software
development and state data of projects. To eclipse
IDE sensor collects most development activities such
as new project, open project, new file, file open, file
close, file edit, refactoring, unit test etc. Same kind of
activities are grouped together to make sub develop-
ment streams. They merge together to make develop-
ment stream as shown in figure 1. Activities irrelevant
to the project are filtered out in merging process.

Figure 1. Hackystat Sensor Data Streaming

Development stream is the collection of all devel-
opment activities occurred in chronological order. It
is similar to time-series data and real-time stream be-
cause they all consist of a series of data in time order.
Development stream is also different from time-series
data because it consists of heterogeneous activity, dif-
ferent from real-time steam because each activity has
well-defined descriptive data structure. These differ-
ences make classical time-series and stream analysis
methods hard to be applied on development stream.
In our work we developed a tokenization mechanism
to divide development stream into micro-processes to
simplify analysis.

2



3.2 Stream Tokenization

Activities in development stream are heterogeneous
and each of them can last from milliseconds to hours.
The interval between two consecutive activities also
varies from milliseconds to hours. They make devel-
opment stream very irregular and stochastic. Since
developers follow different processes development
streams vary from developer to developer. To find
patterns in programming we implemented tokeniza-
tion system to divide development stream into micro-
processes, which are small programming units. There
are four tokenizers in Zorro.

� Commit tokenizerends an episode when it en-
counters a bunch of file commit activities. It can
be used to inspect what developers do before in-
tegration.

� Command tokenizerends an episode when there
are some consecutive command build activities to
deploy system in local environment.

� Test Pass tokenizerends an episode when there
are successful unit test invocations. We imple-
mented it to find the iterations in Test-Driven De-
velopment.

� Buffer transition tokenizerstarts an episode when
it encounters consecutive buffer transition activi-
ties. It sums what developers did to the working
buffer.

Basically tokenizers abstract development stream
for better understanding of the development process.
We applied them on development stream and found
that the iterations are either too big such as com-
mit episode, or too detailed such as buffer transition
episode. In the mean time an iteration may contain too
many kinds of activities to be analyzed. These mo-
tivated us to develop tokenizer chain algorithm to it-
eratively apply tokenizers on the development stream.
Figure 2 is the tokenization system data flow. Tok-
enizer 1 applies on development stream to generate
type 1 episodes. They are passed down to be processed
by tokenizer 2 when there are more activities except
for token activities.

To study Test-Driven Development we put commit,
command, test pass and buffer transition tokenizers in

Figure 2. Development Stream Tokenizer
Chain

a row to work on development stream iteratively. At
the end the long development stream will be tokenized
into many small episodes that can be classified easily
as in figure 3.

3.3 Classification of Episode

Episode includes activities to accomplish a certain
task. It defines iteration in software development such
that this approach fits to most modern software devel-
opment processes because all of them are iterative. In
Test-Driven Development each iteration is either a new
test case implementation or refactoring if developer
follows TDD rational strictly. Because the assump-
tion may not hold we implemented the tokenizer chain
to make our solution be general enough to most de-
velopment streams. If the development stream is not
Test-Driven Development we will end up with a bunch
of buffer transition episodes.

Test-Driven Development iteration can be elabo-
rated as following[2]:

1. Write the test

2. Write the code

3. Run the automated test

4. Refactor

5. Repeat

Clearly an TDD iteration (cycle) contains one or
more test pass iterations which are either Test-Driven
or refactor. In order to fine-tune progress of work we
enhanced Hackystat Eclipse sensor to report not only
edit work but also the on-going metrics changes such
as number of methods, number of statements as well

3



as number of test cases and number of assertion state-
ment to test class. These fine-grained data make it pos-
sible to find incremental small changes on programs to
deduce micro-process iterations accurately.

Finiate State Machine (FSM) is widely used to
study sequential data such as process execution [3] or
language. It has the advantage to find the hidden pat-
terns in complicated process. Cook discovered ISPW
6/7 process with RNet, KTAIL, and Markov Method
[3] but it ends with a complicated process diagram
that needs process expert’s knowledge to interpret it.
We chose rule-based system over FSM in our study of
Test-Driven Development because TDD emphasizes
on small and simple iteration instead of complex pro-
cess and our interest is on process compliance not pro-
cess discovery. Rule-based system is also stable in the
existence of noise.

Figure 3 is the episode tokenization and classifica-
tion algorithm of TDD analysis.

Figure 3. Episode Classification

The tokenizer chain on the left has commit, com-
mand, test-pass and buffer transition tokenizers. Com-
mit tokenizer is applied on development stream to
make commit episodes. Each commit episode rep-
resents one system integration after a new feature is
added or a bug is fixed. Commit activities in the
episode are stripped off before episode activities are
passed to command tokenizer. Test-pass tokenizer will
be applied on command episode to generate test-pass
episodes. We assert activities of test-pass episode into
rule engine to do classification. In figure 3 the left-
most command episode contains two sub episodes,
TDD and refactor. Buffer transition tokenizer will be
applied on non-classifiable test-pass episode. In the

end we get episode tree out of development stream
with this algorithm.

