
Requirement and Design Trade-offs in Hackystat: An In-Process Software
Engineering Measurement and Analysis System

Philip M. Johnson
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

Abstract

For five years, the Hackystat Project has incremen-
tally developed and evaluated a generic framework for
in-process software engineering measurement and analy-
sis (ISEMA). At least five other independent ISEMA sys-
tem development projects have been initiated during this
time, indicating growing interest and investment in this ap-
proach by the software engineering community. This pa-
per presents 12 important requirement and design trade-
offs made in the Hackystat system, some of their implica-
tions for organizations wishing to introduce ISEMA, and
six directions for future research and development. The
three goals of this paper are to: (1) help potential users of
ISEMA systems to better evaluate the relative strengths and
weaknesses of current and future systems, (2) help potential
developers of ISEMA systems to better understand some of
the important requirement and design trade-offs that they
must make, and (3) help accelerate progress in ISEMA by
identifying promising directions for future research and de-
velopment.

1. Introduction

Most software engineers will agree that measurement
can be useful in software development. The disagreements
begin when deciding what, when, where, how, and why to
measure. What to measure can range from process mea-
sures such as build failure rate to product measures such as
the size of the system. When to measure can range from
in-process measures that require daily or hourly data col-
lection, to out-of-process measures that are collected, for
example, after a development project is done as part of a
post-mortem. How to measure can range from manual tech-
niques that require a software process group to collect and

analyze the data, to automated techniques that require no
human involvement at all for collection and analysis (but
might still require human involvement for interpretation
of the analyses and subsequent decision-making.) Finally,
why to measure can range from the building of predictive
models to estimate future cost or quality, to assessment of
current project characteristics.

Since 2001, we have been developing and evaluating an
open source, extensible application framework called Hack-
ystat for in-process software engineering measurement and
analysis (ISEMA). The client-server systems resulting from
instantiation of the framework enable developers to attach
small software plugins called “sensors” to their develop-
ment tools which unobtrusively collect and send low-level
data about their behavior and/or results to a Hackystat web
application using SOAP. The set of sensors is extensible
and currently includes support for IDEs (Eclipse, Emacs,
JBuilder, Vim, Visual Studio), testing (JUnit, CppUnit,
Emma), build (Ant, Make), configuration management
(CVS, Subversion), static analysis (Checkstyle, FindBugs,
PMD), bug tracking (Jira), size metrics for over twenty five
programming languages (SCLC, LOCC,CCCC), and man-
agement (Microsoft Office, OpenOffice.org). The low-level
data sent by sensors is represented in terms of an exten-
sible set of abstractions called “sensor data types”, such
as Activity, CodeIssue, Coverage, or FileMetric, which fa-
cilitate data consistency and simplify higher level process-
ing. On the server side, an extensible set of analysis mod-
ules process the raw sensor data to create higher-level ab-
stractions that support software development research and
management. For example, the Software Project Telemetry
module provides support for trend analysis of multiple sen-
sor data streams to aid in-process decision-making [7], the
Zorro module provides support for automated recognition
of Test Driven Development [10], the MDS module pro-
vides support for build process analysis for NASA’s Mission



Data System project [5], the HPC module supports analysis
of high performance computing software development [8],
the CGQM module provides a “continuous” approach to the
Goal-Question-Metric paradigm [11], and the Course mod-
ule supports software engineering education [6]. An orga-
nization can use Hackystat to instantiate a tailored ISEMA
system by selecting components from our public repository,
and can also augment the public components with propri-
etary Hackystat components they develop in-house.

When we started the Hackystat Project, we had the ideal-
istic (and naive) goal of designing a truly “generic” ISEMA
framework, one that would provide appropriate infrastruc-
ture to any organization desiring in-process software engi-
neering measurement and analysis. After five years of re-
search and development, we have learned that while Hack-
ystat can be effectively applied to a range of problems, the
domain of in-process software engineering measurement
and analysis is much too broad for a “one size fits all” so-
lution. Indeed, over the past five years, at least five other
ISEMA system development projects have been initiated,
including EPM [16], 6th Sense Analytics [4], PROM [15],
ECG [13], and SUMS [12]. On the one hand, this surge of
activity by the software engineering community appears to
validate the utility and potential of ISEMA systems. On the
other hand, if Hackystat was truly generic, why were these
other projects even started?

Over the course of its development, Hackystat has had
over forty public releases, undergone seven major architec-
tural revisions, been used by hundreds of developers, and
grown to over 300,000 lines of code. The system and its ar-
chitecture appears to be relatively mature and stable. Our
experiences as developers and the feedback we have re-
ceived from our users reveal that the requirement and de-
sign decisions made during development of an ISEMA sys-
tem entail fundamental trade-offs along the dimensions of
usability, genericity, simplicity, marketability, and perfor-
mance. We believe that the essential nature of these trade-
offs is an important reason for the rise of a community of
ISEMA systems. For example, the decision to make Hack-
ystat extensible with respect to sensors, sensor data types,
and analyses also makes Hackystat more complicated to in-
stall, use, and document than an ISEMA tool like SUMS,
which implements a single, operating system-level “sensor”
and sensor data type.

This paper presents results from our first five years of
research on ISEMA, including a description of 12 impor-
tant requirement and design trade-offs present in Hackys-
tat, a discussion of how these trade-offs influence the buy-
vs-build decision, and implications for an ISEMA research
agenda. We present this information in hopes that it will
help potential users of ISEMA systems to better evaluate the
relative strengths and weaknesses of current and future sys-
tems, help potential developers of ISEMA systems to better

understand some of the important requirement and design
trade-offs that they must make, and finally, help accelerate
progress in ISEMA by identifying promising directions for
future research and development.

