
Continuous GQM:

An automated measurement

framework for the GQM paradigm

Diplomarbeit

von

Christoph Lofi

08 2005

AG Software Engineering

Fachbereich Informatik

Universität Kaiserslautern

Betreuer: Prof. Dr. H. Dieter Rombach, Prof. Dr. Philip Johnson,

Jens Heidrich, Marcus Ciolkowski

Erklärung

Hiermit erkläre ich, Christoph Lofi, dass ich die vorliegende Diplomarbeit selbständig

verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kaiserslautern, den 12. 08 2005

Contents

1 Introduction 3

1.1 Measurement in Software Engineering 3

1.1.1 Problems with Measurement and Control 6

1.1.2 Measurement and Quality 8

1.2 Goal . 9

1.3 Structure . 10

2 Related Work and Concepts 12

2.1 GQM . 12

2.1.1 GQM Goals . 14

2.1.2 GQM Questions . 16

2.1.3 GQM Metrics . 17

2.1.4 Phases of GQM . 17

2.1.5 GQM Templates . 18

2.1.6 Actual Tool Support 21

2.2 Software Quality and QIP . 22

2.3 SPCC . 25

2.4 Hackystat . 29

2.4.1 Hackystat Architecture 30

3

4 CONTENTS

2.4.2 Metrics Collection . 31

2.4.3 Analyses and Alerts . 33

2.4.4 HackyTelemetry . 34

2.4.5 Using Hackystat . 34

3 Continous GQM 39

3.1 Continuous Measurement . 39

3.2 Automated Measurement . 41

3.3 Goal Fulfillment Degrees . 42

3.4 Calculating Goal Fulfillments 44

3.5 Usage Process Models . 45

3.5.1 Consecutive Process Model 46

3.5.2 Continuous Process Model 48

3.5.3 Retrospective Process Model 48

3.5.4 Alert-Based Process Model 50

3.6 Refining and Learning Process Models 51

3.7 cGQM and Telemetry . 53

4 HackyCGQM 55

4.1 Key Requirements . 55

4.2 Definition of cGQM Plans . 58

4.2.1 cGQM Plugins . 58

4.2.2 Executables . 59

4.2.3 Plugin Describer . 60

4.2.4 Plugin Development Environment 63

4.2.5 Plugin Validation . 64

4.2.6 Plugin Lifecycle . 65

CONTENTS 5

4.3 Data Collection and Metrics 66

4.4 Architecture . 69

4.4.1 Hackystat Integration 69

4.4.2 Internal Architecture 70

4.5 cGQM and SPCC . 74

4.6 Statistics . 75

5 Evaluation and Demonstration 76

5.1 Implemented cGQM Examples 76

5.1.1 “BuildFailures” example 77

5.1.2 “Issues” example . 81

5.1.3 “Overview” example 84

5.2 Effort Discussion . 84

5.2.1 Design . 86

5.2.2 Results . 89

5.2.3 Threats to Validity . 91

5.2.4 Discussion . 92

5.3 Structural Evaluation . 93

5.3.1 Design . 93

5.3.2 Results . 95

5.3.3 Threats to Validity . 96

5.3.4 Discussion . 98

5.4 User Interviews . 99

5.4.1 Design . 99

5.4.2 Results . 104

5.4.3 Threats to Validity . 108

6 CONTENTS

5.4.4 Discussion . 109

5.5 Evaluation Summary . 110

6 Conclusion 111

6.1 Summary . 111

6.2 Future Work . 112

6.3 Acknowledgments . 114

A Plugin Describer Schema Documentation 115

B Structural Evaluation - Full result tables 122

C User Interview Question Guidelines 133

D Indices 136

Abstract

Measurement is an important aspect of Software Engineering as it is the foun-

dation of predictable and controllable software project execution. Measurement

is essential for assessing actual project progress, establishing baselines and vali-

dating the effects of improvement or controlling actions.

The work performed in this thesis is based on Hackystat [1], a fully automated

measurement framework for software engineering processes and products. Hack-

ystat is designed to unobtrusively measure a wide range of metrics relevant to

software development and collect them in a centralized data repository.

Unfortunately, it is not easy to interpret, analyze and visualize the vast data

collected by Hackystat in such way that it can effectively be used for software

project control.

A potential solution to that problem is to integrate Hackystat with the GQM

(Goal / Question / Metric) [2, 3] Paradigm, a popular approach for goal-

oriented, systematic definition of measurement programs for software-engineering

processes and products.

This integration should allow the goal-oriented use of the metric data collected

by Hackystat and increase it’s usefulness for project control.

During the course of this work, this extension to Hackystat which is later called

hackyCGQM is implemented. As a result, hackyCGQM enables Hackystat to

be used as a Software Project Control Center (SPCC) by providing purposeful

high-level representations of the measurement data.

Another interesting side-effect of the combination of Hackystat and hackyCGQM

is that this system is able to perform fully automated measurement and analysis

cycles. This leads to the development of cGQM, a specialized method for fully

automated, GQM based measurement programs.

As a summary, hackyCGQM seeks to implement a completely automated GQM-

based measurement framework. This high degree of automation is made possible

by limiting the implemented measurement programs to metrics which can be

measured automatically, thus sacrificing the ability to use arbitrary metrics.

Chapter 1

Introduction

This chapter introduces the background domain of this thesis: Measurement in

Software Engineering. After that, the specific problems and goals being topic

of this work are illustrated.

1.1 Measurement in Software Engineering

This section illustrates some aspects of measurement in the contexts of Software

Engineering, it’s importance, implications and problems.

A cite which became quite famous in the last years says “you can neither pre-

dict nor control what you cannot measure” [4]. Measurement is one of the

steps needed to help the still young field of software development evolve from a

state characterized by cryptic art and intransparent chaos to a state identified

controllable, predictable, engineering-like processes.

The ability of a company to control and predict it’s processes leads to major

goals of all manufacturing and developing companies: Quality and efficiency.

Measurement is an important aspect of gaining that control [4].

Measurement and metrics Measurement is defined as the “association of

numbers with physical quantities and natural phenomena by comparing an un-

known quantity with a known quantity of the same kind” [5]. The quantification

of phenomena through the process of measurement relies on the existence of

3

4 CHAPTER 1. INTRODUCTION

an explicit or implicit metric, which is the standard to which the measure is

referenced [6]. A metric can be understood as a function m which assigns an

property of a property set X to a value from the metric set M: m : X → M.

By doing this, different observed properties become comparable.

In software engineering, metrics usually have three different primary character-

istics which can be classified as follows: The object they measure (product or

process), the objectivity (objective or subjective) and the directness (direct or

indirect).

In more detail [7, 8]:

Object (product / process)

Measurement is applied to a process or a product, resulting in either process or

product metrics.

• A product metric applies to the characteristics of a intermediate or final

product of software development. Examples of such a metric could be

size, complexity or number of test cases.

• Process metrics measure characteristics of the development process itself.

Examples could be number of found defects, overall effort or number of

performed reviews.

Objectivity (objective / subjective)

• Objective metrics are based on absolutes measures and characterize a

process or product in an objective way, so if repeated by a different in-

dividual, the result is the same. Most of the time, these metric are of

numeric nature. Examples could be lines of code or number of found

defects.

• The measurement of subjective metrics involve an human’s subjective

judgment. Naturally, two humans judging the same object independently

don’t have to end up with the same result. Examples are difficulty of a

problem or estimated time needed to solve it.

Directness (direct/indirect)

• A direct metric is based on measurement of the product or process char-

acteristic of interest. It does not rely on additional measurements or

1.1. MEASUREMENT IN SOFTWARE ENGINEERING 5

calculations. Examples are lines of code or number of issues.

• In contrast to that, indirect metrics involve the measurement of multiple

characteristics. The final result is calculated based on these measured

characteristics. Examples are productivity, effort or fault density.

As a final example, source lines of code is a direct, objective product metric.

Measurement During Software Development In production environments

like manufacturing, the importance of measurement in process controll is well

understood and many efficient and widely spread methods are in use. Nearly no

production or manufacturing company takes the risk of not being able to control

it’s own processes [9].

In contrast to that, software companies are different. Although most of them

are aware of the importance of better control and the need for measurement,

many of them fail to implement controllable and measured processes.

Studies [10] found out that chaotic projects with no defined measurement and

control during the development process fail more often or miss other project

objectives. In numbers, this means that 3 in 10 projects are being canceled, 5

in 10 overrun their schedule and/or budget by nearly double, and only 1.6 in 10

finish in conformance with their deadlines and budgets. Ad hoc and uncontrolled

processes represent a serious thread to a projects success.

Realizing this, Capability Maturity Model (CMM)1 was developed to assess a

companies ability to control their own processes. This assessment distinguishes

five levels of maturity. These levels range from level 1 representing immature

companies with no defined processes, measurement and control, followed by level

2 with simple, repeatable but still uncontrolled and unmeasured processes and

ending after level 3 and at level 5 representing companies performing completely

controlled, measured and optimized processes.

A report [11] from the Software Engineering Institute (SEI) shows that out of

542 software organizations participating in a CMM maturity assessment , 67%

1Capability Maturity Model, a method for evaluating on a scale from 1 to 5 how mature

and controlled an organization is.

6 CHAPTER 1. INTRODUCTION

of them are at the lowest maturity level (level 1), and 20% are at maturity level

2.

This means that nearly 87% of all software companies expose themselves to the

danger of not measureing and controlling their software development process

described like before.

In contrast to that, the minority of software companies which was able to archive

higher CMM levels and control and measure their processes tend not to fail their

projects [12].

So, when controlling processes (and a crucial aspect of controlling, measuring)

is so important and has such severe impacts, why do only a few companies

implement functioning processes and measurement programs? The answer of

that question is the topic of the next section.

1.1.1 Problems with Measurement and Control

As indicated by several researchers [13, 1, 14], the main reasons why organiza-

tions decide not to implement measurement programs are

• the lack of the needed competence

• lack of methods and tools needed for implementing useful measurement

and

• effort linked with an actual implementation (definition of the program and

measurement plans) and execution (measurement and analysis)

.

Most methods and tools known for controlling and measuring originate from

a different field then Software Engineering. They are principles developed in

manufacturing, production or other engineering fields. Unfortunately, it turned

out that tailoring these known principles for software development is not as

effective as hoped [14].

In most other engineering disciplines, the task of creating a new product is split

into three main phases:

1. developing the product

1.1. MEASUREMENT IN SOFTWARE ENGINEERING 7

2. developing the production process

3. execute and control the production process

Most measurement and control paradigms are tailored to support the third phase

of this model. But when examining software as a product in this model, it

turns out that all effort needed to create it is concentrated in the first phase

(developing). After a software is developed, it’s production is trivial (software

can just be copied). So, in contrast to most traditional engineering products,

software is not produced, but developed. To account for this aspect, specially

tailored methods and paradigms have to be developed which consider the special

situation of software development.

Up to today, a variety of software process improvement and/or assessment

programs heavily based on measurement, such as Personal Software Process

(PSP) [15], CMM [16], International Standard for Quality management systems

(ISO9001) [17], Software Process Improvement and Capability dEtermination

(SPICE) [18], Quality Improvement Paradigm (QIP) [14] or Goal/ Question/

Metric Paradigm (GQM) [2] have been created. But because Software Engi-

neering is still a young field, many of these methods are still not widely spread,

supported, tuned and accepted. And many of them are just methods - tool

support which helps to implement them is usually limited.

This leads to the second problem: The implementation of measurement and

process control programs is in most of the cases expensive and requires a high

degree of discipline by all participants (which in most cases also includes project

members on low operational levels like programmers), and as most data collec-

tion is manual, is prone to errors [19].

To many people, collecting and analyzing measurement data is a very tedious

task which often seems not to pay off. Collecting data and analyzing data is

often considered as superficial overhead by participants of measurement pro-

grams, mainly because often beneficial effects of measurement are not directly

obvious. Especially in times of high pressures, managers tend to re-assign project

members responsible for measurement to development activities [13].

One example for that is PSP [15] which in it’s original form uses manual metrics

collection. Every time a compilation error occurs, the developer has to stop

his/her current work, and log on paper forms the details about the error. It is

8 CHAPTER 1. INTRODUCTION

not only tedious, but also susceptible to bias, error, omission, and delay. This

often leads to the abandonment of the program [19].

Though CMM does not prescribe how metrics should be collected and analyzed,

it requires that all key process areas implement measurements to determine the

status of activities. A study by Herbsleb, et al. [20] says that it took on average

two years per level for a software development organization to get from CMM

level 1 to level 3, and that the cost ranged from $500 to $2000 per employee

per year. Quantitative measurement is explicitly addressed in CMM level 4,

and Humphrey himself admitted that the greatest potential problem with the

managed process (i.e. level 4) is the cost of gathering data, and that there are

an enormous number of potentially valuable measures of the software process,

but such data is expensive to gather and to maintain [16]. Due to high cost

associated with metrics collection and analysis, it is a daunting task to apply

measurement best practices to improve an software organizations development

process in practice.

The summary this chapter is that if tools and methods for decreasing the diffi-

culty and costs of actually implementing and executing measurement programs

are available, this reduces the barrier preventing the establishment of measure-

ment.

1.1.2 Measurement and Quality

Measurement is a core part of most quality improvement processes like QIP or

SPICE. This section briefly introduces it’s role in in these processes which will

reappear frequently in the later chapters. .

The main purposes of measurement in context of improvement of software

engineering related artifacts are [21]

• Assessment of the actual state of the artifact focused on it’s strength and

weaknesses

• Derivation of a “quantitative baseline”, which means the characterization

of an artifact not in a qualitative but in a quantitative way

• Determination of the effect of improvements by comparing the quantita-

tive baseline with measurement results after the improvements

1.2. GOAL 9

Summarized, the role of measurement in most improvement programs looks like

this (illustrated in Figure 1.1):

For improving a given product or process, it is important to know it’s state be-

fore the improvement program starts. This includes knowledge about which of

the aspects are important and what their values are. Measurement is used here

to define the baselines.

After the baselines are defined, certain controlling actions are taken. Their effect

has to be assessed by a measurements which are compared to the baseline to

provide feedback.

Figure 1.1: Measurement in quality improvement

Baselines are measured. After a treatment or controlling actions, a repeated

measurement is conducted. The results can be compared to provide feedback.

1.2 Goal

A goal of this thesis is to

• develop a concept for adding GQM support to Hackystat

• create a reference implementation

10 CHAPTER 1. INTRODUCTION

• perform first evaluations of that reference implementation

The work done in this thesis is based on Hackystat [1], a fully automated mea-

surement framework for software engineering processes and products. Hackystat

is designed to unobtrusively measure a wide range of metrics. The actual mea-

surements are performed by sensors which are connected to the software tools

used during development (like code editors, build tools or configuration manage-

ment systems). These sensors are able to perform automated and unobtrusive

measurement. This architecture overcomes two of the common problems often

associated with manually performed measurement: The high costs of actual

measurement and the vulnerability to errors.

Hackystat’s original goal was to serve as a academic platform for exploring and

validating new software product and process metrics. But with it’s powerful au-

tomated measurement abilities, it could also serve as a Software Project Control

Center (SPCC), used for observing and controlling software development. Un-

fortunately, Hackystat’s current design provides only limited support for data

analysis suitable for project control.

The solution proposed in this thesis is to integrate GQM, a goal-oriented ap-

proach for defining useful and purposeful measurement programs.

By combining Hackystat with GQM, a goal-oriented, completely automated

measurement system is created which limits itself to metrics which can be mea-

sured automatically by Hackystat. The concept of automated measurement and

analysis based on GQM is also generalized under the term “cGQM” (continous

GQM) in the later course of this work.

1.3 Structure

This thesis has four main parts: Introduction and concepts, cGQM and hackyCGQM

and evaluations conclusions.

• Introduction and concepts:

These chapters provide relevant context information needed to understand

the content of this work. Single chapters can be omitted by readers already

1.3. STRUCTURE 11

experienced with the introduced material. The following list of chapters

can be used as a guideline for selecting an area of interest.

– General introduction and measurement in software engineering envi-

ronments (chapter 1)

– Related works introducing GQM (2.1), QIP (2.2), SPCC (2.3) and

Hackystat (2.4).

• cGQM and hackyCGQM: In chapter 3, cGQM is introduced, followed by

it’s reference implementation hackyCGQM in chapter 4.

• Chapter 5 provides different evaluations and their results.

• Chapter 6 concludes this thesis and indicated future possibilities and works.

Chapter 2

Related Work and Concepts

This chapter shows an overview of existing works and technologies on which

this thesis is based upon or which are closely related.

These are, as illustrated in Figure 2.1:

• GQM (see section 2.1): A paradigm for goal oriented measurement for

software products and processes. It is the foundation of continuous Goal/

Question/ Metric Paradigm (cGQM) (see chapter 3) which is the main

topic of this thesis.

• Hackystat (see section 2.4): A framework for automated, unobtrusive

measurement of software metrics. hackyCGQM (see chapter 4), the ref-

erence implementation of cGQM is integrated into Hackystat.

• QIP (see section 2.2): A paradigm for software quality improvement by

cooperative and project learning. GQM and respectively cGQM can be

used in this paradigm in a profitable way.

• SPCC (see section 2.3): A concept for controlling the software develop-

ment process using measured data.

2.1 GQM

This section describes the Goal/ Question/ Metric Paradigm (GQM), a goal-

oriented approach for setting up measurement plans for software engineering

12

2.1. GQM 13

Figure 2.1: Relation between the relevant concepts and technologies

Yellow boxes indicate technologies while green ones represent concepts and methods.

related products and processes.

The goal of this section is to provide general insights into the basics of the

GQM Paradigm. In later subsections, descriptions of the paradigm itself and

basic techniques associated with GQM are provided.

GQM is of particular importance for this thesis as cGQM, this thesis’s main

topic, is based upon GQM.

The development of GQM started in 1984 at the University of Maryland [2, 3],

additional research is done at the Technical University Kaiserslautern [21, 22]

since 1992 and at the Fraunhofer Institute for Experimental Software Engineer-

ing Kaiserslautern (IESE) since 1996. In addition to that, several other groups

are doing research on GQM.

The main goal of GQM is to develop rationale, traceable and efficient measure-

ment strategies according to the underlying improvement or strategy goals.

The basic idea of GQM is that measurement should be goal-oriented, thus an

early step while performing GQM measurement is to define a set of goals. These

goals can be refined to questions which will help to solve the goals. Based on

the goals and questions, metrics are precisely chosen. This procedure can be

seen as a three layered structure, as illustrated in Figure 2.2.

14 CHAPTER 2. RELATED WORK AND CONCEPTS

In order to ensure efficient and rationale measurement, the GQM Paradigm

provides a top-down approach for the development of measurement plans and

a bottom-up approach for the interpretation of the recorded data.

By using this approach, there is an apparent justification why measured metrics

have been chosen.

Figure 2.2: The GQM-Layers

Goals are refined to questions, these are refined to appropriate metrics

The next subsections will illustrate this concept in finer detail.

2.1.1 GQM Goals

One of the key concepts of GQM is that measurement is understood as a goal-

oriented process. Defining exact and precise goals is fundamental. Therefore,

this subsection introduces the definition of the term ’goal’ in the context of

GQM.

Usually, a GQM goal can be understood as a 5-tupel describing the five aspects

(or dimensions) of a GQM goal: Object, Purpose, Quality Focus, Viewpoint

and Context [22], as illustrated in Figure 2.3.

These dimensions are interpreted in the following way:

• The object describes the primary target of the measurement. Usually, this

is the process or product which will be analyzed. Everything which can be

measured or analyzed is a potential goal object, this includes documents

like requirement documents or sourcecode, processes or parts of processes

2.1. GQM 15

Figure 2.3: A GQM goal

Goals consist of 5-dimension-tuple

like the integration phase of the development process or products like the

final, free-for shipping product.

• The purpose of the study describes the need to analyze the object. Dif-

ferent purposes could be, for example characterization, monitoring, eval-

uation, prediction or control.

• The quality focus describes which specific attribute or characteristics of

the object should be the matter of concern. Possible focuses are for

example, reliability, usability, correctness, costs or maintainability.

• The need and interpretation of data and information depends on the role

and position of the people working with it. These different positions and

role are grouped under the term ’viewpoint’. Different viewpoints are for

example programmer, project leader, tester, user or architect.

• The context describes the scope of the measurement program. This usu-

ally describes the programm’s environment and setup and is so usable for

knowledge transfer and determination of generalization.

An example for an possible GQM goal could be:

G1:

Analyze the final product

for purpose of evaluation

with respect to usability

from the viewpoint of an inexperienced end user

in the context of Project X.

After setting up the goals, they are usually characterized and examinated in

16 CHAPTER 2. RELATED WORK AND CONCEPTS

more detail. A commonly used tool for that is the so called abstraction sheet,

described in chapter 2.1.5.

The next step in the GQM process after defining the goals is setting up ques-

tions. GQM Questions will be the topic of the next subsection.

2.1.2 GQM Questions

GQM questions are created to refine and characterize goals. This subsection

will give a brief overview of GQM questions.

Good questions should be designed in way that their answer will characterize

a special aspect of their assigned goal. The collected answers of all questions

assigned to a goal should provide a clear and usable overview of the goals.

Usually, a set of questions contribute to one goal, questions can be shared

among goals.

Examples of questions which could be defined for the Example Goal 1 (2.1.1)

are:

• Q1: How much time is needed to install the product?

• Q2: How much time is needed to fulfill a given test task?

• Q3: What is the subjective opinion of the test subject?

• Q4: What is the percentage of implemented functions covered by help

texts and hints?

• Q5: To which degree does the product fulfill commonly accepted design

guidelines (like standardized user interface guidelines or common design

guidelines like the Nielsen Heuristics [23])?

Answering these questions give an incomplete insight into the goal (evaluation

of usability). For answering these questions, measurement is needed. For doing

proper measurement, according metrics have to be chosen.

Metrics are the subject of the next subsection.

2.1. GQM 17

2.1.3 GQM Metrics

Metrics describe a distinctive class of data representing a given property of the

the object to be measured. Because GQM is a goal-driven approach, only those

metrics are chosen for a measurement program that actually help fulfilling the

stated goal. This stands in contrast to metric-driven approaches in which the

focus is on measuring everything possible without a dedicated explicit goal.

2.1.4 Phases of GQM

Setting up goals, questions and metrics is only one phase in the complete process

of implementing GQM. Altogether, four phases, as illustrated in Figure 2.4, are

distinguishable in GQM [8]. Please note that this model does not prescribe in

which order the phases have to be performed, although in many cases a strictly

consecutive order is chosen.

Phase 1: In the first phase, the Planning phase, a project for applying mea-

surement is selected, defined, characterized and planned. This results

into a project plan.

Phase 2: Using the project plan, goals, questions and metrics are defined in

the Definition phase, where goals are used to develop questions and

questions to develop metrics.

Phase 3: After defining all needed metrics and using the information in the

project plan, the actual data collection can be started. This phase

is called the Data collection phase and results in a set of collected

data.

Phase 4: The Analysis of collected data results into measurements, matching

their according metrics. These measurements can be processed fur-

ther, resulting in the answers of the questions which can be used to

determine the fulfillment degree of the previous set up goals. This

phase is called the Analysis phase.

18 CHAPTER 2. RELATED WORK AND CONCEPTS

Figure 2.4: The four phases of the GQM method

The complete implementation of a GQM measurement is divided into four phases:

Planning, Definition, Data collection and Interpretation [8]

2.1.5 GQM Templates

The focus of this section is to briefly introduce various templates and abstract

tools which can be used while preparing and performing GQM analysis and mea-

surements.

The relation between these techniques is illustrated in Figure 2.5.

• Goal Template: The Goal Template is a tool that can be used to define

and characterize a GQM goal. In short, it is mainly a tool which accepts

a description of goal split into dimensions as described in 2.1.1.

• Abstraction Sheet: The Abstraction Sheet is a tool designed mainly to

support GQM interviews and to assist in defining, understanding, refactor-

ing and reviewing a particular GQM plan. The Abstraction Sheet consists

of a Goal Template and four sheet components which address predefined

topics related to the GQM goal.

The Abstraction Sheet can easily be used as a reminder or organizer in

interviews as it helps the interviewer to relate raised issues to one of the

four generic components and reminds him to address these components

specifically if they do not appear naturally in the interview.