Developers only make small change to let test pass
in TDD. We define rules to check work both on test
code and production code to inspect TDD process.
Figure 4 is the interaction between Zorro and JESS
rule engine system for episode classification with pre-
loaded rules. We assert development activities in time
order into JESS working memory as facts and run
JESS engine to fire up rules.

Figure 4. Classification Query

In Zorro we use term “action” to represent develop-
ment activity, which is the meta operation in develop-
ment. Here is the action template definition in CLIP
language for JESS.

;; Action template.
(deftemplate Action

"Common parts of all actions"
(slot index) ;Order in episode
(slot file) ;Active file

)

Index is the order of the action in the episode. All
actions inherit this template. We have following ac-
tions in Zorro:

� Documentation Editis the edit action on docu-
mentation. It has duration inherited from abstract
Edit Action.

� Production Edit Actionis the edit action on pro-
duction code which is java program at present.
It defines attributesmethod changeandstatement
changefrom the incremental work.

� Unit Test Edit Actionis the edit action on unit
test. It is similar toProduction Edit Actionbut

4



the work is on unit test code. In addition to num-
ber of method change and number of statement
change it includes number of test methods change
and number of test assertion change too.

� Compilation Actionis not compilation invocation
but a compilation error on the active file..

� Unit Test Actionrepresents an unit test invocation
which either succeeded or failed. Error message
will be attached if it fails.

� Buffer Transition Actionis the active buffer’s
change during development.

� Unary and Binary Refactorare two types of
refactor operators. Add and Delete are unary
while RenameandMoveare binary. In addition,
refactor operation can be on class, import, field or
method.

� Debug Actionis any debug activity include break
pointer set/unset, step into, step over etc.

3.4 Test-Driven Development Episode Classifica-
tion

Test-Driven Development (TDD) is the way on how
to program. Developers write failed test first before
production code. Implementation is driven by test
code and the progress is incremental [2].

Red/Green/Refactor is the mantra of Test-
Driven Development. It implicates the order
of programming.

1. Red – Write a little test that doesn’t
work, and perhaps doesn’t even com-
pile at first.

2. Green– Make the test work quickly,
committing whatever sins necessary in
the process.

3. Refactor– Eliminate all the duplica-
tion created in merely getting the test
to work.

Iterations of Test-Driven Development are usually
less than ten minutes. There is no big progress in each
iteration except for making test pass. This iteration can
be casted into one to many test-pass episodes. Each

episode will be either a complete TDD iteration or a
portion of it. Episodes of TDD can be either Test-
Driven or refactor depends on test progress.

3.4.1 Test-Driven Episode

In a test-driven episode developer writes a test based
on requirement analysis. The test may not even com-
pile at first because the test target does not exist yet.
There should have compilation failure if developer
compiles it or project was configured to be compiled
automatically. Production code is created to get rid of
compilation error. Execution of this test will proba-
bly fail when developer invokes it, which is the red bar
pattern. The rest work of this episode is to have just
enough code to make test pass. This is the scenario of
a typical test-driven episode. Even though developers
can be required to follow typical test-driven strictly it
is lame to have this discipline requirement. In some
cases there is no point to let developer do it rigiously.

� Test code compilation will definitely fail because
it tests non-existed object or method.

� The production code to make test pass is trivial.
Generating a fake implementation to make test
fail will be just a waste.

The key to TDD is the test case creation and the sub-
stantial work to make test pass. They are the skeleton
of a test-driven episode. Depending on the existence of
compilation error and test failure, a test-driven episode
can be one of them in figure 5.

Figure 5. Test-Driven Episode Classification

5



3.4.2 Refactor Episode

Refactoring is the term describes operation to alter a
program’s internal structure without changing its ex-
ternal behaviors in software development [17]. New
feature is introduced by new test cases in TDD such
that an test-pass episode is refactoring as long there is
no new test. Refactoring episode also has four types.
In one side refactor can happen either to test code or
production. On another side refactoring operation may
or may not fail the existed tests. Figure 6 depicts the
algorithm of this categorization. In types 3 and 4 there
may have some work on test code without new test
created.

Figure 6. Test-Driven Refactor Classification

3.4.3 Test-Last Episode and Validation Episode

Ideally all test-pass episodes are either test-driven or
refactor in Test-Driven Development. The allowance
is that developer may create multiple test cases for the
production code to test various inputs. We call this
Test-Last Development contrary to Test-Driven Devel-
opment in that test code is created after production
code. It is also the canonical programming habit of
most non-TDD developers. Regression or validation is
to run the existed tests to make sure system work well,
which happens very often in software development es-
pecially in TDD since test cases from TDD serve as
regression test suite as well. A test episode is valida-
tion as long as there is no substantial edit work on both
production and test code.

