
A continuous, evidence-based approach to discovery and assessment of software
engineering best practices

Philip M. Johnson
Department of Information & Computer Sciences

University of Hawaii

Contents

1 Overview 2
1.1 Motivation . 2
1.2 Approach . 3
1.3 Objectives . 5

2 Related Work 5
2.1 Hackystat . 5
2.2 Software Project Telemetry . 7
2.3 Software Development Stream Analysis . 9
2.4 Pattern Discovery . 11
2.5 Evidence-based software engineering .. 11
2.6 Results from prior NSF research. 12

3 Research Plan 12
3.1 Task descriptions . 12
3.2 Work breakdown structure and milestones . 15

4 Conclusions 16

1

1 Overview

1.1 Motivation

As with baseball, physics, music, and other skillful human endeavours, there is a vast range of ability associated
with software development. For almost 40 years, software development researchers have been attempting to
understand, measure, and support the development of superior skill in software development. Sackman performed
the seminal research on programmer productivity in 1967, in which he reported a 28:1 difference between the
slowest and fastest programmers on a programming task [43]. Subsequent research by Prechelt on Sackman’s
original dataset in combination with other published datasets indicates a smaller but still significant multiple—
from 2:1 to 6:1 depending upon conditions and the kind of statistical comparison used [39]. There is even evidence
that some programmers may actually decrease overall productivity, a phenomenon known as the “net negative
producing programmer” [44].

While comparison of different individual’s effort on a common programming task is the most direct way to
measure productivity variability, it is not the only way. One alternative employs the COCOMO II cost estimation
model [7]. COCOMO uses a dataset of approximately 160 completed industrial projects to calibrate a model
that computes the effort required to complete a project based upon characteristics of the software to be developed
and the organization doing the development. In the COCOMO model, the effort differential between best and
worst programming teams with respect to capability is 3.53, applications experience is 1.51, language and tools
experience is 1.43, platform experience is 1.40, and team cohesion is 1.29. Multiply these together, and the
COCOMO model indicates a theoretical productivity difference of 13:1 between the most suited and least suited
programming teams for a given software project.

Programmer variability creates two basic kinds of challenges for the software engineering research community:
(1) How can we raise the average productivity of software developers, and (2) How can we reduce the variability
between the best and worst software developers? In general, we have responded to these challenges in one or more
of three ways: through abstraction, automation, and through best practices.

The evolution of programming languages from machine language to assembly language to high level languages
to executable specification languages exemplifies the successful use of abstraction to improve programmer pro-
ductivity by reducing the amount and complexity of code required to accomplish a given task. A single keyword
such as “synchronized” in a high level language like Java might require thousands of lines of code to implement
correctly in assembly language. Indeed, software disasters such as the Therac-25 were ultimately attributed to
incorrect implementation of process synchronization in application-level software [34].

Automation refers to the development of scripts or other approaches to ensure that a sequence of development
tasks are carried out consistently, reliably, and correctly. One example is an automated daily build mechanism,
which might (a) create a “clean” initial build state, (b) check out the latest version of a system from a configuration
management repository, (c) compile the latest version, (d) deploy the latest version to a run-time environment (such
as installation on a web server), (e) run all functional (i.e. unit) and non-functional (i.e. load) tests associated with
the latest version, (g) build the documentation associated with the latest version, (h) generate a report associated
with the build process, and (i) email results to developers and managers.

The difference between abstraction and automation is that abstraction creates a “black box” for developers
while automation does not. For example, the implementation of the synchronized keyword in Java is a black
box: no application developer would be expected to maintain or debug this language construct and, in general,
developers simply assume that this abstraction functions correctly. A daily build script, however, is typically
designed, implemented, and maintained by developers, and thus does not provide abstraction even though it does
provide many benefits as a form of automation. For example, it can eliminate the negative productivity impact of
developers not carrying out the sequence of actions required to build the product correctly, or even not building
the system at all due to the time, overhead, and tedium associated with the activities.

2

While abstraction is the province of languages and other expressive media, and automation is the province of
tools and environments, best practices unifies them with the behavior and activities of people during software
development. The seminal software engineering best practice is the waterfall lifecycle model, which was first
described in the early 1970’s and provided an efficient and effective partitioning of development into a sequence
of phases: specification, design, implementation, testing, and maintenance. Provided that system requirements can
be specified in advance and are guaranteed not to change, the waterfall lifecycle model still constitutes a viable
best practice for software engineering.

The Software Engineering Body of Knowledge (SWEBOK) illustrates the variety present in the best practices
associated with our discipline [1]. SWEBOK provides a map to the state of the art in software engineering, and
divides the landscape into ten areas: requirements, design, construction, testing, maintenance, engineering man-
agement, configuration management, process, tools, and quality. SWEBOK shows that abstraction, automation,
and best practices are not independent concepts but are instead deeply entwined: best practices (such as testing)
engender new forms of abstraction (formal languages for testing) and automation (tools for automated test defini-
tion and/or invocation). Conversely, new tools (such as automated test frameworks) can catalyze new best practices
(such as test driven design).

One might naively assume that becoming a world class software developer would require nothing more than
downloading the SWEBOK and implementing all of its best practices and their associated abstractions and automa-
tion. Unfortunately, software engineering best practices are highly contextual: a practice that provides immense
benefits in one organizational culture and development context might prove disastrous in another. For example, a
best practice such as Cleanroom might be essential in the development of a complex, life-critical application but
too time-consuming in a startup environment where time to market is critical. Furthermore, software engineering
best practices can be in conflict. The Extreme Programming [5] best practice eschews the use of the Code In-
spection [10] best practice, claiming that the use of Pair Programming obviates the need for a separate inspection
activity.

The context sensitivity of software engineering best practices creates a number of problems. First, how can
an organization improve by adoption of best practices when it is so difficult to determine their appropriateness?
Some organizations address this problem via a trial-and-error approach, where various best practices are “tried
on for size”. Others hire consultants to tell the organization which practices to adopt. Still others utilize models
for process improvement such as the CMMI [42], which could be viewed as “best practices for adopting best
practices”.

