AUTOMATED INFERENCE OF SOFTWARE DEVELOPMENT BEHAVIORS:
DESIGN, IMPLEMENTATION AND VALIDATION OF ZORRO FOR TEST-DRVEN
DEVELOPMENT

A THESIS PROPOSAL SUBMITTED TO MY THESIS COMMITTEE

DOCTOR OF PHILOSOPHY
IN

COMPUTER SCIENCE

By
Hongbing Kou

Thesis Committee:

Philip M. Johnson, Chairperson
Daniel Port
David Pager
Kim Binsted

March 29, 2007
Version 1.0.0

Abstract

In my dissertation research, | propose to develop a systemgproach to automatically
inferring software development behaviors using a techiguave developed called Software De-
velopment Stream Analysis (SDSA). Software Developmerggdt Analysis is a generic frame-
work for inferring low-level software development behagioZorro is an implementation of SDSA
for Test-Driven Development (TDD). In addition, | designaderies of validation studies to test
the SDSA framework by evaluating Zorro with respect to ifgatalities to infer TDD development
behaviors. An early pilot validation study found that Zoworks very well in practice, with Zorro
recognizing the software development episodes of TDD witd% accuracy [31]. After this pilot
study, | improved Zorro system’s inferencing rules and @atibn mechanism as part of my col-
laborative research with Software Engineering Group aft\thttonal Research Council of Canada
(NRC-CNRC). I am planning to conduct two more extended aih studies of Zorro in academic
and industrial settings for Fall 2006 and Spring 2007.

Abstract
List of Figures
List of Tables
Introduction
Related Work
Research Work in Academic Settings
Research Work in Industrial Settings
Process Conformance Studyof TDD
Research Questions
Experiment Design and Analysis

1
2

w

2.1
2.2
2.3

4.1

4.2

4.3

Pilot Study Material
Introductionto TDD
A.1.1 TDD Quick Reference

A.1.2 RhythmofTDD
A.2 Stack Implementation in TDD
User Stories for Stack Data Structure
User Stories for Roman Numeral

Al

Table of Contents

414 DataCollection

4.2.4 Proposed Data Analyses

Zorro Validation Pilot Study
411 PurposeoftheStudy
4.1.2 ResearchQuestions.
4.1.3 Research Methodology and Design

415 DataAnalysesandResults
4.1.6 ConclusionandDiscussion
4.1.7 Validity Analysis
Zorro Validation Case Study
421 PurposeoftheStudy
42.2 ResearchQuestions.
4.2.3 Research Methodology and Design

External Case Study

4.3.1 Purposeofthestudy
4.3.2 ResearchQuestions.

4.3.3 Research Methodology and Design

D Case Study ConsentForm @ i i e 50

E User Stories for Bowling Score Keeper i 52
F Participant Interview GuidelineinCase Study 57
G Participant Selections of TDD Analysis Usefulness Areas. 60
Bibliography e e 62

Figure
1.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Zorro Infrastructure

List of Figures

Zorro’s TDD Behavior Interface Report
Development Process QuickTime Video Recorded by ESR
Development Process QuickTime Video Recorded by ESR
TDD Heuristic Algorithms e
Example of ESR Video Script
Example of Development Activity Comparison betweenrdand ESR
Example of Development Behavior Observed via ESR

Episode Feedback

21
23
24
27
33
33
34

List of Tables

Table Page
4.1 Zorro's Inference Result Summary forPilotStudy 21
4.2 Validation Result by ESR Video Analysis for Pilot Study. 25
4.3 Example of TDD Episode ValidationResults 34
4.4 Example of TDD Episode Feedback Summary 36
4.5 Example of Non-TDD Episode Feedback Summary 36
C.1 RomanNumerals e 48
C.2 Roman Numerals Conversion Table 48
G.1 TDD AnalysisUsefulAreas, 61

Chapter 1

Introduction

Throughout the history of software engineering, much éffias been put on the descrip-
tion and understanding of high-level software processhs.Waterfall model, the very first software
process, has contributed to the success of many large sefsyatems. High-level software pro-
cesses divide the software development process into phalsese each phase lasts from a few days
to several months [37, 38]. For example, the requiremeralysis phase may last months before the
design phase starts. Recently, increasing effort has haampow-level software processes [32, 1],
in which a phase may last several minutes to a few hours orlgh Bhase defines how developers
and development team should carry on the work on daily baBie Personal Software Process
(PSP) [20] and Extreme Programming (XP) [22, 2, 13] are twangxes of a low-level software
process. Although proven to be useful in improving softwguality[14, 29, 42, 21], low-level soft-
ware process are hard to execute correctly and repeatadiydér to improve the quality of practice
and research of low-level software process, there mustre sapporting tools. In my dissertation
research, | focus on one low-level software process, thecc@kst-Driven Development (TDD) [4],
and | developed Zorro software system to study it.

Test-Driven Development (TDD) is an innovative one of thagbices of Extreme Pro-
gramming. In TDD, the software development process istiterand incremental [32]. There is
only one task to accomplish in an iteration. In a particul@ration, a unit test of the task is created
first followed by production code implementation. TDD is Ibain the foundation of the XUnit
framework [40], which has been ported to more than 30 langgslatynit testing has become a de
facto standard in the software industry. TDD is widely agodgby software professionals. An infor-
mal survey [44] conducted by Method and Survey magazineddliait 46% of the studied software
organizations perform unit testing informally, 41% of thedsed organizations document their unit

test cases, and 14% of the studied organizations use the ppidach.

7

“Clean code that works”[4] is the goal of Test-Driven Deyairent. To achieve this goal,
TDD summarizes its software development process as twa balsis: “(1) Write new code only
if an automated test has failed; (2) Eliminate duplicatidkent Beck, the pioneer of Test-Driven

Development, stated that there is an implicit order to safendevelopment using TDD [4]:
1. Red - Write a little test that doesn’t work, and perhapssdtieeven compile at first.
2. Green - Make the test work quickly, committing whatevessare necessary in the process.
3. Refactor - Eliminate all the duplication created by megatting the test to work.

At first glimpse, TDD seems easy, but in fact, it is a very hard difficult low-level software pro-
cess that requires much discipline to carry out correcilgt Fsoftware developers are not typically
educated to write unit tests for the program they developerdfore, in a lot of cases, software
systems are not designed for easy testing. Consequeniblogers often find it is hard for them to
write testing code at all, much less write testing code paamplementation. Second, following
the red/green/refactor software development patterninegja lot of effort. In TDD, software de-
velopers must continuously remain in the mindset of test:fivhich is initially counter-intuitive to
many of them [3, 45]. So they often apply it differently aatiog to their own experience level and
understanding [3].

TDD is gradually becoming a standard well accepted for smféwdevelopment in indus-
try, and yet there are problems in testability and diffeesnin understanding of this methodology.
Not surprisingly, the immaturity of TDD causes problems. efithare many important research
guestions regarding software development using TDD. Famgte, how do we know software de-
velopers will faithfully commit to the highly disciplinedOD practice? Will developers slip away
from TDD? When does it pay off to use TDD, and when does it ngigi? One thing is clear: these
guestions cannot be answered accurately without good a@ftmrocess measurement. However,
Janzen and Saiedian [21] stated that measuring the use @fvasodevelopment methodology is
hard. They claimed it is so hard to do accurately that pubtistata on the level of TDD adoption in
industry is either indirect or inaccurate [21, 44]. Fortiehg as my initial case study demonstrates,
measuring the use of certain software development mettlsokbdedoming feasible with the emer-
gence of technologies such as the Hackystat system [4182262, an in-process software metrics
collection and analysis framework.

As part of my dissertation research, | developed a softwgstes called Zorro (Figure
1.1) on top of Hackystat to infer TDD development behaviaisig low-level software development

activity data collected by Hackystat Eclipse Sensor. Zoeapgnizes and evaluates TDD patterns
using rule-based system support and the software devetdstieam analysis (SDSA) framework.
SDSA is a three-stage analysis technique that brings thé&ydeat framework and Zorro system
together. First, it merges software development actwitied in-process metric data together to
create a “software development stream”, a sequentialrstogdow-level software development ac-
tivities. Second, SDSA includes a tokenization subsysteah divides a single sequential stream
of low-level software development activities into coliecs of events called “software develop-
ment episodes”. Third, the JESS [15] rule-based systengnemes and classifies these episodes
according to the classification schema. SDSA binds these ttomponents together to assist the

measurement of software development methods and low4defelare process.

Test-Driven Development Conformance

Z5RR0| D B S

Episode 1 Episode 2 Episode n
Write Test Edit q
Create Object Compile V;:tne.l-.r:;t
Compile RunTest
'c’) [1]2]s8] [4]s5]e]7] [99 [100] 101

Merge/FlIter

&
>
Q

(;o\\ec‘ \\a°

3
i @

Development

Send

Ob]ec(Unit Test

Figure 1.1. Zorro Infrastructure

With the capabilities provided by SDSA, | defined a set of dpecules for TDD in
Zorro according to Beck [3, 4] and others who have describedptactices of TDD. Zorro uses a

two-step procedure to measure and evaluate the complidribe developer’s behaviors with the
practices of TDD. First, Zorro recognizes and classifiegfiisodes independently according to the
classification schema. Second, Zorro evaluates the iritetmzture as well as the context of the

episodes to deduce whether an episode is TDD conformant.or no

10

Chapter 2

Related Work

Much of the research work on TDD suffers from the threat ofrf&touct validity” [45]
because of the what has been termed as the “process contwhmoblem. Wang and Erdogmus
defined process conformance as the ability and willingnétkeosubjects to follow a prescribed
process. Janzen warned that inability to accurately chexiae process conformance is harmful to
TDD research [21]: Many organizations might be using thehmgblogy without talking about it.
Others might claim to be using a methodology when in fact reymisapplying it. Worse yet, they
might be advertising its use falsely. Surveys might be cotatlito gauge a method’s usage, but
often only those who are much in favor or much opposed to thtéadelogy will respond.

A handful of research work has been done on software proaditation [6, 23] and
the process compliance of Test-Driven Development [31448%, Cook and Wolf [6] developed
a client-server software system called Balboa to do prodiss®very and validation using a finite
state machine (FSM). Balboa collects developers’ invoaatiof Unix commands and CVS com-
mits to learn the software process using FSM and machinaifgptechniques. Cook was able to
reproduce the ISPW 6/7 process with Balboa in his researolelder, FSM does not look like an
ideal solution for process validation because of the corilgl®f the process FSM it generates. In
his example, the three algorithms RNET, KTAIL and MARKQV geated 15, 20 and 25 states re-
spectively, and the states are interweaved in complicagathers. It is hard to interpret the process
state chart without thorough understanding of Balboa aactiopted software process. Jansen and
Scacchi [23] simulated an automated approach to discovetyreodeling of open source software
development processes. They took advantage of prior kuoig®wl¢o discover the software devel-
opment processes by modeling the process fragments usidj_adBscription. Their prototype
simulation found that they could detect unusually longwdtitis and problematic cycles of activi-

ties. They suggested that a bottom-up strategy, togethbrantbp-down process meta-modeling is

11

suitable for automated process discovery. But they don laavorking software system except for
a prototype implementation.

