
Automated Recognition of Low-Level Process:
A Pilot Validation Study of Zorro for

Test-Driven Development

Hongbing Kou and Philip M. Johnson

Collaborative Software Development Laboratory,
Department of Information and Computer Sciences,

University of Hawai’i,
1680 East-West Rd. POST307,

Honolulu, HI 96822, USA
{hongbing, johnson}@hawaii.edu
http://csdl.ics.hawaii.edu

Abstract. Zorro is a system designed to automatically determine whe-
ther a developer is complying with the Test-Driven Development (TDD)
process. Automated recognition of TDD could benefit the software engi-
neering community in a variety of ways, from pedagogical aids to support
the learning of test-driven design, to support for more rigorous empirical
studies on the effectiveness of TDD in practice. This paper presents the
Zorro system and the results of a pilot validation study, which shows
that Zorro was able to recognize test-driven design episodes correctly
89% of the time. The results also indicate ways to improve Zorro’s clas-
sification accuracy further, and provide evidence for the effectiveness of
this approach to low-level software process recognition.

1 Introduction

While software process research has historically focused on high-level, long-
duration phases in software development, increasing attention is now being paid
to low-level, short-duration activities as well. While a high-level activity such
as “requirements specification” might take from weeks to months to complete,
a low-level activity such as “refactor class Foo to extract interface IFoo” might
take only seconds to complete in a modern interactive development environment.

The frequency and rapidity with which low-level process activities occur cre-
ates new barriers to answering classic software process questions, such as: what
process is actually occurring (as opposed to what process is supposed to be oc-
curring), what is the impact of a given process on important outcomes such as
productivity and quality, and how could a given process be improved and/or
tailored to a new domain?

Fortunately, the increasing sophistication of tool support for software develop-
ment creates new ways to investigate low-level process. By capturing the behav-
ior of developers as represented in their interactions with software development

Q. Wang et al. (Eds.): SPW/ProSim 2006, LNCS 3966, pp. 322–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Recognition of Low-Level Process 323

tools, it may be possible to gain new insight into what low-level processes are
occurring during development and their impact on productivity and quality.

This paper presents recent results from our ongoing research into automated
support for recognition and analysis of low-level software processes. Our ap-
proach leverages the Hackystat framework for automated software engineering
process and product data collection and analysis [1], which provides infrastruc-
ture for gathering a broad variety of developer behaviors. On top of Hackystat,
we developed a generic, rule-based recognizer system for sensor data called “Soft-
ware Development Stream Analysis” (SDSA). On top of SDSA, we developed a
set of rules and other specializations designed to recognize a specific low-level
process called Test-Driven Development (TDD) [2]. The system resulting from
this combination of Hackystat, SDSA, and TDD-specific extensions is called
“Zorro”.

Test-driven development is an interesting low-level process to study because
substantial claims have been made for its effectiveness. For example, TDD has
been claimed to naturally generate 100% coverage, improve refactoring, provide
useful executable documentation, produce higher code quality, and reduce defect
rates [2, 3, 4]. It would be a significant contribution to the software engineering
community to rigorously test these claims in controlled and/or professional set-
tings to better understand the conditions under which they hold, and to further
the evolution of the method itself.

Zorro can automatically monitor developer behavior and produce analyses
describing certain sequences of behaviors as test-driven development and other
sequences of behaviors as non-test-driven development. If Zorro recognizes TDD
correctly, then we would have a powerful mechanism for exploring how test-
driven development is used in practice and its effects on quality and productivity.
The ease with which Hackystat sensors can be installed and the non-intrusive
nature of data collection and analysis would make possible both classroom and
industrial case studies into TDD compliance, the potential discovery of alter-
native processes, and the investigation of the impact of TDD on productivity
and quality. Finally, Zorro could be used to teach TDD by providing real-time
feedback to the developer on whether they are carrying out TDD or not.

Before we can apply Zorro to these TDD research questions, however, we
must answer two general validation questions: (1) Does the system collect the
behaviors necessary to determine TDD, and (2) Does the recognizer infer the
TDD process correctly from the collected behaviors?

In this paper, we present the design of Zorro and the results from a pilot
validation study. To do the validation, we needed an independent source of in-
formation about low-level developer behavior to compare to Zorro’s. For this
purpose, we designed and implemented an open source system called “Eclipse
Screen Recorder” (ESR), [5]. ESR is a plug-in to the Eclipse IDE that captures
a screen image approximately once per second and produces a quicktime movie
of the developer’s behaviors with respect to the Eclipse window.