Second, how do “best practices” actually become recognized as such? For example, the best practice of “Ex-
treme Programming” would have likely become a forgotten experiment in an alternative software development
process at Chrysler Corporation had Kent Beck not decided to vigorously market the approach with books, lec-
tures, and networking. Ironically, the project on which XP based its initial claims for success was eventually
cancelled without fulfilling its requirements and is now used as evidence against XP by its detractors [31].

In summary, software engineering uses three methods to address the problem of programmer productivity vari-
ability: abstraction, automation, and best practices. Unfortunately, the creation of best practices with the abstrac-
tion and automation they require, and their adoption into new contexts is traditionally mediated by political and
social processes that may be quite unrelated to the actual effectiveness of the practice and its associated abstrac-
tions/automations in the organization.

1.2 Approach

This research proposal presents a new, continuous, evidence-based approach to the generation and adoption of
best practices. Instead of looking outward into the community for best practices, and attempting to adapt them
to one’s own environment, our research will investigate how best practices can be identified and evaluated within
one’s current organizational and project context. Instead of relying on politics or persuasiveness for adoption, our

3

research involves instrumentation that continuously generates empirical data as evidence either for or against the
suitability of a practice. Finally, our research will involve adaptation of data mining approaches to support the
discovery of candidate best practices from software engineering process and product data.

This research approach leverages our research and development activities over the past four years in Project
Hackystat [21], an open source framework for continuous, automated collection and analysis of software engi-
neering process and product data. Hackystat implements an automated approach to metrics collection by attaching
sensors to development tools. This makes it possible to capture both low and high-level data about processes and
products with a combination of precision, completeness, and low overhead not possible with manual approaches.
Hackystat also provides a robust implementation of Software Project Telemetry, an approach to in-process mon-
itoring, analysis, and decision-making based upon the generation of high-level abstractions of the sensor data
stream. Software Project Telemetry provides a means to understand whether measures of process and produce are
stable, improving, or declining over a particular interval in time. Finally, Hackystat provides a prototype imple-
mentation of Software Development Stream Analysis, which observes the low-level behaviors of individuals as
they manipulate tools, abstractions, and automation, then classifies them as indicating the use of a best practice.
For example, SDSA implements techniques to identify when a developer is using the “test-driven design” best
practice.

The combination of Hackystat, Software Project Telemetry, and Software Development Stream Analysis pro-
vide a mechanism for continuous, context-sensitive evaluation of best practices within an organization. For exam-
ple, an organization using Hackystat on a project can use Software Project Telemetry to establish baseline values
for various software development measures. Software Development Stream Analysis provides a way to identify
the use of certain best practices by developers. Integrating these techniques provides a way to relate the practices
of developers to their outcomes in terms of process and product measures. For example, if a development group
decides to adopt the use of pair programming on a trial basis, they can see if this new practice makes an impact
on the measures of process and product captured by Software Project Telemetry. Conversely, if Software Project
Telemetry reveals a significant decline in process or product metrics (such as a drop in the test case coverage of
the system), then Software Development Stream Analysis can be used to assess whether some change in practice
could be responsible (such as a change from test-first to test-last design).

Hackystat, Software Project Telemetry, and Software Development Stream Analysis together form an empirical,
continuous, low-cost, and in-process approach to assessing best practices when the practices are known a priori
and recognition rules for them can be built into the SDSA system. An additional component of this research will
investigate approaches to the discovery of new best practices. To do this, we will incorporate recent research in
data mining for pattern discovery [17, 35, 2]. The goal of pattern discovery is to uncover repeated behaviors in
a stream of time-stamped data. For example, in a “smart house”, if an occupant repeatedly turns on a light after
opening the front door, the pattern discovery mechanism should discover this pattern after a number of repetitions,
thus enabling the smart house to begin automatically turning on the light whenever the front door is opened
by this occupant. In this research, we will explore the use of pattern discovery in combination with Software
Project Telemetry to uncover candidates for new “best practice” developer behaviors. As a simple example, pattern
discovery might find that one developer consistently writes and executes tests against their code prior to committing
it to the CVS repository. If Software Project Telemetry reveals that this pattern is associated with significantly less
daily build failures, then this pattern is a candidate for a new “best practice” for this development group and
project.

Our approach compares in interesting ways to the more traditional approach to evaluation of best practices.
Both approaches involve a trial adoption of the best practice, the collection of data on the effect of the practice,
and an eventual assessment of efficacy of the practice. However, the traditional approach typically involves a “one
off” experiment on a sample project with specialized data collection during the project, and analysis of the success
or failure of the practice once the project is concluded. In contrast, our approach involves the introduction of
sensor-based instrumentation into the development environment, which allows continuous, in-process collection

4

and analysis of data concerning the practice. This has two significant implications. First, the presence of automated
metrics collection and analysis allows for more “opportunistic” evaluation of new practices at any point in a
project’s lifecycle: there is no need to create a special project with special instrumentation for evaluation purposes.
Second, the presence of instrumentation enables a “bottom-up” approach to best practice discovery, in which the
behaviors of successful practitioners can be analyzed for the presence of repeated patterns, and compared to
process and product-based measures to see if they constitute candidate best practices.

1.3 Objectives

The overall objective of this research is to design, implement, and evaluate a continuous, evidence-based ap-
proach to in-process discovery and assessment of context-sensitive best practices during software development.
This overall objective has seven sub-objectives:

� Enhancement of the Software Development Stream Analysis mechanism to support a variety of current best
practices, and determination of the kinds of abstractions, automation, and best practices that are amenable
to recognition using SDSA.

� Development of integration mechanisms between SDSA and Software Project Telemetry in order to allow
users to determine how practices recognized by SDSA relate to telemetry data at any particular point in
time.

� Development of a pattern discovery subsystem in Hackystat to support automated recognition of behavioral
patterns by developers as they use tools, abstractions, and automation, and the use of Software Project
Telemetry to determine whether these behavioral patterns are potential candidates for best practices.

� Classroom-based, case study evaluation of the proposed techniques. We will apply these techniques to gain
evidence regarding programmer productivity and variability with respect to the Test Driven Design best
practice. This activity will also refine the technology, develop curriculum materials, and ready the approach
for industrial evaluation.