While we will refer to other ISEMA systems during the
presentation of the trade-offs, and in fact provide a brief
overview of them in the next section, this paper is not a
comparative analysis of current ISEMA systems. As devel-
opers of the Hackystat system, it would be very hard for
us to provide a truly unbiased comparison of the various
approaches. Furthermore, while we have almost complete
knowledge about the current design and history of the Hack-
ystat system, our knowledge of other systems is limited to
externally published documentation. Thus, we believe that
we can make the greatest contribution to the community by
providing new insights about our own system and our expe-
riences with it, and leaving comparative analysis as an ac-
tivity for an unbiased third party. That said, the next section
provides a brief introduction to ISEMA systems to outline
the various approaches underway.

2. ISEMA Systems

ISEMA is a relatively recent approach to software engi-
neering measurement. The more traditional approach might
be termed “out of process” measurement, in which data
is collected about a set of previously completed projects
and used to make predictions about future as-yet-unstarted
projects. One of the most successful applications of out of
process measurement is COCOMO [3], in which data about
the cost, size, and characteristics of previously developed
systems is used to produce a predictive model that provides
estimates of cost and time for new projects based upon vari-
ous parameters. Such an approach is out of process since the
system is typically used after the completion of old projects
but before the initiation of new projects. Other non-ISEMA
approaches to software engineering measurement and anal-
ysis include PSP/TSP, the IFPUG function point data repos-
itory, and the NASA/SEL metrics repository. The ISEMA
approach, in contrast, accumulates data about a current
project in order to provide feedback and decision-making
value back into the very same project. In addition to Hack-
ystat, current ISEMA systems include PROM, EPM, Sixth
Sense Analytics, ECG, and SUMS.

PROM. The Professional Metrics (PROM) system [15]
is sponsored by the Center for Applied Software Engineer-
ing at the Free University of Bolzano-Bozen. PROM sup-
ports an approach similar to Hackystat, in which plugins
unobtrusively monitor development activities and send pro-
cess and product data to a centralized server for analy-
sis. PROM provides plugins for Microsoft Office, OpenOf-
fice, Eclipse, Visual Studio, JBuilder, NetBeans, and IntelliJ
Idea. It can extract code metrics for C, C++, C#, and Java.



Finally, the Trace tool can support tracking of operating sys-
tem calls. PROM has been used in case studies of agile
methodologies, open source tool evaluation, and knowledge
database integration.

EPM. The Empirical Project Monitor (EPM) system
[16] is sponsored by the EASE Project, which is an
academic-industrial alliance that includes the Nara Institute
of Science and Technology, Osaka University, NTT, and Hi-
tachi. EPM does not use a sensor-based approach, but in-
stead “pulls” data from three development tools: the CVS
configuration management system, the GNATS issue track-
ing system, and the MailMan mail archiving system. Appli-
cations of EPM include analyzing the similarity and diver-
sity of software projects, code clone detection, and compar-
ative analysis of open source project repositories.

Sixth Sense Analytics.This company [4] provides soft-
ware measurement and analysis services based upon the use
of sensors that send data to a centralized server, and even
incorporates some Hackystat code into their system. Un-
like Hackystat, users cannot download the server and store
their data locally. Sensors are available for a variety of IDEs
and configuration management systems. Analyses currently
support two proxies for developer effort: Active Time and
Flow Time.

ECG. The ElectroCodeoGram (ECG) project [13] is
sponsored by the Software Engineering research group at
the Free University of Berlin. ECG monitors developer
activities in order to represent “micro-processes” during
software development. Examples include the “copy-paste-
change” micro-process, which is a common way of pro-
ducing similar functionality in multiple locations in a soft-
ware system, but which is has been hypothesized to produce
defects more often than a “refactoring” micro-process, in
which the common functionality is extracted out into a new
method and called from both locations. ECG is intended
to support empirical research into these and other micro-
processes.

SUMS. The Standardized User Monitoring Suite
(SUMS) project [12] is sponsored by the Pittsburgh Super-
computing Center and IBM. SUMS provides unobtrusive
monitoring of developers, but accomplishes this not through
individual sensors for specific tools, but rather through low-
level operating system monitoring. SUMS has been used
within a specially instrumented lab to collect data on stu-
dent programmers in order to better understand the use of
next generation high performance computing languages and
tools.

All of the above ISEMA systems and Hackystat share a
common feature: after installation and configuration of the
system, data collection is unobtrusive and automatic. This
is because the in-process metrics collected by these systems
are inherently voluminous and thus impractical to collect
manually. On the other hand, none of these other systems

appears to have gone as far down the road to “genericity” as
Hackystat. The next section begins our discussion of Hack-
ystat requirement and design trade-offs by focusing on those
we made early on in order to be “generic”.

3. Primary trade-offs for ISEMA genericity

(1) Sensor-server architecture. An ISEMA system
must perform two basic activities: data collection and data
analysis, and almost always performs a third: data storage.
There are a variety of top-level architectures one can choose
to accomplish these goals, ranging from a single user ap-
proach where everything occurs on a single computer, to
a client-server approach where data is collected on a client
and sent to a central server for storage (either before or after
analysis). Another architectural possibility is peer-to-peer,
in which data is stored on individual computers but shared
with others as required.