Our validation analysis compared the representation of developer behavior
captured by ESR to the representation of developer behavior inferred by Zorro,

324 H. Kou and P.M. Johnson

and classified the frequency and types of differences between these two inde-
pendent representations. We discovered that Zorro classifies developer behavior
correctly 89% of the time, and also discovered ways we can enhance the system
in future to improve its classification accuracy further.

The contributions of this research include initial evidence that Zorro can be
an effective tool for automatic recognition of the TDD low-level process. Zorro
also provides evidence that SDSA is a useful framework for software process
recognition. Finally, our results reveal the importance of validation using inde-
pendent data sources as a component of the process modelling research process,
and the usefulness of mechanisms like ESR for this purpose.

2 Related Work

Osterweil has developed a view of software process research that recognizes two
complementary levels: macroprocess and microprocess [6]. Macroprocess research
is focused on the outward manifestations of process—the time taken, costs in-
curred, defects generated, and so forth. Macroprocess research traditionally cor-
relates such outcome measures to other project characteristics, which can sug-
gest the impact of process changes to these outcomes, but which suffers from
the lack of any underlying causal theory. Bridging this gap is the province of
microprocess research, according to Osterweil, in which languages and formal
notations are used to specify process details at a sufficient level of rigor and
precision that they can be used to support causal explanation of the outcome
measures observed at the macroprocess level. Our research most readily fits into
the “microprocess” level, except that instead of producing a top-down language,
our approach involves bottom-up recognition.

The Balboa research project, like Zorro, was concerned with inference of
process from low-level event streams [7]. In Balboa, the event streams were
taken from the commit records of a configuration management system, and finite
state machines were created that could model the commit stream data observed
in practice. Unlike Balboa, Zorro uses instrumentation attached to the devel-
oper’s IDE, which enables access to much lower-level events than those available
through the commit records of a configuration management system. Also, the
Balboa research project was retrospective in nature, with the researchers limited
to historical project records. Zorro’s focus on active development makes addi-
tional research possible, such as the validation studies presented in this paper.

Our research also compares in interesting ways to recent work on understand-
ing processes associated with open source software development processes [8].
In this research, “web information spaces” are mined with the goal of discover-
ing software process workflows via analysis of their content, structure, update,
and usage patterns. Our approach in Zorro has both strengths and weaknesses
relative to this research. A strength of the Zorro approach is that by attaching in-
strumentation to the IDE, we can capture more detailed information concerning
developer behavior than is possible from inspection of web information spaces.

Automated Recognition of Low-Level Process 325

However, this can also be viewed as a weakness, in that this instrumentation
creates an adoption barrier not present when mining already publically available
information.

Another strand of related research occurs in the areas of knowledge discov-
ery and data mining, in which time ordered input streams are processed to dis-
cover and classify naturally recurring patterns. For example, the Episode Discov-
ery (ED) algorithm supports natural forms of periodicity in human-generated
timestamp data [9]. While such approaches are an interesting future research
area for SDSA, our current episode discovery algorithm uses rules to decide
upon episode boundaries regardless of their frequency of occurrence.

Finally, our research relates to prior research on evaluating test-driven design
practices and their impact on productivity and quality [10, 11, 12, 13, 14, 15]. In
these studies, researchers had limited ability to verify that the programmers
who were supposed to be using test-driven development were, in fact, using that
methodology. Zorro, if validated, would be an important contribution to this
research community by providing a tool to ensure compliance with the process
under the experimental conditions.

3 The Design of Zorro

The design of Zorro is highly modular and consists of three basic layers: Hack-
ystat, an extension to Hackystat called Software Development Stream Analysis,
and a set of rules and enhancements to SDSA to support recognition of the TDD
process.

3.1 Hackystat

Hackystat is an open source framework for automated collection and analysis
of software engineering process and product data that we have been develop-
ing since 2001. Hackystat supports unobtrusive data collection via specialized
“sensors” that are attached to development environment tools and that send
structured “sensor data type” instances via SOAP to a web server for analysis
via server-side Hackystat “applications”. Over two dozen sensors are currently
available, including sensors for IDEs (Emacs, Eclipse, Vim, VisualStudio), con-
figuration management (CVS, Subversion), bug tracking (Jira), testing and cov-
erage (JUnit, CppUnit, Emma, JBlanket), system builds and packaging (Ant),
static analysis (Checkstyle, PMD, FindBugs, LOCC, SCLC), and so forth. Ap-
plications of the Hackystat Framework in addition to our work on SDSA and
Zorro include in-process project management [16], high performance computing
[17], and software engineering education [18].