An other usage of the Abstraction Sheet can be as an abstracted view of

2.1. GQM 19

Figure 2.5: Relation between GQM techniques

The qoal template is used to create the abstraction sheet. With the goals and the

abstraction sheets, the GQM plan is developed which is the basis for the measurement

plan.

20 CHAPTER 2. RELATED WORK AND CONCEPTS

a GQM goal for supporting review, refactor or definition activities. The

provided informations may greatly help to understand the relation of the

goal between other goals and questions and the relation to the “real world”

and the actual context.

The four components specifically addressed by the Abstraction Sheet are

– Quality Focus: This components describes the underlying measure-

ment model. It describes which aspects of the object are of interest

to this goal and where these aspects are defined. This can be under-

stood as the type of data to be collected.

– Baseline Hypothesis: This component describes what actual values

of data for the defined quality focuses are expected at beginning

of the measurement program by the person who is interviewed. If

there’s no existing data, this components represents an hypothesis.

These values can mainly be used for validation of the models and col-

lected data or for relating the progress made during the measurement

program.

– Variation Factors: These components lists environmental factors

which alter and affect the quality focuses. This can be helpful to

explain unexpected measurement results and helps to transfer the

measurement program and its results to different environments.

– Impact on Baseline Hypothesis: Here, the anticipated impact of vari-

ation factors on the quality focuses is described. If it is not possible

to describe the effects, then this strongly indicates that either the

quality focuses or impact factors are setup up in a invalid manner

and need rework or should be excluded.

• GQM Plan: A single goal plus the sets of questions and metrics that

provide an operational definition of that goal. A GQM plan documents

the refinement of a precisely specified measurement goal via a set of

questions into a set of metrics. Thus, a GQM plan documents which

metrics are used to achieve a measurement goal and explains their choice -

the questions provide the rationale underlying the selection of the metrics.

On the other hand, the GQM plan is used to guide analysis tasks because

it documents for which purpose the respective data was collected. [21]

2.1. GQM 21

• Measurement Plan: When coupled with a GQM plan, a measurement plan

specifies who collects the data required by the GQM plan, how the data

is collected, and up to when the data must be collected. A measurement

plan usually includes the data-collection forms as well as descriptions of

tools that perform online data collection [21].

The templates introduced in this sections can either be used manually or can be

integrated into a computer based tool. .

2.1.6 Actual Tool Support

Multiple reports covering problems arising during the enactment of GQM based

measurement programs emerged in the last years. Many of these reports relate

to the basic usage of the GQM paradigm as a “pen and paper” approach and

conclude with proposing new tool implementations.

A frequently referenced problem is the high costs for data collection and in-

terpretation during manual measurement and analysis cycles. These high costs

restrict the measurement sample sizes, frequency of analysis, duration and the

agility and flexibility of the measurement program.

These costs could be reduced significantly by automated measurement and data

analysis. Reduction of the effort needed for performing measurement programs

is the issue of tools like VTT Metriflame [24] or the CEFRIEL GQM tool [25].

HackyCGQM, the adaption of GQM for Hackystat developed in this work also

will concentrate on reducing the measurement effort.

Today’s available tools can be classified by the phases they support (overview

over phases see 2.1.4). In the following enumeration, there are three examples

for tools which support one, two and three phases (summarized in table 2.1).

1. GQM Planner 2 [26]

The GQM planner provides support for the Definition phase of the GQM

implementation. Is can be used define GQM plans and reusing parts of

existing plans and enforces a very formal definition of GQM plans.

2. CEFRIEL GQM Tool [25]

The CEFRIEL GQM Tool can be used to support the Definition and Data

22 CHAPTER 2. RELATED WORK AND CONCEPTS

tool Phase 1 Phase 2 Phase 3 Phase 4

Planning Definition Data collection Interpretation

GQM Planner 2 good support

CEFRIEL GQM Tool good support manual support

VTT Metrifame good support manual support limited support

Table 2.1: GQM tools and their support

Collection phase. For supporting the data collection, it is able to plug-

in itself into existing project databases, SCM tools and using Resource

Standard Metrics tools generating measurements for common metrics like

SLOC or CCC.

3. VTT Metriflame [24]

Metriflame tries to support the Definition, Data Collection and Interpre-

tation phase of the GQM implementation. Data collection is done by

plugging into existing data bases and text files. After the data collec-

tion, functions can be defined for answering questions (most commonly

by displaying graphs).

These tools provide interesting aspects, but they are still limited in respect to

the degree of automation provided for measurement for the required metrics.

Supporting the Definition phase of GQM is implemented in all of these tools,

but the automated support for Data collection and Interpretation is still limited

to simple GQM plans in special domains (summarized in 2.1).

2.2 Software Quality and QIP

This section introduces QIP [14], an approach for software quality improvement

based on cooperative learning. cGQM, as an extended and automated GQM

implementation focusing on repeated measurement cycles, can be used in an

especially advantageous way in context of QIP.

Software quality is defined as all characteristics of a product that bear on its

ability to satisfy explicit and implicit needs of the user [27]. As an example,

the characteristics identified by International Standard Organization (ISO) are

illustrated in Figure 2.6.

2.2. SOFTWARE QUALITY AND QIP 23

Figure 2.6: ISO 9126 software quality characteristics[27]

ISO 9126 defines six characteristic facets of software quality

Quality is an important aspect of attracting and satisfying customers. Unfortu-

nately, the perception of quality will be different for different individuals. This

makes quality a difficult, but important aspect of improvement and control.

Formal product quality is a concept that was introduced into engineering disci-

plines comparable late (mainly in the 1980s). After it’s emersion, the impact on

participating industrial sectors was dramatic. Unfortunately, software industry

was one of the last sectors benefiting of this movement. Still, it’s implementa-

tions are discussed and not self-evidently used.

Different paradigms dealing with software quality have been created. They can

be divided into three major categories:

1. Software Improvement paradigms: These paradigms, specially designed for

the software industry, aim to improve quality by improvement and learning

in iterations. QIP is member of this category.

2. Software Benchmark paradigms: These paradigms try to improve software

quality by setting an external scale based on known best practices. An

example for this category is CMM (Capability Maturity Model).

3. Engineering Paradigms: These paradigms origin from other engineering

disciplines like manufacturing. When the field of software engineering was

still very young, the approach of adopting proved paradigms from other

disciplines was popular. Unfortunately, the success of these adoptions was

most of the time not very high [14]. Examples of this category are TQM

(Total Quality Management) or Shewart-Deming PDCA (Plan Do Check

Act).

The main concept of QIP is supporting the the acquisition of core competencies

and improving strategic capabilities of software cooperations.

24 CHAPTER 2. RELATED WORK AND CONCEPTS

This is realized by the idea that every software project is an experiment in the

sense that every project is unique and its outcome is hard to predict reliably

in advance. Furthermore each project is an opportunity for the organization to

learn about its processes, the products and quality aspects and to build or refine

models for these objects [28].

Therefore, QIP implements two feedback and learning cycles, a cooperate feed-

back cycle and a project feedback cycle.

The complete QIP learning processes consist of the steps described in the fol-

lowing and in Figure 2.7):

1. Characterize and understand: In this phase, the current project and its

environment is characterized. This supports and simplifies the knowledge

transfer from already learned experience by providing the ability to compare

the contexts of the actual project, and the experience for deciding if the

experience is valid for the actual project or not.

2. Set goals: Set quantifiable goals for project and corporate success and

improvements.

3. Choose models (processes, methods, techniques, tools):

4. Execute the project: While executing the project, a repeated project learn-

ing loop takes place. During the execution, the projects product is created

and this process is constantly measured in in real time for applying correc-

tive and controlling actions. This project learning process can be divided

into three subphases, each representing one project feedback-loop:

(a) Execute: Work on the product and measure that process.

(b) Analyze Results: Interpret the measurement results for corrective

actions.

(c) Feedback: Control and correction of the project course based on the

taken measurements.

5. Analyze: Analyze the projects results to evaluate current practices, deter-

mine problems, record findings and recommend improvements for future

project.

2.3. SPCC 25

6. Package: Package the experience in the form of updated and refined

models and save it in an experience base to be reused on future projects.

Figure 2.7: The QIP circles

QIP consists of a cooperate and a project learning circle. Both take advantage of

collected metric measurements.

In the context of the QIP, GQM-based measurement is due to it’s goal-based

approach an ideal mechanism to support the operational definition of project

goals during the planning phase, the analysis of measurement data and its feed-

back into the ongoing project and to allow the explicit capturing of measurement

plans for reuse in future projects.

2.3 SPCC

A SPCC is defined as a platform used for controlling software development using

measurement data [29].

SPCCs propose a software development model as illustrated in Figure 2.8.

There, the SPCC serves as a central information processing and visualization

unit providing valuable feedback data for manifold project roles.

At the actual moment, various systems are in existence which can be considered

a SPCC implementation. Also hackyCGQM, which is developed during the

26 CHAPTER 2. RELATED WORK AND CONCEPTS

Figure 2.8: SPCCs Software Development Model (from [29])

The SPCC provides feedback for project planning, project execution and know-how

management.

course of this thesis, can be considered as a specialized SPCC implementation.

The G-SPCC Reference Implementation This subsection briefly introduces

the G-SPCC reference implementation [30, 31] for SPCC developed in 2003 at

the University of Kaiserslautern and some of it’s concepts.

A main feature of G-SPCC is that it provides goal-oriented interpretation and vi-

sualization of collected measurement data. The data interpretation is performed

by so-called visualization catenas or visualization chains, which are realized by a

set of combinable functions geared for purpose-oriented interpretation. SPCC

visualizations are presented through a set of role-based views, tailored for the

needs of the audience.

The G-SPCC reference implementation is realized as a web-application primary

based on Java, eXtensible Meta Language (XML) and eXtensible Stylesheet

Language Transformation (XSLT) on technological side.

It can access databases containing measurement data and process and visualize

the data in a way suitable for project control.

2.3. SPCC 27

The visualization catena and views are central concepts of the implementation

and are explained in the following.

Visualization Catenas Data that is to be processed and visualized usually

serves a specific purpose. For transforming it from it’s raw form to form fulfilling

this purpose, it has to be treated with different methods or techniques.

G-SPCC considers each of these methods or techniques which serve a single or

multiple data transformation purposes as a “functions”. Functions could, for

example, predict unknown data, summarize data or calculate the deviation of a

given base line.

Each function is implemented by a Java class which can be instantiated and

connected to a dynamic network where the results of one function is fed into

the input of the next. These networks can be defined in a flexible and complex

way where functions can be fed by multiple others or can serve multiple others

themselves, as illustrated in Figure 2.9.

Figure 2.9: Structure of a visualization catena (from [31])

The shown catena consists of several layers of dependent SPCC function instances,

which produce internal data entries.

Views SPCC suggests that the visualization of measurement data has to be

role-based. This means, that for each measurement program different user

28 CHAPTER 2. RELATED WORK AND CONCEPTS

roles can be defined with different requirements and needs for the visualized

data. These different needs are satisfied by introducing different views at the

data. Each view visualizes just the relevant data required by the role in such a

way so that it satisfies the roles needs. As an example, a project manager needs

different data than a developer or a business strategist.

The views are connected to the network of functions which will provide the data

for the visualization. This is indicated in Figure 2.10.

Figure 2.10: SPCC views and their instances. (from [31])

The upper part shows a pool of different SPCC views, which are instantiated to tree

structures of comprising SPCC view instances suited for a project manager and quality

assurer. The lower Effort Controlling View shows a sample visualization of one tree

branch.

As an other example, Figure 2.11 shows a tree structured visualization catena.

There, data is processed in layers with deeper layers feeding higher layers which

finally feed the views.

This kind of tree-like design could also be used to emulate data processing in

GQM scenarios (three layers: goals, questions and metrics).

2.4. HACKYSTAT 29

Figure 2.11: SPCC functions and their instances (from [31])

The left hand side shows a pool of different SPCC functions, which are instantiated to

a complex structure of dependent SPCC function instances, shown on the right hand

side.

2.4 Hackystat

This section introduces the Hackystat [1] system, an automated tool for empir-

ically guided software process improvement. HackyCGQM, the reference imple-

mentation for cGQM proposed in this thesis, is embedded into the Hackystat

system. Therefore, a brief introduction into Hackystat is needed to understand

the architecture of the implementation.

Hackystat resulted from the research on PSP [32, 33, 15], the Personal Soft-

ware Process. While early tools to support PSP only contained manual support

(first generation tools) or semi-automated support, Hackystat is one of the first

third generation tools which provides fully automated support for a wide range

of software metric collection and analysis. First and second generation sys-

tem were used to verify the underlying PSP assumption that there were easily

recognizable relationships between internal attributes of development (i.e. di-

rectly measurable attributes such as size and time) and external attributes of

development (non-directly measurable attributes such as quality and dependabil-

30 CHAPTER 2. RELATED WORK AND CONCEPTS

ity). Hackystat is tailored to be a framework that allows individuals to collect

data regarding their development practices in order to experimentally determine

whether or not these relationships exist. In other words, Hackystat focuses on

measurement validation as an important precursor to measurement application.

Measurement validation is traditionally a time-consuming and expensive process,

and to make it practical on an individual level, Hackystat makes both data col-

lection and analysis entirely automatic. Software “sensors” are attached to the

developer’s software tools and automatically send process data to a centralized

web server. The next subsection while describe this architecture and function

of Hackystat in further detail.

2.4.1 Hackystat Architecture

This subsection provides a brief overview over the Hackystat architecture and

it’s micro kernel. This information is helpful for understanding the architecture

and function of the hackyCGQM implementation which is introduced in the later

chapters.

One way of describing Hackystat’s architecture is as a client server system as

illustrated in Figure 2.12.

In this view, the “clients” are development environment tools, such as editors,

configuration management systems, build tools, unit testing tools, and so forth.

For each of these tools, a custom Hackystat sensor must be developed. It is

“custom” in the sense that it must use the plug-in or extension point API for

the tool, and “custom” in the sense that the type of product or process data

that it collects is specific to the tool it supports.

Once data is collected by these client-side sensors, it is transmitted using Simple

Object Access Protocol (SOAP) [34] to the “server”, which is a web application

running within a conventional servlet-supporting web server such as Apache

Tomcat [35]. The client-side sensors have the ability to cache data in the event

that a network connection cannot be made to the server and resend it later,

allowing the developers to work offline.

Upon receipt of the “raw” sensor data by the server, various analyses can be

run. Some of these analyses are run automatically by the server each day, others

2.4. HACKYSTAT 31

are run only when invoked by developers from a Web Browser interface. The

goal of these analyses are typically to create abstractions of the raw sensor data

stream that help developers and managers to interpret the current state and

trajectory of the project and gain insight into possible problems or opportunities

for improvement going forward.

In certain cases, these abstractions can be automatically emailed back to the

developers on a daily basis, creating a feedback loop.

Figure 2.12: General Hacktystat architecture

Users can use different tools with sensors attached. These sensors will unintrusivly

collect data and send it to the Hackystat server.

Hackystat features a micro-kernel architecture as illustrated in Figure 2.13. The

kernel only provides essential services, such as receiving sensor data and man-

aging their persistence. All additional services as analysis and alerts are imple-

mented through through pluggable extensions. Thus an easily extensible and

flexible framework is provided. This feature is used to integrate hackyCGQM,

the sample implementation of this thesis, into Hackystat.

2.4.2 Metrics Collection

Hackystat supports the collection of various metrics. These can be divided into

product metrics (like size, complexity, dependencies, etc) and process metrics

(like active time, build related metrics, trouble-ticket related metrics) (see 1.1).

Each of the supported metrics can be attached to various sensors which will

measure actual metric data. These sensors are usually tailored to be integrated

32 CHAPTER 2. RELATED WORK AND CONCEPTS

Figure 2.13: The Hackystat microkernel

The micro kernel provides a dynamic extension architecyure which allows to plug-in

new modules providing new sensor types, analysis or alerts.

into a specific development tool. All metric data collected by sensors will be

send to the Hackystat server it is are stored and processed.

Sensors communicate with the Hackystat server using SOAP through HTTP

channels. At the actual time, sensors are implemented for interactive develop-

ment environments (such as Eclipse, Emacs, JBuilder, Vim, and Visual Studio),

office productivity applications(such as Word, Excel, and Powerpoint), size mea-

surement tools (such as CCCC and LOCC), testing tools (such as JUnit and

JBlanket), configuration management tools (like CVS and Subversion) and de-

fect tracking tools (such as Jira).

Table 2.2 shows an overview over the current metrics collected by Hackystat

with their respective tools. This list changes frequently as new sensors or metrics

are developed and added (list below was actual due to June 31th 2005).

metric submetric sensor

effort active time Eclipse

Emacs

JBuilder

MS Office

Vim

Visual Studio

review time Jupiter

filemetrics Size BCML

2.4. HACKYSTAT 33

metric submetric sensor

CCCC

LOCC

OO metrics BCML

CCCC

complexity call dependency DependencyFinder

testing unit test results JUnit

Eclipse

CPPUnit

coverage JBlanket

defects trouble tickets JIRA

review defects Jupiter

build build invocation Ant

Eclipse

versioning commits CVS

Subversion

profiling load testing hackyLoadTest

paralell computing hackyHPC

Table 2.2: Metrics collected by Hackystat

2.4.3 Analyses and Alerts

After sensor data is received at the server, it is stored and available for analysis.

Hackystat supports two styles of information retrieval: pull and push. Pull-style

information retrieval is called “analysis”. Developers log onto the Hackystat

server and run analyses on their product and process metrics through a web

interface. Push-style information retrieval is called “alert”. Hackystat sends out

automated email message when incoming metrics activate user-defined triggers.

The message usually contains summary information, and a link which directs

users to the Hackystat server for more detailed pull-style analysis.

cGQM will integrate into this concept by defining a new “pull”-style analysis,

plugged into the micro kernel architecture. At the actual moment, Hackystat

34 CHAPTER 2. RELATED WORK AND CONCEPTS

does not provide goal-oriented analysis; integrating cGQM would greatly improve

it’s abilities.

2.4.4 HackyTelemetry

hackyTelemetry is a analysis module of Hackystat. It is based on software

project telemetry[36], a methodology for in-process, empirically-guided software

development process problem detection and diagnosis. Metrics are abstracted

in real time to telemetry streams, charts, and reports,which represent high-level

perspectives on software development. Telemetry trends recognizable in these

charts can be the basis for decision-making in project management and process

improvement. Unlike other approaches which are primarily based on historical

project database and focused on comparison of similar projects, software project

telemetry focuses on project dynamics and in-process control. It tries to com-

bines both precision of traditional project management techniques and flexibility

promoted by agile community.

hackyTelemetry tries to realize these claims by plotting telemetry charts. These

telemetry charts are basically line charts visualizing the development of selected

data aspects over a given time span. A sample telemetry chart is displayed in

Figure 2.14. hackyTelemetry is backed by a flexible language framework, the

“Hackystat Telemetry Language”.

Based on it’s properties and abilities, hackyTelemetry can also be considered as

an SPCC implementation (see 2.3).

2.4.5 Using Hackystat

As hackyCGQM, the product developed during this thesis, fully integrates into

Hackystat, it is important that the reader understands how it feels to work with

Hackystat. This subsection tries to help to increase this understanding using

screenshots of the running system.

HackyCGQM completely relies on the data collected by Hackystat. This data is

collected using various sensors installed on the developers machines as described

in the previous sections.

2.4. HACKYSTAT 35

Figure 2.14: A telemetry chart

This sample telemetry chart plots the dynamics of project size change for a given time

span.

36 CHAPTER 2. RELATED WORK AND CONCEPTS

All these sensors work unobtrusively in the background of the developers tools.

Screenshots of this setting are displayed in Figure 2.15 and Figure 2.16 where

the interaction of the Ant sensor and the Eclipse sensor with their respective

host tools is displayed.

Usually, developers do not even realize the presence of the sensors as the small

status messages are the only indication of their work.

Figure 2.15: Screenshot of the Ant sensor

Hackystat provides a sensor which unobtrusively integrates into various development

tools. This screenshot shows the execution of an Ant script. The ant sensor just

“hooks” into the execution, no manual effort is needed to execute it.

Figure 2.16: Screenshot of the Eclipse sensor

The eclipse sensor is the most popular sensor Hackystat provides. It measures various

metrics like activity, unit testing, or build invocations and runs as a background task in

Eclipse. The sensor is nearly unobtrusive, the shown status message is the only

indictation of it’s presence.

All sensor data is collected into the Hackystat data repository and available for

analysis.

Usually, analysis are accessed using the Hackystat web interface as illustrated in

Figure 2.17. Currently, Hackystat provides 22 different analysis, hackyCGQM

is one of them.

Other examples of popular analysis are telemetry [36] displayed in Figure 2.18

and “Daily Diary”, displayed in Figure 2.19.

2.4. HACKYSTAT 37

Figure 2.17: Screenshot of a telemetry chart

Telemetry is a flexible analyis framework on top of Hackystat which shows trends of

measurements over time

Figure 2.18: Screenshot of a telemetry chart

Telemetry is a flexible analyis framework on top of Hackystat which shows trends of

measurements over time

38 CHAPTER 2. RELATED WORK AND CONCEPTS

Figure 2.19: Screenshot of the DailyDiary analyis

The daily diary is a low level abstraction of measured data for one developer and one

project where events and data is plotted over the course of one day.

Chapter 3

Continous GQM

Hackystat (see 2.4) is a fully automated measurement system. Therefore,

adding support for the GQM Paradigm as mentioned in the introduction will

allow the execution of automated goal-oriented measurement programs. These

fully automated measurement programs will have specific properties and abili-

ties distinguishing them from manual programs, but are limited to the usage of

metrics which are able to be measured automatically.

The concept of this automated, goal-oriented GQM based measurement will

be called ’continuous GQM’ (cGQM) in the following, inspired by it’s ability of

continuous measurement due to shortened measurement cycles.

This chapter will illustrate the theoretical foundations of cGQM as a concept

while chapter 4 will highlight hackyCGQM, the reference implementation of the

cGQM concept which is integrated into Hackystat.

One of the major aspects of cGQM, as it’s name proposes, is continuous mea-

surement as described in the next section.

3.1 Continuous Measurement

The expression continuous measurement in the context of cGQM refers to

measurement programs with extremly short feedback cycles. This means that

up-to-date metrics, question answers and goal fulfillment degrees from the un-

derlying GQM plans are accessible any given time. This ability enables the fine

39

40 CHAPTER 3. CONTINOUS GQM

grained tracking of the measurement and analysis results over a longer period

of time.

The availability of actual measurement and analysis data at any given time

opens new ways of data collection and analysis, as changes and trends depending

on time can be identified and visualized and is thus superior to measurement

programs which include just a single or only few, discreet measurement cycles.

For being able to perform continuous measurement in the context of GQM

efficiently, following prerequisites have to be fulfilled:

1. Ability to track, store, visualize and analyze the development of GQM

results over time:

Fine-grained analysis of trends and ability to track time based behavior

of GQM goals and questions is one of the primary advantages which is

gained by continuous measurement. Tools and visualizations to support

this have to be available to claim the maximum positive effect of this.

2. Reduction of the costs of an actual measurement cycle as far as possible:

The success of continuous measurement mainly depends on the costs

which are connected to a single measurement cycle. The higher the costs

are, the less attractive it is to perform an actual measurement. The

optimal case would be a zero cost measurement and analysis cycle which

can be executed without any connected overhead.

In context of GQM, a measurement cycle can be broken down into the

following sub-phases which can be optimized to a more cost effective level

individually:

(a) Metric data collection: In the best case, all needed data connected to

the defined metrics in a GQM plan are measured automatically with-

out any manual overhead. This is already possible for a wide range

of metrics (as, for example, implemented by Hackystat, see 2.4), but

still there remains a set of metrics for which there is no measurement

possible in a completely automated fashion (as for example metrics

connected to human behavior or opinions).

(b) GQM analysis: After the necessary metric data is collected, it can be

used for answering the questions and calculating the goal fulfillment

3.2. AUTOMATED MEASUREMENT 41

degrees (see 3.3).

The primary goal of cGQM is to implement completely automated measurement

and measurement analysis cycles enabling the usage of continuous measurement.

3.2 Automated Measurement

cGQM focuses only on automated measurement and analysis. Although this

has numerous advantages like low overhead, high reliability or low costs, it is

unfortunately not always possible archive full automation.

One possibility to implement automated measurement is using software tool

sensors like in the Hackystat approach (see 2.4) used for the cGQM reference

implementation. By doing this, a wide range of software product and process

metrics can be measured, but there are also many metrics which are not mea-

surable in such a way.