In Hackystat, we decided upon a client-server architec-
ture in which the “clients” consisted of custom sensors de-
veloped for each tool to be monitored in the environment.
The cost of this decision is the requirement that a custom
software component must be created for a tool before its
data can be included for analysis. The benefit is that the
sensor can include domain knowledge about the tool whose
behavior is being monitored. For example, the sensor for
the Eclipse IDE can monitor the invocation of subsystems
like the debugger and collect data about the subsystems be-
ing inspected, which can provide valuable insight into the
process of development.

By convention, Hackystat sensors collect relatively
“raw” data and send it to the server where all significant
analysis occurs. This minimizes the processing overhead
on the client computer. It also allows new analyses to be
developed, deployed on the server, and then run retrospec-
tively over previously collected sensor data.

Other ISEMA systems with different architectures illus-
trate some of the trade-offs inherent in this design decision.
For example, SUMS does not require specialized sensors
for each development tool, but instead instruments the oper-
ating system. This enables SUMS to transparently monitor
any tool used by the developers without additional software
development, though the type of data that can be collected
by monitoring OS-level events is more limited than what
can be obtained by custom software for each tool. Addi-
tionally, the SUMS instrumentation is specific to a single
operating system.

EPM is another ISEMA system that does not use a
sensor-server architecture. Instead, it “pulls” data from its
tools using their public reporting interface. The trade-off
in this case is the requirement that a tool have a reporting
interface in order for it to be accessable to EPM using this
technique.



(2) Workspaces. In an ISEMA system, measure-
ments associated with files are collected automatically. A
generic ISEMA system must confront the following prob-
lem: the same file could be named many different ways
depending upon the operating system platform and use
of configuration management. For example, the same
file “Foo.java” might be associated with the file path
c:nsvnnprojectAnFoo.java on developer A’s computer and
/usr/home/smith/svn-sandbox/projectA/Foo.java on devel-
oper B’s computer.

In Hackystat, this issue is addressed by server-side post-
processing of file names to create a canonical location
known as a “Workspace”, which has a canonical file path
representation. The user must also provide a “Workspace
Root” during configuration of their account, which enables
the system to determine that directories rooted at c:nsvn on
Developer A’s computer and /usr/home/smith/svn-sandbox/
on Developer B’s computer might contain the same files.

An ISEMA system can avoid the need for the complexity
of Workspaces in several ways. One approach is to simply
disallow client-side collection of data about file artifacts,
and instead collect this information from a single location,
such as a configuration management system. Another way
is to limit the ISEMA system to analysis of one user’s data
(i.e. not supporting aggregate analyses over groups of de-
velopers working on a common project), or requiring all
programmers to use a common file system. EPM, ECG,
and SUMS all avoid the need for workspaces through one
or more of these simplifying assumptions.

(3) Projects.Most software engineers work on multiple
tasks concurrently, and each task might involve a different
set of collaborators. Many kinds of ISEMA analyses re-
quire the ability to organize the process and product data
according to the task with which they are associated.

In Hackystat, this issue is addressed through a server-
side abstraction called “Projects”. When a Hackystat user
defines a Project, she specifies a time interval, a set of
Workspaces, and a set of email addresses corresponding to
other Hackystat users. The server generates an email “invit-
ing” the other users to join the Project. Accepting the invi-
tation enables the system to perform project-level analyses
that aggregate together the process and product data associ-
ated with each of the users. The specified set of Workspaces
allows the system to filter out unrelated sensor data. This in-
vitation system is required due to privacy issues, discussed
further below.

One way to avoid the need for Projects is for the ISEMA
system to guarantee that all data sent from a user is asso-
ciated with a single task. This is the approach taken by
the SUMS system, which is deployed in a laboratory set-
ting under controlled conditions. Another way is to focus
on analyses that are independent of particular tasks. For
example, ECG identification of copy-paste-change micro-

processes can be useful without associating their occurrence
with specific tasks.

(4) Data Design and Quality Assurance.The require-
ment of regular, unobtrusive process and product data col-
lection creates a number of challenges related to data de-
sign, completeness and correctness. For example, one can-
not assume connectivity to the Hackystat server at all times:
developers often work offline (such as when traveling), and
the server can crash due to power outages or other prob-
lems. Second, sensors for different tools that perform the
same type of function (for example, two configuration man-
agement tools such as CVS and SVN) should collect data
in a standardized way and format so that analyses are not
completely tool-specific. Finally, sensors can and will “drop
out” occasionally due to power outages, platform changes,
implementation bugs, and so forth.

In Hackystat, we provide a variety of mechanisms to ad-
dress these data design and quality issues. First, a middle-
ware application called the SensorShell provides infrastruc-
ture for Hackystat sensor development. The SensorShell
provides a high-level API to sensor designers that insulates
them from the low-level details of SOAP data transmis-
sion. It also transparently implements client-side offline
data caching and re-transmission. Thus, if a developer is
working on a plane or the server is unavailable, their data
will be collected and cached on their laptop until she lands
and re-establishes a server connection. Upon the next invo-
cation of a sensor-enabled tool, the accumulated data will
be sent to the server. The SensorShell also buffers sensor
data locally and sends the collected data in a single SOAP
request. By default, this results in sensor data transmission
by a client once every ten minutes, which significantly low-
ers the overhead of sensor data transmission for the client
and data reception by the server.