Janzen [21] claimed that TDD is a kind of software developmmeethod, not a process
model, and that it has emerged out of a particular set of geoogodels. In contrast, Beck and
Cunningham, the pioneers of TDD, put it this way: “test-ficsding is not a testing technique
but is rather about design.”[3] If TDD is a design techniqueel & drives the implementation of
product code, then classifying it as a software processdsotgasonable. In my research, | have
characterized practices such as Test-Driven DevelopmmehParsonal Software Process (PSP) as
low-level software processes. A common characteristic loivalevel software process is that it is
defined by many frequent and rapid short-duration actiitignlike high-level and long duration
phases such as “requirement analysis” that might last wieekwnths, the activities in low-level
software process such as “refactor class Foo to extractanteIFoo” may take only seconds to a
few minutes [31].

Low-level software processes often face similar reseaudstipns as other, longer du-
ration software processes. For instance, what processrisntly occurring, what process should
occur, what are the impacts of a given process on the impgartanomes of software such as qual-
ity and productivity, and how can a given process be impramitailored in an organization? So
far, software engineering researchers have focused heawvithe important outcomes that TDD
brings to software products and software developers. Bedagogical [34, 11, 18, 36, 12, 30] and
industrial [16, 33, 5] evaluations of TDD have been conddictethe last few years. It is interesting
to note that number of research studies on TDD in acadentiogeis greater than the number of

research studies in industrial settings.

2.1 Research Work in Academic Settings

Most TDD research studies in academic settings seems toaiedthat there is some
degree of quality improvement, but that there are littlegpaonmer productivity benefits. Indeed,
some studies have shown quality improvements but at theotdstcreased productivity.

Muller and Hanger [34] conducted a study in an XP class in Geyrto test TDD in
isolation of other XP practices against traditional progmzsing. The acceptance tests were provided
to both the TDD group and the control group. Interestingiydents in the TDD group spent more
time but their programs were less reliable than the contalig.

12

Edwards [11] adopted TDD in a junior-level class to compahetiver students got more
reliable code after the use of TDD and WEB-CAT, an assignnsebinission system. It turned
out that the students using TDD reduced their defect ratmatiaally (45% fewer defects/KSLOC
using a proxy metric) after adopting TDD, and a posttesteyufgund that TDD students were more
confident of the correctness and robustness of their pragram

Geras, Smith and Miller [18] also isolated TDD from other XRgiices, and investigated
the impact of TDD on developer productivity and software lifyaln their research, TDD does
not require more time but developers in TDD group wrote mestst and executed them more
frequently, which may have led to future time savings on dging and development.

Pancur [36] designed a controlled experiment to compare WD Iterative Test-Last
approach (ITL), which is a slightly modified TDD developmgmnbcess in the order of “code-test-
refactor”. This study found that TDD is somewhat differerdnfi ITL but the difference is very
small.

A more recent study on the effectiveness of TDD conducted rop@mus, Morisio and
Torchiano [12] used the well-defined test-last and TDD apgines as Pancur did in [36]. This study
concluded that TDD programmers wrote more tests per unitaframming effort. More test code
tends to increase software quality. Thus, TDD appears todwepthe quality of software but TDD
group in the study did not achieve better quality on averhga test-last group.

Kaufmann [30]'s pilot study on implications of TDD, in coast, reported improved soft-

ware quality and programmers’ confidence.

2.2 Research Work in Industrial Settings

Several attempts have been made by researchers to stuggsoffuality and productivity
improvements of TDD in industrial settings.

George and Williams [17] ran a set of structured experimavitis 24 professional pair
programmers in three companies. Each pair was randomlgresssito a TDD group or a control
group to develop a bowling game application. The final pitsjezere assessed at the end of the
experiment. They found that TDD practice appears to yietteogith superior external code quality
as measured by a set of blackbox test cases, and TDD grougdpE8% more test cases. However,
the TDD group spent 16% more time on development, which cbaleé indicated that achieving
higher quality requires some additional investment of tilméerestingly, and in the contrast to the

13

empirical findings, 78% of the subjects indicated that TDRgtice would improve programmers’
productivity.

Maximilien and Williams [33] transitioned a software tearorh an ad-hoc approach to
testing to TDD unit testing practice at IBM, and this team ioyed software quality by 50% as
measured by Functional Verification Tests (FVT).

Another study of TDD at Microsoft conducted by Bhat and Namgap[5] reported re-
markable software quality improvement as measured in nuwifodefects per KLOC. After intro-
ducing of TDD, project A (Windows) reduced its defects raye2l6 times, and project B (MSN)
reduced its defect rate by 4.2 times, compared to the orgtonal average. Reportedly, develop-
ers in project A spent 35% more development time, and deeedoim project B spent 15% more

development time, than the developers in non-TDD projgusis

2.3 Process Conformance Study of TDD

As we can see from the literature, there are discrepancit® ieampirical findings across
both educational settings and industrial settings. Sonestithe discrepancies are dramatic, for
example [34] found that the TDD group yielded less reliabtgpams than the control group, while
[5] reported that the TDD group improved software qualitydwer four times.

Wang and Erdogmus [45] pointed out there are several ptiisibithat might explain
why there are the discrepancies in TDD research findingse¥ample, discrepancies could occur
due to differences in populations, differences in teachmeghods and materials, and differences
in the techniques by which TDD is compared. They argued thdd €mpirical software research
lacks process conformance, and therefore it suffers frarctmstruct validity problem (as is also
the case in some other empirical software engineering rgsedn [45], they developed a prototype
called TestFirstGauge to study the process conformanc®bf Ay mining the in-process log data
collected by Hackystat. TestFirstGauge aggregates satdevelopment data collected by Hack-
ystat to derive programming cycles of TDD. They use T/P réties of test code verse lines of
production code), testing effort against production eféord cycle time distribution as the indicator
of TDD process conformance. This project precedes the Zwfovare system [31], and in fact
it stimulated our research interest in studying low-lexadhsare process conformance. Unlike the
prototype implementation of TestFirstGauge in VBA usind=xcel spreadsheet, Zorro is integrated
into the Hackystat system for automation, reuse, and fléyibising rule-based system [15].

14

Similarly, Wege [46] also focused on automated support oDTidocess assessment, but
his work has a limitation in that it uses the CVS history of eodevelopers will not commit on-
going project data at the granularity of seconds, minutdsoars when they develop the software

system, making this data collection technique problenfatithe purpose of TDD inference.

15

Chapter 3

Research Questions

The long-term goal of my research is to understand how toacienize and improve
low-level software development behaviors. As a step indiatction, | am focusing for my Ph.D.
research on a specific kind of low-level software develogrbehavior: Test-Driven Development.
The Zorro system, which attempts to infer TDD low-level depenent behaviors, provides a way
to partially evaluate the overall approach and begin to tstded its strengths and limitations.

Zorro infers developer’s TDD development behaviors usiBgA. It is easy for software
developers to collect in-process development activit@sgiHackystat sensors, and it is also easy
for them to evaluate their TDD development behaviors usiog@ If Zorro’s TDD inference is
correct, then we can use it to assess TDD process conforndamicg the daily practice of TDD as
well as during empirical studies of TDD. However, does Zanfer developers’ TDD development
behaviors correctly? Will it falsely categorize some ndDEX development behaviors as TDD? Or,
will it misinterpret some TDD development behaviors as A@D? To answer these questions, we

need to conduct validation studies of Zorro. Some of the rimpgortant research questions are:

e Q1: Can Zorro automate the recognition of Test-Driven Dgwelent using automatically
collected low-level software development activities?
e Q2: Can Zorro help to improve the practice of TDD?
This is a hard question, but we can divide it into three smadisions with regard to user’s
roles.
— For beginners, can Zorro help them improve the compliandeXio?

— For experienced TDD practitioners, will Zorro help them nonye their TDD practice
by analyzing their TDD development behaviors?

16

— For researchers, can Zorro help them reach legitimate n@seanclusions on TDD

experiments by providing the TDD process conformance méiion.

Answering these questions requires a “mixed methods” reBestrategy [7]. Questions
Q1 can be investigated by evaluating Zorro’s data collectind TDD inference capability using
field observation research method. Investigating quesp@rrequires research methods such as
collecting users’ feedback or interviewing them. In my eesh, | designed a series of case studies

using these research methods to investigate the reseagshans | presented above.

17

Chapter 4

Experiment Design and Analysis

This chapter introduces three Zorro validation studiedla gtudy, a case study with stu-
dents from the software engineering class as participantsan external collaborative case study
with the TDD community of developers and researchers. Zoses low-level software develop-
ment activity data to infer developer's TDD behaviors. lderto validate its capabilities of data
collection and TDD behavior inference, a secondary dataceomust be used. In my dissertation
research, | will introduce two ways to provide the secondtata: recording individual developer’s
TDD development process using the Eclipse Screen RecoEfR)([10]; and gathering devel-
oper’'s feedback to their TDD behavior inference resultegishe Zorro validation wizard. | have
already used the ESR approach in the pilot study. In the slecase study, | will plan to use both

approaches.

4.1 Zorro Validation Pilot Study

In January 2006, we ran a pilot study at the University of Haimeorder to assess how
well Zorro infers TDD development process using the rulsedasystem. We found that Zorro

accurately recognized participants’ TDD behaviors in gonenvironment setting.

4.1.1 Purpose of the Study

There were two purposes for this study. One was to test wh&beo could collect
enough development activity data for TDD development bielamference. The other was to test
whether Zorro could recognize the actual TDD developmehabiers using rule-based approach.

18

4.1.2 Research Questions

In the pilot study, | wanted to test the correctness of Zgrraethodology for inferring
developer’'s TDD behaviors. In order to test this, | devetbgiee Eclipse Screen Recorder [10] to
do field participant observation. Ad addition, | also wantedest the capability of ESR to support

Zorro validation. The specific research questions for thet ptudy were:

e Qla: Does Zorro collect enough low-level development éiiv to infer developer’s TDD
behaviors?

e Qlb: Does Zorro's inference of TDD agree with analyses baped participant observation?

e Qlc: Is ESR a suitable tool for Zorro validation study?

4.1.3 Research Methodology and Design
Participants

The participants in this pilot study were experienced Jaegnammers who knew unit
testing well. | recruited 7 volunteers who were interested DD and were willing to participate
this study.