Problems arise with all metrics which are not dependent or only limited depen-

dent on the use of software tools.

As an example for a partial metric, “project effort” is chosen: Hackystat provides

a proxy metric for “project effort” called “active time”. “Active time” measures

all the time a developer is actively using his development tools. This can be

done automatically using sensors. But “project effort” also should consist of

time spend for meetings, planning or other activities not based on the usage of

tools.

Other metrics might be even more difficult or even impossible to be measured

automatically. Part of this group are all metrics based on human knowledge,

estimations or assessments. According to the findings of the structural mapping

evaluation in chapter 5.3, roughly around 60% of metrics used in measurement

programs published in the a selction of the literature can not or only partly be

measured automatically.

cGQM concentrates only on metric which can be measured automatically, lim-

iting it’s range of use.

42 CHAPTER 3. CONTINOUS GQM

3.3 Goal Fulfillment Degrees

cGQM introduces “goal fulfillment degrees”. This means, that each goal can

calculate a value representing to which degree it is fulfilled. This fulfillment

degree usually should be calculated using the answers of the questions and can

be understood as a summarizer for the question answers in context of the given

goal.

This does not always make sense, so this concept is optional. But there are some

cases, where calculated goal fulfillments are useful and can provide interesting

usage scenarios.

One prerequisite for useful goal fulfillment degrees is a goal allowing the cal-

culation of a meaningful value. Goals like “...understand what is going on...”

are not suitable for this as the cGQM framework can not tell if the users did

or did not understand what is going on by reading the question answers. Other

goals which are clearly stated and have controllable fulfillment criteria can have

meaningful fulfillment degrees. Examples of suitable goals and their fulfillment

degrees could be

• “Improve unit test coverage by 10%”: This is a goal with an easy to

calcuate fulfillment degree. A baseline can be determined as soon as the

measurement program starts. By measuring actual coverage ratios, it is

easy to determine the actual progress.

• “Increase nightly integration build success rate to stable 90%”: This goal

is used in the “buildFailues” example in chapter 5.1.1. Here, a new full-

fillment degree is calculated everyday and it represents the stability and

“goodness” of the build process.

In that case, “stable build success rate” is defined by a rated sum of

the average success rates of the prior four weeks of the actual date. As

soon as all four prior weeks have an success rate above 90%, the goal is

considered as fulfiled.

In this example, the fulfillment degree is represented by a graphical ab-

straction similar to a red light (it has 5 colors instead of 3). Everyday,

project members who are not interested in all answers to all the ques-

tions, but to the measurement program in general, can just invoke the

3.3. GOAL FULFILLMENT DEGREES 43

daily cGQM analysis and check the “red light”, which shows them with

one glimpse how well the project team is doing for fulfilling the goal.

Figure 3.1: A plotted goal fulfillment degree.

This shows a numeric representation of the goal fulfillment degree for the

“buildFailures” example from March to Juli. Created by the cGQM extension of

hackyTelemetry.

Setting up goal fulfillment degree calculations can be difficult. In many cases, it

is not possible in a meaningful way at all. In most other cases, there are many

different solutions with varying difficulty. For example, in the “build success”

example above, the decision was made to describe “stable” by defining a rating

function and rate the prior four weeks, just using their success rate value. But

there might be many different solutions, using more data or more sophisticated

ratings or even being much simpler than the chosen solution.

The hard problem with fulfillment degrees is to find out which implementations

are meaningful or not.

As soon as there is a meaningful implementation of a fulfillment degree calcula-

tion, it can be used as an high level abstraction for a parts of the measurement

program. This abstraction can be used for continuously staying up-to-date dur-

ing the course of the measurement program by checking it, for example, every

44 CHAPTER 3. CONTINOUS GQM

day or every week (“To which degree is my goal fulfilled today?”). It can also be

used for observing the trend of the measurement program over a longer period

of time, as illustrated in Figure 3.1.

3.4 Calculating Goal Fulfillments

Calculating the goal fulfillment degree is not easy. As already mentioned in the

last subsection, it might not even be possible in many cases. In the cases in which

it is possible, the actual implementation of the fulfillment degree calculation has

to be chosen with care.

Goal fulfillments in cGQM are technically calculated in the same manner than

question answers (see later 4.2.2), meaning the measurement program developer

can freely choose any algorithm he can think of.

The important criteria while deciding for a specific implementation is how good

the calculated value semantically represents the fulfillment degree of the goal.

So, for example, it does generally not make sense to just summarize all questions’

values and average them somehow as there may be many questions which are just

designed to understand the problems domain better and don’t give interesting

information concerning the goal fulfillment.

In cGQM, questions can be divided into two groups:

1. questions which have an informative character and are providing data

which can be used to develop strategies for approaching the goal or under-

standing the problem domain. So for example, when the goal is reducing

the defects in a project, a question concerning the projects’ modules size

might be interesting for understanding the defect distribution which can

help reducing the defect density, but it does not provide data which is

suitable for calculating a goal fulfillment degree. These are usually the

question which are in the GQM abstraction sheet identified as having in-

fluence on the goal, but or not in the direct quality focus.

2. questions which actually represent the status of the actual goal fulfillment.

In the above example, this could be the actual defect rate of the system

3.5. USAGE PROCESS MODELS 45

detected after shipping. Usually, these are the questions which are in the

quality focus of the GQM abstraction sheet.

For calculating the goal fulfillment degree, informative questions of the first

type can be ignored.

For actually calculating fulfillment degrees, the cGQM measurement program

developer has to design an algorithm, freely implementable with the Java pro-

gramming language as a goal executable (see later in 4.2.2). This algorithm

usually will depend on answers of the type 2 questions (those describing the

actual status), but is not limited to that. The developer can freely decide how

to implement the calculation, ranging from simple value averaging up to the use

of sophisticated artificial intelligence algorithms.

3.5 Usage Process Models

There are several ways of how to conduct a measurement program, resulting in

different usage process models. Here, four usage process models are identified,

defined and explained.

They are

• Consecutive process model

• Continuous process model

• Retrospective process model

• Alert-based process model

These usage models are not exclusive, switching between and mixing usage

models is possible and in some cases very beneficial, as described in the follow-

up section 3.6. Also, there might be additional usage models not listed here.

Table 3.1 provides a brief overview of the differences between the process mod-

els.

46 CHAPTER 3. CONTINOUS GQM

m
o
d
e
l

ty
p
e

n
u
m
b
e
r
o
f
m
e
a
su
re
m
e
n
t
cy
cl
e
s

ti
m
e
fo
cu
s

ti
m
e
b
e
tw
e
e
n
e
v
e
n
t
a
n
d
fe
e
d
b
a
ck

consecutive pull one future long

continuous pull many future short

retrospective pull arbitrary past long

alert-based push many future very short

Table 3.1: cGQM process models compared

3.5.1 Consecutive Process Model

The consecutive process model is the cGQM base model. The model will be

used as reference model for explaining the other 3 models in this section as they

are just modifications of the consecutive one.

The consecutive model performs the four phases of a GQM program (see 2.1.4)

in a strict, consecutive order, similar to waterfall models.

The consecutive process model can be described as an one-usage model, it

consists of four phases which are executed in a linear fashion, as illustrated in

Figure 3.2:

Phase 1: (Planning phase) In the first phase, a project for applying measure-

ment is selected, defined, characterized and planned. This results

into a project plan.

Phase 2: (Definition phase) Using this project plan, goals, questions and met-

rics are defined. Also, executables for these cGQM artifacts have

to be implemented. This phase is similar to the Planning phase in

manual GQM, but it consumes a significant higher effort as the im-

3.5. USAGE PROCESS MODELS 47

plementation of executables can be very expensive.

Phase 3: (Data collection phase) After implementing the cGQM plan and it’s

executables, the automated data collection can be started. This

should consume no manual effort in the best case.

Phase 4: (Interpretation phase) After all data is collected, it can be analyzed

and interpreted. In cGQM, the analysis should be done as far as

possible by the executables with no manual effort. But still, the final

interpretation of the results has to be done by a human analyst who

interprets all the generated answers, numbers and charts.

Figure 3.2: Consecutive process model[8]

This is the process model also used in consecutive GQM

The consecutive process model is usable with cGQM, but it does not take

advantage of the additional abilities of cGQM compared to manually executed

measurement programs with a degree as high as the three other process models

in later sections do. But it still takes advantage of one of cGQM major benefits,

the ability to collect and analyze huge amounts of data with minimal costs.

This model can be useful for measurement programs working with “snap-shot”

data, e.g. all data used can be collected on the same point in time and no longer

data collection is needed.

The main disadvantage of the consecutive process is the long feedback cycle

during longer data collection phases as results are only generated at the very

end of the measurement program. Also, tracking of trends can be difficult

as multiple measurement and interpretation cycles are needed for that. These

48 CHAPTER 3. CONTINOUS GQM

drawbacks are solved with the continuous process model described in the next

subsection.

3.5.2 Continuous Process Model

The continuous process model focuses on the shortening of the feedback cycles.

The main idea of it is that intermediate analysis results should be available for

no additional cost during the length of the whole measurement program after

it’s definition. So, the continuous model is able to continuously collect and

analyze data.

The advantage of having arbitrary short feedback cycles is that the measurement

program becomes more suitable for process controlling. Intermediate analysis

results are available during the program’s execution and can be used for con-

trolling actions. Also, impacts of these controlling actions can show up in the

analysis results after a very short time and can be used for further adjustments.

The continuous process is illustrated in figure Figure 3.3. Phase one and two

(planning and definition phase) remain the same compared with the consecutive

model. The main difference is that the data collection and analysis are executed

iteratively. So for example, data can be collected automatically every day and

simultaneous to that, analysis results are generated and made available.

3.5.3 Retrospective Process Model

The retrospective process model changes the order in which the cGQM phases

are executed. The main change is that data and metrics are collected before

the measurement program is designed and implemented.

This is expedient due to cGQM’s ability to collect metrics without costs. In

the retrospective model, all available metrics (those supported by the system

implementing the cGQM Paradigm) are collected as soon as the project starts

and are stored in a sensor data repository.

During the course of the project, cGQM based measurement programs can be

implemented which can access the already collected metric data.

3.5. USAGE PROCESS MODELS 49

Figure 3.3: Continuous process model

The continous process model provides the ability for very short measurement and

analysis cycles which can allow a continues tracking of results.

This modification contradicts one of the goals of GQM: the selection and then

the sole collection of metrics which are useful and needed in the context of the

measurement program. While performing this usage model, all possible metrics

are measured. The purpose of the cGQM plan then is to determine which ones

of all measured metrics should be used for analysis and interpretation.

This approach has several interesting implications:

• If during the course of the project a problem occurs which demands the im-

plementation of a measurement program to be analyzed, the retrospective

process model allows also to examine the early phases of the project before

the problem was known and the measurement program implemented as

all possible metric data was collected from the beginning on.

• This process model is useful when new hypotheses are developed while a

measurement program result is analyzed. This is described in the next

section (3.6)

It is to be noted that the application of this model does not imply significant

additional costs or overhead as the collection of the metric measurements is done

automatically. The only occurring overhead compared with the other process

50 CHAPTER 3. CONTINOUS GQM

models is the storage of unnecessary data which just uses up cheap hard disk

space. This claim was approved during the evaluation in chapter 5.4.

Figure 3.4: Retrospective process model

All possible metric data is collected without any specific purpose. This enables

measurement programs that are implemented at later date to access data of time

which is already in the past.

3.5.4 Alert-Based Process Model

This subsection introduces the alert-based process model, a passive process

mostly suitable of controlling.

While the last three process models can be considered as being “active” processes

(at least one person actively accesses the analysis results for final interpretation),

the alert-based process model can be considered as being “passive”.

“Passive” in this case means that part of the definition of the measurement

program is the definition of an alert criteria, it’s violation indicates that the

observed object is “out of control”.

After that, the measurement program runs completely in the background and

nobody is actively paying attention to the collected data or the results of the

analysis. As soon as the alert criteria is violated, the results of the last mea-

3.6. REFINING AND LEARNING PROCESS MODELS 51

surement cycles analysis are forwarded to the persons responsible for the mea-

surement program. This is illustrated in Figure 3.5.

This behavior makes this process model specially suited for controlling purposes

in environments where it is known how upcoming problems can be measured and

identified. There, a cGQM measurement program which focuses on questions

that indicate problems in a well understood process can be set up and the

according alert criteria can be set.

As long as the measured process is smooth, the cGQM program stays quiet.

It only reacts when problems are occurring and automatically presents analysis

results helping to understand and solve the appeared problem directly to the

people in charge.

Figure 3.5: Alert-based process model

The measurement program constantly checks if a given alert criteria is violated. As

soons as this happens, it forwards the analysis results.

3.6 Refining and Learning Process Models

This section describes the possibilities and advantages cGQM offers in respect to

the ability to react and alter the program depending on it’s results by combining

the usage models presented in the last chapter.

52 CHAPTER 3. CONTINOUS GQM

While performing a measurement program, it usually provides results. These

results hopefully create additional insights into the observed object or process.

These insights can have multiple effects:

1. They can completely solve the problem. The measurement program ends

with a complete success.

2. They can point to yet unknown problem aspects and rise new questions

for understanding these new aspects.

3. They can help to develop strategies and action which are supposed to

improve the observed object/process. But the effect of these actions has

to be checked and confirmed.

In case two and three, it would be beneficial if the current measurement program

can be modified to support the new requirements. While performing traditional

GQM programs, this can be difficult as results are usually generated at the end of

the program. Also, the measurement program only collects data related to it’s

current design. If new questions arise during or after the program’s execution, it

can happen that there is no data that is useful for answering the new questions.

For improved agility and flexibility, it is beneficial to mix the usage models in-

troduced in the last chapter.

Following scenarios are valuable:

• Measurement program points out new hypotheses or questions:

In the case of new emerging hypotheses, goals, questions or metrics, an

existing cGQM plan can be just extended. After the plan was adjusted,

several options for examining the impact of the newly added artifacts arise:

1. Perform a new measurement program using the consecutive process

model. This is the option which takes least advantage of the abilities

cGQM provides.

2. Evaluate the impact of the new artifact just for future time peri-

ods by using the continuous process model and concentrate on the

evaluation of the new data aspects delivered by the measurement

program.

3.7. CGQM AND TELEMETRY 53

3. Re-Evaluate the complete past run time of the measurement pro-

gram using the retrospective process model. This is probably the

most beneficial option as there is no difference between knowledge

extracted from the old artifacts’ data and the one extracted from

the “new” artifacts. The catch of this option is that it requires the

underlying data collection framework to be configured in such a way

that all possibly required data is collected and being available for

supporting new aspects of the measurement program.

• The measurement program was used to develop corrective or improving

actions: In this case, the purpose of the measurement program changes

to the task of determining if the newly implemented, corrective actions

have a positive effect or not. As the measurement program was providing

the data for identifying deficiencies in existing processes or products and

developing corrective actions, it should also be able to show what the

effects of these actions are.

In this case, it is useful to implement the measurement program as a

longterm background program using the continuous process model. By

just continuing the measurement program with short feedback loops, it is

possible to control and assess the corrective actions. This is, of course,

also possible with any manual implementation of a GQM measurement

program, but by using cGQM, it is possible to do this with no costs. As

a conclusion of that, it is completely feasible to continue measurement

programs for years, if necessary.

These abilities also support the “experimental” character of improvement pro-

grams like QIP (see 2.2) perfectly.

3.7 cGQM and Telemetry

Software telemetry [36] is a part of the Hackystat framework. The sensor data is

abstracted into high-level perspectives on development trends called Telemetry

Reports, which provide project members with insights useful for local, in-process

decision making.

54 CHAPTER 3. CONTINOUS GQM

The role of hackyTelemetry and software project telemetry in context of hackyCGQM

is twofold:

1. hackyTelemetry provides high level measurement data for cGQM metrics:

cGQM plans can access arbitrary telemetry streams using the Telemetry-

Access metric executable reference implementation.

2. hackyCGQM feeds data back into hackyTelemtry. This enables the dy-

namic and trend-oriented analysis of GQM results on the same level as all

other project telemetry data: hackyCGQM provides a telemetry reducer

for hackyTelemetry. Telemetry reducers are the building blocks of teleme-

try streams which will be aggregated to telemetry charts and reports. This

telemetry reducer can feed the results of questions, metrics and fulfillment

degrees of goals into the telemetry environment. As telemetry streams

describe the development of a numeric value over time, it is unfortunately

not possible to feed all possible cGQM artifacts into telemetry. In the

actual implementation, the reducer is restricted to artifacts also returning

a numeric value.

By providing cGQM analysis results for the telemetry framework, the analysis of

dynamics and time-based development is simplified. It is, for example, possible

to track the answer or goal-fulfillment degree of a chosen goals or question over

a longer period of time and identify those points of time which yield interesting

data and select those for detailed analysis. This is also described in chapter 3.3

and illustrated in Figure 3.1.

Chapter 4

HackyCGQM

HackyCGQM is the cGQM reference implementation created in the course

of this work. It is integrated into Hackystat (see 2.4), a system for auto-

mated and unobtrusive metric collection. This section introduces and explains

hackyCGQM.

HackyCGQM is written using Sun Java 1.4 and published under General Public

License (GPL).

4.1 Key Requirements

This work does not contain a full-featured requirement analysis as this would

go beyond the scope of this document. But for better understanding, the most

important key requirements and their consequences are summarized in this chap-

ter.

Requirements describe different aspects of the product to be developed and

the related context. As a conclusion of that, five types of requirements or

requirement related statements can be distinguished [37]:

• Functional requirements are the fundamental subject matter of the system

and are measured by concrete means like data values, decision making logic

and algorithms.

• Non-functional requirements are the behavioral properties that the speci-

fied functions must have, such as performance, usability, etc.

55

56 CHAPTER 4. HACKYCGQM

• Project constraints identify how the eventual product must fit into the

world. For example the product might have to interface with or use some

existing hardware, software or business practice, or it might have to fit

within a defined budget or be ready by a defined date.

• Project drivers are the business- related forces. For example the purpose

of the product is a project driver, as are all of the stakeholders each for

different reasons.

• Project issues define the conditions under which the project will be done.

They are included to the requirements specification to present a coherent

picture of all the factors that contribute to the success or failure of the

project.

In the following, the key requirements for hackyCGQM will be summarized. The

presentation is inspired by the structure suggested by the Volare Requirement

Templates [37]. The data contained in the templates used here is:

• Requirement Id: An unique Id.

• Requirement Type: The type of the requirement as specified in the last

paragraphs.

• Description: A description of what the requirement demands.

• Rationale: A brief justification why this requirement is important.

• Consequences: The actions this requirement implies.

Requirement Id integration

Requirement Type project driver

Description Hackystat has to be augmented with the ability of performing

goal-oriented, GQM-based measurement plans.

Rationale Hackystat is a powerful measurement framework suitable for

serving as a primary data source for GQM like measure-

ment programs, but lacks the ability of goal-oriented analysis.

Adding a GQM extension would greatly enhance it’s capabili-

ties.

4.1. KEY REQUIREMENTS 57

Consequences The new extension will be called hackyCGQM and has to in-

tegrate seamlessly into Hackystat. That means, it has to

be based on the same technologies and licenses (Java 1.4

programming language, restrictions on additional frameworks,

predefined coding style, GPL license etc) and has to use Hack-

ystat’s framework extension points and build process.

Requirement Id gqm

Requirement Type project driver

Description hackyCGQM has to support all central concepts and templates

of GQM like goals, questions, metrics, abstraction sheets, goal

templates or GQM plans/trees.

Rationale People familiar with GQM should recognize all core concepts

they are used to.

Consequences Structure and naming of measurement plan definitions and

presentations will be designed compatible with the GQM Par-

adigm.

Requirement Id flexibility

Requirement Type project driver

Description New GQM plans for the hackyCGQM system should be able

to be developed independently of the main system in a manner

as flexible as possible.

Rationale Measurement plans for hackyCGQM are not supposed to be

hard-coded into the system as this complicates the develop-

ment of new plans.

Consequences HackyCGQM will provide an extensible framework architecture

with the ability of loading plugins containing new measurement

plans dynamically. Also, the development process of these

plugins has to be supported.

58 CHAPTER 4. HACKYCGQM

4.2 Definition of cGQM Plans

This section briefly illustrates how the definition of cGQM plans is realized in

hackyCGQM. This is necessary before describing hackyCGQM’s architecture as

the concepts introduced in this section have an high impact on the architecture.

For doing this, several concepts have to be introduced:

• Plugins: Executable cGQM plan including its formal descriptions and ex-

ecutables

• Executables: Code fragment which performs an automated analysis or

metric collection.

• Plugin describers: Formal descriptions of cGQM plans, part of a plugin.

• Plugin Development Environment: Supportive environment for developing

new plugins

• Plugin validation: Process of validating the syntactical correctness of plu-

gins

4.2.1 cGQM Plugins

cGQM Plugins can be described as machine executable GQM plans. They con-

tain a plugin describer describing the GQM artifacts (the term artifacts is used

as a summarizing term for goals, questions and metrics) and their relation to

each other. In addition to that, the plugin also contains executables. These are

code fragments which will actually perform the calculations needed for answering

the questions or accessing the data for the metrics.

Plugins can be deployed to a cGQM server which can execute the defined mea-

surement program. For better reuse of already created executables, plugins can

also access executables which are stored in other plugins. This ability allows the

creation of cGQM libraries where in the best case a new plugin just needs a new

describer, but can reuse already existing executables.

In hackyCGQM, plugins are realized as dynamically loaded jar files containing

the executables and the plugin describer.

4.2. DEFINITION OF CGQM PLANS 59

4.2.2 Executables

Executables are code fragments performing the calculations for cGQM artifacts

(e.g. answering questions or accessing metric data). Each artifact is bound to

an executable. This binding is defined in the plugin describer.

Executables in hackyCGQM are characterized by following properties:

• Interfaces: Each executable has to implement one of the according sub-

interfaces of IExecutable provided by the hackyCGQM framework (e.g.

IGoalExecutable, IQuestionExecutable or IMetricExecutable). These

interfaces include methods for executing the executable and setting and

validating parameters and slots.

• Parameters: Each executable can have a set of parameters. Parame-

ters are named value pairs. Parameters are described in the code of the

executable using parameter describers

This means that while implementing an executable, for each possible pa-

rameter a parameter describer has to be defined which describes the pa-

rameters names, if they optional or mandatory and which value sets are

valid or not.

Later, when an instance of an executables is created, the parameters to

be used have to be bound to a value.

• Slots: Slots are the connection between an executable and it’s other arti-

facts of the cGQM plan. For example, a question provides slots which can

bind metrics or other questions. During runtime, the results of the bound

slot artifacts can be accessed and it’s data used for further computation.

Each defined slot has a required role. An artifact to be bound has to be

compatible with that role.

Example: A question executable with the question “What is the average

complexity of all project files?” could define a slot named “complexity-

Data” with the role “complexity”. In the cGQM plugin describer, the

slot can be bound to a metric which returns complexity measures for all

files, for example a “CyclomaticComplexity” metric. During runtime, the

question executable can access the complexity measures provided by the

metric.

60 CHAPTER 4. HACKYCGQM

At the actual moment, hackyCGQM supports multiple, predefined slot

bindings. This means, that to each slot, multiple artifacts can be bound.

In the above example, this could mean that multiple complexity metrics

like “CyclomaticComplexity” or “OO-Complexity” could be bound. The

implementation of the executable has to define how to handle multiple

bindings.

Predefined slot binding in this context means that the bindings have to be

defined manually in the plugin describer. This allows easy re-wiring of the

cGQM plan. So, for example, if the question in the above example is bound

to the cyclomatic complexity, it can easily rewired to the OO-complexity

just by changing the the binding definition in the plugin describer.

In contrast to predefined binding, an other strategy for slot binding could

be “opportunistic” binding where slots are not bound manually, but are

bound automatically by the cGQM framework. As each slot and each

artifact has a role attached, the framework can automatically search for

all artifacts whose role is compatible with a slot and bind it.

After an executable is actually executed, it returns an result which is of the the

type IResult.

The class architecture of executables in hackyCGQM is illustrated in Figure 4.1.

4.2.3 Plugin Describer

Plugin Describers are XML files describing the actual cGQM plan contained in a

plugin. They define the cGQM artifacts, their relations and parameterizes their

executables.