� Industry-based evaluation of the proposed techniques. Following classroom evaluation, we will carry out
two industry-based case studies to gather evidence regarding best practices related to high performance
computing and agile software development. This activity will also assess our approach in industrial settings.

� Packaging of the system and methods for widespread dissemination. We will continue the process used by
the open source Hackystat Project of making our technology available to the software engineering commu-
nity. In addition, we will package and disseminate our experimental methods to support external evidence-
based software engineering efforts.

� Development of curriculum materials regarding continuous, evidence-based discovery and assessment of
software engineering best practices. As with the Hackystat Project, we will develop software engineer-
ing curriculum materials and assignments that enable the study and analysis of this approach in academic
settings.

2 Related Work

2.1 Hackystat

For the past several years, we have been developing a framework for automated software development process
and product metric collection and analysis called Hackystat. This framework differs from other approaches to
software product and process measurement in one or more of the following ways:

5

� Hackystat uses sensors to unobtrusively collect data from development environment tools; there is no chronic
overhead on developers to collect product and process data. In contrast, tools such as the Process Dashboard
[40] involve manual data collection.

� Hackystat is tool, environment, process, and application agnostic. The architecture does not suppose a spe-
cific operating system platform, a specific integrated development environment, a specific software process,
or specific application area. A Hackystat system is configured from a set of modules that determine what
tools are supported, what data is collected, and what analyses are run on this data. In contrast, tools such as
TSP Tool [9] implement support for a fixed set of metrics under a fixed process on a single platform.

� Hackystat is intended to provide in-process project management support. Traditional software metrics ap-
proaches, such as the NASA Metrics Data Program [8], are based upon the “project repository” method, in
which data from prior completed projects are used to make predictions about a future project. In contrast,
Hackystat is designed to continuously collect data from a current, ongoing project, and use that data as
feedback into the current project.

� Hackystat is open source and is available to the academic and commercial software development community
for no charge. In contrast, commercial toolkits such as MetricCenter [4] are closed source and require
licensing fees.

The design of Hackystat [24] reflects prior research in our lab on software measurement, beginning with
research into data quality problems with the PSP [23] and continuing with research on the LEAP system for
lightweight, empirical, anti-measurement dysfunction, and portable software measurement [27].

Figure 1. The basic architecture of Hackystat. Sensors are attached to tools directly invoked by
developers (such as Eclipse or Emacs) as well as to tools implicitly manipulated by developers (such
as CVS or an automated build process using Ant).

To use Hackystat, the project development environment is instrumented by installing Hackystat sensors, which
developers attach to the various tools such as their editor, build system, configuration management system, and so
forth. Once installed, the Hackystat sensors unobtrusively monitor development activities and send process and
product data to a centralized web server. If a user is working offline, sensor data is written to a local log file to be
sent when connectivity can be re-established. Project members can log in to the web server to see the collected
raw data and run analyses that integrate and abstract the raw sensor data streams into telemetry. Hackystat also

6

allows project members to configure “alerts“ that watch for specific conditions in the sensor data stream and send
email when these conditions occur. Figure 1 illustrates the basic architecture of the system.

Hackystat is an open source project. Its sources, binaries, and documentation are freely available online. We
also maintain a public server running the latest release of the system at http://hackystat.ics.hawaii.edu. Hackystat
has been under active development for approximately four years, and currently consists of approximately 1500
classes and 95,000 lines of code. Sensors are available for a variety of tools including Eclipse, Emacs, JBuilder,
Jupiter, Jira, Visual Studio, Ant, JUnit, JBlanket, CCCC, DependencyFinder, Harvest, LOCC, Office, and CVS.

Hackystat is being used in a variety of academic and industrial contexts. At the University of Hawaii, Hackystat
has been tightly integrated into the undergraduate and graduate software engineering curriculum, and is used by
approximately 50 students per year to support project development [25]. A researcher from the Free University
of Bozen came to Hawaii to study the Hackystat system in support their research on PROM [45]. Researchers
at the University of Maryland are using Hackystat to support assessment of programmer effort [18]. Hackystat
has been used at NASA’s Jet Propulsion Lab to analyze the daily build process for the Mission Data System [22].
Finally, Hackystat is being used at SUN Microsystems to support research on high performance computing system
development productivity [11].

2.2 Software Project Telemetry

The automated, unobtrusive, continuous, and low-cost measurement infrastructure provided by Hackystat en-
abled us to develop a new approach to software measurement analysis called “Software Project Telemetry“. Ac-
cording to Encyclopedia Brittanica, telemetry is a “highly automated communications process by which measure-
ments are made and other data collected at remote or inaccessible points and transmitted to receiving equipment
for monitoring, display, and recording.” We define Software Project Telemetry as a style of software engineering
process and product collection and analysis which satisfies the following five properties:

(1) Software project telemetry data is collected automatically by tools that unobtrusively monitor some form of
state in the project development environment.In other words, the software developers are working in a “remote or
inaccessible location” from the perspective of metrics collection activities. This contrasts with software metrics
data that requires human intervention or developer effort to collect, such as PSP/TSP metrics [19].

(2) Software project telemetry data consists of a stream of time-stamped events, where the time-stamp is signifi-
cant for analysis.Software project telemetry data is thus focused on evolutionary processes in development. This
contrasts, for example, with COCOMO [7], where the moment in time at which calibration data is collected is not
generally significant.

(3) Software project telemetry data is continuously and immediately available to both developers and managers.
Telemetry data is not hidden away in some obscure database guarded by the software quality improvement group.
It is easily visible to all members of the project for interpretation.

(4) Software project telemetry exhibits graceful degradation.While complete telemetry data provides the best
support for project management, the analyses should not be brittle: they should still provide value even if sensor
data occasionally “drops out“ during the project. Telemetry collection and analysis should provide decision-
making value even if these activities start midway through a project.

(5) Software project telemetry is used for in-process monitoring, control, and short-term prediction.Telemetry
analyses provide representations of current project state and how it is changing at the time scales of days, weeks, or
months. The simultaneous display of multiple project state values and how they change over the same time periods
allow opportunistic analyses—the emergent knowledge that one state variable appears to co-vary with another in
the context of the current project.