3.2 SDSA

Software Development Stream Analysis (SDSA) is a Hackystat application that
provides a framework for organizing the various kinds of data received by Hack-
ystat into a form amenable for time-series analysis. Figure 1 illustrates the start

326 H. Kou and P.M. Johnson

Fig. 1. Development Streams

of this process in which the various kinds of process and product data collected
by Hackystat sensors are filtered and merged into an abstraction called a Devel-
opment Stream.

The next stage of SDSA processing, called Tokenizing, involves partitioning
the development stream into a sequence of “episodes” which should constitute
the atomic building blocks of whatever process is being recognized. We have
developed four kinds of tokenizers for identifying episode boundaries: the commit
tokenizer uses configuration management checkins, the command tokenizer uses
a distinguished commands or command sequences, the test pass tokenizer uses
passing test invocations, and the buffer transition tokenizer uses sequences of
buffer transitions. Figure 2 illustrates the process of splitting up the development
stream into discrete episodes via tokenizers.

The final step in SDSA is to classify each episode according to the process
model of interest. In SDSA, this classification is performed using the JESS rule
based system augmented with rules to specify a particular process. Figure 3
illustrates this process.

3.3 SDSA Specializations for TDD

Zorro extends SDSA with rules and analyses oriented to the recognition and
classification of TDD behaviors. Figure 4 illustrates the four kinds of behavioral

Automated Recognition of Low-Level Process 327

Fig. 2. Tokenizing into episodes

Fig. 3. Episode classification

sequences associated with test-driven development. Zorro includes JESS rules to
recognize each of these four kinds of test-driven development behaviors.

Refactoring, in which the developer alters the programs internal structure
without affecting its external behavior, is also a valid behavior during test-driven
development. Figure 5 illustrates the four kinds of refactoring recognized by the
Zorro rule base.

Finally, Zorro includes a user interface in the Hackystat server web application
for display of the episodes, their classification, and their internal structure. Figure
6 illustrates the Zorro interface.

4 The Pilot Validation Study

As noted above, in order to feel confident in Zorro as an appropriate tool to
investigate TDD, we must answer two basic validation questions: (1) Does Zorro
collect the behaviors necessary to determine when TDD is occurring, and (2)
Does Zorro recognize test-driven development when it is occurring? To answer

328 H. Kou and P.M. Johnson

Test Creation

Compilation Error

Test Fails

Code Production

Code Test Case

Code Production

Test Passes

Type 1

Complete Test-Driven

Iteration

Test Creation

Compilation Error

Code Production

Code Test Case

Test Passes

Type 2

Test-Driven Iteration

without Test Failure

Test Creation

Test Fails

Code Production

Code Test Case

Code Production

Test Passes

Type 3

Test-Driven Iteration

without Compilation

Error

Test Creation

Code Production

Code Test Case

Test Passes

Type 4

Test-Driven Iteration

without Compilation

Error and Test Failure

Fig. 4. TDD episode description

these questions, one must somehow gather an independent source of data re-
garding the developer’s behaviors and compare that data to what was collected
and analyzed by Zorro.

One approach to validating the system is to have an observer watching devel-
opers as they work, and take notes as to whether they are performing TDD or
not. We considered this but discarded it as unworkable: the use of a human ob-
server would be quite costly, and given the rapidity with which TDD cycles can
occur, it would be quite hard for an observer to notate all of the TDD-related
events that can occur literally within seconds of each other. We would end up
having to validate our validation technique!

Instead, we developed a plugin to Eclipse that generates a Quicktime movie
containing time-stamped screen shots of the Eclipse window at regular intervals.
Figure 7 shows the Quicktime viewer with one screen image. The design of ESR
allows adjustment of frame rate and resolution: the higher the frame rate and/or
resolution, the larger the size of the resulting Quicktime file. We have found that
a frame rate of 1 frame per second and a resolution of 960x640 pixels is sufficient
for validation, while producing relatively compact Quicktime files (typically 7-8
MB per hour of screenshots). The Quicktime movie created by ESR provides
a visual record of developer behavior that can be manually synchronized with
the Zorro analysis using the timestamps and used to answer the two validation
questions.