Design and Experimental Manipulation

This study used a pre-experimental design called the ooeestse study [7]. The treat-
ment in this study was TDD. Every participant developed allspragram that simulated a stack
data structure in Java using the Eclipse IDE and TDD. Befoeestudy started, we introduced the
red/green/refactor principle of TDD to the participantthigy did not know TDD before. The TDD
rhythm [9], TDD quick reference guide [8] and the step-witsck TDD implementation instruc-
tions were three supplemental material to help particgpptegram in TDD. ESR was used in this

study to record the development process for participanérwbson.

Instruments

The IDE for this study is Eclipse. | instrumented particiig|amf DD development pro-
cesses with the Hackystat Eclipse Sensor and ESR.

19

Procedure

1. Setup
The participants worked on their own computers or on a labprder we provided. Prior to
the study we confirmed that the lab computer had the followiftyvare installed:
e JDK
e Eclipse IDE
e Hackystat Eclipse Sensor [19]
e Eclipse Screen Recorder [10]
When participants chose to work at home on their own compwiasked them to configure
these software before participating this study.
2. Introduction to TDD
When patrticipants did not have prior knowledge of TDD, wettyiintroduced TDD to them
using Beck’s simple TDD abstraction: the red/green/reiactder of programming.
3. Development in the Lab or at Home

Stack is a well-known problem that works according to thetdlad=irst-Out (LIFO) princi-
ple. Participants in this study developed solutions to theksproblem using TDD method.
We provided them with three documents: the graphic illtisnaof TDD rhythm, the TDD
reference guide, and the user stories of stack with TDD impldation instructions at Ap-
pendix A.

4.1.4 Data Collection

The Hackystat Eclipse sensor collected and sent develdpaativities to the remote
Hackystat server. | collected the programming videos by ESR using memory sticks for
study conducted in the lab and email attachments for studglwzied by participants themselves at
home.

20

4.1.5 Data Analyses and Results
Inferring Participants’ TDD Behavior Inference

The Hackystat Eclipse sensor collected low-level develpnactivities and sent them
to a Hackystat server. For each participant, | defined a Hdakyproject and inferred their TDD
behaviors with Zorro. Figure 4.1 is a Zorro inference repagmple using my own data. It displays

both low-level development activity data used for TDD iefiece and the inferred results.

hongbing@hawail.edu Development Stream Episode

o—

Alicia admin | analyses | preferences | alerts | extras | help | home
Development Stream: Displays Development stream and episode classification. (more...) Analyze
Project: StackWithTDD -~
StartDay: [or =1 Py =1 2006 =1
EndDay: [e2 =1 [y = [2006 =]
Episode Episode Actions
Classification
(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase
01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java
01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()
01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, Al=+1
01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type
01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java
01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack
01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java
01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java
01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()
01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java
01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1
01/01/2006 23:32:31 TestStack.java ST ST oK
(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()
01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, Al=+1
01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack
01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)
01/01/2006 23:35:02 Stack.java PRODUCTION EDIT Osec MI=+1, SI=0
01/01/2006 23:35:13 TestStack.java ST ST FAILED
01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag
01/01/2006 23:36:19 Stack.java PRODUCTION EDIT Osec MI=0, SI=+1
01/01/2006 23:36:34 TestStack.java ST ST oK

Figure 4.1. Zorro’s TDD Behavior Interface Report

Subject ID | Duration | Episode| TDD | Refactoring| Test-Last| Unclassified
44:53 15 1 7 1
28:17 13
48:00 14
66:32 14
43:14 16
45:57 11
7 32:40 9

Total | \ 92 |

o0 AW NP

AWl Oo|O| 0O
W | || o1 O

M rlo|rir|lolo
o|olo|ulo|o|o

w
o
N
ol

Table 4.1. Zorro’s Inference Result Summary for Pilot Study

21

Table 4.1 is a brief summary of participants’ TDD behavior&ired by Zorro. They
spent 28-45 minutes for this study and yielded 92 episodestoZecognized 86 of them, which
accounts for 93.6% of all episodes. Interestingly, amongu@epgnizable episodes, 5 of them
were from one participant only. It was also notable thatipigents almost never refactored, and
they did “Test-Last” half of the time (in the unit of episodember). Here “Test-Last” means that
participants write test code after production code has baplemented, which is the opposite side
of TDD.

Development Process Video Analysis

While participants developed solutions to the stack datacstre, they enabled ESR to
record the development process as well. Here ESR is the chéthdield participant observation.
It captures the Eclipse screen per second and compress piheerh pictures into a QuickTime
movie file. Figure 4.2 is a screen dump | made when | played aatyzed a ESR video using the
QuickTime Pro software [39].

| used Microsoft Excel for development video annotationlgsisa. When there was one
development activity in the recorded video, | wrote down atrneinto Excel. Each entry has the

start time, end time, activity abstract, and annotatiorenked from the video in Figure 4.3.

Validating Zorro's Data Collection

The observed activities from ESR videos in Figure 4.3 weeglie validate Zorro’s data
collection. The comparison between the observed acsvitsing ESR video and activities collected
by Zorro allowed us to learn: which activities were missedZwoyro, which activities were not
collected correctly, and whether the errors were severeob(Figure 4.6). In this pilot study, |

found 3 types of data collection problems in total:

e Problem 1: Edit work is not significant.

Severity: High

Reason: Edit work does not change object metrics: number of statésremd
number of methods, or there is only one state change eventreddor
the edit work.

Result: Episodes were misclassified.

Resolution: Change the implementation of file edit sub stream in SDSAato flar
file size change as well.

Affected: 6 episodes.

e Problem 2. Missing compilation error on test code.

22

File Edit Wiew Window Help

Juva - TestStack java - Eclipse SDK
Fa Ed Soures Refactor Navete Search Promon Bun windoe belp
Al el | W O (g
L T ™ - > A
tpackade edu. havell.anacks =

S amport dunit.fvarevork. TestCaser = — =
- Start with Green

T YRevew Bl

= 8 mdhhawalstact
51 [3] Stackfava
=t 4] TestSack.iava
1= 2 Tostonack

ta the T applicset

-l IRE Sy'atam Ltk ary [kl 5.0 0] B pamidier Aasaa i Wk

a1 budd Jo
= {
= iDpublic clags Test3teck extends TestCssa ¢
fE% Tests the LeSmpty wetuod Of steck. ¥
public void teosIeSmprp) |
Frmck stmok m new Steck():
d8gertTraal"Checking chat che steck 13 erpty”, STARCR. L@Ewony()]:
17
18
18]
A outire 1T - Aaa e T =0

@ eduhasal stack
o iwport dackuorions
=@ TedRack

@ tosdsEmptyg)

"T"._A'_".S =

| rosonce | inFoader | sogmk|

Wrkekic Sk froert | 1614 Lavishigs (5053 L0

[
|
v

20:57:34:00

00:00:13

L ®@®®® —A

Figure 4.2. Development Process QuickTime Video Recorgdd3IR

23

£ Microsoft Excel

- Summary.xls

@Fﬂe Edit Yiew Insert Format Tools Data Window Help Adobe POF

FE CEX
JNEIET

L 14:56:21

| 14:58:27
14:68:52

i 14:55:05]
12| 14:56:10
R R

| 14:56:22)
| 145648

20| 14:53:05
| 14:53:83
14:59:85
| 15:00:16)

DER SRY s®BY o - (&= 485 @S0 -BDEGE. W28 2
Al _:_I =| From

S 5 c — 0 I
1 [From To _ Abstract o ‘Annotation

2 | 14:51:57] 14:51:58 Create project TDDStack |Create a new project

3 145221 14:52.48 Create Test class (Create TestStack.java which extends TestCase

4 | 145248 14:53:30 Add testcase testStackEmptiness() Add and implement testStackEmptiness()

8 145331 14:53:31 Compilation error Stack cannot be resalved to a type

B | 145345 145412 Create object Stack Create object Stack with empty constructor

7| 145413 14:54:16 Read code on TestStack [There is still one compilation errar.

8 | 145817 _14 64 31 Add methnd |5Emt 0 Add method isEmpty() and it retuns true

9 14:54:33 14:54:50 REH T Test passes

14:56:08 Add testcase testPushOnel)
14:56:10 Compilation error

14:56:20 Read Stack()

14:56: 21 Switch back to TestStack()
14 56 46 Read TestStack

.14 58 26 Refactur |mp|ementat|0n

14 58 15 Create methud ushStrm

Add and edit testFushOne()
The methad push(String) is undefined far the type Stacl
'Fead and get ready to implement Stack '
|Switch back to TestStack

Read cnde in TestStack

Refertnjavaduc and use java. util. Stack as object contz
Create and |m|ement rmethod |

push trm

1.4:5.3:52_'Create testcase testFPop()
14:59:53 Compilation error
15 DD 12| Add methnd -c' and its implementation

[Create testPop to check whether stack is empty after ¢

The method pop() is undefined for the type Stack
Implemeant pop) which returns null and does nothing

Figure 4.3. Development Process QuickTime Video RecorgeiSR

24

Severity:
Reason:
Results:
Resolution:
Affected:

Low

Changes on production code cause exception on inactiveaest
Episode were misclassified.

Fix Hackystat sensor to report all compilation on inactive &s well.
2 episodes

e Problem 3. Two unit test invocations are grouped together or one tesication is divided

into two continuous episodes.

Severity:
Reason:
Results:
Resolution:

Affected:

Medium
Eclipse sensor collects multiple data entries for one imo.

Two or more episodes were grouped together or divided rieguthat
they cannot be classified correctly.

Tag one unit test invocation with run time to group multiplatuest
entries belong to one test invocation together.

3 episodes

Note that these errors affected 11 episodes in this study.

Validating Zorro’s TDD Behavior Inference

ESR was the method we used to observe the participants’ lmebavBy playing the

recorded movie file, | compared the observed behaviors tpaheipants’ TDD behaviors inferred

by Zorro. Table 4.2 lists the comparison results. This mhnamparison by human being con-

Subject ID | Episode| Classified| Wrongly Classified| Percentage
1 15 14 2 13.3%
2 13 13 3 23.3%
3 14 14 1 7.1%
4 14 14 1 7.1%
5 16 11 1 9.1%
6 11 11 1 9.1%
7 9 9 1 12.5%
\ Total | 92 | 86 | 10| 11.6%]|

Table 4.2. Validation Result by ESR Video Analysis for PERitidy

cluded that 11.6% of the recognized episodes were wrondgrrad by Zorro in this study. It

indicates that Zorro infers developer’'s TDD behaviors ecity 88.4% of the time.