3.4.4 Complicated Test-Pass Episode

TDD advocates developers write a simple test only
each time and write enough code to make failed test
pass without committing big bulk of code at once. This
is the discipline required by TDD. It’s also called Test-
First Design because test cases define the interaction
of the system with external code delegated by test code
in development. In actual project development devel-
opers may breach this discipline because it is tedious
to run unit tests in every small step. Our survey indi-
cates that developers tend to run tests when they worry
that system might break because of the new code. Al-
though it is not welcomed by TDD we can not stop de-
velopers making big progress. In our study we claim a
test-pass episode not classifiable and complexity high
if there are more than two different production files.
This kind of complicated test-pass episode is flagged
and passed down to buffer transition tokenizer for fur-
ther investigation.

3.4.5 Classification of Buffer Transition Episode

Buffer transition episode includes developer’s activi-
ties on the working buffer. When a test-pass episode is
complicated we apply buffer transition tokenizer on it
to deduce developer’s work.

� Read– There are only buffer transition activities
in the episode.

� New– There are new class, methods or fields cre-
ated.

� Delete – There are only buffer transition and
delete activities on either test code or production
code.

� Edit – Edit work on documentation, production
code or test code.

� Test– There is failed test invocation with possible
edit work on test or production code.

6



4 Experiment and Evaluation

5 Discussion

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, Massachusetts, 2000.

[2] K. Beck. Test-Driven Development by Example. Ad-
dison Wesley, Massachusetts, 2003.

[3] J. E. Cook and A. L. Wolf. Automating process dis-
covery through event-data analysis. InICSE ’95: Pro-
ceedings of the 17th international conference on Soft-
ware engineering, pages 73–82, New York, NY, USA,
1995. ACM Press.

[4] A. M. Disney and P. M. Johnson. Investigating data
quality problems in the PSP. InSixth International
Symposium on the Foundations of Software Engineer-
ing (SIGSOFT’98), Orlando, FL., November 1998.

[5] S. H. Edwards. Using software testing to move stu-
dents from trial-and-error to reflection-in-action. In
Proceedings of the 35th SIGCSE technical symposium
on Computer science education, pages 26–30. ACM
Press, 2004.

[6] E. Friedman-Hill. JESS in Action. Mannig Publica-
tions Co., Greenwich, CT, 2003.

[7] B. George and L. Williams. A Structured Experiment
of Test-Driven Development.Information & Software
Technology, 46(5):337–342, 2004.

[8] A. Geras, M. Smith, and J. Miller. A Prototype
Empirical Evaluation of Test Driven Development.
In Software Metrics, 10th International Symposium
on (METRICS’04), page 405, Chicago Illionis, USA,
2004. IEEE Computer Society.

[9] W. S. Humphrey. Pathways to process matu-
rity: The personal software process and team
software process. <http://www.sei.cmu.
edu/news-at-sei/features/1999/jun/
Background.jun99.%pdf> .

[10] P. M. Johnson. Project hackystat: Accelerating
adoption of empirically guided software development
through non-disruptive, developer-centric, in-process
data collection and analysis. Technical report, Depart-
ment of Information and Computer Sciences, Univer-
sity of Hawaii, Honolulu, Hawaii 96822, November
2001.

[11] P. M. Johnson, H. Kou, J. M. Agustin, C. Chan, C. A.
Moore, J. Miglani, S. Zhen, and W. E. Doane. Be-
yond the personal software process: Metrics collec-
tion and analysis for the differently disciplined. In
Proceedings of the 2003 International Conference on
Software Engineering, Portland, Oregon, May 2003.

[12] P. M. Johnson, H. Kou, M. G. Paulding, Q. Zhang,
A. Kagawa, and T. Yamashita. Improving software
development management through software project
telemetry.IEEE Software, August 2005.

[13] P. M. Johnson and T. Yamashita. Hackystat
sensors.<http://hackystat.ics.hawaii.
edu/hackystat/docbook/apa.html> .

[14] M. M. Muller and O. Hagner. Experiment about Test-
first Programming. InEmpirical Assesment in Soft-
ware Engineering (EASE). IEEE Computer Society,
2002.

[15] M. Olan. Unit testing: test early, test often. InJour-
nal of Computing Sciences in Colleges, page 319. The
Consortium for Computing in Small Colleges, 2003.

[16] M. Pancur and M. Ciglaric. Towards empirical evalu-
ation of test-driven development in a university envi-
ronment. InProceedings of EUROCON 2003. IEEE,
2003.

[17] Refactoring.http://www.refactoring.com .
[18] L. Williams and B. Kessler. The effects of ”pair-

pressure” and ”pair-learning” on software engineer-
ing education. InCSEET ’00: Proceedings of the
Thirteenth Conference on Software Engineering Ed-
ucation & Training, page 59, Washington, DC, USA,
2000. IEEE Computer Society.

7