Software Project Telemetry enables an incremental, distributed, visible, and experiential approach to project
decision-making. For example, if one finds that complexity telemetry values are increasing,andthat defect density
telemetry values are also increasing, then one could try corrective action (such as simplification of overly complex

7

modules) and see if that results in a decrease in defect density telemetry values. One can also monitor other
telemetry data to see if such simplification has unintended side-effects (such as performance degradation). Project
management using telemetry thus involves cycles of hypothesis generation (Does module complexity correlate
with defect density?), hypothesis testing (If I reduce module complexity, then will defect density decrease?), and
impact analysis (Do the process changes required to reduce module complexity produce unintended side-effects?).
Finally, Software Project Telemetry supports decentralized project management: since telemetry data is visible
to all members of the project, it enables all members of the project–developers and managers–to engage in these
management activities.

Figure 2. This telemetry report shows how code churn (lines added and lines deleted) co-varies with
build failures over a four month period.

As a concrete example of telemetry, consider Figure 2. This report illustrates the relationship between aggregate
code churn (the lines added and deleted from the CVS repository by all members of the project) and the number
of build failures over a four month period on the Hackystat project. Note how closely these two measures co-vary,

8

even though one is a process measure (build failure) and the other is a product measure (code churn). From this
initial observation, one could investigate other time periods and time scales to see if this relationship holds in other
contexts, as well as test hypotheses on how to reduce build failures or predict their impact on the project schedule.

The computational path from the sensors in Figure 1 to the telemetry report in Figure 2 involves several steps. In
the first step, “raw” sensor data is collected from small software plug-ins attached to developer tools. For example,
an editor sensor may record a “state change” event when a file has been edited within the last 30 seconds by the
user. A CVS sensor may record the number of lines added and deleted from a file during the past 24 hours. This
raw data is sent from the sensors to a Hackystat server, where they are persisted in an XML-based repository. In
the second step, the system abstracts the raw sensor data into one or more “DailyProjectData” instances, which
synthesize raw sensor data from multiple group members and/or multiple sensors into a higher level abstraction.
For example, a DailyProjectData instance might process low-level “state change” events from multiple developers
and determine the total amount of time spent editing files by all members of the project group for a given day.
In the third step, special classes called “Reduction Functions” manipulate DailyProjectData instances to create
the sequence of numerical telemetry values associated with a given project and time interval. For example, a
Reduction Function might manipulate a set of DailyProjectData instances to produce a sequence of numerical
telemetry values indicating LOC/hour.

In one application of Software Project Telemetry, we are creating telemetry streams to support diagnosis of daily
build failures and reduce the productivity impact of their occurrence over time [26]. Another application involves
the development of specialized telemetry streams for high performance computing software to better understand
the bottlenecks present in the development of those systems [28].

2.3 Software Development Stream Analysis

Software Project Telemetry supports a “macro” view of project development; telemetry aggregates data over
all of the developers in a project and all of its artifacts at time scales of days, weeks, or months. A more recent
research effort of ours focuses on a “micro” view of project development, in which we seek to analyze developer
behaviors at the time scale of minutes or hours and identify whether they constitute the use of a best practice. Our
approach is called “Software Development Stream Analysis” (SDSA).

For example, consider the best practice called “test driven design” (TDD) [6]. TDD is often explained through
a stop light metaphor, which cycles from green to yellow to red. At the beginning of a TDD cycle, the code
is working, and the stop light is green. The developer then defines a new test case that tests a new (and as
yet unimplemented) feature. This will produce a syntax (compilation) error because that feature is not even
implemented yet. This changes the stop light to yellow. Consequently, the developer implements a stub version of
the feature, which fixes the compilation error but produces a test failure. This changes the stop light to red. Once
the developer finishes implementing the feature, the light changes to green and the cycle begins again. The stop
light metaphor is interesting because out of sequence lights indicate violations of the TDD development pattern;
for example, green to red indicates that the developer added new code without adding a test for it first.

The goal of Software Development Stream Analysis is to support automated recognition of development prac-
tices such as TDD. SDSA involves a four step process. First, Hackystat sensors collect raw data sufficient to allow
identification of the development behavior of interest. In the case of TDD, the sensor must collect editing events,
compilation events, test invocation events, and their results. Once the appropriate form of raw data is available,
SDSA takes the raw event stream and “tokenizes” it by replacing sequences of raw data representing one type of
behavior by a single token representing that behavior. For example, if the user edits the same file for several min-
utes, several dozen “state change” events may be generated in the raw data stream. The SDSA tokenizer replaces
these by a single “Edit” token. Once the raw data stream is tokenized, SDSA partitions it into a set of episodes. In
the case of TDD, a “test pass” event serves as the delimiter between episodes. Finally, a rule-based engine based
upon JESS [13] processes each episode and classifies its development behavior, or returns Unknown if the episode

9

does not fit any of the known behaviors.

Figure 3. SDSA classifies this episode as “(TDD, 2)”. This represents a normal TDD cycle. The
two shaded “COMPILE” cells are yellow, and the last two “UNIT TEST” cells are red and green,
respectively.

Figure 3 illustrates the use of SDSA to classify developer behavior as belonging to the TDD best practice. This
screen image shows the first episode of a programming session on March 15, 2005, whose total duration was a
little over three minutes. In this episode, the developer began by implementing a class named TestStack. He then
attempted to compile the class, but it failed to compile since the class it was testing (Stack) was not implemented.
SDSA indicates this with a (yellow) Compile token. The developer implements the Stack class, but forgets the
isEmpty() method, yielding another yellow Compile error. Finally, the Stack class stub is implemented, producing
a (red) Unit Test Failure token. A short time later, the remainder of the Stack class is implemented, producing a
(green) Unit Test Pass token, which completes the TDD episode.

Our research on SDSA is less mature than our research on Software Project Telemetry, and we are only begin-
ning the process of evaluating its generality and utility. Our initial pre-pilot experiments in the domain of Test
Driven Design appear promising, and the system has been able to correctly classify TDD episodes with over 80%
accuracy in a small sample of developer data. Currently, Eclipse is the only development environment for which
we have developed a Hackystat sensor that captures the kinds of raw sensor data required for TDD recognition.
SDSA is currently focused on representation of a single developer’s behavior, although we have begun preliminary
design work on representations of group practices.