Our pilot validation study involved the following procedure. First, we obtained
agreement from seven volunteer student subjects to participate in the pilot study.
These subjects were experienced with both Java development and the Eclipse
IDE, but not necessarily with test-driven development. Second, we provided them
with a short description of test-driven design, and a sample problem to implement

Automated Recognition of Low-Level Process 329

Start

Test Refactor

Test Pass

Code Test

Code Test

Test Fails

Type 1

Test Refactor

Code Test

Start

Production

Refactor

Test Fails

Test Pass

Type 3

Production

Refactor

Code Production

Code Production

Code Production

Start

Test Refactor

Test Pass

Code Test

Type 2

Test Refactor

without failure

Code Test

Start

Production

Refactor

Test Pass

Type 4

Production Refactor

without failure

Code Production

Code Production

Fig. 5. Refactoring episode description

in a test-driven design style. The problem was to develop a Stack abstract data
type using test-driven design, and we supplied them with an ordered list of tests
to write and some sample test methods to get them started. Finally, they carried
out the task using Eclipse with both ESR and Zorro data collection enabled.

To analyze the data, we created a spreadsheet in which we recorded the re-
sults of watching the Quicktime movie and manually encoding the developer
activities that occurred. Then, we ran the Zorro analyses, added their results to
the spreadsheet, and validated the Zorro classifications against the video record.

5 Results of the Pilot Study

Figure 8 summarizes the results of our analyses. Seven subjects participated,
and spent between 28 and 66 minutes to complete the task. Zorro partitioned
the overall development effort into 92 distinct episodes, out of which 86 were
classified as either Test-Driven, Refactoring, or Test-Last; the remainder were
“unclassified”, which normally corresponded to startup or shutdown activities.

The most important result of this study is indicated by the “Wrongly Clas-
sified Episodes” column, which shows the results of comparing the ESR videos
of the developer’s Eclipse window to the classifications automatically made by
the Zorro recognizer. Out of the 92 episodes under study, 82 were validated as
correctly classified, for an accuracy rate of 89%.

The validation analysis also revealed several ways to increase the accuracy
of Zorro. First, we discovered that our underlying Hackystat sensor sometimes

330 H. Kou and P.M. Johnson

hongbing@hawaii.edu
Development Stream Episode

Alicia admin | analyses | preferences | alerts | extras | help | home

Development Stream: Displays Development stream and episode classification. (more...) Analyze

Project: StackWithTDD

StartDay: 01 January 2006

EndDay: 02 January 2006

Episode

Classification

Episode Actions

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase

01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java

01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()

01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, AI=+1

01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type

01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java

01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack

01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java

01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()

01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1

01/01/2006 23:32:31 TestStack.java UNIT TEST TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()

01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, AI=+1

01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack

01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)

01/01/2006 23:35:02 Stack.java PRODUCTION EDIT 0sec MI=+1, SI=0

01/01/2006 23:35:13 TestStack.java UNIT TEST TEST FAILED

01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag

01/01/2006 23:36:19 Stack.java PRODUCTION EDIT 0sec MI=0, SI=+1

01/01/2006 23:36:34 TestStack.java UNIT TEST TEST OK

Fig. 6. Zorro interface

failed to record an edit to the program under development when the ESR video
showed that the developer made a “quick change” lasting only a few seconds.
Second, the sensor also failed to record a compilation error when a change to the
production code created a compilation error in the non-active test code. Finally,
the current Zorro rule set sometimes failed to partition the development stream
along optimal episode boundaries, making it problematic for the classifier to
recognize the developer’s behaviors during this time period correctly. We intend
to fix these issues in the next version of the system, which should raise the
accuracy rate significantly.

It is also interesting to review the classification results apart from their ac-
curacy, as they provide insight into the appropriate design of future studies. All
four types of Test-Driven Development were recognized by Zorro, although only
two of the four types of Refactoring were found. We believe that the simplicity of
the software system under development in this study may have been a factor in
the limited types of refactoring, and intend to scale up the problem complexity
in future studies.

A provocative result of this study is that half the episodes (46) were classified
as test-last, even though the subjects were instructed to do test-first develop-
ment. To some extent, this may also be an artifact of the simplicity of the
software under development. But it also reveals a hidden “secret” of test-first
development: sometimes, while implementing the code to address one unit test,
you can’t help but implement additional features as well. At that point, the
rational behavior is to implement the unit tests for those additional features,
which effectively constitutes test-last design. The nature and frequency of em-
bedded test-last within test-first development is an interesting topic for future
research.

Automated Recognition of Low-Level Process 331

Fig. 7. An ESR Quicktime file

6 Conclusions and Future Directions

The pilot study has been successful in developing an effective validation method-
ology for the Zorro system, and in identifying several opportunities for improve-
ment to the system that should result in higher classification accuracy in future.

