
AUTOMATED INFERENCE OF SOFTWARE DEVELOPMENT BEHAVIORS:
DESIGN, IMPLEMENTATION AND VALIDATION OF ZORRO FOR TEST-DRIVEN

DEVELOPMENT

A THESIS PROPOSAL SUBMITTED TO MY THESIS COMMITTEE

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

By
Hongbing Kou

Thesis Committee:

Philip M. Johnson, Chairperson
Daniel Port
David Pager
Kim Binsted

March 29, 2007
Version 1.0.0

Abstract

In my dissertation research, I propose to develop a systematic approach to automatically

inferring software development behaviors using a technique I have developed called Software De-

velopment Stream Analysis (SDSA). Software Development Stream Analysis is a generic frame-

work for inferring low-level software development behaviors. Zorro is an implementation of SDSA

for Test-Driven Development (TDD). In addition, I designeda series of validation studies to test

the SDSA framework by evaluating Zorro with respect to its capabilities to infer TDD development

behaviors. An early pilot validation study found that Zorroworks very well in practice, with Zorro

recognizing the software development episodes of TDD with 88.4% accuracy [31]. After this pilot

study, I improved Zorro system’s inferencing rules and evaluation mechanism as part of my col-

laborative research with Software Engineering Group at theNational Research Council of Canada

(NRC-CNRC). I am planning to conduct two more extended validation studies of Zorro in academic

and industrial settings for Fall 2006 and Spring 2007.

2

Table of Contents

Abstract .. . 2
List of Figures 5
List of Tables 6
1 Introduction 7
2 Related Work .. 11

2.1 Research Work in Academic Settings 12
2.2 Research Work in Industrial Settings 13
2.3 Process Conformance Study of TDD 14

3 Research Questions 16
4 Experiment Design and Analysis 18

4.1 Zorro Validation Pilot Study 18
4.1.1 Purpose of the Study .18
4.1.2 Research Questions .. 19
4.1.3 Research Methodology and Design 19
4.1.4 Data Collection .20
4.1.5 Data Analyses and Results .. . 21
4.1.6 Conclusion and Discussion 26
4.1.7 Validity Analysis .. 28

4.2 Zorro Validation Case Study 28
4.2.1 Purpose of the Study .28
4.2.2 Research Questions .. 29
4.2.3 Research Methodology and Design 29
4.2.4 Proposed Data Analyses .. 32

4.3 External Case Study 37
4.3.1 Purpose of the study .37
4.3.2 Research Questions .. 37
4.3.3 Research Methodology and Design 37

A Pilot Study Material 39
A.1 Introduction to TDD .. . 39

A.1.1 TDD Quick Reference . 39
A.1.2 Rhythm of TDD . 39

A.2 Stack Implementation in TDD 39
B User Stories for Stack Data Structure 44
C User Stories for Roman Numeral 47

3

D Case Study Consent Form 50
E User Stories for Bowling Score Keeper 52
F Participant Interview Guideline in Case Study 57
G Participant Selections of TDD Analysis Usefulness Areas 60
Bibliography 62

4

List of Figures

Figure Page

1.1 Zorro Infrastructure 9

4.1 Zorro’s TDD Behavior Interface Report 21
4.2 Development Process QuickTime Video Recorded by ESR 23
4.3 Development Process QuickTime Video Recorded by ESR 24
4.4 TDD Heuristic Algorithms 27
4.5 Example of ESR Video Script 33
4.6 Example of Development Activity Comparison between Zorro and ESR 33
4.7 Example of Development Behavior Observed via ESR 34
4.8 Episode Feedback .. . 35

5

List of Tables

Table Page

4.1 Zorro’s Inference Result Summary for Pilot Study 21
4.2 Validation Result by ESR Video Analysis for Pilot Study 25
4.3 Example of TDD Episode Validation Results 34
4.4 Example of TDD Episode Feedback Summary 36
4.5 Example of Non-TDD Episode Feedback Summary 36

C.1 Roman Numerals .48
C.2 Roman Numerals Conversion Table 48

G.1 TDD Analysis Useful Areas 61

6

Chapter 1

Introduction

Throughout the history of software engineering, much effort has been put on the descrip-

tion and understanding of high-level software processes. The waterfall model, the very first software

process, has contributed to the success of many large software systems. High-level software pro-

cesses divide the software development process into phases, where each phase lasts from a few days

to several months [37, 38]. For example, the requirements analysis phase may last months before the

design phase starts. Recently, increasing effort has been put on low-level software processes [32, 1],

in which a phase may last several minutes to a few hours only. Each phase defines how developers

and development team should carry on the work on daily basis.The Personal Software Process

(PSP) [20] and Extreme Programming (XP) [22, 2, 13] are two examples of a low-level software

process. Although proven to be useful in improving softwarequality[14, 29, 42, 21], low-level soft-

ware process are hard to execute correctly and repeatedly. In order to improve the quality of practice

and research of low-level software process, there must be some supporting tools. In my dissertation

research, I focus on one low-level software process, the called Test-Driven Development (TDD) [4],

and I developed Zorro software system to study it.