In this research, we propose to investigate the potential synergy between Software Project Telemetry and Soft-
ware Development Stream Analysis. Software Project Telemetry provides an efficient and effective mechanism
for detecting changes in the measures describing a project. With telemetry, we can easily detect that test case
coverage is going down, or build failures are going up, or inter-package coupling is increasing, or the variance

10

in developer active time is decreasing. Telemetry can tell us that project characteristics are changing, but offers
no insights into the behaviors that led to these changes. SDSA provides the opposite: it gives us insight into the
behaviors that are occurring during development, but does not tell us what the impact of these behaviors might be
on the project.

The integration of these two analysis mechanisms provides a powerful vehicle for evidence-based investigation
of software development best practices. In the case of test-driven development, its proponents have made radical
claims for the technique: that it produces 100% test case coverage, that it produces higher quality software, more
maintainable software, and improves programmer productivity. Initial empirical studies of TDD have not provided
strong evidence for or against these claims [14, 15, 16, 36, 37]. Using Hackystat, Software Project Telemetry, and
SDSA, we can provide a replicable, standard infrastructure that automatically (a) gathers outcome measures, such
as coverage, active time, and unit test invocations; and (b) assesses compliance with the definition of TDD, so
that we know whether the experimental subjects were actually using the technique without requiring physical
observation. We will discuss this research effort further in Section 3.

2.4 Pattern Discovery

Recent research in knowledge discovery and data mining involves processing time ordered input streams and
discovering the most frequently recurring patterns. Much of this work is based upon the Rissanen’s Minimum
Description Length (MDL) principle [41]. The basic idea of this principle is that any regularity in a given set of
data can be used to compress the data. The more regularities there are, the more the data can be compressed, and
the more confidence we have that this regularity represents a meaningful pattern in the data.

Heierman and his colleagues created the ED (Episode Discovery) algorithm [17], which is based upon MDL but
provides enhancements to support natural forms of periodicity in human-generated timestamp data. For example,
a person might log in to their computer every weekday morning between 8:00am and 8:30am. ED includes explicit
support for representing such periodicity in the description language, which results in shorter representations for
periodic patterns. In addition, and unlike SDSA, ED does not require an apriori specification of how a time-ordered
sequence is partitioned into episodes, but determines them automatically. Mannilla and colleagues also developed
an episode discovery algorithm that they applied to the stream of events in a telecommunication network alarm
log, with the goal of better understanding the causes of alarms, to suppress redundant alarms, and predict future
faults [35].

Pattern discovery techniques such as these appear to hold great promise for application to the data collected
by Hackystat sensors, which is time-stamped, periodic, and may or may not have naturally occuring “episode”
boundaries depending upon the purpose of the analysis. Pattern discovery can complement SDSA: once a pattern
is found via Pattern Discovery and validated as interesting, a set of SDSA rules can be developed that represent
the “best practice” represented by the pattern, which might be more general than the original behaviors analyzed.

2.5 Evidence-based software engineering

A recent revolution in medical research involves the introduction of an “evidence-based” paradigm. This
paradigm arose in response to two observations: the failure to organize medical research into systematic reviews
could cost lives, and the clinical judgement of experts compared unfavorably with the results of systematic re-
views. The evidence-based approach is starting to be applied outside of medicine, in fields such as psychiatry,
nursing, social policy, education, and software engineering.

Kitchenham has been leading the movement for evidence-based software engineering, organizing workshops
on this topic and publishing papers explaining the issues involved in applying evidence-based research techniques
to software engineering [33, 32]. She and her collaborators propose a five step method for evidence-based soft-
ware engineering: (1) Convert the need for information [about a software engineering practice] into an answerable

11

question; (2) Track down the best evidence available for answering the question; (3) Critically appraise that evi-
dence using systematic review for its validity (closeness to the truth), impact (size of the effect), and applicability
(usefulness in software development practice); (4) Integrate the critical appraisal with current software engineer-
ing knowledge and stakeholder values [to support decision-making]; (5) Evaluate the effectiveness and efficiency
in applying Steps 1-4 and seek ways to improve them for next time. While promising, application of systematic
reviews and the integration of empirical software engineering data from multiple sources has been found to be
challenging [20].

Our proposed research is designed to provide technology, data, and methodology to support evidence-based
software engineering. The Hackystat framework, along with Software Project Telemetry, Software Development
Stream Analysis, and Pattern Discovery applications, provides new and useful infrastructure for the creation of
evidence regarding a given software engineering practice. Our case studies in the classroom setting will create
new, replicable data that can be used in evidence-based evaluation of the test-driven design, and our industrial
case studies will provide similar evidence for high performance computing productivity. Finally, our experiences
applying the tools and analyzing the data will result in our recommendations for effective ways to utilize the
technologies and assess the data that results.

2.6 Results from prior NSF research

Award number: CCF02-34568
Program: Highly Dependable Computing and Communication Systems Research
Amount: $638,000
Period of support: September 2002 to September 2006
Title of Project: Supporting development of highly dependable software through continuous, au-

tomated, in-process, and individualized software measurement validation
Principal Investigator: Philip M. Johnson
Selected Publications: [28, 38, 26, 25, 24, 22, 30, 12, 29]

The general objective of this research project is to design, implement, and validate software measures within a
development infrastructure that supports the development of highly dependable software systems. Contributions of
this research project include: (a) development of a specialized configuration of Hackystat to automatically acquire
build and workflow data from the configuration management system for the Mission Data System (MDS) project
at Jet Propulsion Laboratory; (b) development of analyses over MDS build and workflow data to support identifi-
cation of potential bottlenecks and process validation; (c) identification of previous unknown variation within the
MDS development process; (d) development of a generalized approach to in-process, continuous measurement
validation called Software Project Telemetry, (e) substantial enhancements to the open source Hackystat frame-
work, improving its generality and usability; (f) development of undergraduate and graduate software engineering
curriculum involving the use of Hackystat for automated software engineering metrics collection and analysis; (g)
support for 3 Ph.D., 6 M.S., and 3 B.S. degree students.

3 Research Plan

3.1 Task descriptions

Our research plan follows the detailed objectives for this research as summarized in Section 1.3, and consists
of the following seven tasks.