An excerpt of a plugin describer is displayed in the following code listing. This

excerpt originates from the “buildFailures” example plugin (see 5.1.1). Only

two artifacts are contained, the question “Which percentage of NightlyBuilds

succeeded in the last 14 days?” and the according metric which delivers the

build data.

1 <cgqm id=”buildFailures”>

2 <description>-</description>

4.2. DEFINITION OF CGQM PLANS 61

Figure 4.1: Executable interface architecture

The central Interface is IExecutable. Subtypes of this are the interfaces for

questions, goals and metrics. ParameterDescriber and SlotDescriber are used to

customize an executable for a cGQM plan. Executables return subtypes of IResult.

62 CHAPTER 4. HACKYCGQM

3 <goals>

4 <!– goals omnitted –>

5 </goals>

6 <questions>

7 <question id=”q nightlyBuildFailures”>

8 <implementingClassName>

9 cGQM.plugin.buildFailures.QNightlyBuildFailures

10 </implementingClassName>

11 <description>-</description>

12 <rationale>-</rationale>

13 <roles>

14 <role name=”nightlyBuildSuccessPercentage”/>

15 </roles>

16 <parameters>

17 <parameter name=”answerMode”>successPercentage

18 </parameter>

19 <parameter name=”intervalType”>Day</parameter>

20 <parameter name=”startDelta”>2week</parameter>

21 <parameter name=”date”>today</parameter>

22 </parameters>

23 <questionText>

24 Which percentage of NightlyBuilds succeeded

in the last two weeks?

25 </questionText>

26 <slotBindings>

27 <slotBinding slotName=”buildData”

28 objectId=”m buildData”/>

29 </slotBindings>

30 </question>

31 </questions>

32 <metrics>

33 <metric id=”m buildData”>

34 <implementingClassName>

35 cGQM.plugin.buildFailures.MNightlyBuildData

36 </implementingClassName>

4.2. DEFINITION OF CGQM PLANS 63

37 <description>-</description>

38 <rationale>-</rationale>

39 <roles>

40 <role name=”buildData”/>

41 </roles>

42 <parameters>

43 <parameter name=”userMail”>hackystat-l@hawaii.edu

44 </parameter>

45 </parameters>

46 </metric>

47 </metrics>

48 </cgqm>

Following lines are interesting in this excerpt:

• 8-10: Here, the question is bound to a question executable.

• 13-15: Definition of the questions role (used for binding to the goal)

• 16-22: Setting of the parameters required by the executable

• 23-25: Definition of the question text

• 26-28: These lines bind the metric to the question. The executable has

one metric input slot named “buildData” which is bound to the metric

“m buildData” defined in lines 32-46.

A documentation of the XML schema used by the plugin describer can be found

in the Appendix Chapter A on page 115.

A plugin describer can be written and validated using the the plugin development

environment described in the next sub-section.

4.2.4 Plugin Development Environment

HackyCGQM provides a basic plugin development environment (PDE). A PDE

consists of a folder containing an empty plugin describer, build scripts needed

64 CHAPTER 4. HACKYCGQM

to compile, validate and generate the final plugin .jar file and all needed java

libraries. In addition to that, basic documentation, XML schema files and an

Eclipse project definition is included.

The workflow for creating a plugin is as following:

1. Generating a new, empty PDE

2. Importing the new plugin project into Eclipse

3. Coding all executables and the plugin describer

4. Validating the plugin describer

5. Using the provided build scripts to pack the plugin

6. Deploy it to the hackyCGQM server

4.2.5 Plugin Validation

Plugins can be developed independently from the cGQM framework. For sup-

porting and securing the plugin development process, a validation mechanism is

helpful.

In hackyCGQM, there are two validation mechanisms: The client validation and

the server validation.

The client validation is integrated into the plugin development environment. It is

part of the build process, new plugins will only be created if the client validation

passes without failure.

The result of the validation is a validation protocol. It contains all status mes-

sages created during validation. These status messages can have one of four

severity levels:

• Info: Just an information. Validation continues.

• Warning: Possible failure. Validation continues.

• Error: An error which will prevent the deployment of the plugin. Validation

continues.

• Fatal: Fatal error which prevents the plugins deployment and aborts the

validation process immediately.

4.2. DEFINITION OF CGQM PLANS 65

The validation is successful if no errors or fatal errors occurred.

The client validation will primary ensure and check following conditions (only

failures and warnings):

• Fatal: Plugin describer’s adherence to the XML standard

• Fatal: Plugin describer’s adherence to the provided XML Schema Definition

(XSD).

• Fatal: Syntactical correctness of the executables

• Error: Formal validity of artifact parameters (correct type, matching reg-

ular expression patterns)

• Error: Formal validity of slot binding (role conformance, link conformance)

• Error: Correct type of the bound executables

• Warning: Presence of all mandatory parameters (they could also be pro-

vided later, so it’s just a warning)

• Warning: Existence of the bound executable (could also be part of another

plugin)

A plugin passing the client validation has not to be completely valid as most

checks for ensuring validity cannot be performed on client side. Because of that,

there is an additional server side validation which will be invoked when plugins

are deployed or loaded.

This server validation is just an extension of the client validation and will ad-

ditionally check all conditions which are depended on the interaction of plugins

(the existence of bound executables or artifacts when they are part of other

plugins).

These validation techniques simplify the development and deployment of plugins

effectively as many trivial mistake can be detected before the plugins execution.

4.2.6 Plugin Lifecycle

Although the plugin’s lifecycle was already indirectly mentioned in the past sub-

sections, it is briefly re-stated here for better clarity:

66 CHAPTER 4. HACKYCGQM

New plugins can be created by hackyCGQM, including their individual plugin

development environment. After creation, users can start developing the plugin.

This process consists of writing a plugin describer, the executables and their

documentation.

After passing the client validation, plugins can be deployed to the hackyCGQM

server where they are validated again using the server validation. After they are

successfully deployed, they are stored in the servers plugin repository and can

be executed.

This process is also illsutrated in Figure 4.2.

4.3 Data Collection and Metrics

One of the primary aspects of cGQM is the automated collection of required

metric data. This means that data has to be collected without manual interac-

tion like filling forms, pressing buttons, using logs or time cards.

For hackyCGQM, Hackystat implements this kind of data collection. When

properly configured, Hackystat (see 2.4) unobtrusively collects a wide array of

software product and process measures automatically. This is done by using

sensor which are either installed on the developers workstations or on central

servers, depending on their purpose.

hackyCGQM provides several pre-implemented metric executables for accessing

the Hacktstat data repository. These executables can easily reused, parame-

trized or modified for usage in custom plugins.

• telemetry stream access: This executable accesses Hackystat’s telemetry

module. It can deliver high-level data streams, describing selected aspects

of the dataset over a longer time scale. It can access arbitrary, valid

telemetry streams.

• sensor data access: This executable can access raw sensor data inside

Hackystat’s data repository. It returns a list of sensor data entries of

the given timespan of either one specific project member or all project

members.

4.3. DATA COLLECTION AND METRICS 67

Figure 4.2: Plugin Lifecycle

68 CHAPTER 4. HACKYCGQM

• daily summary access: Daily summaries are summarized statistics of a

given sensor data type of a single day. As an example, for the commit

sensor data type, this could contain “number of commit”, “lines added”

or “lines deleted” for a whole day. Daily summaries contain the data of

one singe project member.

• daily project summary access: This executable returns daily project sum-

maries. These are similar to the daily summaries, but contain data of all

project members instead of just one.

These predefined executables can access the full range of Hackystat measure-

ments and are a suitable starting point for developing plugins.

As a result of technological restrictions and the general usability of the system,

the role of metrics in hackyCGQM has slightly changed compared with classic

GQM.

In most GQM case studies (as discovered while performing evaluation 5.4),

metrics are used in an highly specialized way and are tailored for the single

purpose of answering a single question. This is self-evident as GQM’s purpose

is to create goal-oriented, targeted measurement programs with focusing on

metrics which help to answer questions and skipping metrics which don’t. Many

encountered metrics are like “Defects detected in the system” and “Highly

severe defects detected in the system”.

As hackyCGQM feeds itself with data automatically collected with sensors, this

level of detail becomes impractical. Automatically collected raw data usually

contains many aspects. So, for example, the Hackystat issue sensors create

a raw measurement entry for each issue in a bug tracking or issue tracking

system, containing it’s name, date created, severity, user who reported it and

other information. If the number of issues is interesting, a question needing this

metric could just take all raw sensor data and count the entries. If the number

of highly severe issues is needed or those created by a specific user, just the

same raw sensor data can be accessed, filtered and processed.

During the development of hackyCGQM, it turned out that these “multidi-

mensional” metrics are much more useful than specialized metrics as the metric

implementations can be reused more easily. Also, many different questions can

4.4. ARCHITECTURE 69

depend just on one metric which speeds up and simplifies the development of

plugins.

4.4 Architecture

This section gives a brief overview over hackyCGQM’s architecture. The archi-

tecture is presented in two parts: a) how hackyCGQM integrates into Hackystat

and b) how it works internally.

4.4.1 Hackystat Integration

As already mentioned in chapter 2.4.1, Hackystat implements a micro kernel

architecture, as illustrated as a reminder in Figure 4.3 .

Figure 4.3: The Hackystat microkernel

The micro kernel provides a dynamic extension architecture which allows to plug-in

new modules providing new sensors, data types, analysis or alerts.

HackyCGQM is integrated into the Hackystat system as an additional module.

It integrates two new analysis pages, one configuration page and a telemetry

reducer for Hackystat.

The following list shows the extensions hackyCGQM provides:

• analyis: The cGQMmain analysis is the primary user interface hackyCGQM

provides. It executes a specified cGQM plugin for a specified project and

date.

70 CHAPTER 4. HACKYCGQM

• analyis: The cGQM plugin documentation shows the content, structure

and documentation provided for a selected plugin.

• configuration: The status of hackyCGQM can be checked using the cGQM

configuration. There, administrators can access the plugin load logs, the

validation logs and can reload all plugins.

• telemetry reducer: As described in 3.7, hackyCGQM provides a telemetry

reducer which feeds the telemetry module with data.

The integration of hackyCGQM into Hackystat is roughly illustrated in Figure

4.4.

4.4.2 Internal Architecture

This subsection briefly introduces the internal hackyCGQM architecture.

The hackyCGQM framework (without the sample plugin implementation) con-

sists of 10 top-level packages. These can be grouped into four responsibility

groups, as illustrated in Figure 4.5:

• Plugin definition and management

• Executables and results

• Hackystat integration

• Utilities and helpers

In the following course of this subsection, each of these ten top-level packages

is briefly described, ordered by their responsibility.

Plugin Definition and Management This package group is responsible for

plugin definition and management. It contains two packages: datamodels.cgqm

and manager, both explained below.

• datamodels.cgqm: This package contains the data model for representing

a cGQM plan. It’s main responsibility is to load and represent the cGQM

plugin describer (see 4.2.3). It primary consists of data classes following

the JavaBean standard [38], representing each data aspect describable

4.4. ARCHITECTURE 71

Figure 4.4: hackyCGQM and Hackystat

hackyGQM integrates into Hackystat as a analysis. The metrics of defined cGQM

plans can access analysis results (for example telemetry) or raw sensor data.

72 CHAPTER 4. HACKYCGQM

Figure 4.5: The hackyCGQM java top-level packages by their function

hackyCGQM’s packages can be categorized to four functional groups.

4.4. ARCHITECTURE 73

with the plugin describer. The persistence between these data beans and

plugin describer, which is a XML file, is realized using the JiBX Binding

Framework [39].

• manager: The manager package contain the classes implementing the

hackyCGQM plugin repository. This repository is responsible for loading,

reloading and validating plugins and makes them accessible to the other

hackyCGQM subsystems. One of its classes is also responsible for gen-

erating the dynamic overview graphs as illustrated on the screenshot in

Figure 5.13.

Executables and Results This package group provides interfaces and abstract

base implementations for implementing hackyCGQM Executables. Executables

are explained in chapter 4.2.2, the layout of the two packages interfaces and

implementations is illustrated in Figure 4.1 (in this Unified Modeling Language

(UML) diagram, the interfaces classes are yellow and the implementation

classes are green. The diagram is not complete as it omits the abstract base

implementation which can be used to speed up the development process of new

executables).

Hackystat Integration The packages of this group are responsible for inte-

grating hackyCGQM into Hackystat. It consists of three packages: webinter-

face, telemetry and alert.

• webinterface: The webinterface package uses the webinterface hooks

provides by Hackystat to integrate the two new analysis (cGQM main

analysis, plugin documentation) and the new configuration page (cGQM

configuration). It consists of the controller classes and according view-

layer Java Server Pages (JSP) pages.

• telemetry: This package contains hackyCGQM’s telemetry reducer used

to feed cGQM data into the telemetry system (see 3.7).

• alert: Implements the hackyCGQM alert, used for “push”-style analysis

(see 3.5.4).

74 CHAPTER 4. HACKYCGQM

Utilities and Helpers This last package group contains general purpose pack-

ages either used commonly throughout the whole hackyCGQM system or de-

signed to support and simplify the definition of new executables. Three packages

are part of this group: utils, testbase and common.

• utils: Utils is the largest of hackyCGQM’s packages. It basically pro-

vides generic utility classes which are designed to simplify the executable

development process, but are also used in other parts of the system. It

includes for example template engines, a graphic generator, conversion

and formatting utilities and utilities for result managing.

• testbase: Testbase provides abstract base classes for all unit test cases

for the whole module. The base test types are standard tests, data-driven

tests and server-side tests.

• common: This package contains specialized exceptions, extensions for the

JiBX binding framework[39] and specialized classloaders for dynamic load-

ing of executables in plugins.

This section provides just a brief overview over the hackyCGQM architecture.

A complete description would would go far beyond the scope of this document

and is not included.

4.5 cGQM and SPCC

HackyCGQM is a system designed for project control and project assessment.

By that, hackyCGQM can be considered as a special case of a SPCC (see 2.3).

A core concept of the G-SPCC reference implementation are visualization cate-

nas. These catenas are made up of instances of predefined functions which can

be connected to each others to create a data processing network which finally

feeds views presenting the data in a role-specific way.

In hackyCGQM, G-SPCC concepts are realized in the following way:

• The concepts of functions in hackyCGQM is realized by executables (see

4.2.2). In contrast to the G-SPCC reference implementation which uses

more generic functions, hackyCGQM uses with the executables concept

specialized “functions” representing each goal, question are metric.

4.6. STATISTICS 75

• Although it is possible in hackyCGQM to connect the executables (the

hackyCGQM match of the G-SPCC functions) to arbitrary shaped net-

works, they will in most cases turn out to be organized in a 3-layered tree

structure. The metrics will be the lowest layer, feeding the second layer

with the questions and finally ending with the uppermost layer with the

goals.

• Each plugin can be considered as a view as they visualize certain, goal-

oriented and role-oriented data (the “role” concept is implicitly realized

by defining a “viewpoint” in the GQM goals (see 2.1.1)).

4.6 Statistics

This section just displays some simple statistics for the hackyCGQM project so

that one is able to get a rough picture of it’s size and complexity.

metric value comment

active time 185 hours Active time is not the effort. It is

the pure time spend for coding the

system.

source lines of code 11707 Lines of code without whitespace and

comments

number of classes 198

number of methods 939

unit test coverage 80 % Indirect method level coverage of jU-

nit tests

Table 4.4: Project end statistics for hackyCGQM

Chapter 5

Evaluation and Demonstration

This chapter demonstrates and evaluates the cGQM reference implementation

hackyCGQM. It is separated into two subparts:

• Introduction and demonstration: Introduces several cGQM example mea-

surement programs and their usage.

• Evaluations: In sections 5.2 to 5.4, evaluations focusing on selected as-

pects of hackyCGQM are performed. These are:

1. An effort discussion estimating first reference values for the effort

needed for performing cGQM measurement programs (Section 5.2)

2. A mapping evaluation for assessing the potential of cGQM compared

to general GQM programs (Section 5.3)

3. User feedback interviews (Section 5.4)

5.1 Implemented cGQM Examples

At the actual moment, there are three different sample implementations of

cGQM programs designed to show different aspects of hackyCGQM and serve

different purposes.

These examples are:

76

5.1. IMPLEMENTED CGQM EXAMPLES 77

1. buildFailures: This plugin deals with the problem of failing nightly integra-

tion builds. It is used for an effort comparison discussion and an usability

evaluation.

2. issues: This example answers questions connected to the issue system

and it’s usage. It is based on a GQM case study conducted by Solingen

and Berghout in in 1999 [8].

3. overview : This plugin’s purpose is mainly to illustrate a non-standard us-

age of cGQM which analyzes huge amounts of raw sensor data to generate

an uncommon overview over a software project.

5.1.1 “BuildFailures” example

Hackystat implements an automated build process for creating the 7 differ-

ent configurations for Hackystat. A configuration is a specially tailored version

of the system with different modules included. These configurations can be

understood as a product line. For simplifying the process of maintaining differ-

ent configurations and insuring their integrity and proper function, the already

mentioned automated nightly integration build process was established. This

integration build compiles and tests each of the configurations individually each

night, as illustrated in Figure 5.1.

Beside creating the configuration’s distribution, the main reason for establish-

ing an automated integration build process is defect detection and prevention.

During the build, three major phases are performed: The code is checked for

conformance with the coding standards using checkstyle [40], compiled and

tested using junit [41]. Beside that, some minor, and usually stable, non-failing

tasks like javadoc creation or bundling are performed.

A configuration only passes the build successfully if all theses phases pass without

error. If an error occurs, the build tries to continue if possible and logs all error

messages into a build protocol. As soon as a build does not finish successfully,

all developers are notified via email.

This process is designed to find inter-module dependency errors meaning by

compiling all modules being part of an configuration and running their unit tests,

78 CHAPTER 5. EVALUATION AND DEMONSTRATION

the integration build is able to find errors which occur in one module, but were

caused by a modification of an other module.

This kind of error is not likely to be found by a developer who is modifying the

module causing the error as he usually only tests and compiles his module and

not all other depended modules (this is due to the expensive testing process,

testing all modules can take up to two hours even on a fast machine).

Figure 5.1: The Hackystat build process

Each night, the integration build server creates and tests all seven configuration using

the latest code from the CVS repository.

When a nightly build fails, everybody is notified via email. The project manager

spends some time for analyzing and locating the failure and notifies the developer

who might be responsible for the failure. These developers usually analyze the

failure again for themselves and fix them. This process generates a considerable

interruption in the development process and is quite expensive as usually several

persons are involved. But as long as this process prevents severe failures in the

software, it is completely justified.

But one major problem with the integration build process which arose was that

the Hackystat integration builds failed too frequently. More than 1/3 of all

nightly builds failed in 2004, and in most cases, no real, severe software flaw

causing the build failure could be located.

As a consequence of that, considerable effort was wasted just for fixing the build

failures.

For solving and understanding the problem, several hypotheses were stated.

One assumed that the majority of these build failures was just caused by care-

less developers who commit flawed code to the CVS. These failures would be

5.1. IMPLEMENTED CGQM EXAMPLES 79

completely avoidable if the developer had been more disciplined. This leads to

the next assumption that the majority of failures were caused just by a small

group of developers with a badly controlled, personal development process.

The “buildFailure” example plugin is designed to clarify the problem of failing

builds and finding it’s solution. After the rework done during and after the user

interviews (see 5.4), it consists of one goal, nine questions and six metrics.

Following artifacts are part of the plugin with dependencies as illustrated in

Figure 5.2:

Figure 5.2: GQM structure of the “buildFailures” example

Goal 1: Improve nightly build success rate from the view point of the devel-

opment team for the Hackystat project at the Collaborative Software

Engineering Institute, University of Hawai’i (CSDL).

Question 1: Which percentage of nightly builds succeeded in the last 14 days?

Rationale: The average successrate indicates the actual stability

of the build process, important for assessing the actual state of

the process.

Question 2: What was the nightly build success rate in 2004?

Rationale: This value serves as a baseline for estimating the

improvement compared to the last year.

Question 3: What is the distribution of build failure types in the last 14 days?

Rationale: Knowing the types of occurring build failures can be

used for developing strategies for preventing them. For example,

if a majority of build failures is caused by trivial problems like

80 CHAPTER 5. EVALUATION AND DEMONSTRATION

”checkstyle”, this indicates the need for enforcing better devel-

opment processes.

Question 4: Which modules did cause how many build failures of which type

in the last 14 days?

Rationale: This question’s answer can indicate if there is a prob-

lem with a specific module and thus indirectly with a specific

developer or group of developers.

Question 5: How many files were committed to the individual modules in the

last 14 days? (omitted in effort evaluation)

Rationale: One hypothesis is that the number of build failures is

depended on the activity level. Here, number of commits serves

as a proxy for activity.

Question 6: How much active time was spend developing the individual mod-

ules? (omitted in effort evaluation)

Rationale: As with the last question, activity is approximated

here with active time.

Question 7: How many hours did the developers spend on local builds in the

last 14 days in average per active person? (omitted in effort

evaluation)

Rationale: An other stated hypothesis is that frequent local builds

can prevent integration build failures, but they also can waste

time. This question shows an overview over how much time

developers spend building locally.

Question 8: Which tasks did the developers run how often during their local

builds? (omitted in effort evaluation, added during interviews)

Rationale: Local builds only prevent common failure causes like

checkstyle or junit when these tasks are performed during the

execution. This question visualize who is invoking which build

tasks.

Question 9: Which unit tests failed most in the last 2 weeks? (omitted in

effort evaluation, added during interviews)

Rationale: This question is based on a vague claim that unit

tests which are failing often in local environment also fail the

5.1. IMPLEMENTED CGQM EXAMPLES 81

integration builds and indicate a problem with a module.

Metric 1: Nightly build data (raw sensor data; includes date, time, type, fail-

ure message)

Metric 2: All build data (raw sensor data; includes date, time, type, failure

message)

Metric 3: Local Build Time (telemetry stream; summarized local build time

for each developer)

Metric 4: Test data (raw sensor data; includes date, time, file, duration, re-

sult)

Metric 5: Commit data (raw sensor data; includes date, time, user, file, size)

Metric 6: Workspace active time (telemetry stream; summarized active time

for each workspace separated by developer)

Figure 5.3: The “buildFailures” analysis start screen

The analysis page starts with an overview graph showing the cGQM plan, followed by

all goals and questions and their answers.

5.1.2 “Issues” example

The “issue” example is inspired by a GQM case study conducted by Solingen

and Berghout in in 1999 [8] (named “Case A” in the literature reference).

82 CHAPTER 5. EVALUATION AND DEMONSTRATION

The “issue” plugin remodels a few of the questions and goals used in the Bergh-

out case study to show cGQM’s ability to perform real world GQM plans. But

as there was no real need for this measurement program at the CSDL, the study

was not fully reimplemented.

Still, this cGQM plugin shows a quick and clear overview over the usage of Hack-

ystat’s issue tracking system without the unnecessary additional detail originally

provided by the Berghout study.

It contains of 1 goal, 4 questions and 3 metrics, connected to each other as il-

lustrated in Figure 5.4. As an example, a chart generated for answering question

2 is shown in Figure 5.5.

Figure 5.4: GQM structure of the “issues” example

Goal 1: Analyze CSDL Hackystats’s issue tracker system content with focus

on the issue handling from viewpoint of the development team.

Question 1: What is the distribution of issues by their severity over modules?

What is the complexity/ size of these modules?

Rationale: This question’s answer provides the ability to check

for correlations between size/ complexity and number of issues

on a module level.

Question 2: What is the distribution of issue types over modules?

Rationale: Helps to analyze which kind of issues are accumulated

for a given module. High issue number could either mean that

the module is error-prone or that people have many ideas how

to improve it or how to implement new features. This question

helps to decide which of this is the case.

5.1. IMPLEMENTED CGQM EXAMPLES 83

Question 3: What is the distribution of severity of unsolved issues?

Rationale: Gives an overview over the issues which are to solve

in the next time.

Question 4: When were issues reported and what is their actual status?

Rationale: This question’s answer shows how quickly issues are

solved. In the best case, there should not be any very old issues

in the system.

Metric 1: Issue data (raw sensor data; contains date, status, reporter, sever-

ity, etc)

Metric 2: Dependency data (used as proxy for complexity; raw sensor data;

contains file, ingoing dependencies, outgoing dependencies)

Metric 3: Filemetric data (raw sensor data; contains file, size)

Figure 5.5: A chart generated for the question “What is the distribution of issue

types over modules?“.