Second, to ensure consistent data collection across dif-
ferent tools, we developed the “Sensor Data Type” (SDT)
abstraction. Among other things, sensor data types allow
you to specify required fields indicating data that must be
provided by all sensors supporting this SDT, as well as a
“property list” field that supports an arbitrary amount of op-
tional key-value data. For example, the “Commit” SDT in-
cludes required fields specifying data that all configuration
management sensors must provide, but also allows a sensor
for a specific tool to send additional optional data that may
only be available for that particular tool type. The distinc-
tion between required and optional fields enables the de-
velopment of “generic” analyses for Commit data that are
independent of the specific configuration management tool,
as well as specialized analyses for data that may be avail-
able on only one tool, such as Subversion.

Third, the requirement for unobtrusive data collection
means that it is possible for one or more sensors to crash
or otherwise stop sending data without any notification. On



the other hand, sometimes sensor data is not sent simply be-
cause developers are not currently working with those tools.
In Hackystat, we address this through “telemetry reports”
that facilitate identification of missing sensor data. For ex-
ample, on one occasion the report revealed that a developer
was sending IDE, Build, and Commit data for a number
of days without any corresponding Unit Test data. This
anomaly helped the developer discover that his test sensor
had become misconfigured during a recent upgrade.

One way to reduce the complexity of data quality assur-
ance is to not use a sensor-based mechanism for data collec-
tion, and/or minimize the type of data that is collected. For
example, the EPM project “pulls” data from three kinds of
software engineering data repositories: CVS, GNATS, and
MailMan. Simplifying the kinds of data that can be col-
lected as well as the way in which they are collected can
avoid some of the data quality issues we have needed to ad-
dress in Hackystat.

(5) Configurability. A generic ISEMA system can be
applied to many different measurement tasks, yet providing
every single implemented analysis, sensor data type, and
sensor in the system significantly impacts upon its usabil-
ity. Java web application developers, for example, dislike
wading through analyses focused on MPI (Message Pass-
ing Interface) programming using C++.

Clearly, a generic ISEMA system must be able to be tai-
lored to the specific measurement and analysis concerns of
an organization. In Hackystat, this is accomplished through
two mechanisms. First, the build procedure allows an ad-
ministrator to define a configuration that can both exclude
public Hackystat modules implementing unnecessary func-
tionality and include privately developed Hackystat mod-
ules implementing organization-specific functionality. Sec-
ond, a set of extension points allow modules to implement
generic functionality that can be extended for organization-
specific purposes.

These configuration mechanisms have enabled us to
grow the Hackystat framework to over seventy modules or-
ganized into four “subsystems”. the “Core” subsystem pro-
vides essential functions that are independent of the spe-
cific sensors, sensor data types, and analyses contained in
a configuration. Core functions include the sensor and
sensor data type definition facilities, the SOAP data trans-
mission capabilities, features for the web application in-
terface, and the configuration mechanism itself. Most in-
stantiations of the Hackystat framework include all of the
core modules. The “Sensor” subsystem contains modules
that each implement sensor support for a development tool.
Each module in the “SDT” subsystem implements a sensor
data type. Finally, the “App” subsystem contains modules
that operate over sensors and sensor data types to provide
higher level analyses that enable an organization to use the
data for project monitoring, quality assurance, and decision-

making.
Configuration using modules and (an extensible) exten-

sion point mechanism add significant complexity to Hack-
ystat development, installation, documentation, and use.
First, the Hackystat build process must represent and man-
age module dependencies. For example, a configuration
that includes a sensor that generates data using the UnitTest
SDT must be sure to include the module defining that sensor
data type. Second, as Hackystat has grown to over seventy
modules, 300,000 lines of code, and a half dozen public
configurations, it has become impractical for developers to
test each of their changes over the entire system, leading to
the need for automated daily build and error reports. Third,
configurations make the build process more complicated,
and have required a substantial amount of documentation to
be developed, which must also be configurable!

The complexity of Hackystat configurations comes from
our desire to minimize constraints on the kind of tailoring
that can be done. For example, the decision by Sixth Sense
Analytics to not make their server available (much less ex-
tensible) can enable a more simple configuration process
and mechanism.

4. Emergent trade-offs

We consider the sensor-server architecture, workspaces,
projects, data quality assurance, and configurability to be
“primary” trade-offs: design decisions that follow more-or-
less directly from our goal to make Hackystat as generic an
ISEMA system as possible. Interestingly, a number of ad-
ditional trade-offs follow as a consequence of these primary
trade-offs.

(6) Non-real time analysis. We have been contacted
several times by researchers interested in using Hackys-
tat for “real-time” software engineering measurement and
analysis, in other words, in domains requiring feedback to
the user within a second or two of a measurement event.
As a simple example, “cyclomatic complexity” is a well-
known measure of a method or function’s complexity, and
it is easy in Hackystat to provide a sensor for a tool such as
NCSS that computes this metric. A real-time application of
this measure might, for example, continuously monitor the
cyclomatic complexity of a function as it is being written,
and underline the function definition in red as soon as the
complexity exceeds a certain threshold value.

Many such “real-time” systems for software engineering
measurement and analysis can be envisioned, but Hacky-
stat is not the appropriate infrastructure for their develop-
ment. This trade-off results from our sensor-server archi-
tecture, the SensorShell middleware component to buffer
data and enable offline collection, and the resulting impli-
cation that sensor data may appear on the server minutes,
hours, or even days after it has been collected by the client.



This implication actually creates flexibility in the way sen-
sors are implemented. For example, we currently imple-
ment our Subversion configuration management sensor as
a timer-based system that runs once a day and collects all
CM events from the previous day. Unlike a more real-time,
“hook-based” design, a timer-based implementation does
not require root-level privileges for its installation and use.