(1) Enhancement of the Software Development Stream Analysis mechanism.An initial task is to enhance our
prototype SDSA implementation with support for more types of sensor data, more interactive development envi-
ronments, and more kinds of developer behaviors than test driven development. Additional sensor data streams

12

include defect data reports, software complexity measures, and performance analysis data. Additional interactive
development environments include Emacs, NetBeans, and Visual Studio. Additional developer behaviors include
configuration management commit behaviors, defect management behaviors, and software review behaviors.

(2) Development of integration mechanisms between SDSA and Software Project Telemetry.Currently, Hack-
ystat does not provide any support for relating the analyses of SDSA to those of Software Project Telemetry. In
this task, we will develop such mechanisms. In general, the goal is to support the display of relationships in two
directions. Given the identification of an interesting SDSA behavior, we will display potentially relevant telemetry
streams in the period surrounding that behavior. Conversely, given the identification of an interesting change in
the telemetry associated with a given project, we will display the SDSA behaviors in the period surrounding that
change.

(3) Development of a pattern discovery subsystem.This task involves the design and implementation of a new
analysis module in Hackystat for pattern discovery. We will begin by reimplementing published algorithms, such
as the “episode discovery” algorithm [17]. This algorithm is particularly interesting because it does not require
an apriori partitioning of the event stream into discrete episodes for classification (as is currently the case for
SDSA), but rather identifies episodes as an intrinsic part of the pattern discovery process. After implementing the
algorithm, we will test it on a variety of data sets in order to assess its utility and effectiveness. For example, can
the analysis “discover” Test Driven Design when provided with a set of event streams enacting this behavior?

(4) Classroom-based, case study evaluation of the proposed techniques.Once we have implementations of
SDSA, its Telemetry integration, and Pattern Discovery, we will begin classroom studies to assess their utility and
effectiveness in classroom conditions. Over the past several years, we have integrated Hackystat into the under-
graduate and graduate software engineering curriculum at the University of Hawaii. Our students now routinely
install sensors, collect and analyze process and product metrics, and use this data to guide project management
[25]. This provides an excellent environment for evaluation of new Hackystat-based technologies.

We plan to evaluate SDSA and Telemetry integration though a case study of test-driven design with three
experimental phases. In the first phase at the beginning of the course, we will introduce “traditional” unit testing
and have them carry out a project assignment that requires them to achieve at least 90% coverage (to guarantee
a minimal level of test case quality) but without specifying when or how to develop the test cases. We will use
SDSA to verify that students are not using TDD for this phase, and use Software Telemetry to assess coverage,
LOC/Hour, and other indicators of quality and productivity.

In the second phase of the experiment, we will introduce principles of TDD, provide a short assignment for
them to use to learn TDD, then have them carry out a project assignment that requires both the use of TDD and at
least 90% coverage. We will use SDSA to verify that the students are using TDD during this project, and Software
Telemetry to assess the same indicators of quality and productivity as before. We can compare the values of these
indicators to see if any changes occur from the introduction of TDD. For example, does the introduction of the
TDD best practice improve average programming productivity? Does it decrease the variation in programmer
productivity?

In the third phase of the experiment, we will have the students carry out a final project assignment, and this time
require 90% coverage but allow them to choose their test development process. We will use SDSA to determine
what percentage of the students use TDD and how consistently they use TDD. We will use telemetry to see how
quality and productivity measures have changed relative to earlier phases.

In all phases, we will be applying the pattern discovery mechanism to the behavioral data that we obtain, and
testing to see if we can discover interesting patterns and if they relate to the telemetry data in useful ways.

At the end of the study, we will collect qualitative data using a questionnaire to assess student attitudes towards
Hackystat, TDD, SDSA, and pattern discovery.

We foresee multiple uses for the results from this case study. First, it will provide useful information about
the robustness and utility of our technology. For example, can SDSA correctly characterize developer behavior as
TDD, and to what extent is it susceptible to false positives and false negatives? Second it will provide an initial

13

assessment of our pattern discovery mechanism, and its ability to uncover student “best practices” that relate to
positive telemetry data. (Of course, it might also discover “worst practices” that relate to negative telemetry data,
which would also be useful information.) Finally, the case study data can yield interesting empirical evidence
regarding the efficacy of TDD, its impact on programmer productivity and variability, and provide an empirical,
replicable test of the claims made by its proponents.

(5) Industry-based evaluation of the proposed techniques.Once our classroom evaluation is under way and we
feel confident that the technology and methods are sound, we plan to carry out two industrial case studies.

The first case study will involve programmers affiliated with SUN Microsystems, as we have been collaborating
with them for two years as part of the DARPA High Productivity Computing Systems program. In this case study,
we will identify a high performance system software development group interested in Software Project Telemetry,
SDSA and/or Pattern Discovery, install the technology, monitor its usage, and collect qualitative data to assess de-
veloper attitudes and the effectiveness of the approach. We expect to build an HPC-specific enhancement to SDSA
for this case study, such as one that can represent certain best practices for MPI-based software development.

The second case study will use SDSA to assess test-driven development in an industrial setting. We will
publish a call for an “open evaluation” of TDD at such conferences as XP/Agile Universe and internet sites such
as the Agile Alliance. Participants can download and install the appropriate sensors and begin sending data to the
Hackystat public server. We will use SDSA to determine when they are performing TDD, and Software Project
Telemetry to assess process and product characteristics. The server will provide them with analyses of their data,
and include feedback mechanisms to enable them to report on the correctness of the classification mechanisms. At
the conclusion of the open evaluation, we will distribute a survey to participants to collect qualitative data on their
experience and demographic information that we can use to better understand the context in which their data was
generated.

The industrial case study results will be used to assess the robustness and utility of the SDSA and Pattern
Discovery mechanisms outside of a controlled classroom setting. In addition, the case studies will produce new
empirical evidence regarding TDD and HPC best practices.

(6) Packaging of the system and methods for widespread dissemination.Our approach to this task is highly
influenced by the movement toward evidence-based software engineering, which seeks the introduction of sys-
tematic reviews to improve the quality of our understanding of practices, the increased use of replication to better
understand the context surrounding empirical results, and a better understanding of how evidence can be used to
support the practice of software engineering in real world contexts.