Each bar represents a module, the colors represents the type of the issues.

84 CHAPTER 5. EVALUATION AND DEMONSTRATION

5.1.3 “Overview” example

The “overview” example is used as a technological “playground”. It’s purpose is

to develop a technology and representation for answering the questions “What

was going on in my project in the past timespan X? Who worked how much on

which parts of the system? How does the actual systems’ code look like?”.

The resulting representation, the software topography chart, is still immature

and unfinished, but shows potential. The chart visualizes each java package

of the system as a rectangle and notes down the times and developers who

worked on it. Inside modules, dependencies between packages are indicated by

lines (originally, there should also be dependency lines between modules, but this

rendered the chart completely unreadable).

In addition to that, each developer is represented by an unique color. Each active

package (a package which was modified in the observed timespan) receives an

underlayed background octagon with the developers color who spent the most

time modifying the package.

One of the primary strength of the topology chart is the ability to aggregate

and visualize nearly arbitrary metrics like active time, lines of code or coverage.

As a result, a huge graph is generated which shows which parts of the system

were active, how the developers effort was distributed and the “shape” of the

the single modules. As this graph is very big, it was displayed for a few weeks

on CSDL’s telemetry wall, a big composite screen build out of nine 17” LCD

displays (see Figure 5.6 and Figure 5.7) There, users can zoom and pan through

the graph and examine it at different detail levels.

Although the graph has no real, constant usage yet, it quickly became a topic

of many discussions, resulting in various interesting ideas like interactive presen-

tations, 3D models or hierarchy maps.

5.2 Effort Discussion

This evaluation implements and executes an example measurement program

(the “buildFailures” example introduced in 5.1.1) with hackyCGQM to get first

5.2. EFFORT DISCUSSION 85

Figure 5.6: The software topography map on the telemetry wall

The topography map spread over 9 monitors on the CSDL telemetry wall.

Topography for hacky2004-all

org.hackystat.kernel.test

takuyay@hawaii.edu (0.833 h)

loc: 566
 activeTime: 1

org.hackystat.kernel.sdt

johnson@hawaii.edu (0.417 h)

loc: 412
 activeTime: 0.5

org.hackystat.kernel.util

hongbing@hawaii.edu (0.167 h)

loc: 1,317
 activeTime: 0.167

org.hackystat.kernel.shell.command

loc: 287
 activeTime: 0

org.hackystat.kernel.mvc.logger

loc: 230
 activeTime: 0

org.hackystat.kernel.timer

loc: 62
 activeTime: 0

org.hackystat.kernel.command

loc: 481
 activeTime: 0

org.hackystat.kernel.mvc

johnson@hawaii.edu (0.167 h)

loc: 569
 activeTime: 0.25

org.hackystat.kernel.cache

lofi@hawaii.edu (0.083 h)

loc: 347
 activeTime: 0.083

org.hackystat.kernel.soap

loc: 202
 activeTime: 0

org.hackystat.kernel.sensor

loc: 190
 activeTime: 0

org.hackystat.kernel.alert

loc: 68
 activeTime: 0

org.hackystat.kernel.admin

kagawaa@hawaii.edu (2.083 h)

loc: 988
 activeTime: 3.25

org.hackystat.kernel.sensor.usermap

loc: 293
 activeTime: 0

org.hackystat.kernel.shell

loc: 684
 activeTime: 0

org.hackystat.kernel.user

takuyay@hawaii.edu (0.25 h)

loc: 564
 activeTime: 0.25

org.hackystat.kernel.sensordata

johnson@hawaii.edu (2.5 h)

loc: 610
 activeTime: 2.667

org.hackystat.stdext.statistic

loc: 522
 activeTime: 0

org.hackystat.sqi.analysis.harvestpackagesummary

loc: 230
 activeTime: 0

org.hackystat.sqi.analysis.projectsummary

loc: 95
 activeTime: 0

org.hackystat.sqi.cache.project

loc: 1,459
 activeTime: 0

org.hackystat.sqi.analysis.filesummary

loc: 120
 activeTime: 0

org.hackystat.sqi.analysis.listpackagesensordata

loc: 160
 activeTime: 0

org.hackystat.sqi.selector

loc: 257
 activeTime: 0

org.hackystat.sqi.analysis.entanglement

loc: 104
 activeTime: 0

org.hackystat.sqi.analysis.releasesummary

loc: 316
 activeTime: 0

org.hackystat.sqi.statechange.sdt

loc: 215
 activeTime: 0

org.hackystat.sqi.analysis.harvestpackagedata

loc: 115
 activeTime: 0

org.hackystat.sqi.analysis.harvestpackageagesummary

loc: 122
 activeTime: 0

org.hackystat.sqi.cache.projectsensordata

loc: 421
 activeTime: 0

org.hackystat.sqi.analysis.illegaltransition

loc: 141
 activeTime: 0

org.hackystat.sqi.harveststate.projectlifecycle

loc: 222
 activeTime: 0

org.hackystat.sqi.harveststate.projectlifecycle.preference

loc: 143
 activeTime: 0

org.hackystat.sqi.analysis.harvestpackagesummary.selector.column

loc: 235
 activeTime: 0

org.hackystat.sqi.util

loc: 14
 activeTime: 0

org.hackystat.sqi.harvestpackage.projectmapping.preference

loc: 138
 activeTime: 0

org.hackystat.sqi.harvestpackage.rolluppackage

loc: 55
 activeTime: 0

org.hackystat.sqi.harveststate

loc: 294
 activeTime: 0

org.hackystat.sqi.analysis.statechange

loc: 190
 activeTime: 0

org.hackystat.sqi.harvestbuild.dailyanalysis

loc: 142
 activeTime: 0

org.hackystat.sqi.analysis.statedayssummary

loc: 109
 activeTime: 0

org.hackystat.sqi.telemetryreducer

loc: 1,209
 activeTime: 0

org.hackystat.sqi.harvestpackage.workpackage

loc: 460
 activeTime: 0

org.hackystat.sqi.harvestpackage.projectmapping

loc: 198
 activeTime: 0

org.hackystat.sqi.statechange.dailyanalysis

loc: 172
 activeTime: 0

org.hackystat.sqi.analysis.releasesummary.selector

loc: 30
 activeTime: 0

org.hackystat.sqi.harvestbuild.sdt

loc: 153
 activeTime: 0

org.hackystat.sqi.analysis.transitionsequence

loc: 268
 activeTime: 0

org.hackystat.sqi.analysis.developerassociationsummary

loc: 99
 activeTime: 0

org.hackystat.sqi.harvestpackage

loc: 743
 activeTime: 0

org.hackystat.app.pri.model.workspace.measures.indicator

kagawaa@hawaii.edu (3.917 h)

loc: 1,403
 activeTime: 3.917

org.hackystat.app.pri.admin.analysis.remove

kagawaa@hawaii.edu (0.583 h)

loc: 51
 activeTime: 0.583

org.hackystat.app.pri.analysis.workspace

kagawaa@hawaii.edu (0.333 h)

loc: 52
 activeTime: 0.333

org.hackystat.app.pri.model.configuration.selector

kagawaa@hawaii.edu (0.25 h)

loc: 114
 activeTime: 0.25

org.hackystat.app.pri.model.configuration

kagawaa@hawaii.edu (4.417 h)

loc: 518
 activeTime: 4.417

org.hackystat.app.pri.analysis.workspace.selector

kagawaa@hawaii.edu (0.167 h)

loc: 63
 activeTime: 0.167

org.hackystat.app.pri.util

kagawaa@hawaii.edu (0.083 h)

loc: 13
 activeTime: 0.083

org.hackystat.app.pri.model.workspace.measures.helper

kagawaa@hawaii.edu (2.25 h)

loc: 152
 activeTime: 2.25

org.hackystat.app.pri.model.workspace.measures

kagawaa@hawaii.edu (15.417 h)

loc: 4,182
 activeTime: 15.417

org.hackystat.app.pri.model.workspace

kagawaa@hawaii.edu (6.75 h)

loc: 588
 activeTime: 6.833

org.hackystat.app.pri.preference.configuration

kagawaa@hawaii.edu (2.083 h)

loc: 444
 activeTime: 2.083

org.hackystat.app.pri.analysis.module

kagawaa@hawaii.edu (0.5 h)

loc: 73
 activeTime: 0.5

org.hackystat.app.pri.analysis.listworkspace

kagawaa@hawaii.edu (0.167 h)

loc: 42
 activeTime: 0.167

org.hackystat.app.commit.sensor.core

loc: 598
 activeTime: 0

org.hackystat.app.commit.dailyproject

loc: 364
 activeTime: 0

org.hackystat.app.commit.analysis.projectchurn

loc: 129
 activeTime: 0

org.hackystat.app.commit.dailyanalysis

loc: 83
 activeTime: 0 org.hackystat.app.commit.reducer

qzhang@hawaii.edu (1 h)

loc: 1,405
 activeTime: 1

org.hackystat.app.commit.sdt

loc: 180
 activeTime: 0

org.hackystat.app.commit.sensor.counter

loc: 161
 activeTime: 0

org.hackystat.app.commit.sensor

qzhang@hawaii.edu (1 h)

loc: 377
 activeTime: 1

org.hackystat.stdext.sensor.jbuilder

johnson@hawaii.edu (0.083 h)

loc: 194
 activeTime: 0.083

org.hackystat.stdext.sensor.eclipse.event

loc: 23
 activeTime: 0

org.hackystat.stdext.sensor.eclipse

hongbing@hawaii.edu (2.583 h)

loc: 1,005
 activeTime: 3.083

org.hackystat.stdext.sensor.eclipse.addon

hongbing@hawaii.edu (0.667 h)

loc: 503
 activeTime: 0.667

org.hackystat.stdext.sensor.ant.loadtest

loc: 366
 activeTime: 0

org.hackystat.stdext.sensor.ant.build

qzhang@hawaii.edu (0.167 h)

loc: 285
 activeTime: 0.167

org.hackystat.stdext.sensor.ant.build.checkstyle

loc: 99
 activeTime: 0

org.hackystat.stdext.sensor.ant.locc

johnson@hawaii.edu (0.167 h)

loc: 534
 activeTime: 0.167

org.hackystat.stdext.sensor.ant.jira

kagawaa@hawaii.edu (1.167 h)

loc: 407
 activeTime: 1.167

org.hackystat.stdext.sensor.ant.build.junit

loc: 206
 activeTime: 0

org.hackystat.stdext.sensor.ant.junit

loc: 200
 activeTime: 0

org.hackystat.stdext.sensor.ant.jblanket

loc: 188
 activeTime: 0

org.hackystat.stdext.sensor.ant.build.compilation

loc: 91
 activeTime: 0

org.hackystat.stdext.sensor.ant.bcml

loc: 215
 activeTime: 0

org.hackystat.stdext.sensor.ant.cccc

loc: 678
 activeTime: 0

org.hackystat.app.telemetry.processor.query.expression

lofi@hawaii.edu (0.083 h)

loc: 391
 activeTime: 0.167

org.hackystat.app.telemetry.processor.evaluator

qzhang@hawaii.edu (0.25 h)

loc: 712
 activeTime: 0.5

org.hackystat.app.telemetry.processor.reducer

loc: 183
 activeTime: 0

org.hackystat.app.telemetry.config

qzhang@hawaii.edu (1.917 h)

loc: 492
 activeTime: 1.917

org.hackystat.app.telemetry.analysis.util

qzhang@hawaii.edu (1.667 h)

loc: 297
 activeTime: 1.667

org.hackystat.app.telemetry.processor.parser

qzhang@hawaii.edu (2.75 h)

loc: 437
 activeTime: 2.75

org.hackystat.app.telemetry.processor.reducer.impl

qzhang@hawaii.edu (2.167 h)

loc: 2,080
 activeTime: 3.667

org.hackystat.app.telemetry.processor.parser.impl

qzhang@hawaii.edu (0.083 h)

loc: 1,905
 activeTime: 0.083

org.hackystat.app.telemetry.config.selector

qzhang@hawaii.edu (0.333 h)

loc: 29
 activeTime: 0.333

org.hackystat.app.telemetry.analysis.selector

loc: 321
 activeTime: 0

org.hackystat.app.telemetry.processor.reducer.util

loc: 892
 activeTime: 0

org.hackystat.app.telemetry.analysis

qzhang@hawaii.edu (3.917 h)

loc: 675
 activeTime: 4.833

org.hackystat.app.telemetry.processor.query

qzhang@hawaii.edu (0.167 h)

loc: 396
 activeTime: 0.167

org.hackystat.app.telemetry.processor.stream

lofi@hawaii.edu (0.083 h)

loc: 258
 activeTime: 0.083

org.hackystat.app.telemetry.config.core

qzhang@hawaii.edu (5.667 h)

loc: 1,471
 activeTime: 5.667

org.hackystat.app.review.analysis

takuyay@hawaii.edu (5.583 h)

loc: 420
 activeTime: 5.583

org.hackystat.app.review.analysis.comparison

takuyay@hawaii.edu (7 h)

loc: 699
 activeTime: 7

org.hackystat.app.review.analysis.selector

takuyay@hawaii.edu (2.583 h)

loc: 78
 activeTime: 2.667

org.hackystat.app.review.analysis.cache

takuyay@hawaii.edu (1.833 h)

loc: 638
 activeTime: 1.833

org.hackystat.app.review.issue.sdt

takuyay@hawaii.edu (0.417 h)

loc: 221
 activeTime: 0.417

org.hackystat.app.review.model

takuyay@hawaii.edu (7.333 h)

loc: 863
 activeTime: 7.333

org.hackystat.app.review.activity.sdt

takuyay@hawaii.edu (0.75 h)

loc: 231
 activeTime: 0.75

org.hackystat.app.review.issue.reducer

takuyay@hawaii.edu (1 h)

loc: 541
 activeTime: 1.5

org.hackystat.app.review.issue.dailyproject

takuyay@hawaii.edu (1.833 h)

loc: 898
 activeTime: 2

org.hackystat.app.review.analysis.stream

takuyay@hawaii.edu (2.583 h)

loc: 179
 activeTime: 2.583

org.hackystat.app.review.activity.dailyanalysis

takuyay@hawaii.edu (1.25 h)

loc: 411
 activeTime: 1.25

org.hackystat.app.review.analysis.summary

takuyay@hawaii.edu (3.583 h)

loc: 514
 activeTime: 3.583

org.hackystat.app.review.preference

takuyay@hawaii.edu (12.25 h)

loc: 617
 activeTime: 12.333

org.hackystat.app.review.activity.dailyproject

takuyay@hawaii.edu (4.667 h)

loc: 544
 activeTime: 4.667

org.hackystat.app.review.issue.dailyanalysis

loc: 135
 activeTime: 0

org.hackystat.app.review.activity.reducer

qzhang@hawaii.edu (0.167 h)

loc: 252
 activeTime: 0.167

org.hackystat.app.hpcs.dailyproject

loc: 378
 activeTime: 0

org.hackystat.app.hpcs.reducer

mpauldin@hawaii.edu (0.667 h)

loc: 335
 activeTime: 1

org.hackystat.stdext.sensor.eclipse.jupiter

takuyay@hawaii.edu (1.917 h)

loc: 264
 activeTime: 2.5

org.hackystat.stdext.dependency.dailyproject

kagawaa@hawaii.edu (0.25 h)

loc: 225
 activeTime: 0.25

org.hackystat.stdext.sensor.ant.dependency

loc: 288
 activeTime: 0

org.hackystat.stdext.dependency.sdt

loc: 179
 activeTime: 0

org.hackystat.stdext.dependency.analysis.workspace

loc: 176
 activeTime: 0

org.hackystat.app.course.selector

loc: 74
 activeTime: 0

org.hackystat.app.course.analysis

loc: 427
 activeTime: 0

org.hackystat.app.course.preference

takuyay@hawaii.edu (0.083 h)

loc: 315
 activeTime: 0.083

org.hackystat.app.course

loc: 271
 activeTime: 0

org.hackystat.stdext.sensor.vim

loc: 131
 activeTime: 0

org.hackystat.stdext.sensor.cli.cppunit

loc: 268
 activeTime: 0

org.hackystat.app.cli.sensor

loc: 147
 activeTime: 0

org.hackystat.app.cli.sdt

loc: 110
 activeTime: 0

org.hackystat.app.cli.dailyanalysis

loc: 116
 activeTime: 0

org.hackystat.app.cppunit.reducer

mpauldin@hawaii.edu (1 h)

loc: 79
 activeTime: 1.167

cGQM.plugin.buildFailures

lofi@hawaii.edu (8.417 h)

loc: 1,119
 activeTime: 8.417

org.hackystat.app.cgqm.utils.graphvizUtils

lofi@hawaii.edu (0.917 h)

loc: 319
 activeTime: 0.917

cGQM.plugin.example

lofi@hawaii.edu (0.417 h)

loc: 70
 activeTime: 0.417

org.hackystat.app.cgqm.implementations.results

lofi@hawaii.edu (0.167 h)

loc: 387
 activeTime: 0.167

org.hackystat.app.cgqm.interfaces.executables

lofi@hawaii.edu (2.75 h)

loc: 307
 activeTime: 2.75

org.hackystat.app.cgqm.datamodels.cgqm

lofi@hawaii.edu (3.167 h)

loc: 374
 activeTime: 3.167

org.hackystat.app.cgqm.datamodels.cgqm.common

loc: 41
 activeTime: 0

org.hackystat.app.cgqm.common.classloaders

lofi@hawaii.edu (1.083 h)

loc: 183
 activeTime: 1.083

org.hackystat.app.cgqm.utils.freemarker

lofi@hawaii.edu (0.5 h)

loc: 136
 activeTime: 0.5

org.hackystat.app.cgqm.webinterface.selector

lofi@hawaii.edu (0.417 h)

loc: 46
 activeTime: 0.417

org.hackystat.app.cgqm.datamodels.cgqm.goal.sheetComponents

lofi@hawaii.edu (0.417 h)

loc: 92
 activeTime: 0.417

org.hackystat.app.cgqm.datamodels.cgqm.metric

loc: 7
 activeTime: 0

org.hackystat.app.cgqm.datamodels.cgqm.goal.goalDimension

lofi@hawaii.edu (0.083 h)

loc: 88
 activeTime: 0.083

org.hackystat.app.cgqm.testbase

lofi@hawaii.edu (0.75 h)

loc: 146
 activeTime: 0.75

org.hackystat.app.cgqm.common.jiBX

lofi@hawaii.edu (0.667 h)

loc: 305
 activeTime: 0.667

cGQM.plugin.common

lofi@hawaii.edu (2.333 h)

loc: 609
 activeTime: 2.417

cGQM.plugin.overview.topo

lofi@hawaii.edu (4.083 h)

loc: 986
 activeTime: 4.167

org.hackystat.app.cgqm.utils

lofi@hawaii.edu (12.333 h)

loc: 1,569
 activeTime: 12.333

org.hackystat.app.cgqm.manager

lofi@hawaii.edu (9.583 h)

loc: 833
 activeTime: 9.583

org.hackystat.app.cgqm.webinterface

lofi@hawaii.edu (3.583 h)

loc: 153
 activeTime: 3.583

org.hackystat.app.cgqm.telemetry.reducer

lofi@hawaii.edu (1.75 h)

loc: 150
 activeTime: 1.75

org.hackystat.app.cgqm.datamodels.cgqm.goal

lofi@hawaii.edu (0.25 h)

loc: 87
 activeTime: 0.25

org.hackystat.app.cgqm.telemetry.webHookDataSource.describer

lofi@hawaii.edu (0.167 h)

loc: 258
 activeTime: 0.167

org.hackystat.app.cgqm.common.exceptions

lofi@hawaii.edu (0.833 h)

loc: 119
 activeTime: 0.833

org.hackystat.app.cgqm.datamodels.cgqm.question

lofi@hawaii.edu (0.583 h)

loc: 37
 activeTime: 0.583

org.hackystat.app.cgqm.telemetry.webHookDataSource

loc: 159
 activeTime: 0

org.hackystat.app.cgqm.implementations.executables

lofi@hawaii.edu (1.417 h)

loc: 250
 activeTime: 1.417

org.hackystat.app.cgqm.interfaces.results

lofi@hawaii.edu (0.083 h)

loc: 10
 activeTime: 0.083cGQM.plugin.overview

lofi@hawaii.edu (2 h)

loc: 508
 activeTime: 2

org.hackystat.stdext.issue.sdt

bleung@hawaii.edu (3.333 h)

loc: 392
 activeTime: 3.5

org.hackystat.stdext.issue.reducer

bleung@hawaii.edu (29.833 h)

loc: 250
 activeTime: 30.167

org.hackystat.stdext.issue.analysis.issueprojectdetails

kagawaa@hawaii.edu (1 h)

loc: 228
 activeTime: 1

org.hackystat.stdext.issue.dailyproject

bleung@hawaii.edu (9.917 h)

loc: 536
 activeTime: 9.917

org.hackystat.stdext.zorro.model.action.file

hongbing@hawaii.edu (0.5 h)

loc: 471
 activeTime: 0.5

org.hackystat.stdext.zorro.control.tokenizer.command

hongbing@hawaii.edu (1.417 h)

loc: 164
 activeTime: 1.417

org.hackystat.stdext.zorro.control.stream

hongbing@hawaii.edu (14.417 h)

loc: 1,423
 activeTime: 14.5

org.hackystat.stdext.zorro

hongbing@hawaii.edu (0.167 h)

loc: 9
 activeTime: 0.167

org.hackystat.stdext.zorro.model.action

hongbing@hawaii.edu (2.167 h)

loc: 136
 activeTime: 2.167

org.hackystat.stdext.zorro.control

hongbing@hawaii.edu (1.167 h)

loc: 89
 activeTime: 1.167

org.hackystat.stdext.zorro.model.episode

hongbing@hawaii.edu (1.417 h)

loc: 177
 activeTime: 1.417

org.hackystat.stdext.zorro.model.action.file.edit

hongbing@hawaii.edu (0.667 h)

loc: 394
 activeTime: 0.667

org.hackystat.stdext.zorro.jess

hongbing@hawaii.edu (0.333 h)

loc: 206
 activeTime: 0.333

org.hackystat.stdext.zorro.model.action.command

hongbing@hawaii.edu (0.917 h)

loc: 234
 activeTime: 0.917

org.hackystat.stdext.zorro.control.tokenizer.commit

hongbing@hawaii.edu (1 h)

loc: 168
 activeTime: 1

org.hackystat.stdext.zorro.control.tokenizer.bufftrans

hongbing@hawaii.edu (1.583 h)

loc: 160
 activeTime: 1.583

org.hackystat.stdext.zorro.control.tokenizer

hongbing@hawaii.edu (7.333 h)

loc: 303
 activeTime: 7.333

org.hackystat.stdext.zorro.model.action.file.refactoring

hongbing@hawaii.edu (0.083 h)

loc: 277
 activeTime: 0.083

org.hackystat.stdext.zorro.control.tokenizer.testpass

hongbing@hawaii.edu (1.083 h)

loc: 196
 activeTime: 1.083

org.hackystat.stdext.zorro.control.tokenizer.selector

hongbing@hawaii.edu (0.417 h)

loc: 32
 activeTime: 0.417

org.hackystat.stdext.zorro.analysis

hongbing@hawaii.edu (2.75 h)

loc: 230
 activeTime: 2.75

org.hackystat.stdext.zorro.common

loc: 30
 activeTime: 0

org.hackystat.app.project.analysis.time

loc: 69
 activeTime: 0

org.hackystat.app.project.analysis.size

loc: 538
 activeTime: 0

org.hackystat.app.project.selector.filemetric

loc: 61
 activeTime: 0

org.hackystat.app.project.selector.regression

loc: 34
 activeTime: 0

org.hackystat.app.project.analysis.usertimesize

loc: 326
 activeTime: 0

org.hackystat.app.project.analysis.usertimesizedrilldown

loc: 356
 activeTime: 0

org.hackystat.stdext.tdd.data

hongbing@hawaii.edu (0.083 h)

loc: 571
 activeTime: 0.083

org.hackystat.stdext.tdd.view

loc: 311
 activeTime: 0

org.hackystat.stdext.tdd.classifier

loc: 135
 activeTime: 0

org.hackystat.stdext.tdd

hongbing@hawaii.edu (0.083 h)