Data collection problems caused most of the inference ®rrimfrequent invocation of

unit testing by participants was another problem, whichdgéd episodes with too many activities.

Problem 4 describes this type of error.

25

e Problem 4: An episode has too many activities.
Severity: Low

Reason: Participants did not invoke unit testing frequently enough

Results: Episodes were misclassified.

Resolution: Introduce long episode type and avoid inferring episodéwib many
activities.

Affected: 2 episodes

4.1.6 Conclusion and Discussion

Participants in this study spent 28 to 66 minutes on the progring task using TDD.
Zorro partitioned the overall development efforts into 9&sedes, out of which 86 were classifiable;
6 were unclassifiable. It classified 76 out of 86 episodesctyrresulting in classification accuracy
rate 88.4%.

The analysis result demonstrates that Zorro has the palkdatunderstand developer’s
TDD development behaviors automatically using low-level/e&lopment activities. Using ESR
video analysis, we found that there were 3 kinds of data ctidle problems in Zorro, which af-
fected 11 out of 92 episodes. Overall, it collects enoughlkwel development activities correctly
most of the time for TDD behavior inference. This provides fupporting evidence to research
guestion Qla. Following this study, | fixed these three datiection problems in the current ver-
sion of Zorro.

Two out of 93 episodes were incorrectly inferred by Zorrochese its inference rules do
not work well for long episodes which have too many actigiiigernally. It provides the supporting
evidence to research question Q1b. In the current versiaowb, | improved the inference rule
for relatively long episodes, and introduced a new type dfafes which have too many activities
or lasts too long a time.

The results from this pilot study indicates that the redeanethod is appropriate. The
ESR has the capability to record incremental small changegerby participants. Although ESR
caused a small delay when it is initialized, participantsrdit notice much delay in the development
process. With the ESR video, | was able to validate both threcZodata collection and inferences
of TDD behavior. Thus, there is supporting evidence to metequestion Qlc. The ESR is an
appropriate tool to observe participant’s programmingavers for Zorro validation study.

Overall, Zorro works well in collecting low-level develommt activities and inferring
developer’'s TDD behaviors in the pilot study. However, ongbfem with our pilot study is that

participants only spent 50% of their development time ddibiD. There are several possibilities

26

that could explain this phenomenon. One possibility coddhat stack is too simple and devel-
opers did not need to fail tests first to have the correct implgtation. Or it could be that Beck’s
concise summary of TDD is just too simple. Real TDD developimge much more complicated
than he described. For instance, a developer can add a rethigedoes not fail initially because
the functional code works well even without any change. Teigelopment pattern should be TDD
compliant although it is neither test-driven nor refagigti Therefore, | defined a more sophisti-
cated two-step model to infer TDD development behaviorguifé 4.4) in this study. First, TDD

Episode One-way Two-way

NO NO
Refactoring NO YES
Refactoring NO YES
Refactoring NO YES
Test-addition NO YES
Test-addition NO YES
Refactoring NO YES
Test-first YES YES
Refactoring YES YES
Refactoring YES < YES

Figure 4.4. TDD Heuristic Algorithms

development episodes are classified independently ustaghal data. Second, a heuristic algo-
rithm is applied to determine whether an episode is TDD conémt or not. Figure 4.4 has three
lists. The left-most one is a list of episodes recognized byrZs TDD inference rules. As their
names indicate, the episodes can be “test-first”, “tesitiadd] “refactoring”, or “test-last” etc. The
one-way and two-way TDD heuristic algorithms are on thetrgjtie of Figure 4.4. The one-way
algorithm uses look-forward approach to determine whedhegpisode is TDD conformant, while
the two-way heuristic algorithm uses both look-forward suk-backward approaches. Figure 4.4
indicates this difference using a single-head arrow andubldehead arrow. Our preliminary work
suggests that the two-way heuristic algorithm can undegstaal world situations better than the

one-way algorithm.

27

4.1.7 Validity Analysis

There were several threats to the validity of this study. Onnem is that some patrtic-
ipants did not know TDD well prior to the study. Therefore, previded a graphic illustration of
the TDD rhythm [9] and a short list of TDD reference guides [8hother threat to validity is that
certain applications are hard to test. To minimize the &fec untestability, we used the simple
and well-known stack problem in this study. With regard e validity of data collection, we used
unobtrusive data collection utilities: the Hackystat gs# Sensor and ESR. Both tools required
little overhead from participants [26, 25] at the beginnangend of the study.

There were two valid external validity problems in this stud@he first one was the sim-
plicity and stringency of TDD. In the pilot study, we integbed TDD as strictly as Kent suggested
in [3, 4] and Doshi recommended in [9, 8]. The second one watswie only had 7 participants in
this study. We hope to address both problems in the futudbestu

4.2 Zorro Validation Case Study

The pilot study of Zorro was a success. It convinces us thatZorule-based approach
has promise for developer’s TDD behavior inference. It desmonstrates that the research method-
ology works. Following this study, | fixed several data ccfien problems found in the pilot study.
We also improved Zorro’s TDD inference rules based on thet gitudy and collaboration with
Software Engineering Group at the National Research Cbah€anada.

In Fall 2006, we plan to conduct a case study of Zorro in a so#vengineering class at

the University of Hawaii.

4.2.1 Purpose of the Study

Currently Zorro collects development activity data moreusately, has a more sophis-
ticated episode classification schema, and infers develDp® behaviors based not only on the
episode’s internal structure but also the context in whitthepisode occurred. The purpose of this

study is to:
1. perform Zorro validation study using the Eclipse Screend®der;

2. perform a second type of validation in which participgiesvide feedback through the web-

based validation wizard of Zorro;

28

3. obtain feedback regarding whether Zorro can help TDDryesgs through a post-test inter-

view.

4.2.2 Research Questions

In this case study | will test Zorro’s abilities to: collettet necessary activity data, infer
TDD behaviors correctly, and help beginning TDD learnetse $pecific research questions for this

study are:

e Q2a: Does Zorro collect software development activitiesueately enough for episode par-
titioning and TDD behavior inference?

e Q2b: Does Zorro's inference of TDD behaviors agree with ysed based upon participant
observation?

e Q2c: Does Zorro’s inference of TDD behaviors agree with wieticipants believe to be
their TDD behaviors?

e Q2d: Does Zorro provide useful information for beginnersitalerstand TDD and improve
their TDD development?

Note that these research questions support the overadirodsguestions for this thesis as
described in Chapter 3.

4.2.3 Research Methodology and Design

Participants

The participants in this study will be students in the sofevangineering classes at the
University of Hawaii during Fall 2006. Unit testing and T&xtiven Development are two skills
required by this study. There are 15-16 students in this@as we anticipate that at least a dozen
students will participate in this study.

Design and Experimental Manipulation

This study uses mixed research methods[7]. While test stajeork on the bowling game
problem using TDD, we will record their development procesth ESR[10]. After finishing the
TDD programming, participants will launch the analysisidafion wizard of Zorro to validate its

29

TDD behavior inference. Finally, we will interview them. &lstudy will last 2 hours for each test
subject including a 90-minute TDD programming session, #nirtute Zorro evaluation session,
and a 15-minute interview.

Instruments

Eclipse is the IDE that will be used. We will instrument peigants’ TDD development
using the Hackystat Eclipse sensor[24] and ESR[10]. Rpatits will evaluate Zorro’s inference
of their TDD development using Zorro’s web validation widavVe will also record the participant

interview with notepad and tape recorder.

Procedure

Students will learn TDD in the software engineering class laawve hands-on practice on
TDD programming after the class. After this training, welwgiquest volunteers to participate this
case study, and schedule a 2 hour time slot to participatsttitly in the lab. There, they will do
TDD development on the “bowling score keeper” problem (Appe E) for 90 minutes. Afterwards
we will ask them to validate Zorro’s inferences of their TDBvdlopment. Finally | will interview

them for 15 minutes. Below is a more detailed descriptiorhisf tase study procedure.

1. Teaching of TDD

Instructor of the software engineering class will give a TI@Bture to students. Students will
have the first 20 pages of [4] as the reading assignment andds+we practice on “Roman

Numeral” as the programming assignment.

The lecture will include the following contents:

e Introduction to TDD

— The two principles of TDD from [4]

— The red/green/refactor pattern of TDD

— TDD rhythm [9]

— TDD vs. Unit Testing

— A TDD example: implementing stack by writing test first
e Why TDD?

— Developer gets quick feedback.

30

— TDD improves software quality.

— TDD promotes simple design.

— Microsoft has successful story on TDD [5]

— Test Driven Development proves useful at Google[43]

e About TDD

— TDD may not be appropriate for everybody.
— TDD is about design.
— Some studies show that TDD improves software quality.
— TDD may reduce productivity.
— TDD references including testdriven.com, mailing list drals.
e Reading and programming assignments
— Page 1-20 of Beck’s book “Test-Driven Development by Exahpt]
— TDD Quick Reference [8]

— Practice TDD on Roman Numeral Problem (Appendix C)

2. TDD Development in the Lab (90 minutes)

“Bowling score keeper” is a widely used problem for TDD raska | designed user sto-
ries for this problem to fit the purpose of this case studyaese Participants will develop
solutions following the provided user stories (Appendix B)90-minute time limit will be
enforced. This time frame should be sufficient regardlesstidr they finish the program-
ming task or not.

3. Zorro’s TDD Behavior Inference Validation (15 minutes)

After participants finish the TDD programming work on the tiogy game, they will use
the Zorro evaluation wizard to analyze their TDD developtremd validate Zorro’s TDD
behavior inference (Figure 4.8).

4. Interview (15 minutes)

In the end | will interview participants. The purpose of thiterview is to learn participant’s
opinions on unit testing and TDD, discover questions anfllpros they may have, and inves-
tigate whether and how Zorro can help TDD beginners. Theniige protocol and outline

are available at Appendix F.

31

Data Collection

Hackystat sensor data and the participants’ Zorro evalogstwill be stored at the remote
Hackystat server. ESR will record the TDD development pgegdrto QuickTime movie files in the
lab computers. In the interview | will use notepad and tapender to record the conversations with

participants.

4.2.4 Proposed Data Analyses
Zorro Data Collection Validation

The Hackystat Eclipse sensor collects low-level develagraetivities. These raw sensor
data are sent to a Hackystat server. Zorro processes thvesemaor data to perform TDD behavior
inference. One purpose of this analysis is to verify thatHlagkystat Eclipse sensor can collect
enough development activity data, and collect it correfilyTDD developer behavior inference.
There are two aspects of this problem. One aspect is whetllecied data are accurate, which
is research question Q2a. The other aspect is whether thedidction errors will cause episode
misclassification, which is related to research questio?2as §hd Q2b.

| will use the same analysis method as in the pilot studytHivsill play the development
process video recorded by ESR to observe the developméwitiast Then | will write down the
observed development activities into Excel as shown inreigubs.