Test-Driven Development (TDD) is an innovative one of the practices of Extreme Pro-

gramming. In TDD, the software development process is iterative and incremental [32]. There is

only one task to accomplish in an iteration. In a particular iteration, a unit test of the task is created

first followed by production code implementation. TDD is built on the foundation of the XUnit

framework [40], which has been ported to more than 30 languages. Unit testing has become a de

facto standard in the software industry. TDD is widely adopted by software professionals. An infor-

mal survey [44] conducted by Method and Survey magazine found that 46% of the studied software

organizations perform unit testing informally, 41% of the studied organizations document their unit

test cases, and 14% of the studied organizations use the TDD approach.

7

“Clean code that works”[4] is the goal of Test-Driven Development. To achieve this goal,

TDD summarizes its software development process as two basic rules: “(1) Write new code only

if an automated test has failed; (2) Eliminate duplication.” Kent Beck, the pioneer of Test-Driven

Development, stated that there is an implicit order to software development using TDD [4]:

1. Red - Write a little test that doesn’t work, and perhaps doesn’t even compile at first.

2. Green - Make the test work quickly, committing whatever sins are necessary in the process.

3. Refactor - Eliminate all the duplication created by merely getting the test to work.

At first glimpse, TDD seems easy, but in fact, it is a very hard and difficult low-level software pro-

cess that requires much discipline to carry out correctly. First, software developers are not typically

educated to write unit tests for the program they develop. Therefore, in a lot of cases, software

systems are not designed for easy testing. Consequently, developers often find it is hard for them to

write testing code at all, much less write testing code priorto implementation. Second, following

the red/green/refactor software development pattern requires a lot of effort. In TDD, software de-

velopers must continuously remain in the mindset of test-first, which is initially counter-intuitive to

many of them [3, 45]. So they often apply it differently according to their own experience level and

understanding [3].

TDD is gradually becoming a standard well accepted for software development in indus-

try, and yet there are problems in testability and differences in understanding of this methodology.

Not surprisingly, the immaturity of TDD causes problems. There are many important research

questions regarding software development using TDD. For example, how do we know software de-

velopers will faithfully commit to the highly disciplined TDD practice? Will developers slip away

from TDD? When does it pay off to use TDD, and when does it not pay off? One thing is clear: these

questions cannot be answered accurately without good software process measurement. However,

Janzen and Saiedian [21] stated that measuring the use of a software development methodology is

hard. They claimed it is so hard to do accurately that published data on the level of TDD adoption in

industry is either indirect or inaccurate [21, 44]. Fortunately, as my initial case study demonstrates,

measuring the use of certain software development methods is becoming feasible with the emer-

gence of technologies such as the Hackystat system [41, 27, 28, 26], an in-process software metrics

collection and analysis framework.

As part of my dissertation research, I developed a software system called Zorro (Figure

1.1) on top of Hackystat to infer TDD development behaviors using low-level software development

8

activity data collected by Hackystat Eclipse Sensor. Zorrorecognizes and evaluates TDD patterns

using rule-based system support and the software development stream analysis (SDSA) framework.

SDSA is a three-stage analysis technique that brings the Hackystat framework and Zorro system

together. First, it merges software development activities and in-process metric data together to

create a “software development stream”, a sequential stream of low-level software development ac-

tivities. Second, SDSA includes a tokenization subsystem that divides a single sequential stream

of low-level software development activities into collections of events called “software develop-

ment episodes”. Third, the JESS [15] rule-based system recognizes and classifies these episodes

according to the classification schema. SDSA binds these three components together to assist the

measurement of software development methods and low-levelsoftware process.

Test-Driven Development Conformance

Development

Object Unit Test

S
e

n
d

S
e

n
d

S
e

n
d

S
e

n
d

DevEvent DevEvent DevEvent DevEvent

7654321 100 ...99

Collect

Colle
ct C

o
lle

c
t

Collect

Merge/Filter

Create Edit Compile Test

Episode 1

Write Test

Create Object

Compile

Episode 2

Edit

Compile

RunTest

Episode n

Write Test

Run Test

101

Figure 1.1. Zorro Infrastructure

With the capabilities provided by SDSA, I defined a set of specific rules for TDD in

Zorro according to Beck [3, 4] and others who have described the practices of TDD. Zorro uses a

9

two-step procedure to measure and evaluate the compliance of the developer’s behaviors with the

practices of TDD. First, Zorro recognizes and classifies theepisodes independently according to the

classification schema. Second, Zorro evaluates the internal structure as well as the context of the

episodes to deduce whether an episode is TDD conformant or not.