loc: 9
 activeTime: 0.083

org.hackystat.stdext.tdd.data.test

loc: 125
 activeTime: 0

org.hackystat.stdext.tdd.dailyanalysis

loc: 96
 activeTime: 0

org.hackystat.stdext.tdd.data.refactoring

loc: 214
 activeTime: 0org.hackystat.stdext.tdd.session

loc: 675
 activeTime: 0

org.hackystat.stdext.report.example.xy

loc: 522
 activeTime: 0

org.hackystat.stdext.report.xy.regression

loc: 364
 activeTime: 0

org.hackystat.stdext.report

qzhang@hawaii.edu (0.417 h)

loc: 243
 activeTime: 0.667

org.hackystat.stdext.report.category.bin

loc: 119
 activeTime: 0

org.hackystat.stdext.report.example.xy.selector

loc: 73
 activeTime: 0

org.hackystat.stdext.report.category.gantt

hongbing@hawaii.edu (0.333 h)

loc: 264
 activeTime: 0.333

org.hackystat.stdext.report.example.category

hongbing@hawaii.edu (1.583 h)

loc: 638
 activeTime: 1.583

org.hackystat.stdext.report.example.category.selector

loc: 115
 activeTime: 0

org.hackystat.stdext.report.category.combine

loc: 172
 activeTime: 0

org.hackystat.stdext.report.category.boxwhisker

loc: 246
 activeTime: 0

org.hackystat.stdext.report.category

lofi@hawaii.edu (0.583 h)

loc: 720
 activeTime: 0.667

org.hackystat.stdext.report.util

hongbing@hawaii.edu (0.917 h)

loc: 364
 activeTime: 0.917

org.hackystat.stdext.report.category.multiaxis

hongbing@hawaii.edu (4.417 h)

loc: 428
 activeTime: 4.417

org.hackystat.stdext.report.pie

hongbing@hawaii.edu (0.083 h)

loc: 253
 activeTime: 0.083

org.hackystat.stdext.report.xy

hongbing@hawaii.edu (0.083 h)

loc: 667
 activeTime: 0.083

org.hackystat.stdext.report.selector

kagawaa@hawaii.edu (0.583 h)

loc: 71
 activeTime: 0.667

org.hackystat.stdext.common.alert.newdata

loc: 112
 activeTime: 0

org.hackystat.stdext.admin.analysis.usage.invocationsummary.byuser

loc: 162
 activeTime: 0

org.hackystat.stdext.unittest.dailyproject

kagawaa@hawaii.edu (0.25 h)

loc: 272
 activeTime: 0.333

org.hackystat.stdext.dailydiary.dailyanalysis

johnson@hawaii.edu (0.167 h)

loc: 544
 activeTime: 0.25

org.hackystat.stdext.project.selector

loc: 116
 activeTime: 0

org.hackystat.stdext.admin.analysis.zipprojectdata.projectselector

loc: 44
 activeTime: 0

org.hackystat.stdext.activity.sdt

hongbing@hawaii.edu (0.667 h)

loc: 244
 activeTime: 0.917

org.hackystat.stdext.baddata.alert

loc: 105
 activeTime: 0

org.hackystat.stdext.common.selector.sdt

loc: 141
 activeTime: 0

org.hackystat.stdext.workspace.selector

loc: 47
 activeTime: 0

org.hackystat.stdext.admin.analysis.adoption

loc: 120
 activeTime: 0

org.hackystat.stdext.admin.analysis.zipprojectdata

loc: 297
 activeTime: 0

org.hackystat.stdext.project.preference

takuyay@hawaii.edu (0.167 h)

loc: 531
 activeTime: 0.25

org.hackystat.stdext.dailydiary.selector

loc: 135
 activeTime: 0

org.hackystat.stdext.common.analysis.daydatasummary

loc: 92
 activeTime: 0

org.hackystat.stdext.common.analysis.sensordatalinks

loc: 75
 activeTime: 0

org.hackystat.stdext.project.cache

takuyay@hawaii.edu (0.167 h)

loc: 294
 activeTime: 0.333

org.hackystat.stdext.common.selector.month

loc: 81
 activeTime: 0

org.hackystat.stdext.workspace.map.command

loc: 95
 activeTime: 0

org.hackystat.stdext.common.selector.useremail

loc: 68
 activeTime: 0

org.hackystat.stdext.unittest.sdt

loc: 162
 activeTime: 0

org.hackystat.stdext.workspace.preference

loc: 276
 activeTime: 0

org.hackystat.stdext.unittest.dailyanalysis

loc: 178
 activeTime: 0

org.hackystat.stdext.common.selector.details

loc: 32
 activeTime: 0

org.hackystat.stdext.filemetric.java.dailyproject

loc: 365
 activeTime: 0

org.hackystat.stdext.common.analysis.zipsensordata.privacyselector

loc: 38
 activeTime: 0

org.hackystat.stdext.common.selector.analysis

loc: 70
 activeTime: 0

org.hackystat.stdext.bufftrans.sdt

loc: 115
 activeTime: 0org.hackystat.stdext.coverage.dailyproject

qzhang@hawaii.edu (0.083 h)

loc: 229
 activeTime: 0.083

org.hackystat.stdext.workspace

bleung@hawaii.edu (0.333 h)

loc: 1,063
 activeTime: 0.333

org.hackystat.stdext.bufftrans.dailyanalysis

loc: 203
 activeTime: 0

org.hackystat.stdext.coverage.dailyanalysis

loc: 326
 activeTime: 0

org.hackystat.stdext.activity.analysis.projectactivetime

loc: 167
 activeTime: 0

org.hackystat.stdext.common.alert.dailydiarycsv

loc: 152
 activeTime: 0

org.hackystat.stdext.project

hongbing@hawaii.edu (0.417 h)

loc: 719
 activeTime: 0.75

org.hackystat.stdext.common.selector.combo

takuyay@hawaii.edu (0.417 h)

loc: 30
 activeTime: 0.417

org.hackystat.stdext.build.dailyproject

qzhang@hawaii.edu (0.083 h)

loc: 297
 activeTime: 0.083

org.hackystat.stdext.admin.analysis.serverstats

loc: 240
 activeTime: 0

org.hackystat.stdext.admin.analysis.javaclassworkspace

loc: 31
 activeTime: 0

org.hackystat.stdext.coverage.sdt

loc: 159
 activeTime: 0

org.hackystat.stdext.admin.alert

loc: 97
 activeTime: 0

org.hackystat.stdext.admin.analysis.configdisplay

loc: 86
 activeTime: 0

org.hackystat.stdext.baddata.sdt

loc: 48
 activeTime: 0

org.hackystat.stdext.build.sdt.upgrade

loc: 66
 activeTime: 0

org.hackystat.stdext.admin.analysis.sendemail

loc: 42
 activeTime: 0

org.hackystat.stdext.build.sdt

qzhang@hawaii.edu (0.333 h)

loc: 547
 activeTime: 0.333

org.hackystat.stdext.filemetric.sdt

loc: 363
 activeTime: 0

org.hackystat.stdext.dailyanalysis.dayarray

loc: 431
 activeTime: 0

org.hackystat.stdext.activity.analysis.projectfiletime

loc: 132
 activeTime: 0

org.hackystat.stdext.workspace.map.javamap

hongbing@hawaii.edu (0.167 h)

loc: 772
 activeTime: 0.167

org.hackystat.stdext.common.selector.presentation

loc: 30
 activeTime: 0

org.hackystat.stdext.dailydiary

loc: 148
 activeTime: 0

org.hackystat.stdext.admin.analysis.autoregister

loc: 71
 activeTime: 0

org.hackystat.stdext.admin.analysis.usage.listlogdata

loc: 134
 activeTime: 0

org.hackystat.stdext.common.analysis.dataupload

loc: 209
 activeTime: 0

org.hackystat.stdext.common.analysis.zipsensordata

takuyay@hawaii.edu (0.083 h)

loc: 284
 activeTime: 0.083

org.hackystat.stdext.workspace.pattern

bleung@hawaii.edu (0.083 h)

loc: 700
 activeTime: 0.083

org.hackystat.stdext.common.selector.day

takuyay@hawaii.edu (0.083 h)

loc: 364
 activeTime: 0.083

org.hackystat.stdext.activity.dailyanalysis

loc: 162
 activeTime: 0

org.hackystat.stdext.project.dailyanalysis

loc: 139
 activeTime: 0

org.hackystat.stdext.dailyanalysis

loc: 232
 activeTime: 0

org.hackystat.stdext.admin.analysis.usage.invocationfrequency

loc: 126
 activeTime: 0

org.hackystat.stdext.common.selector.bool

loc: 39
 activeTime: 0

org.hackystat.stdext.common.alert.dailyprojectsummary

johnson@hawaii.edu (0.083 h)

loc: 137
 activeTime: 0.083

org.hackystat.stdext.common.selector.text

loc: 37
 activeTime: 0

org.hackystat.stdext.common.selector.interval

hongbing@hawaii.edu (0.667 h)

loc: 830
 activeTime: 1.083

org.hackystat.stdext.admin.analysis.usage.logsummary

loc: 138
 activeTime: 0

org.hackystat.stdext.common.analysis.listsensordata

loc: 80
 activeTime: 0

org.hackystat.stdext.admin.analysis.usage.invocationsummary.bycommand

loc: 216
 activeTime: 0

org.hackystat.stdext.activity.analysis.activetime

loc: 133
 activeTime: 0

org.hackystat.stdext.admin.analysis.usage.commandpopularity

loc: 203
 activeTime: 0

org.hackystat.stdext.activity.dailyproject

loc: 302
 activeTime: 0

org.hackystat.stdext.common.analysis.dailyprojectdetails

loc: 75
 activeTime: 0

org.hackystat.app.perf.dailyproject

qzhang@hawaii.edu (0.667 h)

loc: 312
 activeTime: 0.667

org.hackystat.app.perf.sdt

loc: 170
 activeTime: 0

org.hackystat.app.perf.dailyanalysis

loc: 89
 activeTime: 0

org.hackystat.app.perf.reducer

qzhang@hawaii.edu (0.667 h)

loc: 254
 activeTime: 0.667

org.hackystat.app.cocomo.analysis

loc: 59
 activeTime: 0

org.hackystat.app.cocomo.core

loc: 552
 activeTime: 0

org.hackystat.app.cocomo.analysis.selector

loc: 38
 activeTime: 0

Figure 5.7: The software topography map

This graph is very big - the interactive version can be zoomed so that you can read

the four lines of data in each little rectangle

86 CHAPTER 5. EVALUATION AND DEMONSTRATION

reference estimations for the effort to be expected when performing actual mea-

surement programs using the cGQM implementation.

As a comparison, the same program is also performed using a manual approach.

5.2.1 Design

The GQM plan used to perform this comparison is the already introduced “build-

Failures” example (see 5.1.1). The person performing it is myself. With that,

this evaluation falls into the category of one-shot single subject experiments.

Each execution of a measurement plan consists of two phases, the setup phase

where the required tools are prepared and the iteration phase where metric data

is collected and analyzed. The iteration phase is repeated every time results are

to be presented. In this example, it is assumed that the build failure analysis

results are interesting enough to be presented once a week. So, after the initial

setup, the execution of one iteration per week is assumed.

For this discussion, it is tried to estimate the behavior of costs if the measure-

ment program is executed over a longer period of time. Each iteration collects,

analyzes and presents the data of one week (7 days).

This experiment excludes some questions of the “buildFailures” example for

the the manually performed reference measurement (“How much time did the

developers spend building locally?” and “Which unit tests failed most in the last

n days?”). The reason for this is that the manual collection of data for these

questions is too complicated (in the local setting at the CSDL, for answering

these questions, approximately 750 log files have to be analyzed per week) and

the value of the answers to these questions is not high enough for justifying this

effort.

Also, the questions added during and after the user interviews (5.4) are omitted

as this evaluation was performed earlier.

In the following paragraphs, the setup for both tests (using hackyCGQM and

using a manual approach) of this experiment are described:

cGQM The test of the cGQM plan execution is performed using hackyCGQM.

This includes creating a new cGQM plugin. The plugin consists of the plugin

5.2. EFFORT DISCUSSION 87

describer and a set of executables which perform the data collection and analy-

sis.

Following steps had to be performed:

definition phase:

• Obtaining an empty cGQM plugin: The cGQM system is able to generate

an empty plugin project which can be used as a fill in skeleton. This greatly

reduces development times as the plugin project automatically provides

build scripts, dependent libraries, javadocs of useful helper classes and a

validation tool which tests the plugin describer for it’s consistency. The

generated emty plugin can directly be imported to the Eclipse IDE.

• Writing the plugin describer XML: The plugin describer is a structured

XML file. A XML schema file is provided to help editing the describer and

avoiding syntactical errors.

• Implementing the needed goal, question and metric executables: This

part of the setup phase consumes the most effort. For speeding up the

implementation of executable, hackyCGQM provides abstract base imple-

mentations and reference implementations which can be used as a starting

point for own executables.

In the case of the “buildFailures” plugin, eight executables, one helper

class and seven unit tests were created.

• Deploy the plugin to Hackystat: While deploying the plugin, it is checked

for static errors like wrongly bound metrics or questions, syntactical errors

or unimplemented executables.

measurement and analyzing phase:

• executing the plugin: The iteration phase for the cGQM example is very

simple. After deploying the plugin, it generates new results everyday com-

pletely automatic with no additional effort needed. If necessary, the results

can be checked everyday instead of once a week as proposed by the ex-

periment. But it turned out that most people working at CSDL did not

consider the daily change in data interesting enough to be checked every-

day.

88 CHAPTER 5. EVALUATION AND DEMONSTRATION

Manual Execution The manual execution of the “buildFailures” example also

consists of the two phases definition and measurement and analysis. The steps

needed to perform the test are different from those needed to perform the

automated example:

definition phase:

• Write down the GQM plan: The GQM plan is simply written down using

Microsoft Word. This contains a short (several lines) descriptions of each

goal, question and metric.

• Setup an Excel spreadsheet for data collection and representation: For

reducing the effort for data collection, analysis and representation, an

Excel sheet is created. The sheet accepts all interesting data in a tabular

format and calculates the the required numbers and results automatically

as far as possible. Also, charts are drawn automatically. This setup is not

really “manual” as most of the computation and visualization is done by

the Excel sheet. The only manual interaction needed is filling the data into

the columns of the sheet. This tries to simulate a more realistic setting as

most people performing GQM won’t use pure, manual “pen and paper”

techniques.

measurement and analyzing phase:

• Measure the required data: Luckily, it turns out that there is only one

data source needed to answer all questions. This data source are the

log files which are created by CruiseControl, the system performing the

nightly integration builds. For each build configuration, one log file per

night is generated. At the actual moment, there are 7 configurations, but

in average it turns out that only 3 of them are build per night (only those

with changes in them) which makes 21 log files per week in average.

• Enter the data: After accessing the build logs, they have to be analyzed

for the required data. After that, the data is simply entered into the

Excel spreadsheet. After entering all needed data, the sheet automatically

calculates the values needed to answer the question and plots the required

charts.

The setup of this evaluation could be considered as “manual GQM friendly”,

as it does not exploit the strengths of cGQM. The iteration time is assumed as

5.2. EFFORT DISCUSSION 89

cGQM manual

setup 14h 3h

time per week 0h 1 1/4h

time in 2 month 14h 13h

time in 4 month 14h 23h

time in 6 month 14h 33h

Table 5.1: Time needed for performing the ’buildFailure’ example manually and

with cGQM. Every week, one analysis just based on that weeks data is assumed.

one week, although cGQM could generate new results every day or every hour

without any overhead while manually performed GQM programs would run into

problems while trying that. Also, the strength of being able to crunch massive

amounts of data (like analyzing 750 log files per week for the excluded questions

in this example or processing several hundreds MB of raw data for generating

the software topography map used in the “overview” example) is not exploited.

5.2.2 Results

This subsection illustrates the results of the experiment. First measured effort

numbers are stated, followed by personal impressions of the execution of the

experiment.

Measured times The timed I needed to perform both tests were timed, the

results of that timing are shown in table 5.1.

As expected, it turned out that the initial setup costs for cGQM are high com-

pared with manual GQM. But this disadvantage disappears after 9 weeks of

usage as manual GQM needs additional effort for each data set which is to be

processed.

The measured times for implementing the cGQM example was 14 hours for

setting up 1 goal, 9 questions and 5 metrics.

A graph illustrating the extrapolated values of effort needed to execute the

analysis depending on the number of weeks is illustrated in Figure 5.8.

90 CHAPTER 5. EVALUATION AND DEMONSTRATION

Figure 5.8: Time needed to execute the ’buildFailure’ example.

Automated GQM pays of after 2 month in this setting.

Impressions After performing both the cGQM and the manual approach, I

tried to write down my own impressions of the execution process of the manually

performed measurement program and the cGQM program. This just serves

the purpose of providing a better insight into the execution of cGQM based

measurement programs.

cGQM

• The setup of the cGQM plugin was a very tedious and annoying work. It

took several days to finish and tune the plugin, a lot of refactoring and

bug fixing had to be done. The system was not as easy to use as I wished

it to be. I am probably the most competent person for implementing a

cGQM plugin (as I designed the hackyCGQM framework), but still, the

implementation of the plugin was difficult for me.

• After the setup, the plugin performed neatly and didn’t need any additional

maintenance.

Manual Execution

5.2. EFFORT DISCUSSION 91

• The initial setup turned out to be quite simple (setting up the Excel spread-

sheets and diagrams)

• The data collection and analysis phase turned out to be extremely annoy-

ing. Every morning, I was checking and analyzing all build protocols. This

took an average of 3 minutes per protocol with an average of 3 protocols

per day.

• The manual data collection turned out to be highly error prone (transcrip-

tion errors, read errors, categorization errors). The results differed from

the ones calculated by cGQM (which are considered as being correct).

This also matches the results already found in another study [19] which

criticizes the low reliability of manual measurement and analysis results .

I performed the manual GQM execution for one week (one iteration). In my

personal opinion, I felt more comfortable with coding the cGQM plugin despite

all it’s hassles than with analyzing the build logs everyday.

5.2.3 Threats to Validity

The validity of this evaluation is not very high. It is primary designed to just

provide a rough effort baseline and give a clue about how fully automated mea-

surement programs relate to manual ones when effort is the only aspect.

This evaluation is specially restricted as it was designed as a one subject, one

task evaluation. The main weaknesses are:

• only one subject participated on the evaluation (me as the developer of

hackyCGQM). Others might not be as familiar with the system as I am

and their times needed to create the cGQM plugin would probably be

longer.

• only one measurement program was implemented during the course of

this evaluation. The underlying GQM plan greatly influences the measured

times. The actually chosen program (“buildFailures” example) was chosen

under the consideration that it is a “fair” example for this evaluation. It

can be performed automatically so cGQM is usable, but it does not rely on

cGQM’s special strength of very short feedback cycles or processing huge

92 CHAPTER 5. EVALUATION AND DEMONSTRATION

amounts of data. But for providing valid results, multiple and different

measurement programs have to be evaluated.

5.2.4 Discussion

The implementation of the cGQM example took 14 hours. This number has to

be handled with extreme care as other programmers not being also the author

of the framework might need much longer and the example itself was not too

big (1 goal, 9 questions, 5 metrics). But the needed effort should be reducible

by re-using executables or plugin describer fragments.

This evaluation also confirms an other obvious claim: cGQM can be more effi-

cient and can save effort in settings with many measurement cycles and/or big

amounts of raw data which can be measured and analyzed automatically.

In the setting of this evaluation, cGQM pays of after 2 month of usage if effort

is the only observed property. But the evaluation’s design is somehow biased so

that the GQM program with the manual measurement gains advantage.

Further informations about the costs of traditionally performed GQM programs

have been collected by A. Fugetta in an industrial setting [42]. There, the same

GQM program was executed in sequence in two different projects. The whole

GQM plan was designed, developed and executed during the first project. There,

it turned out that data collection accounted for nearly 35% of all costs of the

GQM program which equaled 2% of the overall effort of all project members.

In the second project, the plan and technologies developed for the first were

just reused. The overall effort could be reduced by 40% by reusing the existing

plan and environments, but the effort needed for data collection remained the

same. So, in the repeated application of the GQM program, the effort for data

collection accounted for more than 65% of the overall effort.

In that case study, the CEFRIEL tool (see 2.1.6) was used to support the

measurement plan execution. Despite the use of the tool, the measurement

program remained costly which is due to the high costs of measurement. While

using cGQM, no costs for measurement accrue.

If a GQM program can be performed by cGQM, it can be executed without

5.3. STRUCTURAL EVALUATION 93

costs for data collection and analysis, saving a major fraction of the costs usually

connected to GQM programs.

5.3 Structural Evaluation

CGQM can only used in cases where measurement and analysis can be performed

automatically. This evaluation tries to find out how probable this case is. For

doing this, several published GQM-based case-studies are examined and assessed

regarding their potential for automation.

5.3.1 Design

This evaluation uses six published GQM studies for performing an assessment

if the stated goals, questions or metrics could be mapped into a cGQM plan or

not.

These reference case studies are:

Study 1: Solingen and Berghout, Case A [8]

Study 2: Solingen and Berghout, Case B [8]

Study 3: Solingen and Berghout, Case C [8]

Study 4: Solingen and Berghout, Case D [8]

Study 5: Fugetta et al. [42]

Study 6: Lindstroem, Version 2 [43]

Each of the goals, questions or metrics occurring in these case studies are

assessed according to

1. if they can be mapped to the actual cGQM implementation (hackyCGQM)

2. if they can be mapped to future, improved cGQM implementations

The degree to which they can be mapped is expressed with three different tokens:

1. + : The GQM artifact can be mapped with cGQM

94 CHAPTER 5. EVALUATION AND DEMONSTRATION

2. 0 : The GQM artifact can be mapped, but restrictions apply (certain

aspects can not be mapped, some information is missing)

3. - : The GQM artifact cannot be mapped (analysis too complex, metrics

depend on data which cannot be collected unobtrusively and automati-

cally)

The main aspect while considering if a given artifact could be mapped to a

future cGQM implementation or not is if it can be executed in an unobtrusive

and automatic manner. So for example, metrics which relay on a personal

opinion of an expert cannot be executed unobtrusively and automatically as you

have to ask the expert every time you need a new value for that metric.

Same theoretically applies to questions which cannot be formalized to a sufficient

degree. In the case of questions, a question is considered as being mappable

(+) if all metrics connected to it are mappable and if a visual representation

of the metric data can be generated that is sophisticated enough for deriving

the questions answer. For example, if the question was: “Is there a correlation

between X and Y?”, then it is sufficient if it is possible to plot a clear chart

showing a correlation or not. This does not exactly answer the question, but it

should be enough for this evaluation.

Same also applies to goals.

Example:

One metric found in one of the GQM case studies is “Reviewer’s knowledge of

the document before the review”. This metric can obviously not be measured

automatically - not now and not even with better, automated measurement

tools. So, this metric is rated a “-, -”.

An other metric found reads like “For each fault detected in the system, classi-

fication by severity, module, life-cycle phase and reporter”. In the actual version

of hackyCGQM, the Hackystat issue sensor provides information related to de-

fects like severity or module. But it does not provide life-cycle phase or reporter.

So this metric is just rated “0” in the “actual state” classification. But, there

is no reason why a future implementation could not provide the missing data,

so it receives a “+” for future versions of cGQM frameworks.

5.3. STRUCTURAL EVALUATION 95

5.3.2 Results

The summarized results of this evaluation can be found in table 5.2. A detailed

overview over these results can be found in the appendix chapter B in table B.1.

It turned out that with the actual cGQM implementation 40% of goals, ques-

tions and answers can be implemented. With an improved version of cGQM,

this percentage increases to 45%.