After making these improvements, our next task will be to design and carry
out a broad-scale validation study. We intend to expand the total number of
subjects participating in the study, and solicit both student and professional
developer participation. While we will provide a sample problem to implement
in a test-driven design approach, we also hope to collect “in vivo” data from
professionals who use test-driven design in their daily work. As before, we will
collect both ESR and Zorro data from each subject and analyze it to assess the
classification accuracy of Zorro, discover opportunities for improvement in the
system, and perhaps discover new insights into the nature of test-driven design.

If the broad-scale validation study results demonstrate that Zorro has achieved
high accuracy (95% or better) in recognizing TDD, then we will proceed to the
next stage, which is the design of experiments to see how developers use (or don’t
use) TDD in practice, the factors influencing their decision, and the outcomes
of their decisions on productivity and quality.

332 H. Kou and P.M. Johnson

Fig. 8. Summary Results

Another area of future research is the application of the SDSA framework to
model other low-level software development processes. For example, there are a va-
riety of best practices surrounding when a developer should commit their changes
to a configuration management repository which we could model and assess using
SDSA along with different sensors and different classification rule sets.

References

1. Johnson, P.M.: Hackystat Framework Home Page. (http://www.hackystat.org/)
2. Beck, K.: Test-Driven Development by Example. Addison Wesley, Massachusetts

(2003)
3. George, B., Williams, L.: An Initial Investigation of Test-Driven Development in

Industry. ACM Sympoium on Applied Computing 3(1) (2003) 23
4. Maximilien, E.M., Williams, L.: Accessing Test-Driven Development at IBM. In:

Proceedings of the 25th International Conference in Software Engineering, Wash-
ington, DC, USA, IEEE Computer Society (2003) 564

5. Kou, H.: Eclipse Screen Recorder Home Page.
(http://csdl.ics.hawaii.edu/Tools/Esr/)

6. Osterweil, L.J.: Unifying microprocess and macroprocess research. In: Proceedings
of the International Software Process Workshop. (2005) 68–74

7. Cook, J.E., Wolf, A.L.: Automating process discovery through event-data analy-
sis. In: ICSE ’95: Proceedings of the 17th international conference on Software
engineering, New York, NY, USA, ACM Press (1995) 73–82

8. Jensen, C., Scacchi, W.: Experience in discovering, modeling, and reenacting open
source software development processes. In: Proceedings of the International Soft-
ware Process Workshop. (2005)

9. Heierman, E., Youngblood, G., Cook, D.: Mining temporal sequences to discover in-
teresting patterns. In: Proceedings of the 2004 International Conference on Knowl-
edge Discovery and Data Mining, Seattle, Washington (2004)

10. George, B., Williams, L.: A Structured Experiment of Test-Driven Development.
Information & Software Technology 46(5) (2004) 337–342

11. Muller, M.M., Hagner, O.: Experiment about Test-first Programming. In: Empir-
ical Assesment in Software Engineering (EASE), IEEE Computer Society (2002)

12. Olan, M.: Unit testing: test early, test often. In: Journal of Computing Sciences
in Colleges, The Consortium for Computing in Small Colleges (2003) 319

13. Edwards, S.H.: Using software testing to move students from trial-and-error to
reflection-in-action. In: Proceedings of the 35th SIGCSE technical symposium on
Computer science education, ACM Press (2004) 26–30

Automated Recognition of Low-Level Process 333

14. Geras, A., Smith, M., Miller, J.: A Prototype Empirical Evaluation of Test Driven
Development. In: Software Metrics, 10th International Symposium on (MET-
RICS’04), Chicago Illionis, USA, IEEE Computer Society (2004) 405

15. Pancur, M., Ciglaric, M.: Towards empirical evaluation of test-driven development
in a university environment. In: Proceedings of EUROCON 2003, IEEE (2003)

16. Johnson, P.M., Kou, H., Paulding, M.G., Zhang, Q., Kagawa, A., Yamashita, T.:
Improving software development management through software project telemetry.
IEEE Software (2005)

17. Johnson, P.M., Paulding, M.G.: Understanding HPCS development through au-
tomated process and product measurement with Hackystat. In: Second Workshop
on Productivity and Performance in High-End Computing (P-PHEC). (2005)

18. Johnson, P.M., Kou, H., Agustin, J.M., Zhang, Q., Kagawa, A., Yamashita, T.:
Practical automated process and product metric collection and analysis in a class-
room setting: Lessons learned from Hackystat-UH. In: Proceedings of the 2004
International Symposium on Empirical Software Engineering, Los Angeles, Cali-
fornia (2004)

	Introduction
	Related Work
	The Design of Zorro
	Hackystat
	SDSA
	SDSA Specializations for TDD

	The Pilot Validation Study
	Results of the Pilot Study
	Conclusions and Future Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