10

Chapter 2

Related Work

Much of the research work on TDD suffers from the threat of “construct validity” [45]

because of the what has been termed as the “process conformance” problem. Wang and Erdogmus

defined process conformance as the ability and willingness of the subjects to follow a prescribed

process. Janzen warned that inability to accurately characterize process conformance is harmful to

TDD research [21]: Many organizations might be using the methodology without talking about it.

Others might claim to be using a methodology when in fact theyare misapplying it. Worse yet, they

might be advertising its use falsely. Surveys might be conducted to gauge a method’s usage, but

often only those who are much in favor or much opposed to the methodology will respond.

A handful of research work has been done on software process validation [6, 23] and

the process compliance of Test-Driven Development [31, 45,46]. Cook and Wolf [6] developed

a client-server software system called Balboa to do processdiscovery and validation using a finite

state machine (FSM). Balboa collects developers’ invocations of Unix commands and CVS com-

mits to learn the software process using FSM and machine learning techniques. Cook was able to

reproduce the ISPW 6/7 process with Balboa in his research. However, FSM does not look like an

ideal solution for process validation because of the complexity of the process FSM it generates. In

his example, the three algorithms RNET, KTAIL and MARKOV generated 15, 20 and 25 states re-

spectively, and the states are interweaved in complicated manners. It is hard to interpret the process

state chart without thorough understanding of Balboa and the adopted software process. Jansen and

Scacchi [23] simulated an automated approach to discovery and modeling of open source software

development processes. They took advantage of prior knowledge to discover the software devel-

opment processes by modeling the process fragments using a PML description. Their prototype

simulation found that they could detect unusually long activities and problematic cycles of activi-

ties. They suggested that a bottom-up strategy, together with a top-down process meta-modeling is

11

suitable for automated process discovery. But they don’t have a working software system except for

a prototype implementation.

Janzen [21] claimed that TDD is a kind of software development method, not a process

model, and that it has emerged out of a particular set of process models. In contrast, Beck and

Cunningham, the pioneers of TDD, put it this way: “test-firstcoding is not a testing technique

but is rather about design.”[3] If TDD is a design technique and it drives the implementation of

product code, then classifying it as a software process sounds reasonable. In my research, I have

characterized practices such as Test-Driven Development and Personal Software Process (PSP) as

low-level software processes. A common characteristic of alow-level software process is that it is

defined by many frequent and rapid short-duration activities. Unlike high-level and long duration

phases such as “requirement analysis” that might last weeksto months, the activities in low-level

software process such as “refactor class Foo to extract interface IFoo” may take only seconds to a

few minutes [31].

Low-level software processes often face similar research questions as other, longer du-

ration software processes. For instance, what process is currently occurring, what process should

occur, what are the impacts of a given process on the important outcomes of software such as qual-

ity and productivity, and how can a given process be improvedand tailored in an organization? So

far, software engineering researchers have focused heavily on the important outcomes that TDD

brings to software products and software developers. Both pedagogical [34, 11, 18, 36, 12, 30] and

industrial [16, 33, 5] evaluations of TDD have been conducted in the last few years. It is interesting

to note that number of research studies on TDD in academic settings is greater than the number of

research studies in industrial settings.

2.1 Research Work in Academic Settings

Most TDD research studies in academic settings seems to indicate that there is some

degree of quality improvement, but that there are little programmer productivity benefits. Indeed,

some studies have shown quality improvements but at the costof decreased productivity.

Muller and Hanger [34] conducted a study in an XP class in Germany to test TDD in

isolation of other XP practices against traditional programming. The acceptance tests were provided

to both the TDD group and the control group. Interestingly, students in the TDD group spent more

time but their programs were less reliable than the control group.

12

Edwards [11] adopted TDD in a junior-level class to compare whether students got more

reliable code after the use of TDD and WEB-CAT, an assignmentsubmission system. It turned

out that the students using TDD reduced their defect rate dramatically (45% fewer defects/KSLOC

using a proxy metric) after adopting TDD, and a posttest survey found that TDD students were more

confident of the correctness and robustness of their programs.

Geras, Smith and Miller [18] also isolated TDD from other XP practices, and investigated

the impact of TDD on developer productivity and software quality. In their research, TDD does

not require more time but developers in TDD group wrote more tests and executed them more

frequently, which may have led to future time savings on debugging and development.

Pancur [36] designed a controlled experiment to compare TDDwith Iterative Test-Last

approach (ITL), which is a slightly modified TDD developmentprocess in the order of “code-test-

refactor”. This study found that TDD is somewhat different from ITL but the difference is very

small.