+ 0 - + 0 -

Study 1

Goals 0 1 1 0 1 1

Questions 7 5 10 11 3 8

Metrics 37 3 29 42 1 26

Overall 44 9 40 53 5 35

Study 2

Goals 1 0 0 1 0 0

Questions 15 4 4 15 4 4

Metrics 17 0 10 17 0 10

Overall 33 4 14 33 4 14

Study 3

Goals 0 0 1 0 0 1

Questions 0 0 6 0 0 6

Metrics 0 0 16 0 0 16

Overall 0 0 23 0 0 23

Study 4

Goals 0 0 1 0 0 1

Questions 0 0 2 0 0 2

Metrics 0 0 14 0 0 14

Overall 0 0 17 0 0 17

Study 5

Goals 2 3 0 2 3 0

Questions 13 0 22 13 0 22

Metrics 0 0 0 0 0 0

Overall 15 3 22 15 3 22

96 CHAPTER 5. EVALUATION AND DEMONSTRATION

+ 0 - + 0 -

Study 6

Goals 2 0 4 2 2 2

Questions 9 3 19 12 4 15

Metrics 28 0 40 34 2 32

Overall 39 3 63 48 8 49

All studies

Goals 5 4 7 5 6 5

Questions 44 12 63 51 11 57

Metrics 82 3 109 93 3 98

Overall 131 19 179 149 20 160

All studies %

Goals 31% 25% 44% 31% 38% 31%

Questions 37% 10% 53% 43% 9% 48%

Metrics 42% 2% 56% 48% 2% 51%

Overall 40% 6% 54% 45% 6% 49%

Table 5.2: Results of the structural mapping. Left columns

shows results with actual cGQM, right columns results with

possible future cGQM implementations.

5.3.3 Threats to Validity

This evaluation gives a first clue about how high the potential for using cGQM

might be. Although this evaluation covered many goals, questions and metrics

which were extracted from six different case studies, their representativeness is

questionable.

Four of the six studies were all conducted by the same persons (Solingen and

Berghout) which could bias the results.

But when examining the mapping result distribution between the case studies,

it indicates that these studies might cover a larger and thus more representative

range of GQM artifacts. This is confirmed by the high variance in the percentage

5.3. STRUCTURAL EVALUATION 97

Figure 5.9: Mapping ability summary of current cGQM for examined Goals,

Questions and Metrics

+ means a mapping is possible, 0 means a mapping is possible with restrictions, -

means a mapping is not possible

Figure 5.10: Mapping ability summary of future, improved versions of cGQM

for examined Goals, Questions and Metrics

+ means a mapping is possible, 0 means a mapping is possible with restrictions, -

means a mapping is not possible

98 CHAPTER 5. EVALUATION AND DEMONSTRATION

of goals, questions and metrics which are implementable with cGQM between

the single case studies, ranging from 0% up to 65%.

5.3.4 Discussion

One number in the preceding table is of major importance for the result of this

evaluation: Only 45% of all GQM artifacts (goals, questions and metrics) en-

countered in these six case studies could probably be implemented with cGQM.

This clearly shows that cGQM is not a replacement for traditional GQM ap-

proaches and implementations, but a specialized paradigm which performs well

only on a subsection of the problems where GQM is usable.

But still, this subsection of cases where cGQM is usable is approximately 45% as

big as the set of all cases. This shows that automated measurement programs

have great potential desipte their inability to replace manual programs.

This limitation originates from cGQM concentration on automatic measurable

and interpretable metrics and questions. Already van Solingen stated in [8]:

“The most valuable information usually comes from people, not

from tools.”

But this does not mean that cGQM cannot provide valuable information. cGQM

shows great strength with it’s alternative process models (3.5) and in cases with

huge amounts of data. Another aspect to keep in mind is that Hackystat which

provides the automated measurements, is ways more sophisticated and powerful

than anything mentioned by, for example, van Solingen. Although it is not

possible to proof, I strongly belief that it might be the most powerful automated

software metric collection framework in existence as it uses other, existing data

collection tools and aggregates them into one framework. In addition to that, it

is actively under development and new data sources are constantly added. But

even the most sophisticated automated data collection tool can probably not

provide the same information a human expert could.

The solution for this situation could be the integration of manual data when

needed. This contradicts the cGQM Paradigm as it was supposed to shorten

feedback cycles and cut costs by introducing complete automation. The ef-

5.4. USER INTERVIEWS 99

fect of integrating manual measurement and/or analysis into cGQM is a topic

requiring additional research.

5.4 User Interviews

This evaluation introduces hackyCGQM to potential user groups. It is im-

plemented as a guided 1-on-1 walk-through interview. The purpose of this

evaluation is to assess user reactions to several aspects of the hackyCGQM im-

plementation such as usability, understandability or usefulness. A special focus

is on the users reactions to presented data and their opinions how to improve

the presentation in specific and the overall implementation in general.

5.4.1 Design

In this evaluation, several individuals representing potential user groups are inter-

viewed. During these interviews, the interviewer (me) guides the users through

a selected usage scenario. The subject is supposed to “think aloud”, sharing

his feeling, suggestions and insights with the interviewer. Interesting, upcoming

aspects are discussed. All interviewed subjects are performing similar tasks and

certain, predefined questions are stated to each of them, but depending on the

subjects reactions and upcoming discussions, each interview can focus on dif-

ferent aspects.

Each interview consumes slightly more than an hour in average. The interviews

are recorded for later analysis.

Following subjects participated in this evaluation:

1. The Hackystat project manager (representing a user highly experienced

with software development, project management, measurement programs

and data interpretation. Also, he is experienced and familiar with using

Hackystat and interpreting the data collected with Hackystat. He has

extensive knowledge of the development process used in the Hackystat

project.)

2. Three Hackystat lead developers (representing experienced software de-

velopers who are used to work and interpret software metrics on a regular

100 CHAPTER 5. EVALUATION AND DEMONSTRATION

basis. They are familiar with using Hackystat and have also a extensive

understanding of Hackystat’s developement process.)

3. Two undergrad students who will join the Hackystat development team

(average skilled, less experienced developers with no significant knowledge

of neither using the Hackystat system nor developing it)

4. One computer science graduate student (representing an average skilled

developer with general software knowledge, but with no special experience

in software engineering or Hackystat)

The selected scenario of this evaluation is the already introduced “buildFailure”

example (see 5.1.1). The selection of this example increases the significance

of this evaluation as this example deals with a problem which is of personal

importance to all Hackystat project members (4 of 8 of all participants).

The walk-through scenario simulates a retrosepctive (see cGQM process models,

3.5.3) analysis of the Hackystat development process. The analysis focuses on

the nightly integration builds and the time span between March and Juli 2005.

The interviews are performed as following:

1. Depending on the subject’s experience and familiarity with the system

and the development process being examined, the interviews start with a

brief to thorough introduction describing the context of the walk-through

performed in the interview.

2. Using a telemetry stream analysis of the plugin’s goal and and the question

“What is the build success percentage of the last 14 days”, the subject

picks five dates between March 2005 and Juli 2005 which seem interesting

to him (see Figure 5.11).

3. Each of these five dates are examined by the subject using the cGQM

“buildFailures” analysis with a 2 week time frame (this means, that all

questions in the analysis only use data of the two prior weeks before the

picked date). This simulates the usage scenario of having frequent mea-

surement cycles which are focused on short term data. Screenshots of this

can be found in Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15.

4. The whole time span between March and Juli is examined using the same

5.4. USER INTERVIEWS 101

Figure 5.11: hackyCGQM screenshot: telemetry

Screenshot of a telemetry chart [36] used for continous analysis

cGQM “buildFaiures” analysis as in the last step, but with a five month

time frame (all questions use five month of data and summarize it).

5. Questions and Discussions

The interviews are freely guided by a questionnaire which be found in appendix

chapter C. This questionnaire is just a guideline, the questions contained in it

are freely integrated into the interview as they fit.

The questionnaire’s design tries to eliminate the bias resulting from personal

acquaintance between the interviewer an the subjects. This is done by omitting

direct qualitative or quantitative questions (like “Do you think this technology

is useful? Rate from 1 to 5”). Instead, the questionnaire uses mainly “enu-

merative” questions focusing on negative or positive aspects of hackyCGQM,

the usage scenario or the cGQM method itself (like “Which aspects of the

representation of the results did you NOT like?”).

By doing this, the questionnaire hopefully produces useful feedback for exploring

the weaknesses and improvement areas of cGQM and hackyCGQM, but also

highlights strengths and benefits from a users point of view.

102 CHAPTER 5. EVALUATION AND DEMONSTRATION

Figure 5.12: hackyCGQM screenshot: analyis page

Hackystat extra analysis page, start point of cGQM analyses

Figure 5.13: hackyCGQM screenshot: goal

Screenshot of the ’goal’ section of the cGQM example

5.4. USER INTERVIEWS 103

Figure 5.14: hackyCGQM screenshot: build failure types

Answer of question 3: “Which type of build failures did occur ?”

Figure 5.15: hackyCGQM screenshot: build failure modules

Answer of question 4: “Which modules did cause which build failures?”

104 CHAPTER 5. EVALUATION AND DEMONSTRATION

If an interview reveals a flaw in the system which is easy to be fixed, these fixes

are applied for before the next interview.

5.4.2 Results

This subsection presents the results of the user interviews. They are divided by

the four feedback areas which were part of the interview.

The first area focuses on the presented sample cGQM plan and it’s presentation.

The second area is about general usability of the hackyCGQM framework. For

the third evaluated area, questions about future implementations or plugins are

asked. Finally, area four contains all aspects which were not part of the previous

three.

The “buildFailure” example The “buildFailure” example plugin is already

explained in chapter 5.1.1. As the usage of that plugin was the central part

of the interview walk-through, most of the collected feedback is related to the

plugins design, it’s results and it’s presentation.

All subjects which were part of the Hackystat development team were highly

interested in the results of the cGQM analysis. Before this evaluation, the only

known fact was that there are too many integration build failures. Beside that, a

wide variety of assumptions, myths and tales about the problems nature existed,

but none of them were backed by real data. As the failing builds affect and

disrupts each developers workflow, the Hackystat team members were motivated

and able to interpret, discuss and improve the presented data.

In contrast to that, the subjects not being part of the Hackystat team were

slightly interested, but stayed more passive as analyzing the problem did not

affect them directly. As a conclusion of that, the following results in this sub-

section only refer to members of the Hackystat team.

All for project member subjects rated the analysis as very useful. All of them

were surprised by the presented data as it showed new, yet unknown aspects

and disproved some common assumptions.

Some quotes recorded from subjects, after being confronted with the build

failure reason analysis, were:

5.4. USER INTERVIEWS 105

“Wow, if I knew this before, I would have been more careful.”

or

“Oh, I definitely should change my development style and should

start doing xxx and yyy ...”

Every subject was able to understand the presented data, interpret it and draw

conclusions. During the interviews, the subjects developed four new hypotheses

and five new questions, three of them were implemented during the interview.

The new, proposed questions were added to the cGQM plan between the in-

terviews and the next subjects and the one who proposed the question (while

reviewing the implementation) confirmed the added value.

All subjects mentioned the goal-oriented approach as a positive aspect. They

liked the aggregation of data from different sources and their representation as

questions and answers. Also, the provided question descriptions and rationales

were considered as being valuable.

The major problem with the presented questions mentioned by nearly all sub-

jects was that although the question answers provide a goal-oriented high-level

abstraction of the measured data, a need for manual interpretation still remains.

Most subjects stated that the questions are very helpful, but they are not and

probably can never be the “golden bullet” or “magic sphere”.

After being confronted with the question whether the long-term analysis cover-

ing five month or the five short-term analysis just covering two weeks each were

more useful to them, all subjects were undecided. After asking them which one

of the two they would omit if they had to omit one, 3 in 4 subjects answered

that they don’t want to omit one of the analysis as they like both and they

complement each other. The 4th subject finally decided to omit the long term

analysis.

All subjects felt that having a short-term analysis which can be executed fre-

quently on arbitrary dates is very useful, although it might not provide enough

data without a summarizing long-term analysis.

Two of the subjects directly mentioned that they loved the “explorative” style

of analysis where they could freely decide which two week period of the last 5

month they want to see based on the telemetry overview chart (this refers to

106 CHAPTER 5. EVALUATION AND DEMONSTRATION

the retrospective process model, see 3.5.3). The other two subjects mentioned

this after asking them if they liked the short- or the long-term analysis better.

The goal fulfillment degree (see 3.3) calculated by the plugin’s goal also became

a focus point of the subjects’ interest. In the original version of the plugin, the

fulfillment degree was presented as a percentage number together with a chart

describing how this percentage was calculated. This confused the first subjects

as this “arcane” number did not have an obvious meaning. In a later version,

the percentage value and it’s chart were replaced by a five-colored “red-light”,

as illustrated in Figure 5.16. Although the red-light provides less information,

the later subjects and the earlier ones reviewing it again liked it much better. It

was often stated that “the information value [of the red-light] is not very high,

but it provides a quick overview without reading all the question answers”.

Figure 5.16: The goal fulfillment red light

Although all subjects stated that the presented analysis did not completely de-

scribe the problems nature and solve it (mainly because the problem was “more

complex as assumed”), all subjects admitted that their awareness of the reasons

and circumstances of failing builds was increased and that some of them want

to change their personal development process based on the analysis data.

Usability and Functionality This subsection summarizes the aspects of the

interview regarding usability and functionality.

As the evaluation was performed as guided interviews, many answers and opin-

ions were recorded. Here, the more interesting ones are just listed and briefly

explained. The list is not complete as all feedback of seven hours of interviewing

would go beyond the scope of this document. The feedback is separated into

two parts, starting with positive feedback followed by negative feedback.

Positive feedback:

• goal oriented :(5 of 7 subjects) An issue mentioned by nearly all subjects

was that they liked the goal-oriented presentation giving a broad overview

5.4. USER INTERVIEWS 107

over a specific problem domain at a single place. Especially the Hackystat

team members who are used to collect data they are interested in using

various analysis in different places appreciated goal-orientation.

• high level data:(4 of 7 subjects) Similar to the last issue, many subjects

who were used to work with low-level or even raw data appreciated the

presentation of summarizing, high-level data.

• interactivity : 4 of 7 subjects enjoyed the interactivity of the analysis as

they were able to explore the dataset of the last few month for them-

selves, examining time spans which looked interesting to them based on

the telemetry streams. This refers indirectly to the retrospective process

model used during the interview.

• quick and easy overview : (4 of 7) Many subjects lauded hackyCGQMs

ability to provide a quick overview, especially in contrast to most other

analysis in Hackystat. This is mainly due to it’s graphical representation

and the aggregation of a many different data types.

• explanations why a displayed data set is interesting: (2 of 7 subjects) All

of hackyCGQM goals, questions and metrics have a rationale attached,

describing their purpose and intention.

• ability to evolve plans: (2 of 7) During the interviews, new hypotheses

and new questions were developed by the subjects. Some of these were

implemented directly between the interviews. This ability to evolve the

measurement plans in an agile way specially impressed two subjects.

Negative feedback:

• easy to get “lost” in the analysis: (4 of 7) hackyCGQM just displays all

questions and their answers on one single web page. This seemed to be

confusing for many subjects.

• not interactive enough: (4 of 7) Although interactivity was already men-

tioned as positive feature of hackyCGQM, most subjects directly criticized

that they would love to have more interactivity like interactive graphics

with drill downs.

• not flexible enough: (3 of 7) Several subjects would have liked to “ex-

periment” more with the system. This includes changing parameters and

108 CHAPTER 5. EVALUATION AND DEMONSTRATION

options of the measurement program directly in the web interface. Also,

ad hoc adding of new questions or metrics was mentioned.

• graphical representation sometimes confusing: (3 of 7) The graphical

representation in the “buildFailures” example was often not optimal, but

confusing. This was mainly because of technical limitations which pre-

vented optimized visualization.

• ugly user interface: (3 of 7) The design (visual appearance) of the user

interface was considered as ugly by several subjects.

• too much manual interpretation and interaction necessary : (2 of 7) Al-

though hackyCGQM tries to automate as many aspects of performing a

measurement program as possible, there still remains the manual task of

interpreting the question answers. Some subjects wished to have a “one

glance and be informed”-style presentation of data. This could maybe be

realized by more sophisticated goal fulfillment degrees.

Future Usage and Improvement This paragraph summarizes answers regard-

ing long term improvements and future usage scenarios.

The most stated wish for future extensions and improvements of hackyCGQM

was the one for more interactivity, mentioned by four out of seven subjects.

Many of the suggestions for increased interactivity were targeted at the user

interface where the subjects wished to drill down charts by clicking on them,

reorganizing the order of questions or change the scaling of charts.

But the major issues concerning interactivity where targeted for “on-the-fly”

adjustment of the cGQM plans by providing sophisticated configuration options

or tools supporting the modification of plugins.

Most of the issues raised in the “future usage and improvement” category are

collected and in chapter 6.2 “Future work”.

5.4.3 Threats to Validity

This evaluation has two major sources for threatening it’s validity:

5.4. USER INTERVIEWS 109

• The subjects participating are all personal acquaintances or colleges of

the interviewer and developer of hackyCGQM. A situation like that usually

leads to biased results as the subjects subconsciously tend to adjust their

answers according to their sympathy for the interviewer.

In this evaluation, this issues was addressed by not asking questions which

require a rating, but concentrating on questions where the subject had to

name their issues (see earlier in section 5.4.1). This results in wider, less

biased results. But this has also the major disadvantage that the results

are not suitable for statistical evaluation.

• This evaluation did not distinguish between the quality of the usage sce-

nario and the quality of the used technology. Therefore, the presented

answers describe a kind of mixture between both.

While analyzing the results, I tried to separate the feedback manually into

feedback related with the scenario and feedback related to the technology

itself which is, of course, a source of potential adulteration.

Also, a very important aspect of this evaluation is that it focuses on users using

an already developed measurement plan. It does not include any aspects of

developing new cGQM plugins, implementing executables, deploying plugins to

servers or administrating them.

5.4.4 Discussion

The final results of this evaluation is that cGQM and hackyCGQM do have po-

tential to be used sucessfully in real life applications. Most subjects liked to use

the provided cGQM plugins, especially the goal-oriented presentation providing a

good overview and ability to browse freely through the whole data set (retrospec-

tive process model). But still, there remains great potential for improvement.

This is especially true for the user interface and the plugin development process.

The presented evaluation results lead to some open issues, which will be dis-

cussed in section 6.2 as part of future work chapter.

110 CHAPTER 5. EVALUATION AND DEMONSTRATION

tool Phase 1 Phase 2 Phase 3 Phase 4

Planning Definition Data collection Interpretation

GQM Planner 2 good

CEFRIEL GQM Tool good manual

VTT Metrifame good manual limited

hackyCGQM limited automated complex

only

Table 5.3: hackyCGQM compared to other tools

5.5 Evaluation Summary

This section briefly summarized the most important results of this evaluation

chapter.

• The usage of cGQM is limited compared with traditionally performed

GQM programs due to it’s dependency on metrics which can be mea-

sured automatically. Around 45% of encountered, published GQM case

studies could be performed using an automated cGQM approach.

• During the user evaluation, most subjects stated that they like the auto-

mated, goal-oriented approach of hackyCGQM. But there is still potential

for future improvements (see “Future Works”, 6.2).

• hackyCGQM can indeed provide near-to-no-cost measurement and analy-

sis cycles, making various non-consecutive usage models more expedient.

• Although cGQMs usage is limited compared with traditional GQM appli-

cations, it can provide new ways of visualizing and analyzing data which,

due to the huge amount of measurement needed, are nearly impossible

when manual measurement and analysis is used. The “overview” plugin

(see 5.1.3) serves as an example for that.

hackyCGQM can be considered as another, still young but usable tool for sup-

porting GQM based measurement programs. Compared with the other tools

introduced in chapter 2.1.6, it can be classified as in table 5.3. The table, as

the one introduced in 2.1.6, classifies the tools by their support of the GQM

phases (overview over phases see 2.1.4).

Chapter 6

Conclusion

6.1 Summary

During the course of this thesis, a concept for fully automated GQM-based mea-

surement programs called cGQM was developed. A reference implementation,

called hackyCGQM which was integrated into Hackystat was developed. Finally,

the implementation was sucessfully evaluated and future directions determined.

The created cGQM framework, hackyCGQM, offers the ability of completely

automated execution of measurement programs if the used metrics can be mea-

sured in an automated manner. This allows a continuous and long term usage

modes of the GQM Paradigm and increases the efficiency and effectiveness of

certain measurement and improvement programs.

The major drawback of this approach is that only metrics which can be measured

automatically and have a sensor implementation available can be used in cGQM

based measurement programs.

But if there is a measurement program which can be designed in such a way

that automated metrics are sufficient, the benefit of using cGQM are nearly

cost-free program executions after initial setup.

111

112 CHAPTER 6. CONCLUSION

6.2 Future Work

This section summarizes open issues for improving or further evaluating cGQM.

Most of these issues were developed during the user interviews or I myself felt

that they are important.

• Industry evaluation: Until today, cGQM was only deployed and evaluated

in academic settings at the CSDL. For learning about the real effects,

benefits and drawbacks, the technology has to be implemented in a “real-

life” industrial setting with real users and issues.

The information extractable from such an evaluation would probably be

very valuable for further development.

• Integration of manually measured metrics: As discovered in chapter 5.3,

hackyCGQM can only adapt 40% of the GQM case studies encountered in

literature. This was mainly due to the dependancy on manually measured

data.

By adding the ability for using manual measurement, this percentage could

be increased drastically. The advantages and drawbacks of this modifica-

tion should be subject of further research.

• Implementation of a fully functional email notification system: The ac-

tual version of hackyCGQM still relies on “pull”-style analysis. Using an

“push” style analysis via email alerts and thus performing alert based mea-

surement programs (see 3.5.4) is prepared and theoretically possible, but

no actual measurement program was ever implemented using this tech-

nology. Evaluating the benefits of this “push” style programs could also

create interesting insights.

• Codebase cleanup and tuning: Although the code base of hackyCGQM

is of acceptable quality, it should be cleaned and tuned to increase it’s

readability, expandability and performance. Also, the unit test coverage

should be raised from the actual 80% to at least 90%.

• Improved user interface: The user interface was one of the main issues of

negative feedback received during the user interviews in 5.4. Improving and

tuning it might be one of the easiest, but yet most effective improvement

6.2. FUTURE WORK 113

tasks.

• Tutorials and improved documentation : hackyCGQM has a basic docu-

mentation, but for actually attracting new developers using and extending

it, comprehensive, easy-to-understand and more complete tutorials and

documentations are needed.

• User configurable plugins: Another issue raised by subjects during the user

interview were more “just-in-time” configuration options for plugins, al-

lowing users to change certain plugin properties during runtime without

recompiling and redeploying the plugins. This would allow a more “explo-

rative” usage style than the actual implementation.

• Executable reference implementation repository: One of the major issues

preventing or supporting cGQM’s success is the ease of creating new plu-

gins. At the actual moment, only few reference executables exists which

can be reused in new plugins. But by building a large enough repository

containing generic, configurable reference implementation for executables,

creating new plugins can become much easier and cGQM’s success more

probable.

• Plan fragment repository: A cGQM plan fragment repository containing

parts of plugin-describers would complement the executable repository.

• “Plugin-builder” framework: The ultimate goal for improving and support-

ing the plugin creation process would be the “plugin-builder” framework,

allowing even unexperienced users to define their own cGQM analysis.

The “plugin-builder” could consist of a sophisticated user interface, backed

by various repositories containing generic implementations of executables

and cGQM artifacts including their usage contexts and bound experiences.

This concept would aggregate and improve the repository approach of the

last two issues with the “Experience Factory” paradigm, both integrated

into a sophisticated user interface.

• Sophisticated analysis: The actual cGQM sample measurement programs

still rely on a considerable degree of human interpretation. They mainly

display charts or graphics which are helpful answering the question, but still

need to be interpreted. Integrating sophisticated, computer based analysis

techniques like neuronal networks, fuzzy logic, reasoning systems, expert

114 CHAPTER 6. CONCLUSION

systems or probabilistic models can allow interesting usage scenarios.

6.3 Acknowledgments

I thank Prof. Dr. Philip Johnson and the staff of the Collaborative Software

Engineering Laboratory at the University of Hawai’i Manoa for inspiring my

work and giving me the ability of being directly on-site with the Hackystat

development team and thus allowing the creation of this thesis.

Appendix A

Plugin Describer Schema

Documentation

This appendix chapter briefly introduces the XML schema defining and describ-

ing the valid construction of plugin describers (see 4.2.3).

The XSD schema file provided by Hackystat can be used in a compatible XML

editor and thus supporting the development of plugins by verifying written files

against the schema specification.

This schema documentation will just introduce interesting tags, groups or types

and explain them briefly.

cGQM : (root type) The cGQM tag is the plugin describer’s root tag. It

Figure A.1: cGQM

115

116 APPENDIX A. PLUGIN DESCRIBER SCHEMA DOCUMENTATION

specifies the plugin’s unique id which also serves as it’s name in hackyCGQM.

In addition to that, the description sub-tag contains a String description (can

contain HTML when embedded in a CDATA-block).