As Hackystat and its associated applications are open source software with a well-developed infrastructure for
distributed development, the packaging of the actual software for widespread dissemination is straightforward. A
more challenging problem is to package the experimental methods such that the software can be used effectively
to produce empirical evidence that adds new value to a systematic review of the literature, either via replication of
an existing experiment or via a modification to an existing method. We plan to build upon prior research by Basili
and his colleagues on “Experience Factories” [3] to create “kits” combining a Hackystat software configuration
with documentation detailing the sensors to install, the data to collect, and the analyses to perform to gain insight
into the best practice of interest.

(7) Development of curriculum materials.Our prior experience with Hackystat in the classroom setting con-
vinces us that collection and analysis of software engineering metrics can form a compelling motivation for the use
of software engineering practices such as unit testing, configuration management, and software review. For this
task, we will incorporate the technology and methods from this evidence-based approach to best practices into our
undergraduate and graduate software engineering curriculum. We will teach the theory of evidence-based software
engineering, show data from prior studies and discuss its implications, and most importantly, enable students to
experience the gathering and analysis of evidence about their own practice through the use of Hackystat, SDSA,
Software Project Telemetry, and Pattern Discovery on classroom projects.

14

3.2 Work breakdown structure and milestones

Figure 4. Work breakdown structure and milestones.

Figure 4 shows when we plan to carry out each of these seven tasks, along with three milestones. As illustrated,
we will be concurrently working on three tasks throughout the three years of the project, except for the last
six months when we will focus on curriculum development, and packaging/dissemination. We also plan for
three major milestones during the project, occurring near the end of each of the three years of the research. The
milestones are denoted by upcoming major releases of the Hackystat framework and its associated applications.
Release 8.0 will include the enhanced software development stream analysis mechanism, along with integration
mechanisms for software project telemetry. Release 9.0 will incorporate pattern discovery mechanisms. At the
end of the project, we will release 10.0, which enhances the prior releases with the enhancements made as a result
of the case studies.

It is also important to identify and manage the risk factors associated with this research plan. We view the
enhancement of SDSA as having moderate risk, in that we do not yet know how well the current SDSA design
generalizes beyond the case of test-driven design. It may be that substantial redesign will be required to generalize
our approach to best practice representation beyond TDD. The SDSA/Telemetry integration task has low risk:
this is an engineering modification to the Hackystat framework that we are well suited to accomplishing. Pattern
Discovery development is a high risk task: while there are published algorithms and implementations we can use
as a basis for our work, we do not know how well these algorithms will work on software developer behavior
streams, nor do we know whether the patterns that are discovered can be easily abstracted and applied as best
practices in other contexts. Nevertheless, we view this research effort as high reward, since if successful it would
create a fundamentally new approach to the discovery of software engineering best practices. The classroom case
studies have low risk: we have a great deal of experience with classroom case studies and have ready access to
the software engineering student population at the University of Hawaii. The industry case studies have moderate
risk; while we have an excellent collaborative relationship with SUN Microsystems, there are always political
and organizational hurdles to cross before a case study can occur on a real-world project. The TDD case studies
include the risk of failing to attract interest from the Agile development community. Finally, the packaging,
dissemination, and curriculum material development tasks have low risk; we have been developing curriculum
materials and packaging/disseminating our Hackystat research for a number of years and are experienced with this
activity.

15

4 Conclusions

In all fields of human endeavor, there are extraordinarily gifted practitioners: in music, Beethoven and Mozart;
in golf, Sorenstam and Woods; in software development, Stallman and Joy. While no technological innovation can
match innate genius, the ultimate goal of this research is to provide the tools and techniques to allow all software
developers to reach their maximal potential.

Our proposal presents research designed to produce a variety of contributions to the theory and practice of soft-
ware engineering as well as broader impact to society at large. First, it will yield new technological infrastructure
for continuously collecting, analyzing, and interpreting software engineering best practices. This infrastructure
will be novel in its ability to collect and analyze both “macro” level project characteristics and “micro” level de-
veloper practices and relate these two levels of information to each other. The Pattern Discovery application is
designed to yield a new method for discovery of software engineering best practices.

Second, the research will yield a set of case studies in both classroom and industrial settings. The studies
are designed to provide new empirical data about software engineering, new insights into how best practices and
be represented and used, and specific data about programmer productivity and behavior in the domains of high
performance computing and test driven design.

Third, the research is grounded in an evidence-based approach to software engineering, which should yield
results more easily available to systematic review, replication, and enhancement. We intend for our curriculum
materials to be leveraged by other teachers and result in improved use of metrics in software engineering practice.
As the University of Hawaii is a university with 75% minority students in an EPSCOR state, this research will
provide novel research opportunities to underrepresented groups. This combination of contributions, if successful,
will support one more step toward safer, sounder, and more cost-effective information technology for our society.

16

References

[1] Alain Abran and James Moore, editors.Guide to the Software Engineering Body of Knowledge. IEEE
Computer Society, 2005.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. InProceedings of the 11th International Conference
on Data Engineering, Taipei, Taiwan, 1995.

[3] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.Encyclopedia of Software Engineering, chapter
Experience Factory. John Wiley and Sons, 1994.

[4] Peter Baxter. The MetricCenter toolkit. Distributive Software, Fredricksburg, Virginia, 2001.

[5] Kent Beck.Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.

[6] Kent Beck.Test-Driven Development by Example. Addison Wesley, 2003.

[7] Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford Clark, Ellis Horowitz, Ray Madachy,
Donald Reifer, and Bert Steece.Software Cost Estimation with COCOMO II. Prentice Hall, 2000.

[8] Mike Chapman. NASA MDP repository. http://mdp.ivv.nasa.gov/, 2004.

[9] Noopur Davis. Team Software Process tool. http://www.sei.cmu.edu/tsp, 2004.

[10] Michael E. Fagan. Design and code inspections to reduce errors in program development.IBM Systems
Journal, 15(3):182–211, 1976.

[11] Stuart Faulk, John Gustafson, Philip M. Johnson, Adam A. Porter, Walter Tichy, and Larry Votta. Toward
accurate HPC productivity measurement. InProceedings of the First International Workshop on Software
Engineering for High Performance Computing System Applications, Edinburgh, Scotland, May 2004.