A more recent study on the effectiveness of TDD conducted by Erdogmus, Morisio and

Torchiano [12] used the well-defined test-last and TDD approaches as Pancur did in [36]. This study

concluded that TDD programmers wrote more tests per unit of programming effort. More test code

tends to increase software quality. Thus, TDD appears to improve the quality of software but TDD

group in the study did not achieve better quality on average than test-last group.

Kaufmann [30]’s pilot study on implications of TDD, in contrast, reported improved soft-

ware quality and programmers’ confidence.

2.2 Research Work in Industrial Settings

Several attempts have been made by researchers to study software quality and productivity

improvements of TDD in industrial settings.

George and Williams [17] ran a set of structured experimentswith 24 professional pair

programmers in three companies. Each pair was randomly assigned to a TDD group or a control

group to develop a bowling game application. The final projects were assessed at the end of the

experiment. They found that TDD practice appears to yield code with superior external code quality

as measured by a set of blackbox test cases, and TDD group passed 18% more test cases. However,

the TDD group spent 16% more time on development, which couldhave indicated that achieving

higher quality requires some additional investment of time. Interestingly, and in the contrast to the

13

empirical findings, 78% of the subjects indicated that TDD practice would improve programmers’

productivity.

Maximilien and Williams [33] transitioned a software team from an ad-hoc approach to

testing to TDD unit testing practice at IBM, and this team improved software quality by 50% as

measured by Functional Verification Tests (FVT).

Another study of TDD at Microsoft conducted by Bhat and Nagappan [5] reported re-

markable software quality improvement as measured in number of defects per KLOC. After intro-

ducing of TDD, project A (Windows) reduced its defects rate by 2.6 times, and project B (MSN)

reduced its defect rate by 4.2 times, compared to the organizational average. Reportedly, develop-

ers in project A spent 35% more development time, and developers in project B spent 15% more

development time, than the developers in non-TDD projects spent.

2.3 Process Conformance Study of TDD

As we can see from the literature, there are discrepancies inthe empirical findings across

both educational settings and industrial settings. Sometimes the discrepancies are dramatic, for

example [34] found that the TDD group yielded less reliable programs than the control group, while

[5] reported that the TDD group improved software quality byover four times.

Wang and Erdogmus [45] pointed out there are several possibilities that might explain

why there are the discrepancies in TDD research findings. Forexample, discrepancies could occur

due to differences in populations, differences in teachingmethods and materials, and differences

in the techniques by which TDD is compared. They argued that TDD empirical software research

lacks process conformance, and therefore it suffers from the construct validity problem (as is also

the case in some other empirical software engineering research). In [45], they developed a prototype

called TestFirstGauge to study the process conformance of TDD by mining the in-process log data

collected by Hackystat. TestFirstGauge aggregates software development data collected by Hack-

ystat to derive programming cycles of TDD. They use T/P ratio(lines of test code verse lines of

production code), testing effort against production effort and cycle time distribution as the indicator

of TDD process conformance. This project precedes the Zorrosoftware system [31], and in fact

it stimulated our research interest in studying low-level software process conformance. Unlike the

prototype implementation of TestFirstGauge in VBA using anExcel spreadsheet, Zorro is integrated

into the Hackystat system for automation, reuse, and flexibility using rule-based system [15].

14

Similarly, Wege [46] also focused on automated support of TDD process assessment, but

his work has a limitation in that it uses the CVS history of code. Developers will not commit on-

going project data at the granularity of seconds, minutes orhours when they develop the software

system, making this data collection technique problematicfor the purpose of TDD inference.

15

Chapter 3

Research Questions

The long-term goal of my research is to understand how to characterize and improve

low-level software development behaviors. As a step in thatdirection, I am focusing for my Ph.D.

research on a specific kind of low-level software development behavior: Test-Driven Development.

The Zorro system, which attempts to infer TDD low-level development behaviors, provides a way

to partially evaluate the overall approach and begin to understand its strengths and limitations.

Zorro infers developer’s TDD development behaviors using SDSA. It is easy for software

developers to collect in-process development activities using Hackystat sensors, and it is also easy

for them to evaluate their TDD development behaviors using Zorro. If Zorro’s TDD inference is

correct, then we can use it to assess TDD process conformanceduring the daily practice of TDD as

well as during empirical studies of TDD. However, does Zorroinfer developers’ TDD development

behaviors correctly? Will it falsely categorize some non-TDD development behaviors as TDD? Or,

will it misinterpret some TDD development behaviors as non-TDD? To answer these questions, we

need to conduct validation studies of Zorro. Some of the mostimportant research questions are:� Q1: Can Zorro automate the recognition of Test-Driven Development using automatically

collected low-level software development activities?� Q2: Can Zorro help to improve the practice of TDD?

This is a hard question, but we can divide it into three small questions with regard to user’s

roles.

– For beginners, can Zorro help them improve the compliance toTDD?

– For experienced TDD practitioners, will Zorro help them improve their TDD practice

by analyzing their TDD development behaviors?