The observed development activities are used for compaagainst the development
activities reduced by Zorro (Figure 4.1) from raw sensotadaFigure 4.6 is an excerpt of the
comparison of the development activities from these twa datirces. Comparing the two sources
of data will allow us to verify Zorro’s data collection congpéness and correctness.

I will use the descriptive analysis to summarize analysssilts after comparing the two
data sources. For example, assuming there is a problemlaciod unit test invocations, | will

present it as follows:
e Problem: Two unit test invocations are grouped together.

e Result Two or more episodes can be grouped together so that theytée classified

correctly.

e Affected Episodes 2

32

£ Microsoft Excel - Summary. xls

COxX

; File Edit Wiew Insert Format Tools Data Window Help Adobe FOF
DEEA SRY yBRRT o-- &= A4 WHWRE B, 93 A »
G5 v -
| B T = F |

4 |(tdd, 2) | 23:28:32 23:28:43 New project |Create new project StackiVitts
5 | 2328145 23:29:21 MNew TestStack Create test class TestStack w
5| | 223:28:25) 23:29:55 Edit class javadoc Edit javadoc for TestStack ja
7| | 23:29:55 23:30:08 Add testEmpty Add skeleton code of testea
5 | | 23:30:08| 23:30:56 Edit testEmpty Create Stack instance and i
Sl | 23:30:57) 23:30:57 Build error Compilation error because 5
10 | | 23:30:59 233104 Create Stack Add class Stack with Eclips
T | 22:31:04 | 23:31:04 Build error isErmpty() is not defined.

1z | 233104 233131 Edit Stack \Add javadoc for class Stack
sl | 23:31:32) 23:31:36 Add test method isEmpty() Use auto add function to ad
14 | | 23:31:36 23:32:20 Edit isEmpty() i Empty() just returns true a
15 | | 23:32:26 23:32:32 |[Rin [estSiac

17 (tdd, 1) | 23:32:40 23:32:55 Add testcase testPushOner Add skeleton code for testca
18 | | 23:32:55) 23:34:24 Edit testcase testPushOne| Instantiate stack and invoke
19 233424 23:34:24 Build error Compilcation error because
H'o'h‘ﬁ_.’ - d ﬁ.?z%_-zzlz'zri.uaaz??;n? E it 2 ethmdﬂ: iantt | Adgd|

Ready |

Figure 4.5. Example of ESR Video Script

B3 Microsoft Excel - Summary.xls E‘E‘g‘

Fle Edit View Insert Format Took Data Window Help Adobe PDF =X
DEES GRY s 2B - Q= AHE WS 0r v B).[88 A
Development Stream Episode
| =
20min | anaiyses | pretesences | tests | extras | help | home 5 5 = 3 =
== 4 (tdd, 2) 23:28:32 23:28:43 New project Create new project Stackiviti
5 23:28:45 23:29:21 New TestStack Create test class TestStack w
6 23:29:25| 23:29:55 Edit class javadoc Edit javadoc for TestStack.javes
7 23:29:55| 23:30:08 Add testEmpty Add skeleton code of testcasy
8 23:30:08, 23:30:56 Edit testEmpty Create Stack instance and in,
9 23:30:57 | 23:30:57 Build error Cormpilation error because Sf
10 23:30:59| 23:31:04 Create Stack Add class Stack with Eclipse
11 23:31.04| 23:31:04 Build error isEmpty(} is not defined
12 23:31:04 23:31:31 Edit Stack Add javadoc for class Stack.j
12 23:31:32 23:31:36 Add test method isEmpty() Use auto add function to add
14 23:31:36] 23:32:20 Edit isEmpty() isEmpty(} just returns true an
15 23:32.26| 23:32:32 |RURL ok Test passes
16 .
17 (tdd, 1) 233240 23:32:55 Add testcase testPushOner Add skeleton code for testcas 2
ned o the e Stack 18 23:32:55 23:34:24 Edit testcase testPushOned Instantiate stack and invoke
19 23:34:24| 23:34:24 Build error Compilcation error because ‘
o - 71% 2405 7"\7 07 Fdit rl?emmﬂfwem A \:rﬂ»
Ready. 4

Figure 4.6. Example of Development Activity Comparisoniztn Zorro and ESR

33

Validating Zorro’s TDD Behavior Inference

The purpose of this analysis is to answer research quesbn tQat is, whether Zorro’s
TDD behavior inference agrees with the observed behavibtseoparticipants using ESR. ESR
video is the method used for participant observation inghisly. As in the pilot study, we will use
the ESR video to validate Zorro’s TDD behavior inference. igying the movie files produced
by ESR, we can observe the participants’ development betsaiirigure 4.7). For example, in the

programming session Figure 4.7, Zorro failed to recognitegjidimate TDD development behavior

because the inference rules were insufficient. | will useébketas shown in Table 4.3 to summarize

E3 Microsoft Fxcel - Summary.xls

»|

@ Eile Edt Yiew Insert Format Tools Data Window Help Adobe PDF __‘ﬁjﬁ]
NEEERAY sBRI ~-~ REstiiBeDEE 2278
c17 Rl =

A C E] E Bl
3 |Number Zorro Video Analysis From To Abstract

4 #1 Unclassified, 1) Test-Driven : 1 20:49:18 20:49:30 Create project StackyHa
5 | 20:49:30 20:49:45 Hide project

8 | 20:48:45 20:50:40 Create project stackTdd
7 20:50:45 20:51:10 Create test class TestSt
8 20:51:14 20:51:30 Create src holder

9 2005144 20:52:14 Write javadoc and remov
10 20:52:54 20:53:38 Create testcase testlsEm;
| 20:53:38 20:53:39 Compilation error

12 20:54:00 20:54:09 Create Stack class

13 20:54:09 20:54:09 Compilation error

14 | 20:54:10) 20:54:50 Add javadoc on Stack an
15 20:54:50 20:55:02 Add rmethod isEmpty

16 20:55:04 20:55:25 Edit javadoc
17| I ! 20:56:25 20:56:25 Cornpilation error

18 20:55:40 20:55:85 Modify class

19| 20:56:55 20:55:55 Cormpilation error

20| 20:55:56 20:57:16

21| 20:57:30

2

23 |#2 ftdd, 1) Test-Driven : 1 20:58:32

Ready

e

4T T — i —, I <

MUk

the episode validation results.

Figure 4.7. Example of Development Behavior Observed vig ES

Subject| Duration Finished Total | Correctly Recognized Inference
ID User Stories Episodes Episode| Accuracy
1 44:53 10 15 15 100%
2 28:17 13 20 19 95%
3 48:00 8 14 13 93%
4 66:32 12 20 18 90%
5 43:14 11 22 22 100%
6 45:57 9 15 13 87%

Table 4.3. Example of TDD Episode Validation Results

34

Using Developer’s Feedback as a Second Method for Zorro Valation

TDD is a new practice aiming at “clean code that works”. Rezlg/refactor is Beck’s
simple model of TDD; however, it may be too simple for real ld@ituations. For example, ex-
perienced TDD developers often write a series of tests thaiad require additional production
code implementation. In Zorro, | developed a set of rulesiterideveloper's TDD behavior based
on Beck’s TDD principle and additional knowledge from TDDapititioners. Therefore, Zorro's
TDD inference is somewhat subjective. The purpose of thidyars is to provide additional data
from participants to cross-validate Zorro's TDD behaviaference. This effort supplies research
guestion Q2-4, that is, whether participants agree with®T DD developer behavior inference.

Zorro provides an episode validation analysis for usersis @halysis presents Zorro’s
TDD behavior inference and the underlying reasoning pacétsprovides three choices for par-
ticipants to indicate whether they agree or not with Zorinference on their TDD development
behaviors. In the same analysis, they can also use a setck-bbges and a text-box to provide

additional information about their actual developmentdsédrs (Figure 4.8).

' Hackystat - TDD Episode Validation - Mozilla Firefox F@ E|E\§l
Eile Edit Yiew Go Bookmarks Tools Help
<::| hd ' - Ey’j i\jﬂ {3 https/fhackystat.ics,hawaii.edufhackystat /controller A @ G0 EJ‘,
z [Thiz portion of development 0ppcars [na you feel that this | (1) 11/01/2006 101450 TestFrame.java TEST EDIT 33sec MI=0{1} 2
[to_be TOD conformant becauze: |portion of developmentis | (2 11/01/2006 10:14:55 TestFrame java ADD METHOD void testlrrequ
i ?
Tests wars written bafors ";E_D- e [3) 11/01/2006 10:15:27 TestFrame java TEST EDIT Brec MI=+1(2]
R oo yes Uno Uden'tknow | gy 11/01/2006 10115127 TestFrame.java COMPILE The attribute v
This episade looks like o typical |This episode is about: (5) 11/01/2006 10:15:51 TestFrame.java TEST EDIT Osec MI=0(Z),
test-first cpisade because: | ST e (6) 11/01/2006 10016103 TestFrame java S T: =T FAILED
Some tests were added (1), refactaring (7) 11/01/2006 10:16:11 Frame java BUFFTRANS FROM TestFran
Thenar conpilation erxox El wadi [8) 11/01/2006 10:17:27 Frame java PRODUCTION EDIT 66sec MI=0(1}
SEEUEL el Al e Sdingiet 9) 11/01/2006 10:17:30 Testf [R
produrtion code was edited || [ljust running tests = e ST A,
128). Then tests were run D el
with failures (6. Then o
production code was again Cother
edited (8).
|Cor
v
< >

Done

Figure 4.8. Episode Feedback

This analysis cross-validate the TDD behavior validatioalgsis using ESR video. | will
use tables 4.4 and 4.5 to report the analysis results. | mitlley categorization and description to
interpret the research findings. Tables 4.4 and 4.5 illtesttee summary of this analysis.

35

Subject ID | Episodes| TDD Episodes| Episodes agreed Episodes disagreedUnsure
1 20 18 16 1 1
2 14 14 14 0 0
3 19 15 15 0 0
4 24 20 19 0 1
5 22 22 22 0 0

Table 4.4. Example of TDD Episode Feedback Summary

Subject ID | Episodes|| Non-TDD Episodes Episodes agreed Episodes disagreedUnsure
1 20 2 1 0 1
2 14 0 0 0 0
3 19 4 3 1 0
4 24 4 4 0 0
5 22 0 0 0 0

Table 4.5. Example of Non-TDD Episode Feedback Summary

Analysis of Participant Interviews

The purpose of this analysis is to answer research quest2zef, @hat is, whether Zorro
provides useful information for TDD beginners. | will usestimterview research method to collect
data about: participant’s opinions on unit testing and TBBbBrro’s usefulness, and whether Zorro
is helpful for TDD beginners. | will put participants in twaiegories according to their opinions
on unit testing: developers who are strongly in favor of testing for high quality software, and
those who are not. Since TDD depends on unit testing, thegoatation will help us understand
TDD beginners’ needs better.