It also contains the goal, questions and metrics tags which contain, as one

might have guessed, the goals, questions and metrics specified by this describer.

cGqmArtifactType : (complex type)

Figure A.2: cGqmArtifactType

The cGqmArtifactType type is an abstract base type used as a supertype for

the artifact types goal, question and metric.

All the sub-tags and attributes appearing in this type will also appear in the

definitions of goals, questions and metrics.

Each artifact is defined by an unique id. Also, a description and a rationale

has to be provided. Both of these elements can contain HTML when embedded

117

in CDATA environments. Description describes what the artifact does while

rationale arguments why it is needed.

Each cGQM artifact must have an executable (see 4.2.2) assigned, a Java class

generating the result. The executable is set with the tag implementingClass-

Name, accepting fully qualified Java class names as values.

The systemProperties element is optional and contains at the actual moment

only the option to disable the whole artifact by setting enabled to false.

As described in chapter 4.2, each artifact can have multiple roles. These are

defined in the roles tag.

Also, the executables can by parametrized by supplying them with parameters.

A parameter has a name defined in the according attribute and a string value

defined in the tag’s body. All parameters are collected in the parameters tag.

goalType : (complex type)

Figure A.3: goalType

This complex type is used for the goal tags found as sub-tags in cGQM/goals

118 APPENDIX A. PLUGIN DESCRIBER SCHEMA DOCUMENTATION

and describes a goal. It is derived from cGqmArtifactType and inherits all it’s

tags and attributes.

New elements in goalType are dimensions, abstractionSheet and slotBin-

dings.

• dimensions: This element defines the goal dimensions as described in

chapter 2.1.1. Note that this is only used to display the goal dimensions

in the web interface. It does not have any further functionality.

Figure A.4: goalDimensions

• abstractionSheet: The abstraction sheet, a template for supporting

the definition of a GQM goal (see 2.1.5 on page 18), is defined with this

element. Each abstraction sheet component can have multiple entries,

each defined by a name and a description. Note that this is only used

to display the abstraction sheet in the web interface. It does not have any

further functionality.

• slotBindings: The concept of slot bindings is described in chapter 4.2.3.

In the plugin describer, it is realized by defining slotBinding elements

for each artifact using slots. Each slotBinding element binds a object

with a given objectId to a given slotName. The optional executable

element indicates if this binding just binds an informative artifact (value

false) or one that is used in the executable for further calculations (value

true) (for more information, see 3.4).

119

Figure A.5: abstractionSheet

questionType : (complex type)

This complex type represents a question and is also derived from cGqmArti-

factType. It extends the base artifact type and is extended with the additional

tags questionText and slotBindings. slotBindings has the same function

than in goal type. questionText just contains a string (optionally HTML in

CDATA environments) with the question’s text.

metricType : (complex type)

Similar to questionType and goalType, metricType extends cGqmArtifact-

Type. No additional extensions are added.

120 APPENDIX A. PLUGIN DESCRIBER SCHEMA DOCUMENTATION

Figure A.6: slotBindings

Figure A.7: questionType

121

Figure A.8: metricType

Appendix B

Structural Evaluation - Full

result tables

This section contains the full length result tables of the structural evaluation

performed in chapter 5.3.

id pn tp note

Solignen, Berghout; CASE A [8]

G1 0 0 data partially manual

G2 - - manual data types

Q1 0 0 data types partially manual

Q2 - + data type not supported

Q3 0 0 data types partially manual

Q4 + +

Q5 + +

Q6 + +

Q7 + +

Q8 0 + data type partially not supported

Q9 + +

Q10 - - data types manually

Q11 - - data types manually

Q12 0 + diagram partially not supported

Q13 + +

Q14 + +

122

123

id pn tp note

Q15 - -

Q16 0 + data types partially not fully supported

Q17 - 0 data type partially not supported, manual data type

Q18 - - manual data type

Q19 - - manual data type

Q20 - - manual data types

Q21 - - manual data types

Q22 - - manual data types

M1.1 - - manual data

M1.2 + +

M1.3 + +

M2.1 - + data type not supported

M3.1 + +

M3.2 + +

M3.3 + +

M3.4 - - manual data type

M3.5 0 + data type partially not supported

M3.6 - - data type manual

M3.7 + +

M3.8 + +

M4.1 + +

M5.1 + +

M5.2 + +

M6.1 + +

M7.1 + +

M8.1 0 + data type partially not supported

M9.1 + +

M9.2 + +

M9.3 + +

M9.4 + +

M10.1 - 0 data type partially manual

M10.2 - - data type manual

M10.3 - - data type manual

124APPENDIX B. STRUCTURAL EVALUATION - FULL RESULT TABLES

id pn tp note

M11.1 - - data type manual

M11.2 - - data type manual

M12.1 + +

M12.2 + +

M12.3 + +

M12.4 + +

M12.5 + +

M12.6 + +

M13.1 + +

N13.2 + +

M13.3 + +

M13.4 + +

M13.5 + +

M13.6 + +

M14.1 + +

M14.2 + +

M14.3 + +

M14.4 + +

M14.5 + +

M14.6 + +

M15.1 - - manual data type

M15.2 - - manual data type

M16.1 + +

M16.2 + +

M16.3 0 + data type not fully supported

M17.1 - - manual data type

M17.2 - - manual data type

M17.3 - - manual data type

M18.1 - - manual data type

M18.2 - - manual data type

M19.1 - - manual data type

M19.2. - - manual data type

M20.1 - - manual data type

125

id pn tp note

M20.2 - - manual data type

M21.1 - - manual data type

M21.2 - - manual data type

M21.3 - - manual data type

M21.4 - - manual data type

M22.1 - - manual data type

M22.2 - - manual data type

M22.3 - - manual data type

M22.4 + +

M22.5 - - manual data type

M22.6 - - manual data type

Solignen, Berghout; CASE B [8]

G1 + +

Q1.1 + +

Q1.2 + +

Q1.3 + +

Q1.4 + +

Q1.5 + +

Q1.6 + +

Q1.7 + +

Q1.8 + +

Q1.9 + +

Q1.10 + +

Q2.1 + +

Q2.2 + +

Q2.3 + +

Q2.4 + +

Q2.5 + +

Q3.1 0 0 Hard to formalize analysis

Q3.2 0 0 Hard to formalize analysis

Q3.3 0 0 Hard to formalize analysis

Q3.4 0 0 Hard to formalize analysis

Q4.1 - - Manual data required

126APPENDIX B. STRUCTURAL EVALUATION - FULL RESULT TABLES

id pn tp note

Q4.2 - - Manual data required

Q4.3 - - Manual data required

Q4.4 - - Manual data required

M.01 + +

M.02 + +

M.03 + +

M.04 + +

M.05 + +

M.06 + +

M.07 + +

M.08 + +

M.09 + +

M.10 + +

M.11 + +

M.12 + +

M.13 + +

M.14 - - manual data type

M.15 - - manual data type

M.16 + +

M.17 + +

M.18 - - manual data type

M.19 - - manual data type

M.20 - - manual data type

M.21 - - manual data type

M.22 - - manual data type

M.23 - - manual data type

M.24 - - manual data type

M.25 + +

M.26 + +

Solignen, Berghout; CASE C [8]

G1 - - depends on manual data

Q1 - - depends on manual data

Q2 - - depends on manual data

127

id pn tp note

Q3 - - depends on manual data

Q4 - - depends on manual data

Q5 - - depends on manual data

Q6 - - depends on manual data

M1 - - manual data

M2 - - manual data

M3 - - manual data

M4 - - manual data

M5 - - manual data

M6 - - manual data

M7 - - manual data

M8 - - manual data

M9 - - manual data

M10 - - manual data

M11 - - manual data

M12 - - manual data

M13 - - manual data

M14 - - manual data

M15 - - manual data

M16 - - manual data

Solignen, Berghout; CASE D [8]

G1 - - depends on manual data

Q1 - - depends on manual data

Q2 - - depends on manual data

M1 - - manual data

M2 - - manual data

M3 - - manual data

M4 - - manual data

M5 - - manual data

M6 - - manual data

M7 - - manual data

M8 - - manual data

M9 - - manual data

128APPENDIX B. STRUCTURAL EVALUATION - FULL RESULT TABLES

id pn tp note

M10 - - manual data

M11 - - manual data

M12 - - manual data

M13 - - manual data

M14 - - manual data

Fugetta et al. [42]

G1 0 0 partly depended on manual data

G2 + +

G3 0 0 partly depended on manual data

G4 + +

G5 0 0 partly depended on manual data

Q1 - - depends on manual data

Q2 - - depends on manual data

Q3 + +

Q4 - - depends on manual data

Q5 + +

Q6 - - depends on manual data

Q7 - - depends on manual data

Q8 - - depends on manual data

Q9 - - depends on manual data

Q10 + +

Q11 - - depends on manual data

Q12 - - depends on manual data

Q13 - - depends on manual data

Q14 - - depends on manual data

Q15 - - depends on manual data

Q16 + +

Q17 + +

Q18 + +

Q19 - - depends on manual data

Q20 - - depends on manual data

Q21 + +

Q22 + +

129

id pn tp note

Q23 + +

Q24 - - depends on manual data

Q25 - - depends on manual data

Q26 + +

Q27 - - depends on manual data

Q28 + +

Q29 + +

Q30 + +

Q31 - - depends on manual data

Q32 - - depends on manual data

Q33 - - depends on manual data

Q34 - - depends on manual data

Q35 - - depends on manual data

Lindstrm, Version 2 [43]

G1 - 0 depends party on manual or unimplemented data

G2 - - depends on manual data

G3 - 0 depends party on manual or unimplemented data

G4 + +

G5 + +

G6 - - depends on manual data

Q1 0 0 partly depends on manual data

Q2 - - depends on manual data

Q3 0 0 result hard to formalize

Q4 + +

Q5 - - depends on manual data

Q6 + +

Q7 - + data type not implemented

Q8 - - depends on manual data

Q9 - + data type not implemented

Q10 - - depends on manual data

Q11 0 0 data pertly manual

Q12 - - depends on manual data

Q13 - + data type not implemented

130APPENDIX B. STRUCTURAL EVALUATION - FULL RESULT TABLES

id pn tp note

Q14 - - depends on manual data

Q15 - - depends on manual data

Q16 + +

Q17 + +

Q18 - 0 data type not implemented

Q19 - - depends on manual data

Q20 + +

Q21 + +

Q22 + +

Q23 + +

Q24 + +

Q25 - - depends on manual data

Q26 - - depends on manual data

Q27 - - depends on manual data

Q28 - - depends on manual data

Q29 - - depends on manual data

Q30 - - depends on manual data

Q31 - - depends on manual data

M1 + +

M2 - - depends on manual data

M3 + +

M4 - - depends on manual data

M5 - - depends on manual data

M6 + +

M7 - -

M8 + +

M9 + +

M10 + +

M11 + +

M12 + +

M13 + +

M14 - + data type not implemented

M15 - - depends on manual data

131

id pn tp note

M16 - - depends on manual data

M17 - + data type not implemented

M18 - - depends on manual data

M19 - - depends on manual data

M20 + +

M21 + +

M22 + +

M23 + +

M24 - - depends on manual data

M25 - - depends on manual data

M26 - - depends on manual data

M27 - + data type not implemented

M28 - + data type not implemented

M29 - + data type not implemented

M30 - + data type not implemented

M31 - - depends on manual data

M32 - - depends on manual data

M33 - - depends on manual data

M34 + +

M35 + +

M36 + +

M37 + +

M38 + +

M39 - - depends on manual data

M40 + +

M41 + +

M42 + +

M43 - 0 not implemented

M44 - - depends on manual data

M45 + +

M46 + +

M47 + +

M48 + +

132APPENDIX B. STRUCTURAL EVALUATION - FULL RESULT TABLES

id pn tp note

M49 - 0 not implemented

M50 + +

M51 + +

M52 - - depends on manual data

M53 - - depends on manual data

M54 - - depends on manual data

M55 - - depends on manual data

M56 - - depends on manual data

M57 + +

M58 - - depends on manual data

M59 - - depends on manual data

M60 - - depends on manual data

M61 - - depends on manual data

M62 - - depends on manual data

M63 - - depends on manual data

M64 - - depends on manual data

M65 - - depends on manual data

M66 - - depends on manual data

M67 - - depends on manual data

M68 - - depends on manual data

Table B.1: Results of the structural mapping

Appendix C

User Interview Question

Guidelines

This appendix chapter contains the questionnaire used in the user interview

evaluation in chapter 5.4. The questionnaire has to be understood as rough

guideline as the interviews were designed to be flexible enough to concentrate

on interesting aspects. This means, that not all questions were used in each

interview and that some interviews concentrated on questions now even part of

the questionnaire.

Questionnaire

1. The Build Failure Example

1.1 Did this analysis give you additional insight into the build process,

our/your development behavior or the reasons behind failing builds?

(yes/no)

1.2 Was the long term analysis with the full 5 month period or the 5

shorter analysis more useful to you? Which one would you abandon

if you could just use one?

1.3 What were the most valuable insights you got from this analysis?

1.4 Did this data confirm or disprove existing suspicions you had about

the failing builds? If yes, which ones?

133

134 APPENDIX C. USER INTERVIEW QUESTION GUIDELINES

1.5 How much of these information did you know (not just suspected)

before? What was it? From which source did you get your old infor-

mation?

1.6 After seeing all this, do you see the need to change your development

behaviour? If yes, what would you change?

1.7 If you would change your behavior, do think hackyCGQM is able to

show that this change has an effect? If no, why?

1.8 Can you think about additional questions interesting in the context of

the Build Failure Example? If yes, which ones?

1.9 Can state additional hypothesis for the build failure problem?

1.10 Which important aspects of the build failure scenario are not covered

by this analysis?

2. Usability

2.1 What are the major benefits of this presentation of data compared to

other Hackystat technologies?

2.2 What are the major disadvantages of this presentation of data com-

pared to other Hackystat technologies?

2.3 What are the major usability problems you had with hackyCGQM?

2.4 What aspects of hackyCGQM did you like?

2.5 What aspects of hackyCGQM did you not like (beside those you al-

ready mentioned in question 3)

2.6 What would be your major argument for using hackyCGQM?

2.7 What would be your major argument against using hackyCGQM?

3. Future Usage

3.1 Can you come up with interesting aspects of software development

which could be examined with hackyCGQM? (if so, please list them)

3.2 Which cool new feature of hackyCGQM would you love to get?

4. Miscellaneous

135

4.1 Any additional comments?

4.2 Anything you want to tell me?

4.3 Anything else you can think of?

Appendix D

Indices

136

List of Figures

1.1 Measurement in quality improvement 9

2.1 Relation between the relevant concepts and technologies 13

2.2 The GQM-Layers . 14

2.3 A GQM goal . 15

2.4 The four phases of the GQM method 18

2.5 Relation between GQM techniques 19

2.6 ISO 9126 software quality characteristics[27] 23

2.7 The QIP circles . 25

2.8 SPCCs Software Development Model (from [29]) 26

2.9 Structure of a visualization catena (from [31]) 27

2.10 SPCC views and their instances. (from [31]) 28

2.11 SPCC functions and their instances (from [31]) 29

2.12 General Hacktystat architecture 31

2.13 The Hackystat microkernel . 32

2.14 A telemetry chart . 35

2.15 Screenshot of the Ant sensor 36

2.16 Screenshot of the Eclipse sensor 36

2.17 Screenshot of a telemetry chart 37

137

138 LIST OF FIGURES

2.18 Screenshot of a telemetry chart 37

2.19 Screenshot of the DailyDiary analyis 38

3.1 A plotted goal fulfillment degree. 43

3.2 Consecutive process model[8] 47

3.3 Continuous process model . 49

3.4 Retrospective process model 50

3.5 Alert-based process model . 51

4.1 Executable interface architecture 61

4.2 Plugin Lifecycle . 67

4.3 The Hackystat microkernel . 69

4.4 hackyCGQM and Hackystat 71

4.5 The hackyCGQM java top-level packages by their function . . . 72

5.1 The Hackystat build process 78

5.2 GQM structure of the “buildFailures” example 79

5.3 The “buildFailures” analysis start screen 81

5.4 GQM structure of the “issues” example 82

5.5 A chart generated for the question “What is the distribution of

issue types over modules?“. 83

5.6 The software topography map on the telemetry wall 85

5.7 The software topography map 85

5.8 Time needed to execute the ’buildFailure’ example. 90

5.9 Mapping ability summary of current cGQM for examined Goals,

Questions and Metrics . 97

5.10 Mapping ability summary of future, improved versions of cGQM

for examined Goals, Questions and Metrics 97

LIST OF FIGURES 139

5.11 hackyCGQM screenshot: telemetry 101

5.12 hackyCGQM screenshot: analyis page 102

5.13 hackyCGQM screenshot: goal 102

5.14 hackyCGQM screenshot: build failure types 103

5.15 hackyCGQM screenshot: build failure modules 103

5.16 The goal fulfillment red light 106

A.1 cGQM . 115

A.2 cGqmArtifactType . 116

A.3 goalType . 117

A.4 goalDimensions . 118

A.5 abstractionSheet . 119

A.6 slotBindings . 120

A.7 questionType . 120

A.8 metricType . 121

List of Tables

2.1 GQM tools and their support 22

2.2 Metrics collected by Hackystat 33

3.1 cGQM process models compared 46

4.4 Project end statistics for hackyCGQM 75

5.1 Time needed for performing the ’buildFailure’ example manually

and with cGQM. Every week, one analysis just based on that

weeks data is assumed. 89

5.2 Results of the structural mapping 96

5.3 hackyCGQM compared to other tools 110

B.1 Results of the structural mapping 132

140

LIST OF TABLES 141

Acronyms

GQM Goal/ Question/ Metric Paradigm

cGQM continuous Goal/ Question/ Metric Paradigm

CSDL Collaborative Software Engineering Institute, University of Hawai’i

QIP Quality Improvement Paradigm

SPCC Software Project Control Center

PSP Personal Software Process

SOAP Simple Object Access Protocol

CMM Capability Maturity Model

SEI Software Engineering Institute

ISO International Standard Organization

SPICE Software Process Improvement and Capability dEtermination

ISO9001 International Standard for Quality management systems

XML eXtensible Meta Language

XSD XML Schema Definition

XSLT eXtensible Stylesheet Language Transformation

GPL General Public License

UML Unified Modeling Language

JSP Java Server Pages

IDE Integrated Development Environment

Bibliography

[1] P.M. Johnson. You can’t even ask them to push a button: Toward ubiq-

uitous, developer-centric, empirical software engineering. The NSF Work-

shop for New Visions for Software Design and Productivity: Research and

Applications, Nashville, TN, December 2001.

[2] V.R. Basili. Software modeling and measurement: The goal question metric

paradigm. Technical Report CS-TR-2956, University of Maryland, College

Park, 1992.

[3] D.M. Weiss V.R. Basili. A methodology for collecting valid software engi-

neering data. IEEE Transactions on Software Engineering, SE-10(6):728–

738, November 1984.

[4] T. DeMarco. Controlling Software Projects. Yourdon Press, New York,

1982.

[5] Encyclopedia britannica. 〈http://www.britannica.com//〉.

[6] Wikipedia. 〈http://www.wikipedia.org//〉.

[7] Pfleeger Fenton. Software Metrics A Rigorous and PracticalApproach.

Chapman and Hall, London, 1997.

[8] E. Berghout R. van Solingen. The Goal/Question/Metric Method: A

practical guide for quality improvement of software deleopment. McGraw-

Hill Int., London, 1999.

[9] R.S. Kaplan. Measures for manufacturing excellence. Harvard Business

School Press, 1990.

[10] Johnson and Jim. Chaos: The dollar drain of it project failures. Application

Development Trends, 1:41–47, 1995.

142

BIBLIOGRAPHY 143

[11] W. C. Peterson. Seis software process program - presentation to the board

of visitors. Technical report, Software Engineering Institute, Carnegie Mel-

lon University, 1997.

[12] K Hyde and D Wilson. Intangible benefits of cmm-based software process

improvement. Software Process Improvement and Practice, 2004.

[13] L. H. Putnam and M. C. Mah. Software by the numbers: An aerial view

of the software metrics landscape. American Programmer, October 1998.

[14] V.R. Basili and G. Caldiera. Improve software quality by reusing knowledge

and experience. Sloan Management Review, MIT Press, Fall, 1995.

[15] W. S. Humphrey. Using a defined and measured personal software process.

IEEE Software, 13(3):77–88, May 1996.

[16] W. S. Humphrey. Characterizing the software process. IEEE Software,

5(2), 1988.

[17] Quality management systems: Iso 9001. International Organization for

Standardization, ISO/IEC ISO 9001:2000.

[18] Spice: Iso 15504. International Organization for Standardization, ISO/IEC

155504-1:2004.

[19] Anne M. Disney and Philip M. Johnson. Investigating data quality problems

in the psp. ACM SIGSOFT Software Engineering Notes archive, 6:143 –

152, November 1998.

[20] Herbsleb, Zubrow, Goldenson, Hayer, and Paulk. Software quality and the

capability maturity model. Communications of the ACM, 1997.

[21] C.M. Lott C. Differding, B. Hoisl. Technology package for the goal question

metric paradigm. Technical Report 281, Computer Science Department,

Technical University Kaiserslautern, Kaiserslautern, Germany, 1996.

[22] H.D. Rombach L.C. Briand, C.M. Differding. Practical guidelines for

measurement-based process improvement. Software Process - Improve-

ment and Practice, 2(2):253–280, 1996.

[23] J. Nielsen. Usability engineering at a discount. Designing and Using Human-

Computer Interfaces and Knowledge Based Systems, 1989.

144 BIBLIOGRAPHY

[24] VTT. Metriflame, 1999.

[25] L. Lavazza. Providing automated support for the gqm measurement

process. IEEE Software, pages 56–62, May 2000.

[26] C. Differding. Adaptive Measurement Plans for Software Development.

Phd thesis, Institute of Experimental Software Engineering Kaiserslautern,

2001.

[27] Quality characteristics and guidelines for their use, iso 9126. International

Organization for Standardization, ISO/IEC ISO 9126.

[28] Christiane Gresse, Barbara Hoisl, and Jürgen Wüst. A process model for

planning GQM-based measurement. Technical Report STTI-95-04-E, Uni-

versity of Kaiserslautern, 67653 Kaiserslautern, Germany, 1995.

[29] J. Heidrich J. Muench. Software project control centers: Concepts and ap-

proaches. Technical report, Fraunhofer Institute of Experimental Software

Engineering, 2003.

[30] J. Heidrich. Effective data interpretation and presentation in software

projects. Technical report, Computer Science Department, Technical Uni-

versity Kaiserslautern, 2003.

[31] J. Heidrich. Custom-made visualization for software project control. Tech-

nical report, Computer Science Department, Technical University Kaiser-

slautern, 2003.

[32] W. S. Humphrey. Managing the Software Engineering. Addison-Wesley,

1989.

[33] W. S. Humphrey. A Discipline for Software Engineering. Addison-Wesley,

1995.

[34] W3C Soap web site. 〈http://www.w3.org/TR/soap/〉.

[35] Apache Jakarta Tomcat web site. 〈http://jakarta.apache.org/

tomcat/〉.

[36] Johnson, Kou, Paulding, Zhang, Kagawa, and Yamashita. Improving soft-

ware development management through software project telemetry. Tech-

nical Report CSDL-03-13, Collaborative Software Engineering Laboratory,

University of Hawaii, 2004.

BIBLIOGRAPHY 145

[37] Suzanne Robertson and James Robertson. Mastering the Requirements

Process. ADDISON-WESLEY LONGMAN, AMSTERDAM, 1999.

[38] Sun javabeans specification. 〈http://java.sun.com/products/

javabeans/reference/api/index.html〉.

[39] Jibx binding framework. 〈http://jibx.sourceforge.net/〉.

[40] Checkstyle - coding style checker. 〈http://checkstyle.sourceforge.

net//〉.

[41] Junit - unit testing for java. 〈http://www.junit.org//〉.

[42] A. Fuggetta, L. Lavazza, and S. Morasca. Applying gqm in an industrial

software factory. ACM Transactions on Software Engineering and Methol-

ogy, 7(4):441–448, October 1998.

[43] B. Linstrm. A software measurement case study using gqm. Technical

Report LUTEDX(TETS-5522)1-72(2004), Lund Institute of Technology,

2004.