16

– For researchers, can Zorro help them reach legitimate research conclusions on TDD

experiments by providing the TDD process conformance information.

Answering these questions requires a “mixed methods” research strategy [7]. Questions

Q1 can be investigated by evaluating Zorro’s data collection and TDD inference capability using

field observation research method. Investigating questionQ2 requires research methods such as

collecting users’ feedback or interviewing them. In my research, I designed a series of case studies

using these research methods to investigate the research questions I presented above.

17

Chapter 4

Experiment Design and Analysis

This chapter introduces three Zorro validation studies: a pilot study, a case study with stu-

dents from the software engineering class as participants,and an external collaborative case study

with the TDD community of developers and researchers. Zorrouses low-level software develop-

ment activity data to infer developer’s TDD behaviors. In order to validate its capabilities of data

collection and TDD behavior inference, a secondary data source must be used. In my dissertation

research, I will introduce two ways to provide the secondarydata: recording individual developer’s

TDD development process using the Eclipse Screen Recorder (ESR) [10]; and gathering devel-

oper’s feedback to their TDD behavior inference results using the Zorro validation wizard. I have

already used the ESR approach in the pilot study. In the second case study, I will plan to use both

approaches.

4.1 Zorro Validation Pilot Study

In January 2006, we ran a pilot study at the University of Hawaii in order to assess how

well Zorro infers TDD development process using the rule-based system. We found that Zorro

accurately recognized participants’ TDD behaviors in a simple environment setting.

4.1.1 Purpose of the Study

There were two purposes for this study. One was to test whether Zorro could collect

enough development activity data for TDD development behavior inference. The other was to test

whether Zorro could recognize the actual TDD development behaviors using rule-based approach.

18

4.1.2 Research Questions

In the pilot study, I wanted to test the correctness of Zorro’s methodology for inferring

developer’s TDD behaviors. In order to test this, I developed the Eclipse Screen Recorder [10] to

do field participant observation. Ad addition, I also wantedto test the capability of ESR to support

Zorro validation. The specific research questions for the pilot study were:� Q1a: Does Zorro collect enough low-level development activities to infer developer’s TDD

behaviors?� Q1b: Does Zorro’s inference of TDD agree with analyses basedupon participant observation?� Q1c: Is ESR a suitable tool for Zorro validation study?

4.1.3 Research Methodology and Design

Participants

The participants in this pilot study were experienced Java programmers who knew unit

testing well. I recruited 7 volunteers who were interested in TDD and were willing to participate

this study.

Design and Experimental Manipulation

This study used a pre-experimental design called the one-shot case study [7]. The treat-

ment in this study was TDD. Every participant developed a small program that simulated a stack

data structure in Java using the Eclipse IDE and TDD. Before the study started, we introduced the

red/green/refactor principle of TDD to the participants ifthey did not know TDD before. The TDD

rhythm [9], TDD quick reference guide [8] and the step-wise stack TDD implementation instruc-

tions were three supplemental material to help participates program in TDD. ESR was used in this

study to record the development process for participant observation.

Instruments

The IDE for this study is Eclipse. I instrumented participants’ TDD development pro-

cesses with the Hackystat Eclipse Sensor and ESR.

19

Procedure

1. Setup

The participants worked on their own computers or on a lab computer we provided. Prior to

the study we confirmed that the lab computer had the followingsoftware installed:� JDK� Eclipse IDE� Hackystat Eclipse Sensor [19]� Eclipse Screen Recorder [10]

When participants chose to work at home on their own computer, we asked them to configure

these software before participating this study.

2. Introduction to TDD

When participants did not have prior knowledge of TDD, we briefly introduced TDD to them

using Beck’s simple TDD abstraction: the red/green/refactor order of programming.

3. Development in the Lab or at Home

Stack is a well-known problem that works according to the Last-In-First-Out (LIFO) princi-

ple. Participants in this study developed solutions to the stack problem using TDD method.

We provided them with three documents: the graphic illustration of TDD rhythm, the TDD

reference guide, and the user stories of stack with TDD implementation instructions at Ap-

pendix A.

4.1.4 Data Collection

The Hackystat Eclipse sensor collected and sent development activities to the remote

Hackystat server. I collected the programming videos recorded by ESR using memory sticks for

study conducted in the lab and email attachments for study conducted by participants themselves at

home.