In the interview, | will ask participants to evaluate the fusgess of Zorro's 5 TDD anal-
yses. If an analysis is useful, then | will ask what it can bedu®r. | will use the pattern matching
analytic technique to summarize the interview data. Fomgta, participants who are enthusiastic
about TDD improvement may find the “Zorro Demography Analy$o be very helpful for them.
The participants who do not buy into TDD may only want to knoWwether their manager will be

okay with their TDD performance if it is required.

36

4.3 External Case Study

The pilot study and case study are the foundations of thesarek for evaluating the au-
tomation of TDD behavior inference. This last study compais the previous studies by gathering
feedback from the community of TDD practitioners and reseears.

4.3.1 Purpose of the study

The first two studies tested the capabilities of Zorro’s TDEhdwior inference in labora-
tory environments. The purpose of this study is to:

¢ validate Zorro’s rule-based inference of developer’'s TDdwiors;

e investigate Zorro's uses for TDD learning, improvement] eesearch.

4.3.2 Research Questions
The specific questions for this research are:
e Question Q3a: Does Zorro infer the TDD behaviors correclparticipants’ perception?
e Question Q3b: Are Zorro’s TDD analyses useful for partiofs&

e Question Q3c: How can Zorro be used to assist TDD learningtorement, or research?

4.3.3 Research Methodology and Design
Participants

The participants of this study will be TDD learners, prastiers, and researchers from
the TDD community. We will solicit participation from the TDcommunity using email and news

group.
Design and Experimental Manipulation

This external case study will use the one-shot case studprgs method. Zorro will be
the treatment of this study. We will collaborate with papgants evaluating Zorro in their environ-
ments. We will interview the participants to collect data.

37

Procedure

1. Zorro Demo Implementation

As a first step, | implemented a demonstration wizard of Zghrowing the capabilities of
Zorro [47]. This application demonstrates 5 analyses Zpravides, each comes with the
introduction and interesting findings. The demo also previd feedback page for viewers to

reach us.

2. Participation Invitation

We will disseminate an email with the description and puepafsthis study to the community
of empirical software researchers and XP practitionerse fliure actions will depend on

what feedback we will get.

38

Appendix A

Pilot Study Material

A.1 Introduction to TDD

Test-driven development is a new way to develop softwarethWDD developerq1)
write new code only if an automated test has failed; (2) elate duplication iteratively in software
development.We will be implementing a stack data structure in TDD. Pleesep this in mind
while you are participating this study. | provided you witlgaick reference [8] and the rhythm of
TDD [9] to help you do TDD programming.

A.1.1 TDD Quick Reference

(Picture of Gunjan Doshi's TDD quick reference guide [8].)

A.1.2 Rhythm of TDD

(Picture of Gunjan Doshi's TDD rhythm guide [9].)

A.2 Stack Implementation in TDD

| provide additional instructions for this pilot study. Btsection includes description and
instructive procedure to implement the stack data stredtuf DD. Stack works in Last-In-Last-Out

(LILO) principle. Its operations includush Pop Top, andisEmpty
e ThePushfunction inserts an element onto the top of Btack

e ThePopfunction removes the topmost element and returns it.

39

e TheTopfunction returns the topmost element but does not removerit theStack
e TheisEmptyfunction returns true when there are no elements orsthek
Note: some of this documentation are excerpted from [35].

1. Test List (or TO-DO list)

The first step is to brainstorm a list of tasks. The goal of #usvity is to create a task list
from the requirements. Note that this list does NOT have todmepleted at beginning and
you may dynamically maintain it on the fly. Here is a task lishmple maintained by Kent

Beck in his book “Test-Driven Development by Example” [4]:

$5+ 10 CHF =$10if rate is 2:1
$5* 2 =$10

Make “amount” private
Dollarside-effects?

Money rounding?

equals()

hashCode()

Same as Beck did, you may work out a list of tasks for stack.

e Create &tackand verify thaisEmptyis true.
e Pusha single object on th8tackand verify thaisEmptyreturns false.
e Pusha single objectPopthe object, and verify thasEmptyreturns true.

e Pusha single object, remembering what it Bpp the object, and verify that the two

objects are equal.

e Pushthree objects, remembering what they d@ep each one, and verify that they are

removed in the correct order.
e PopaStackthat has no elements.
¢ Pusha single object and then cdlbp. Verify thatisEmptyis false.

e Pusha single object, remembering what it is; and then Tafh. Verify that the object

returned is the same as the one that was pushed.

e Call Topon aStackwith no elements.

40

2. Choose the First Test

There is a list of tasks to start with. The philosophy of TDOdschoose the simplest test
that gets you started and solves a small piece of the problém. simplest one in the list

is: “Create a Stack and verify that iSEmpty is true.” It iscaln option to choose a test
that describes the essence of what you are trying to acceimplsing stack as an example,

functionsPushandPop are essential.

3. Test 1: Create aStack and verify that isEmpty is true.

You start with a class called TestStack and add one asséutareck whether isEmpty returns
truth.

public void testStackEnptiness() {
Stack stack = new Stack();
assert True(" Test enptiness of Stack", stack.isEmpty());

}

This code will not compile because there is no Stack objexdted yet. You should go ahead
to implement Stack and providsEmpty() To make it simple you can just return constant
boolean value true in body GEmpty()

public bool ean i SEnpty() {
return true;

}

4. Test 2: Push a single object on the stack and verify thatisEmpty is false.

Remember to start with test first NOT to create push beforesgaucompilation error or test
failure.

public void testPushOne() {
Stack stack = new Stack();
st ack. push("first element");
assertFal se("Stack has one elenent, it is not enpty",
stack.i sempty());

5. Test 3: Push a single object,Pop the object, and verify that isEmpty is true.

This test introduces a new method called Pop, which retlitopmost element and removes
it from the Stack.

41

public void testPop() {
Stack stack = new Stack();
st ack. push("first elenment");
st ack. pop();
assert True(" Stack has no el enent after pop", stack.iseEnpty());

6. Test 4: Push a single object, remembering what it is;Pop the object, and verify that the

two objects are equal.

public void testPushPopContent () {
Stack stack = new Stack();
String value = "9001";
st ack. push(val ue);
String result = (String) stack. pop();
assert Equal s(" The popped up val ue equals to the pushed one",
val ue, result);

Please keep in mind that you don't have to have the corredeimgntation to make test pass.
You can always add a little, run the test to see it fail, andor&wuntil it passes the test.

7. Test 5: Push three objects, remembering what they are;Pop each one, and verify that

they are correct.

In previous implementation you can simply have one elemembhake all those tests pass.
With this test you will very likely implement an array, Arraigt, or vector to hold objects

that are pushed onto the stack.

8. Test 6: Pop a Stack that has no elements.

As you may work on Java for a while, exception should be threviren there is illegal
operation like this one.

public void testPopEnmptyStack() {
try {
st ack. pop();
fail ("Exception is expected when pop value fromenpty stack");
}
catch (Exception e) {
/1 Do not hing. Exception is expected.

}
}

42

9.

10.

11.

12.

13.

14.

15.

16.

Test 7: Push a single object and then callTop. Verify that isEmpty returns false.

public void testPushTop() {
Stack stack = new Stack();
st ack. push("42");
stack.top();
assertFal se("Stack is not enpty after top() is called.”,
stack.i senpty());

Test 8: Push a single object, remembering what it is; and then callTop.

Verify that the object returned is equal to the one that wahped.

Test 9: Push multiple objects, remembering what they are; callTop, and verify that the

last item pushed is equal to the one returned bylop.

Test 10: Push one object and callTop repeatedly, comparing what is returned to what

was pushed.
Test 11: Call Top on a Stack that has no elements.
Test 12: Push null onto the Stack and verify that isEmpty is false.

Test 13: Push null onto the Stack, Pop the Stack, and verify that the value returned is

null.

Test 14: Push null onto the Stack, call Top, and verify that the value returned is null.

We don't have either instructional code in last 7 test caSe&sck is a simple data structure

and TDD does not have high technique requirements you shigutble to implement it and make

all these tests pass with small amount of effort.

43

Appendix B

User Stories for Stack Data Structure

44

A Hands-on Practice of TDD: User Stories of Stack

The objective of this assignment is to practice TDD develephwith stack problem. User stories
are provided to help you develop stack in TDD iterativelyacktis a data structure that works in
Last-In-First-Out principle. It includes four basic opgras: Push, Pop, Top, and isEmpty.

e The Push function inserts an integer element onto the topeoBtack.
e The Pop function removes the topmost integer element ancheeit.
e The Top operation returns the topmost integer element leg dot remove it from the Stack.

e The isEmpty function returns truth when there are no elementthe Stack and false other-

wise.

Please note that this assignment is not just about progragnenstack data structure. Instead, it is
a hands-on practice on Test-Driven Development. You shioyidement stack iteratively using the

following user stories.

1. Create a stack and verify that it is empty

Requirement: Be able to construct a stack which is empty initially. Vetifyat it is empty.

2. Push an integer value and verify that stack is not empty.
Requirement: Push value 1001 onto the stack, check whether stack is ndyefiprward.

3. Push an integer value, pop it, and verify that stack is gmpt

Requirement: Push value 1001 onto the stack, call pop, check to make satstdck is empty.

4. Push an integer value, remember what it is; pop a value §tack, verify that it is equal to the
one pushed.
Requirement: Push value 1001 onto the stack, call pop, examine whethgoieed value is 1001.

5. Push three integer values, remember what they are; pbpeac and verify that they are correct.

Requirement: Push integer values 1001, 2001, 3001 onto the stack, calihep times. It should
return 3001, 2001 and 1001 respectively.

45

6. Pop an integer value from stack that is empty.
Requirement: Exception StackEmptyException should be thrown when ¢rynpop a value from
an empty stack.

7. Push an integer value, call top, and verify that the retdivalue equal to the pushed value.
Requirement: Push value 1001 onto the stack, call top, the returned valoegld be 1001.

8. Push three integer values, call top three times, andyvef returned values always equal to the
last value.

Requirement: Push 1001, 2001, 3001 onto the stack, call top three timekthemreturned values
should be 3001.

9. Push one integer value, call top repeatedly, compariraf iglreturned to what was pushed.
Requirement: Push 1001 onto the stack, call top three times, and the eduwalues should be
1001.

10. Call top on a stack with no element.

Requirement: Exception StackEmptyException should be thrown when gryintop a value from

an empty stack.