Our experiences suggest to us that the decision to sup-
port “real-time” vs. “non-real time” ISEMA is a funda-
mental trade-off. We believe that an ISEMA architecture
will be significantly simpler and support its domain more
effectively if it supports either real-time or non-real time
applications but not both. Interestingly, we know of no sys-
tems that focus explicitly on generic support for real-time
ISEMA applications.

(7) Sensor data type evolution. As a consequence
of its goal of genericity, Hackystat does not presuppose
what types of measurement data will be collected and how
this data will be structured. However, to facilitate under-
standing and correct analysis of measurement data, Hacky-
stat provides the sensor data type definition facility, which
among other things differentiates between “required” and
“optional” data. Hackystat also does not presuppose the
specific tools from which sensor data will be collected, but
does mandate that all tools send their sensor data as in-
stances of one or more sensor data types.

The ability to define new sensors and sensor data types
over time enables an incremental and exploratory approach
to ISEMA system development. For example, one can im-
plement a sensor data type to support a single kind of size
counting tool, such as LOCC, and then add sensors for addi-
tional size counting tools such as CCCC, NCSS, and SCLC
that use the same sensor data type.

The problem, of course, is that experience with a broader
set of tools often reveals inadequacies in the original sen-
sor data type definition. For example, it is quite common
when first defining a sensor data type to build in assump-
tions about the nature of the data that turn out to be pecu-
liar to the first tool you are instrumenting. These hidden
assumptions only become apparent once sensors for addi-
tional tools of that type are under development.

Once a sensor data type definition is found to be inad-
equate and the decision is made to improve it, one must
deal with the question of what to do with the sensor data
already collected under the old definition. For the first few
years of Hackystat’s development, the system required you
to throw away the data collected under the old definition if
you wished to upgrade it. This is an expensive solution, and
in several cases led us to simply live with a “bad” sensor
data type definition simply because we did not want to lose
access to the data we had already collected.

Hackystat now provides the ability to “evolve” sensor
data type definitions to incorporate new insights about the

most appropriate set of required and optional data. The evo-
lution is implemented in terms of a distinguished method in
the sensor data type definition class which “lazily” evolves
older versions of the sensor data upon access. This approach
enables both old data stored on the server to be upgraded to
the new definition when retrieved for analysis, as well as
data received from clients that are still using an old version
of a sensor that has not been upgraded to use the new SDT
definition.

Sensor data type evolution adds complexity to the rep-
resentation and implementation of sensor data types, but
this trade-off does enable a more exploratory style of de-
velopment while preserving the benefits of typed data. To
our knowledge, no other ISEMA system implements sensor
data type evolution. If that is the case, then we hypothesize
that other systems deal with this issue using one or more
of the following trade-offs: (1) represent sensor data in an
unstructured, non-typed format, (2) perform a thorough do-
main analysis prior to sensor data type definition in order
to ensure that the structure is correct, or (3) force users to
throw away old sensor data if the sensor data structure is
changed.

(8) Intermediate abstractions. The design decisions
to send sensor data in its “raw” form, combined with the
Project abstraction for representing group activities on sub-
sets of sensor data have led to the need for a variety of inter-
mediate abstractions to support server-side analyses in or-
der to provide acceptable performance and avoid redundant
computation.

To see why this is so, consider two simple measures:
an integer indicating the total time in minutes spent editing
Project-related files by all members for a given day, and an
integer indicating the change in size (LOC) of the system
under development for this Project during that same day.
There are two interesting things to note about the compu-
tation of these two integers. First, they are not particularly
domain-specific measures: many of the Hackystat applica-
tion domains find them to be useful, from software project
telemetry to high performance computing to NASA’s Mis-
sion Data System. Second, computing these two integers
requires retrieving all of the sensor data sent by all Project
members for the week of interest, filtering out the sensor
data sent by members not related to this Project, and pro-
cessing the remaining data appropriately. In Hackystat, sev-
eral thousand sensor data points might require processing
to compute each of these measures, and recurrent analyses
like software project telemetry might use these measures for
several weeks or months at a time on a regular basis.

Thus, an emergent trade-off in Hackystat is the use
of cached, intermediate abstractions that represent “partial
analyses” of the raw sensor data. Examples of these abstrac-
tions include “DailyAnalysis”, which represents individual
developer activities for a given day in five minute chunks,



“DailyProjectData”, which represents one or more mea-
sures for a given Project and day, “Reduction Functions”,
which compute sequences of measures over a given time
period, and “SDSA Episodes”, which partition a stream
of developer behavioral events in discrete episodes suit-
able for later classification. Although these abstractions
significantly improve performance, the trade-off is the cost
and complexity of designing and implementing thread-safe
caches with appropriate expiration policies which could
be wholly eliminated by rebuilding the abstractions from
scratch upon each request and using built-in database trans-
action mechanisms to manage concurrent access.

5. Scalability trade-offs

A third category of requirement and design trade-offs in
Hackystat relates to “scalability.” Scalability trade-offs ad-
dress the total number of users that can be supported by a
running server, of course, but also includes scalability with
respect to analyses and public accessability.

(9) Usage scalability. The most obvious scalability
trade-off involves the total number of users who can access
a running system with acceptable responsiveness. Hackys-
tat’s server runs within Tomcat, and our public server cur-
rently accomodates several hundred users on a low-end Dell
server with 2 GB RAM and 80 GB disk space.