20

4.1.5 Data Analyses and Results

Inferring Participants’ TDD Behavior Inference

The Hackystat Eclipse sensor collected low-level development activities and sent them

to a Hackystat server. For each participant, I defined a Hackystat project and inferred their TDD

behaviors with Zorro. Figure 4.1 is a Zorro inference reportexample using my own data. It displays

both low-level development activity data used for TDD inference and the inferred results.

hongbing@hawaii.edu
Development Stream Episode

Alicia admin | analyses | preferences | alerts | extras | help | home

Development Stream: Displays Development stream and episode classification. (more...) Analyze

Project: StackWithTDD

StartDay: 01 January 2006

EndDay: 02 January 2006

Episode

Classification

Episode Actions

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase

01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java

01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()

01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, AI=+1

01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type

01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java

01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack

01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java

01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()

01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1

01/01/2006 23:32:31 TestStack.java UNIT TEST TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()

01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, AI=+1

01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack

01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)

01/01/2006 23:35:02 Stack.java PRODUCTION EDIT 0sec MI=+1, SI=0

01/01/2006 23:35:13 TestStack.java UNIT TEST TEST FAILED

01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag

01/01/2006 23:36:19 Stack.java PRODUCTION EDIT 0sec MI=0, SI=+1

01/01/2006 23:36:34 TestStack.java UNIT TEST TEST OK

(tdd, 2)

Figure 4.1. Zorro’s TDD Behavior Interface Report

Subject ID Duration Episode TDD Refactoring Test-Last Unclassified
1 44:53 15 6 1 7 1
2 28:17 13 5 0 8 0
3 48:00 14 9 0 5 0
4 66:32 14 5 1 8 0
5 43:14 16 3 1 7 5
6 45:57 11 4 0 7 0
7 32:40 9 4 1 3 0

Total 92 36 4 45 6

Table 4.1. Zorro’s Inference Result Summary for Pilot Study

21

Table 4.1 is a brief summary of participants’ TDD behaviors inferred by Zorro. They

spent 28-45 minutes for this study and yielded 92 episodes. Zorro recognized 86 of them, which

accounts for 93.6% of all episodes. Interestingly, among 6 unrecognizable episodes, 5 of them

were from one participant only. It was also notable that participants almost never refactored, and

they did “Test-Last” half of the time (in the unit of episode number). Here “Test-Last” means that

participants write test code after production code has beenimplemented, which is the opposite side

of TDD.

Development Process Video Analysis

While participants developed solutions to the stack data structure, they enabled ESR to

record the development process as well. Here ESR is the method for field participant observation.

It captures the Eclipse screen per second and compress the captured pictures into a QuickTime

movie file. Figure 4.2 is a screen dump I made when I played and analyzed a ESR video using the

QuickTime Pro software [39].

I used Microsoft Excel for development video annotation analysis. When there was one

development activity in the recorded video, I wrote down an entry into Excel. Each entry has the

start time, end time, activity abstract, and annotation observed from the video in Figure 4.3.

Validating Zorro’s Data Collection

The observed activities from ESR videos in Figure 4.3 were used to validate Zorro’s data

collection. The comparison between the observed activities using ESR video and activities collected

by Zorro allowed us to learn: which activities were missed byZorro, which activities were not

collected correctly, and whether the errors were severe or not (Figure 4.6). In this pilot study, I

found 3 types of data collection problems in total:� Problem 1: Edit work is not significant.

Severity: High
Reason: Edit work does not change object metrics: number of statements and

number of methods, or there is only one state change event occurred for
the edit work.

Result: Episodes were misclassified.
Resolution: Change the implementation of file edit sub stream in SDSA to look for

file size change as well.
Affected: 6 episodes.� Problem 2: Missing compilation error on test code.

22

Figure 4.2. Development Process QuickTime Video Recorded by ESR

23

Figure 4.3. Development Process QuickTime Video Recorded by ESR

24

Severity: Low
Reason: Changes on production code cause exception on inactive testcode.
Results: Episode were misclassified.
Resolution: Fix Hackystat sensor to report all compilation on inactive file as well.
Affected: 2 episodes� Problem 3: Two unit test invocations are grouped together or one test invocation is divided

into two continuous episodes.

Severity: Medium
Reason: Eclipse sensor collects multiple data entries for one invocation.
Results: Two or more episodes were grouped together or divided resulting that

they cannot be classified correctly.
Resolution: Tag one unit test invocation with run time to group multiple unit test

entries belong to one test invocation together.
Affected: 3 episodes

Note that these errors affected 11 episodes in this study.

Validating Zorro’s TDD Behavior Inference

ESR was the method we used to observe the participants’ behaviors. By playing the

recorded movie file, I compared the observed behaviors to theparticipants’ TDD behaviors inferred

by Zorro. Table 4.2 lists the comparison results. This manual comparison by human being con-

Subject ID Episode Classified Wrongly Classified Percentage
1 15 14 2 13.3%
2 13 13 3 23.3%
3 14 14 1 7.1%
4 14 14 1 7.1%
5 16 11 1 9.1%
6 11 11 1 9.1%
7 9 9 1 12.5%

Total 92 86 10 11.6%

Table 4.2. Validation Result by ESR Video Analysis for PilotStudy

cluded that 11.6% of the recognized episodes were wrongly inferred by Zorro in this study. It

indicates that Zorro infers developer’s TDD behaviors correctly 88.4% of the time.