46

Appendix C

User Stories for Roman Numeral

47

A Hands-on Practice of TDD: User Stories of Roman
Numeral Conversion

Roman numerals are written as combinations of the sevesrdett the Table C.1 (ex-

cerpted from URL http://www.yourdictionary.com/crossaivomanums.html). If smaller numbers

=1 C=100
V=5 D=500
X=10 M=1000
L=50

Table C.1. Roman Numerals

follow larger numbers, the numbers are added. If a smallerb®u precedes a larger number, the

smaller number is subtracted from the larger. For example:
e VII=5+3=8
e IX=10-1=9

e XL=50-10=40

1141 11| XI 21| XXI 31| XXXI 41| XLI

2 |1 12} Xl 22| XXl 32| XXXII 42| XLII
3 | 13| Xl 23| XXII 33| XXXII || 43| XLI
4 |1V 14| XIV 24| XXIV 34| XXXIV || 44| XLIV
5|V 15| XV 25| XXV 35| XXXV || 45| XLV

6 | VI 16| XVI 26| XXVI 36| XXXVI || 46| XLVI
7 |Vl 17| XVII 27| XXVII 37| XXXVII || 47| XLVII
8 | Vil 18| XV 28| XXVIII || 38| XXXVIII|| 48| XLVIII
9 | IX 19| XIX 29| XXIX 39| XXXIX || 49| XLIX
10| X 20| XX 30| XXX 40| XL 50| L

Table C.2. Roman Numerals Conversion Table

Please note that this assignment is not just about prograghaioman numerals conver-
sion. Instead, it is a hands-on practice on Test-Driven [Dgweent. You should use the provided

user stories to write test case first, and let the tests te thie code implementation.

Roman Numeral Conversion User Stories

48

10.

11.

12.

13.

14.

15.

. The conversion program returns empty string “” to value 0.
. Roman numeral is “I” to value 1.

. Roman numeral is “II” to value 2

Roman numeral is “lllI” to value 3

. Roman numeral is “IV” to value 4, not "llII”
. Roman numeral is “V” to value 5

. Roman numeral is “VI" to value 6

. Roman numeral is “VIII” to value 8

. Roman numeral is “IX” to value 9, not VIllI

Roman numeral is “X” to value 10

Roman numeral is “XI” to value 11

Roman numeral is “XV” to value 15

Roman numeral is “XIX” to value 19

Roman numeral is “XX” to value 20

Roman numeral is “XXX" to value 30

49

Appendix D

Case Study Consent Form

50

University of Hawai‘i at Manoa

Department of Information and Computer Sciences
Collaborative Software Development Laboratory
Professor Philip Johnson, Director

POST Room 307« 1680 East-West Road * Honolulu, HI 96822
Voice: +1 808 956-3489 « Fax: 956-3548

Email: johnson@hawaii.edu

Thank you for agreeing to participate in our research on understanding test-driven development
practices using the Zorro tool. This research is being conducted by Hongbing Kou as part of his
Ph.D research in Computer Science at the University of Hawaii under the supervision of
Professor Philip Johnson.

As part of this research, you will be asked to develop or modify a program using test-driven
design practices and the Eclipse IDE using the Hackystat Eclipse sensor. While you are working
on your programming task, you will be sending data about how you program, including the
statements that you write, the test cases that you develop, the times that you invoke the tests and
their outcomes to a remote Hackystat server. You own the development activity data you send to
the server, and it shall not be used by anyone for any purpose other than the one stated in this
form without your consent.

At the beginning of the study, we are going to survey your opinions on doing test-driven
development. Then, you will do test-driven development using the instrumentation of the
Hackystat Eclipse sensor, and use the Zorro analysis package to understand your compliance of
test-driven development process. Another survey will be conducted after you use Zorro. Your
participation is voluntary, and you may decide to stop participation at any time, including after
your data has been collected.

The survey data that we collect will be treated strictly confidential, and there will be no identifying
information about you in any analysis of this data for all purposes, your data will remain anonymous.

If you have questions regarding this research, you may contact Professor Philip Johnson,
Department of Information and Computer Sciences, University of Hawaii, 1680 East-West Road,
Honolulu, HI 96822, 808-956-3489. If you have questions or concerns related to your treatment
as a research subject, you can contact the University of Hawaii Committee on Human Studies,
2540 Maile Way, Spalding Hall 253, University of Hawaii, Honolulu, HI 96822, 808-539-3955.

Please sign below to indicate that you have read and agreed to these conditions.

Thank you very much!

Y our name/signature Date

Cc: A copy of this consent form will be provided to you to keep.

51

Appendix E

User Stories for Bowling Score Keeper

52

Test-Driven Development Exercise: Bowling Score Keeper

The objective is to develop an application that can caleula¢ score of a SINGLE bowl-
ing game using TDD. There is no graphic user interface. Yorkwa objects and JUnit test cases
only in this assignment. We divide the bowling game requests into a set of user stories, which
can serve as your to-do list. You should be able to come upaviblution without much compre-
hension of the bowling game rules. We encourage you to shlggtogramming task using TDD
as much as possible.

1. Frame

10 pins are arranged in an equilateral triangle in bowlingrga. It is called “frame”. The goal of
a frame is to knock all 10 pins down. The player has two charezed “throws”, to do so.
Requirement: Define frame so that it has two integer attribute values. Beadhe represents a
throw.

Example: [2, 4] is a frame with two throws. Note that you don't have t@ck parameters.

2. Frame Score

The frame score is the sum of the first throw and second thromexample, score of frame [3,5] is
8; score of frame[0,0] is 0, which is called “gutter” in bowlg game.

Requirement: Compute score of a frame.

Example: The score of frame [2, 6] is 8. Frame [0, 9]'s score is 9.

3. Game

A single bowling game consists of 10 frames.

Requirement: Define bowling game which consists of 10 frames.

Example: A sequence of frames [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3[&, 5] [8, 1] [2, 6] is a game.
Note that we will use this game many times from now on. We wildify only a few frames each

time to represent different bowling game scenarios.

4. Game Score
The score of a bowling game is the sum of its 10 frames.
Requirement: Compute the score of a bowling game.

Example: The score of above game is 81.

53

5. Strike

A frame is called “strike” if 10 pins are knocked down by thestfithrow. In this case, there is no
second throw. A strike frame can be written as [10,0]. Theesoba strike is 10 plus the following
two throws. Suppose there are consecutive frames such ad][a@d [3, 6], then the strike frame
score willbe 10 + 3+ 6 = 19.

Requirement: Compute the score of a bowling game with a strike frame.

Example: Let's suppose the first throw in above game is a strike. Thelibgvgame will have
frames [10,0] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8,112, 6]. Its score will be 94.

6. Spare

A frame is called “Spare” when 10 pin are knocked down by twows. For example, [1,9], [4,6],
[7,3] are all spares. The score of a spare frame is 10 plus tive throw following it. If you have
two frames [1,9] and [3,6] in a row, the spare frame score Wi 10 + 3 = 13.

Requirement: Compute the score of a bowling game with a spare frame.

Example: Similarly let's assume the first frame in above game is a sfg#g, then it will have

frames [1,9] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1]2, 6]. Its score will be 88.

7. Strike and Spare

A strike frames is followed by a spare frame. For example, L(4,6], [7, 2] are three consecutive
frames with a strike followed by a spare. Score for the stiski0 + 4 + 6 = 20, and score for the
spareis 10 + 7 = 17.

Requirement: Compute the score of a bowling game with a spare frame folbatsike.

Example: Similarly let's assume the first two frames are [10, 0] andglin above game. The
game will have frames [10,0] [4,6] [7,2] [3,6] [4.4] [5,3] & [4, 5] [8, 1] [2, 6]. Its score will be
103.

8. Multiple Strikes

Two strikes in a row is possible in a real bowling game. To¢hrames [10, 0], [10, O] and [7,2],
score for the first strike will be 10 + 10 + 7 = 27. The secondlstrscore will be 10 + 7 + 2 = 19.
Requirement: Compute the score of a bowling game with two strikes in a row.

Example: Let's assume the first two frames are both strikes, then tiaditog game will look like
[10,0] [10,0][7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, & Its score will be 112.

54

9. Multiple Spares

Two spares in a row is another case.

Requirement: Compute the score of a bowling game with two spares in a row.

Example: Assuming the first two frames are spares, then the bowlingegaith look like [8,2]
[5,5]117,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. The gae score will be 98.

10. Spare as the Last Frame

When the last frame is a SPARE, the player will be given a btmos.. However, this throw does
not belong to a regular frame. It is only used to calculate shere of the last spare.

Requirement: Compute the score of a bowling game when the last frame isra.spa

Example: Assuming the last frame is a spare in above game, then garhbeni,5] [3,6] [7,2]
[3,6][4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 8] with bonus throw [[7 Its score will be 90.

11. Strike as the Last Frame

When the last frame is a STRIKE, the player will be given twaubdhrows. However, these two
throws do not belong to a regular frame. They are used to ¢aleuscore of the last strike frame
only.

Requirement: Compute the score of a bowling game when the last frame iska str

Example: Assuming the last frame is a strike in above game, it will bh&][13,6] [7,2] [3,6] [4,4]
[5,3] [3,3] [4, 5] [8, 1] [10, O] with bonus throws [7, 2]. Theagne score will be 92.

12. Bonus is a strike

Bonus strike will not be counted as strike in a bowling game.

Requirement: Assuming the last frame is a spare and the bonus is a strikepute the score of
this game.

Example: Assuming the last frame is a spare and the bonus is a strikmireagame, the game will
be [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4,5] [8,1] [2,Bwith bonus throw [10, 0]. The game score
will be 93.

13. Best Score

Requirement: Compute the score of the bowling game when all frames ateestri

Example: Assuming all frames are strikes including bonus. The gamksidike [10,0] [10,0]

55

[10,0] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0] wht bonus throws [10,10]. It is a perfect

game and the game score is 300.

14. A Real Game

Requirement: To a game with frames [6,3] [7,1] [8,2] [7,2] [10,0] [6,2] B1,[10,0] [8,0] [7,3]
[10], its score is 135.

56

Appendix F

Participant Interview Guideline in Case
Study

Purpose

The purpose of this interview is to gather participants’axignce of TDD including how they think
about TDD, whether and how TDD affects their software dgwalent, whether can Zorro help
them, and how Zorro can be used? The protocol of the interidalescribed here.

Interviewer

Hongbing Kou

Interviewees

Participants of the Zorro case study

Time and place
Participants will be interviewed by me in the lab after theyisih validating Zorro’s inference on

their behaviors. The interview will last from 15 to 20 minsite

Facility
Notepad, pen, and tape recorder. | will ask intervieweersnsion for the use of tape recorder.