Assessing usage scalability in an ISEMA system occurs
along two primary dimensions that can be assessed inde-
pendently. The first dimension is scalability with respect
to data collection: in other words, how many concurrent
users can be sending data to a server with acceptable re-
sponsiveness? Along this dimension, the trade-off in Hack-
ystat to support only non-real time analysis, which enables
client-side buffering, enables Hackystat to scale quite well
with respect to data collection. Given that a single user will
transmit data to a Hackystat server approximately every 10
minutes, and that a typical sensor data transmission involves
only a few thousand bytes of data, it is easy to see that a sin-
gle Hackystat server can provide adequate responsiveness
to hundreds of concurrent users with a low-end server hard-
ware configuration.

The second dimension is responsiveness with respect to
user-initiated analyses. This assessment is of course entirely
dependent on the specifics of the analysis, but we can offer
one interesting insight from our experience with Hackys-
tat. When we began development of Hackystat in 2001, we
decided to store sensor data using an XML-based flat file or-
ganization, where a separate file would be used to store the
sensor data of a given type for a given user on a given day.
We viewed this as a “spike” solution that would simplify
installation and debugging in the short-term, but would be
replaced with a more robust and efficient RDBMS such as
MySQL or Derby when system performance became con-

strained by this design decision.
To our surprise, after a small amount of performance op-

timization early on, our profiling activities have never since
revealed our XML storage approach to be the bottleneck in
responsiveness to user-initiated analyses. We believe this
is due to Hackystat’s use of cached intermediate abstrac-
tions, which significantly reduce the amount of raw sensor
data access. Instead, our performance optimization efforts
have focussed on this level, and have involved tuning the
cache mechanism to avoid excessive heap usage as well as
improvements to the intermediate abstraction implementa-
tions, such as pre-computing frequently used analysis re-
sults to minimize redundent sensor data access.

(10) Analysis scalability. Another scalability trade-off
involves the ability of users to customize specific analyses.
For example, the software project telemetry application al-
lows users to monitor sets of measurement trends over time
and looking for co-variances that suggest causal dependen-
cies. For example, if one notices that code coverage is de-
creasing over time and that the build failure rate is increas-
ing, it suggests that these two measures might be interre-
lated and that one could potentially decrease the build fail-
ure rate by improving test quality. A usability problem with
software project telemetry is that the number of possible
measures and co-variances increases exponentially with the
number of available sensor data streams, so that even a half
dozen sensor data streams leads to many thousands of po-
tential telemetry reports.

Another example of this analysis scalability problem in
Hackystat is the Software Development Stream Analysis
(SDSA) application, which supports workflow analysis over
sequences of developer behavioral events, such as opening
a file, invoking a test case, refactoring code, and so forth.
Once again, the range of approaches to partitioning the se-
quence of events into episodes and then classifying them as
workflow states is very large.

In both cases, analysis scalability was improved through
the implementation of a domain-specific language. The
DSL for software project telemetry was implemented using
a grammar, the JavaCC parser generator, and a custom in-
terpretor. The DSL for SDSA was implemented using JESS
and a set of CLISP rules.

(11) Data access scalability.One of the most important
and complicated trade-offs in scalability for ISEMA sys-
tems involves the degree and form in which data collected
from a system and its developers is made available to others.
For example, in Hackystat, a measure called “Active Time”
represents the number of minutes that a developer spent ac-
tively editing files associated with a project during a given
time interval. A few developers have told us that they would
never allow Hackystat in their organization because of the
potential for this kind of data to be collected and the poten-
tial misuse of this data by management. Their (legitimate)



worry is that measuring just the time spent editing files
could be misinterpreted by management as a meaningful
measurement of individual developer productivity, result-
ing in counterproductive measurement dysfunction within
the organization. In these situations, we recommend that an
organization adopting Hackystat begin by collecting only
product measures and do not install sensors into their devel-
oper’s IDEs until the developers become comfortable with
that form of measurement. Systems like SUMS, which col-
lect OS-level data at the level of individual keystrokes, have
even more potential for user concerns regarding data access.

At one end of the spectrum, an ISEMA system could
declare that all data is completely private and restricted to
the user that collected it. While this “solves” the privacy
issue arising from data access, it also severely impacts on
the potential utility of the system. For example, it would
not be possible to generate analyses that represent aggregate
time, defects, churn, and so forth for a group of developers
working on a single project.

Hackystat currently takes a more moderate approach to
data access scalability, in which users can participate in
Projects which enable their raw sensor data to be accessed
for project-level analysis, although participation in a Project
does not allow members to access each others raw sensor
data directly.

Data access scalability beyond the project-level could
provide very useful software engineering insights. For ex-
ample, when paired with demographic information about
the project and its developers, ISEMA systems could be-
come a rich source of information about development issues
and approaches at the language or application level. For ex-
ample, the current Hackystat repository contains rich data
about Java-related software development over the past five
years, and we have already performed preliminary design
work for “federated” Hackystat servers that can share and
exchange qualitative and quantitative data [9], yet imple-
mentation awaits the definition of suitable policy for privacy
protection.

(12) Developer community scalability.Our final trade-
off concerns the potential for community involvement in
the enhancement and customization of an ISEMA system.
At one end, an ISEMA system can be developed as a
completely closed source system, with no possibility for
end-user extension. Such an approach minimizes the cost
of developing the resources and mechanisms to support a
broader developer community, and also enables all informa-
tion about the design of the system to be kept proprietary.

Hackystat has chosen the opposite end of the spectrum,
in which the source is freely available, the system is modu-
larized for third party extension, mailing lists are provided
for developers and users, extensive developer documenta-
tion has been developed, and a significant number of cus-
tomizations to our build (Ant), test (Junit), and documenta-

tion framework (DocBook) have been developed to support
community involvement.