Data collection problems caused most of the inference errors. Infrequent invocation of

unit testing by participants was another problem, which yielded episodes with too many activities.

Problem 4 describes this type of error.

25

� Problem 4: An episode has too many activities.

Severity: Low
Reason: Participants did not invoke unit testing frequently enough.
Results: Episodes were misclassified.
Resolution: Introduce long episode type and avoid inferring episode with too many

activities.
Affected: 2 episodes

4.1.6 Conclusion and Discussion

Participants in this study spent 28 to 66 minutes on the programming task using TDD.

Zorro partitioned the overall development efforts into 92 episodes, out of which 86 were classifiable;

6 were unclassifiable. It classified 76 out of 86 episodes correctly resulting in classification accuracy

rate 88.4%.

The analysis result demonstrates that Zorro has the potential to understand developer’s

TDD development behaviors automatically using low-level development activities. Using ESR

video analysis, we found that there were 3 kinds of data collection problems in Zorro, which af-

fected 11 out of 92 episodes. Overall, it collects enough low-level development activities correctly

most of the time for TDD behavior inference. This provides the supporting evidence to research

question Q1a. Following this study, I fixed these three data collection problems in the current ver-

sion of Zorro.

Two out of 93 episodes were incorrectly inferred by Zorro because its inference rules do

not work well for long episodes which have too many activities internally. It provides the supporting

evidence to research question Q1b. In the current version ofZorro, I improved the inference rule

for relatively long episodes, and introduced a new type of episodes which have too many activities

or lasts too long a time.

The results from this pilot study indicates that the research method is appropriate. The

ESR has the capability to record incremental small changes made by participants. Although ESR

caused a small delay when it is initialized, participants did not notice much delay in the development

process. With the ESR video, I was able to validate both the Zorro’s data collection and inferences

of TDD behavior. Thus, there is supporting evidence to research question Q1c. The ESR is an

appropriate tool to observe participant’s programming behaviors for Zorro validation study.

Overall, Zorro works well in collecting low-level development activities and inferring

developer’s TDD behaviors in the pilot study. However, one problem with our pilot study is that

participants only spent 50% of their development time doingTDD. There are several possibilities

26

that could explain this phenomenon. One possibility could be that stack is too simple and devel-

opers did not need to fail tests first to have the correct implementation. Or it could be that Beck’s

concise summary of TDD is just too simple. Real TDD development is much more complicated

than he described. For instance, a developer can add a new test that does not fail initially because

the functional code works well even without any change. Thisdevelopment pattern should be TDD

compliant although it is neither test-driven nor refactoring. Therefore, I defined a more sophisti-

cated two-step model to infer TDD development behaviors (Figure 4.4) in this study. First, TDD

Test-last

Two-wayOne-way

Refactoring

Refactoring

Refactoring

Test-addition

Test-addition

Refactoring

Test-first

Refactoring

Refactoring

NO NO

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Episode

Figure 4.4. TDD Heuristic Algorithms

development episodes are classified independently using internal data. Second, a heuristic algo-

rithm is applied to determine whether an episode is TDD conformant or not. Figure 4.4 has three

lists. The left-most one is a list of episodes recognized by Zorro’s TDD inference rules. As their

names indicate, the episodes can be “test-first”, “test-addition”, “refactoring”, or “test-last” etc. The

one-way and two-way TDD heuristic algorithms are on the right side of Figure 4.4. The one-way

algorithm uses look-forward approach to determine whetheran episode is TDD conformant, while

the two-way heuristic algorithm uses both look-forward andlook-backward approaches. Figure 4.4

indicates this difference using a single-head arrow and a double-head arrow. Our preliminary work

suggests that the two-way heuristic algorithm can understand real world situations better than the

one-way algorithm.

27

4.1.7 Validity Analysis

There were several threats to the validity of this study. Oneof them is that some partic-

ipants did not know TDD well prior to the study. Therefore, weprovided a graphic illustration of

the TDD rhythm [9] and a short list of TDD reference guides [8]. Another threat to validity is that

certain applications are hard to test. To minimize the effects of untestability, we used the simple

and well-known stack problem in this study. With regard to the validity of data collection, we used

unobtrusive data collection utilities: the Hackystat Eclipse Sensor and ESR. Both tools required

little overhead from participants [26, 25] at the beginningor end of the study.

There were two valid external validity problems in this study. The first one was the sim-

plicity and stringency of TDD. In the pilot study, we interpreted TDD as strictly as Kent suggested

in [3, 4] and Doshi recommended in [9, 8]. The second one was that we only had 7 participants in

this study. We hope to address both problems in the future studies.