Outline

e Questions from the participant

57

e Experiences and opinions on unit testing and Test-Drivereld@ment
e Opinions on TDD measurement with Zorro. In what way does thasarement tool help?
e Zorro usefulness evaluation
e Possible improvements of Zorro
List of interview questions

1. Questions from the participants

I will give interviewees some time at the beginning to ask mesgions. They may ask ques-
tions about TDD, Zorro or this study. Purpose of this is toplatticipants feel comfortable
before the interview starts. This may lead them to get iregbland start talking.

2. Unit testing and Test-Driven Development

e When and where did you learn unit testing?

e How do you apply unit testing in your software development?

Do you write testing code when you are not confident about grarn?

Do you write testing code after you finish a program?

Do you write testing code when you want to improve your tegstiaverage?
Did you ever write testing code first before you learned TDD?

e How much testing code do you write?
How much is the code coverage of the programs you wrote indfieare engineering
class?
Can you comment on the use of unit testing in software devedop?

e Can you compare TDD to the testing strategy you did before?

How do you think of TDD? Is it helpful to improve software qitg?
How comfortable it is for you to do TDD programming? What deshs you have when

you programmed in TDD?

3. Please use scale 1 to 5 to assess the usefulness of ZdbD'alalyses (1 stands for least

useful and 5 stands for most useful). | would like you to fysgour answers.

e Episode Inference

58

TDD Episode Demography

TDD Episode Duration Distribution’s

Test Effort vs. Production Effort

Test Size vs. Production Size

4. What other information you wish to have about TDD develeptfi

How about an Eclipse plug-in indicating whether you are ddibD?

How about an analysis showing your TDD performance overithe?

59

Appendix G

Participant Selections of TDD Analysis
Usefulness Areas

60

TDD Analysis

Useful Areas

Episode Demograph

UA-1

X X| 2

X| X|©

x| X|O

X| X|

UA-2

UA-3

X[X[X| =

UA-4

=

X

UA-5

UA-6

XX

UA-7

UA-8

T/P Effort Ratio

UA-1

UA-2

X| X X| X| X

UA-3

UA-4

UA-5

XXX XXX | X

UA-6

UA-7

UA-8

T/P Size Ratio

UA-1

UA-2

x| X| X

X[X| X| X| X

X| X| X

UA-3

UA-4

x

x| X| X

UA-5

UA-6

UA-7

UA-8

Episode Duration

UA-1

X[X| X

X[X[X[X]| X

X[X| X

UA-2

UA-3

UA-4

X

UA-5

UA-6

UA-7

UA-8

Duration Distribution

UA-1

UA-2

X[X| X

UA-3

UA-4

UA-5

X[X| X

XXX XX X

UA-6

UA-7

UA-8

X

X

Table G.1. TDD Analysis Useful Areas

61

Bibliography

[1] Manifesto for agile software developmenthtt p: / / www. agi | emani f est 0. or g/ >.

[2] Kent Beck. Extreme Programming Explained: Embrace Changkddison Wesley, Mas-
sachusetts, 2000.

[3] Kent Beck. Aim, fire.IEEE Softw. 18(5):87-89, 2001.
[4] Kent Beck. Test-Driven Development by Exampheddison Wesley, Massachusetts, 2003.

[5] Thirumalesh Bhat and Nachiappan Nagappan. Evaluatiagfficacy of test-driven develop-
ment: industrial case studies. IBESE '06: Proceedings of the 2006 ACM/IEEE international
symposium on International symposium on empirical softwargineeringpages 356—363,
New York, NY, USA, 2006. ACM Press.

[6] Jonathan E. Cook and Alexander L. Wolf. Automating psscdiscovery through event-data
analysis. InNICSE '95: Proceedings of the 17th international conferenceSoftware engi-
neering pages 73—-82, New York, NY, USA, 1995. ACM Press.

[7] John W. CreswellResearch design: qualitative, quantitative, and mixechiods approaches
Sage Publications, Thousand Oaks, California, 2003.

[8] Gunjan Doshi. Test-driven development quick referergp@de. http://www.
gunj andoshi . coni nt ar chi ves/ Test Dri venDevel opnment Ref er enceGui %
de. pdf.

[9] Gunjan Doshi. Test-driven development rhythnht t p: / / www. gunj andoshi . coni
nt ar chi ves/ TDDRhyt hnRef er ence. pdf.

[10] Eclipse screen recordent t p: // csdl . i cs. hawai i . edu/ Tool s/ Esr/ .

62

[11] Stephen H. Edwards. Using software testing to move estted from trial-and-error to
reflection-in-action. InProceedings of the 35th SIGCSE technical symposium on Gempu
science educatigrpages 26—30. ACM Press, 2004.

[12] Hakan Erdogmus. On the effectiveness of the test-fost@ach to programmindEEE Trans.
Softw. Eng.31(3):226—237, 2005.

[13] Extreme programming: A gentle introductioght t p: / / www. xpr ogr anmi ng. or g/ >.

[14] Pat Ferguson, Watts S. Humphrey, Soheil KhajenoorgaBuMacke, and Annette Matvya.
Results of applying the personal software proc&smputey 30(5):24-31, 1997.

[15] Ernest Friedman-HillJESS in ActionMannig Publications Co., Greenwich, CT, 2003.

[16] Boby George and Laurie Williams. An Initial Investigat of Test-Driven Development in
Industry. ACM Sympoium on Applied Computjrg{1):23, 2003.

[17] Boby George and Laurie Williams. A Structured Expenmhef Test-Driven Development.
Information & Software Technolog¥6(5):337-342, 2004.

[18] A. Geras, M. Smith, and J. Miller. A Prototype Empiridavaluation of Test Driven Devel-
opment. InSoftware Metrics, 10th International Symposium on (METR03), page 405,
Chicago lllionis, USA, 2004. IEEE Computer Society.

[19] Client-side configuration: Tool sensor installatidnt.t p: / / hackystat.i cs. hawai i .
edu/ hackyst at / docbook/ ch02. ht m .

[20] Watts S. Humphrey. Pathways to process maturity: Thieqmal software process and team
software processchtt p: / / ww. sei . crru. edu/ news- at - sei / f eat ur es/ 1999/
j un/ Background. j un99. %pdf >.

[21] David Janzen and Hossein Saiedian. Test-driven dpuedat.concepts, taxonomy, and future
direction. Computey 38(9):43-50, 2005.

[22] Ron Jeffries. Extreme Programming InstalledAddison Wesley, Upper Saddle River, NJ,
2000.

[23] Chris Jensen and Walt Scacchi. Experience in discogernodeling, and reenacting open
source software development processefroceedings of the International Software Process
Workshop 2005.

63

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Philip M. Johnson. Client-side configuration: Tool sen installation. <htt p:
/I hackydev. i cs. hawai i . edu/ hackyDevSit e/ ext er nal / docbook/ ch02.
ht m %.

Philip M. Johnson. Hackystat Framework Home Page.:Mprw.hackystat.org/.

Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Qin Zigg Aaron Kagawa, and Takuya
Yamashita. Practical automated process and product noettection and analysis in a class-
room setting: Lessons learned from Hackystat-UHPlaceedings of the 2004 International
Symposium on Empirical Software Engineerihgs Angeles, California, August 2004.

Philip M. Johnson, Hongbing Kou, Michael G. Pauldingin@hang, Aaron Kagawa, and
Takuya Yamashita. Improving software development managenmrough software project
telemetry.IEEE Softwarg August 2005.

Philip M. Johnson and Michael G. Paulding. UnderstagdiiPCS development through auto-
mated process and product measurement with Hackyst&edand Workshop on Productivity
and Performance in High-End Computing (P-PHEEgbruary 2005.

Jagadish Kamatar and Will Hayes. An experience reporthe personal software process.
IEEE Softw;, 17(6):85—-89, 2000.

Reid Kaufmann and David Janzen. Implications of testeth development: a pilot study. In
OOPSLA '03: Companion of the 18th annual ACM SIGPLAN confaxeon Object-oriented
programming, systems, languages, and applicatigragges 298-299, New York, NY, USA,
2003. ACM Press.

Hongbing Kou and Philip M. Johnson. Automated recagnitof low-level process: A pilot
validation study of Zorro for test-driven developmentPimceedings of the 2006 International
Workshop on Software Proceshanghai, China, May 2006.

Craig Larman and Victor R. Basili. lterative and incremtal development: A brief history.
Computer 36(6):47-56, 2003.

E. Michael Maximilien and Laurie Williams. Accessing3t-Driven Development at IBM. In
Proceedings of the 25th International Conference in Safiviengineering page 564, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

64

[34] M. Matthias Muller and Oliver Hagner. Experiment abdwst-first Programming. IEmpir-
ical Assesment in Software Engineering (EASEREE Computer Society, 2002.

[35] James Newkirk and Alexei A. Vorontsovest-Driven Development in Microsoft .NEWi-
crosoft Press, Seattle, 2004.

[36] Matjaz Pancur and Mojca Ciglaric. Towards empiricahlexation of test-driven development
in a university environment. IRroceedings of EUROCON 200EEE, 2003.

[37] Shari Lawrence PfleegeSoftware Engineering Theory and PracticBrentice Hall, Upper
Saddle River, NJ, 2001.

[38] Roger S. Pressmaoftware Engineering: A Practitioner's ApproadklcGraw Hill, Boston,
2005.

[39] Quicktime 7 for windowshtt p: // www. appl e. comi qui ckti me/w n. htmi .
[40] Beck testing framework<ht t p: / / www. xpr ogr amm ng. com t est f ram ht np.
[41] Hackystat.htt p: // hackystat.ics. hawaii. edu.

[42] Microsoft’s pilot of tsp yields dramatic results. <http://ww. sei . cnu. edu/
publ i cati ons/ news- at - sei/features/ 2004/ 2/ feat ur %- 1- 2004- 2.
ht ne.

[43] Iserializable - roy osherove’'s blog. http://webl ogs. asp. net/rosherove/
archi ve/ 2004/ 12/ 02/ 273833. aspx.

[44] Unit testing: Can you repeat please? http://ww. net hodsandt ool s. com
dynpol | / ol dpol | . php?Uni t Test .

[45] Yihong Wang and Hakan Erdogmus. The role of process ureasent in test-driven develop-
ment. InXP/Agile Universepages 32—42, 2004.

[46] Christian WegeAutomated Support for Process Assessment in Test-Drivesi@mmentPh.d
thesis, Eberhard-Karls-Universit at Tubingen, 2004.

[47] Zorro demo.htt p:// hackystat.ics. hawaii.edu/ hackystat/controller?
Key=zorr odenmouser &&€Conmand=Zor r oDenoHore.

65