[12] Stuart Faulk, Philip M. Johnson, John Gustafson, Adam A. Porter, Walter Tichy, and Larry Votta. Measuring
HPC productivity.International Journal of High Performance Computing Applications, December 2004.

[13] Ernest Friedman-Hill.JESS in Action. Mannig Publications Co., Greenwich, CT, 2003.

[14] Boby George and Laurie Williams. An Initial Investigation of Test-Driven Development in Industry.ACM
Sympoium on Applied Computing, 3(1):23, 2003.

[15] Boby George and Laurie Williams. A Structured Experiment of Test-Driven Development.Information &
Software Technology, 46(5):337–342, 2004.

[16] A. Geras, M. Smith, and J. Miller. A Prototype Empirical Evaluation of Test Driven Development. In
Software Metrics, 10th International Symposium on (METRICS’04), page 405, Chicago Illionis, USA, 2004.
IEEE Computer Society.

[17] E. Heierman, G. Youngblood, and D. Cook. Mining temporal sequences to discover interesting patterns.
In Proceedings of the 2004 International Conference on Knowledge Discovery and Data Mining, Seattle,
Washington, 2004.

[18] Lorin Hochstein, Victor Basili, Marvin Zelkowitz, Jeffrey Hollingsworth, and Jeff Carver. Combining self-
reported and automatic data to improve effort measurement. InProceedings of the 2005 Conference on
Foundations of Software Engineering, 2005.

17

[19] Watts S. Humphrey.A Discipline for Software Engineering. Addison-Wesley, New York, 1995.

[20] A. Jedlitschka and M. Ciolkowski. Towards evidence in software engineering. InProceedings of the 2004
International Symposium on Empirical Software Engineering, 2004.

[21] Philip M. Johnson. Hackystat system. http://www.hackystat.org/.

[22] Philip M. Johnson. The Hackystat-JPL configuration: Overview and initial results. Technical Report CSDL-
03-07, Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii 96822,
October 2003.

[23] Philip M. Johnson and Anne M. Disney. The personal software process: A cautionary case study.IEEE
Software, 15(6), November 1998.

[24] Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Christopher Chan, Carleton A. Moore, Jitender Miglani,
Shenyan Zhen, and William E. Doane. Beyond the personal software process: Metrics collection and analysis
for the differently disciplined. InProceedings of the 2003 International Conference on Software Engineering,
Portland, Oregon, May 2003.

[25] Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Qin Zhang, Aaron Kagawa, and Takuya Yamashita. Prac-
tical automated process and product metric collection and analysis in a classroom setting: Lessons learned
from hackystat-uh. InProceedings of the 2004 International Symposium on Empirical Software Engineering,
Los Angeles, California, August 2004.

[26] Philip M. Johnson, Hongbing Kou, Michael G. Paulding, Qin Zhang, Aaron Kagawa, and Takuya Yamashita.
Improving software development management through software project telemetry.IEEE Software, August
2005.

[27] Philip M. Johnson, Carleton A. Moore, Joseph A. Dane, and Robert S. Brewer. Empirically guided software
effort guesstimation.IEEE Software, 17(6), December 2000.

[28] Philip M. Johnson and Michael G. Paulding. Understanding HPCS development through automated process
and product measurement with hackystat. InSecond Workshop on Productivity and Performance in High-End
Computing (P-PHEC), February 2005.

[29] Aaron Kagawa. Hackystat MDS supporting MSL MMR. Technical Report CSDL-04-06, Department of
Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii 96822, June 2004.

[30] Aaron Kagawa and Philip M. Johnson. The Hackystat-JPL configuration: Round 2 results. Technical Report
CSDL-03-07, Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii
96822, May 2004.

[31] Gerold Keefer. Extreme programming considered harmful for reliable software development. Technical
report, AVOCA GmbH, 2003.

[32] B. Kitchenham. Systematic reviews. InProceedings of the 2004 International Symposium on Software
Metrics, 2004.

[33] Barbara Kitchenham, Tore Dyba, and Magne Jorgensen. Evidence-based software engineering. InProceed-
ings of the 2004 International Conference on Software Engineering, 2004.

[34] Nancy Leveson and Clark Turner. An investigation of the Therac-25 accidents.IEEE Computer, July 1993.

18

[35] H. Mannila, H. Toivonen, and A. Verkamo. Discovering frequent episodes in sequences. InProceedings of
the 1995 International Conference on Knowledge Discovery and Data Mining, Montreal, Canada, 1995.

[36] M. Matthias Muller and Oliver Hagner. Experiment about Test-first Programming. InEmpirical Assesment
in Software Engineering (EASE). IEEE Computer Society, 2002.

[37] Matjaz Pancur and Mojca Ciglaric. Towards empirical evaluation of test-driven development in a university
environment. InProceedings of EUROCON 2003. IEEE, 2003.

[38] Michael G. Paulding. Measuring the processes and products of HPCS development: Initial results for the
optimal truss purpose-based benchmark. Technical Report CSDL-04-13, Department of Information and
Computer Sciences, University of Hawaii, Honolulu, Hawaii 96822, September 2004.

[39] Lutz Prechelt. The 28:1 Grant/Sackman legend is misleading, or: How large is interpersonal variation really?
Technical Report 1999-18, University of Karlsruhe, 1999.

[40] Ken Raisor and David Tuma. Process dashboard for PSP. http://processdash.sourceforge.net/, 2001.

[41] J. Rissanen.Stochastic Complexity in Statistical Inquiry. World Scientific Publishing Company, 1989.

[42] Walker Royce. CMM vs. CMMI: From conventional to modern software management.The Rational Edge,
February 2002.

[43] H. Sackman, W. Erikson, and E. Grant. Exploratory experimental studies comparing online and offline
programming performance.Communications of the ACM, 11(1), 1968.

[44] G. Schulmeyer. The net negative producing programmer.American Programmer, June 1992.

[45] Alberto Sillitti, Andrea Janes, Giancarlo Succi, and Tullio Vernazza. Collecting, integrating and analyzing
software metrics and personal software process data. InProceedings of the 29th Euromicro Conference,
2003.

19