Other ISEMA systems make different trade-offs. For ex-
ample, Sixth Sense Software keeps the server proprietary,
but allows end-user involvement in sensor development.

6. Buy vs. Build

A practical application of these trade-offs is to support
the buy vs. build decision by an organization that wishes to
introduce an ISEMA system.

First, for organizations that wish to avoid the investment
in developing an ISEMA system in-house, these trade-offs
can help you to evaluate the features and capabilities of
various systems. For example, if you work in a multi-
platform, collaborative setting, then whatever ISEMA sys-
tem you choose should address the issues that were solved
in Hackystat by the Workspace and Project abstractions.

Second, if you are considering developing your own
ISEMA system, these trade-offs reveal the requirement and
decision complexities that can result from the desire to pro-
vide genericity with respect to the types of data collected,
the way in which data is collected, and the way in which
data is processed. In some cases, a significantly simpler
ISEMA solution is possible by eliminating one or more di-
mensions of genericity. For example, if the only develop-
ment tool you use is Eclipse, and the only platform you
work on is Windows, then much of the complexity of Hack-
ystat can be avoided.

Third, regardless of whether you are buying or building,
you must actively consider the issue of data privacy. An
ISEMA system that can monitor developer behavior, such
as the IDE sensors for Hackystat, has the potential to be
viewed as “Big Brother” by developers and arouse fears
that the ISEMA data will be used to evaluate developer pro-
ductivity. Such counter-productive applications have been
termed “measurement dysfunction”, and for a more com-
prehensive treatment of this subject, we recommend that
you start with Robert Austin’s excellent overview [1].

7. A Research Agenda for ISEMA

When we began the Hackystat Project five years ago,
we were not aware of other active ISEMA development
projects. We are gratified that a community of users and de-
velopers interested in in-process software engineering mea-
surement and analysis has arisen, and that Hackystat is in
the vanguard of these efforts.

To conclude this paper, we wish to reflect on the implica-
tions of these requirement and design trade-offs for the soft-
ware engineering research community in general and the
ISEMA research community in particular. What are impor-
tant issues to be addressed by ISEMA systems during the



next five years? Here are six promising directions for future
research and development.

Real-time ISEMA. Apart from ECG, a notable gap in
current ISEMA research and development is the lack of
support for real-time responsiveness, particularly in a dis-
tributed, collaborative setting. Infrastructure for real-time
ISEMA could take at least two forms: real-time ISEMA
feedback, and real-time ISEMA notification. Similar to the
way in which spelling checkers went from a stand-alone,
batch mode to a real-time “squiggly underline” mode, real-
time ISEMA feedback could enable developers to mon-
itor the measurement impact of their system after each
keystroke. Real-time ISEMA notification is a form of re-
mote feedback–instead of getting immediate ISEMA feed-
back on your own keystrokes, you get real-time immediate
feedback on your fellow developer’s keystrokes. Many in-
teresting research issues exist in this domain, from the kinds
of measures that would be generally useful in real-time, to
the contextual information required to avoid “false positive”
notifications.

ISEMA interoperability. As noted above, one result of
our research is the insight that there can be no “one-size-fits-
all” ISEMA system for the same reasons that there can be no
“one-size-fits-all” programming language: the same design
decisions that make Ruby an excellent language for small-
scale web application development also make it inferior to
Fortran for climate modeling. There will be a community
of ISEMA systems that satisfy different organizational con-
texts and measurement goals.

A community of ISEMA systems provides the opportu-
nity to establish standards for data representation and inter-
operation that would create new measurement and analysis
alternatives for organizations. First, data collected in one
environment could be analyzed using another environment.
Second, standards for interoperability could enable “meta
analysis”, in which common and comparable features from
a set of analyses from different environments are extracted
and used to form more general conclusions. Finally, the pro-
cess of standard setting could help facilitate propogation of
experience across the ISEMA development landscape, in-
creasing the rate of progress and bring stability to measure-
ment and analysis definitions. Some preliminary work in
this area has been done by the ECG developers, who pro-
vided partial interoperability between ECG and Hackystat.

Support for qualitative data. ISEMA systems cur-
rently focus on collecting and analyzing numeric data.
However, rich insight into software engineering prac-
tices can be obtained through non-numeric, qualitative ap-
proaches such as grounded theory [14]. In our research on
the software engineering of high performance computing
systems, we have already discovered the need to integrate
qualitative data (from developer interviews, journals, and
researcher analyses) with quantitative process and product

data. Yet no ISEMA system provides facilities for qualita-
tive data collection and analysis comparable to what they
provide for quantitative data collection and analysis.

Improved data privacy, anonymity, and access.One
of the most important research issues for ISEMA systems
is to better understand and manage the inherent tension be-
tween data privacy, anonymity, and access. As discussed
above, guaranteeing complete privacy hinders even simple
forms of analysis, such as the aggregate impact of group ac-
tivities on a project. However, even thepotentialavailability
of certain types of measures to management can become a
barrier to data collection itself, and/or lead to measurement
dysfunction. On the third hand, providing broader access to
the data collected by ISEMA systems has significant poten-
tial to provide new insights about software engineering.

Providing broader access to ISEMA data must somehow
resolve the following conundrum: in order for ISEMA data
to be interpreted correctly by the broader research commu-
nity, contextual data about its collection and analysis must
be available. On the other hand, such contextual data often
reveals, either implicitly or explicitly, the identity of the or-
ganization, projects, and/or individuals from which the data
was collected. This violates their privacy. Basili and others
have began to work on this issue [2].

Automated decision making. Like other ISEMA sys-
tems, Hackystat collects data, and provides analyses based
upon this data, but does not “act” upon these analyses. In-
stead, it is left to a developer or manager to review the data
and decide what, if any, action to take based upon the anal-
ysis. As our experience and confidence in ISEMA systems
grows, a natural next step is for the system to begin “closing
the loop”, by actually initiating development actions based
upon its analyses.

As a simple example, large systems often develop test
case suites that are so large and expensive to execute that
they can be run in their entirety only intermittently. For ex-
ample, the Mission Data System test suite was run only on
weekends since it took over a day to execute and required
machine resources not available during the working week.
In such situations, developers must rely on partial testing
before committing their code. An test case selection mech-
anism that includes ISEMA data could be integrated into a
daily build mechanism and automatically decide which set
of test cases to execute that would be most likely to reveal
introduced defects while staying within the resource con-
straints of the environment.

Measurement and analysis validation.At the end of
the day, collecting software engineering process and prod-
uct measurements, and even inventing plausibly interesting
analyses about this raw data, is not very hard. What is hard
is validation: ensuring that (a) the collection mechanisms
are actually collecting the data that they are supposed to be
collecting and (b) the analyses performed on the collected



data actually provide accurate and useful insight into the
corresponding software development. As the ISEMA com-
munity matures, much more effort must be devoted to mea-
surement validation.

Measurement validation almost always requires an inde-
pendent source of information about the measure being val-
idated. For example, we recently performed a pilot valida-
tion of the Zorro system for recognizing Test Driven Design
[10]. Zorro is a Hackystat-based system that collects sensor
data and analyzes it using a rule-based system that first par-
titions the stream developer’s activities into “episodes”, and
then analyzes the episode sequence with the goal of deter-
mining conformance to test driven design practices.

While the system seemed reasonable in theory, we didn’t
really know if the sensors were collecting the right kind of
data to support the right kind of episode partitioning, and if
the resulting episodes were being classified correctly, and
we couldn’t use Zorro’s data and analyses to validate it-
self. To perform the validation, we implemented a separate
system, called the Eclipse Screen Recorder, that created a
QuickTime movie of the Eclipse screen while the developer
was working. By comparing this independent source of data
about the developer’s activities to the Zorro analyses, we
were able to determine that Zorro was collecting the right
data and analyzing it appropriately around 90% of the time.

References

[1] R. D. Austin.Measuring and Managing Performance in Or-
ganizations. Dorset House Publishing, 1996.

[2] V. Basili, M. Zelkowitz, D. Sjoberg, P. Johnson, and
T. Cowling. Protocols in the use of experimental software
engineering artifacts. Technical report, Submitted to Empir-
ical Software Engineering, 2006.

[3] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. Clark,
E. Horowitz, R. Madachy, D. Reifer, and B. Steece.Software
Cost Estimation with COCOMO II. Prentice Hall, 2000.

[4] G. Burnell. Sixth Sense Analytics Home Page.
http://www.6thsenseanalytics.com/.

[5] P. M. Johnson. The Hackystat-JPL configuration: Overview
and initial results. Technical Report CSDL-03-07, Depart-
ment of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, October 2003.

[6] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Ka-
gawa, and T. Yamashita. Practical automated process and
product metric collection and analysis in a classroom set-
ting: Lessons learned from Hackystat-UH. InProceedings
of the 2004 International Symposium on Empirical Software
Engineering, Los Angeles, California, August 2004.

[7] P. M. Johnson, H. Kou, M. G. Paulding, Q. Zhang, A. Ka-
gawa, and T. Yamashita. Improving software development
management through software project telemetry.IEEE Soft-
ware, August 2005.

[8] P. M. Johnson and M. G. Paulding. Understanding HPCS
development through automated process and product mea-
surement with Hackystat. InSecond Workshop on Produc-

tivity and Performance in High-End Computing (P-PHEC),
February 2005.

[9] P. M. Johnson, B. T. Pentland, V. R. Basili, and M. S. Feld-
man. Cedar – cyberinfrastructure for empirical data analysis
and reuse. Technical Report CSDL-05-02, Department of
Information and Computer Sciences, University of Hawaii,
Honolulu, Hawaii 96822, May 2005.

[10] H. Kou and P. M. Johnson. Automated recognition of low-
level process: A pilot validation study of Zorro for test-
driven development. InProceedings of the 2006 Inter-
national Workshop on Software Process, Shanghai, China,
May 2006.

[11] C. Lofi. Continuous GQM: An automated framework for
the goal-question-metric paradigm. M.S. Thesis CSDL-05-
09, Department of Software Engineering, Fachbereich Infor-
matik, Universitat Kaiserslautern, Germany, August 2005.

[12] N. Nystrom. Standardized User Monitoring Suite (SUMS)
Home Page. http://productivity.psc.edu/.

[13] F. Schlesinger. ElectroCodeoGram (ECG) Home Page.
http://www.inf.fu-berlin.de/ecg.

[14] C. Seaman. Qualitative methods in empirical studies of soft-
ware engineering.IEEE Transactions on Software Engineer-
ing, 25(4), July 1999.

[15] G. Succi. Professional Metrics (PROM) Home Page.
http://www.prom.case.unibz.it/.

[16] K. Torii. Empirical Project Monitor (EPM) Home Page.
http://www.empirical.jp/English/index.html.