4.2 Zorro Validation Case Study

The pilot study of Zorro was a success. It convinces us that Zorro’s rule-based approach

has promise for developer’s TDD behavior inference. It alsodemonstrates that the research method-

ology works. Following this study, I fixed several data collection problems found in the pilot study.

We also improved Zorro’s TDD inference rules based on the pilot study and collaboration with

Software Engineering Group at the National Research Council of Canada.

In Fall 2006, we plan to conduct a case study of Zorro in a software engineering class at

the University of Hawaii.

4.2.1 Purpose of the Study

Currently Zorro collects development activity data more accurately, has a more sophis-

ticated episode classification schema, and infers developer TDD behaviors based not only on the

episode’s internal structure but also the context in which the episode occurred. The purpose of this

study is to:

1. perform Zorro validation study using the Eclipse Screen Recorder;

2. perform a second type of validation in which participatesprovide feedback through the web-

based validation wizard of Zorro;

28

3. obtain feedback regarding whether Zorro can help TDD beginners through a post-test inter-

view.

4.2.2 Research Questions

In this case study I will test Zorro’s abilities to: collect the necessary activity data, infer

TDD behaviors correctly, and help beginning TDD learners. The specific research questions for this

study are:� Q2a: Does Zorro collect software development activities accurately enough for episode par-

titioning and TDD behavior inference?� Q2b: Does Zorro’s inference of TDD behaviors agree with analyses based upon participant

observation?� Q2c: Does Zorro’s inference of TDD behaviors agree with whatparticipants believe to be

their TDD behaviors?� Q2d: Does Zorro provide useful information for beginners tounderstand TDD and improve

their TDD development?

Note that these research questions support the overall research questions for this thesis as

described in Chapter 3.

4.2.3 Research Methodology and Design

Participants

The participants in this study will be students in the software engineering classes at the

University of Hawaii during Fall 2006. Unit testing and Test-Driven Development are two skills

required by this study. There are 15-16 students in this class and we anticipate that at least a dozen

students will participate in this study.

Design and Experimental Manipulation

This study uses mixed research methods[7]. While test subjects work on the bowling game

problem using TDD, we will record their development processwith ESR[10]. After finishing the

TDD programming, participants will launch the analysis validation wizard of Zorro to validate its

29

TDD behavior inference. Finally, we will interview them. The study will last 2 hours for each test

subject including a 90-minute TDD programming session, a 15-minute Zorro evaluation session,

and a 15-minute interview.

Instruments

Eclipse is the IDE that will be used. We will instrument participants’ TDD development

using the Hackystat Eclipse sensor[24] and ESR[10]. Participants will evaluate Zorro’s inference

of their TDD development using Zorro’s web validation wizard. We will also record the participant

interview with notepad and tape recorder.

Procedure

Students will learn TDD in the software engineering class and have hands-on practice on

TDD programming after the class. After this training, we will request volunteers to participate this

case study, and schedule a 2 hour time slot to participate thestudy in the lab. There, they will do

TDD development on the “bowling score keeper” problem (Appendix E) for 90 minutes. Afterwards

we will ask them to validate Zorro’s inferences of their TDD development. Finally I will interview

them for 15 minutes. Below is a more detailed description of this case study procedure.

1. Teaching of TDD

Instructor of the software engineering class will give a TDDlecture to students. Students will

have the first 20 pages of [4] as the reading assignment and a hands-on practice on “Roman

Numeral” as the programming assignment.

The lecture will include the following contents:� Introduction to TDD

– The two principles of TDD from [4]

– The red/green/refactor pattern of TDD

– TDD rhythm [9]

– TDD vs. Unit Testing

– A TDD example: implementing stack by writing test first� Why TDD?

– Developer gets quick feedback.

30

– TDD improves software quality.

– TDD promotes simple design.

– Microsoft has successful story on TDD [5]

– Test Driven Development proves useful at Google[43]� About TDD

– TDD may not be appropriate for everybody.

– TDD is about design.

– Some studies show that TDD improves software quality.

– TDD may reduce productivity.

– TDD references including testdriven.com, mailing list andblogs.� Reading and programming assignments

– Page 1-20 of Beck’s book “Test-Driven Development by Example” [4]

– TDD Quick Reference [8]

– Practice TDD on Roman Numeral Problem (Appendix C)

2. TDD Development in the Lab (90 minutes)

“Bowling score keeper” is a widely used problem for TDD research. I designed user sto-

ries for this problem to fit the purpose of this case study research. Participants will develop

solutions following the provided user stories (Appendix E). A 90-minute time limit will be

enforced. This time frame should be sufficient regardless whether they finish the program-

ming task or not.

3. Zorro’s TDD Behavior Inference Validation (15 minutes)

After participants finish the TDD programming work on the bowling game, they will use

the Zorro evaluation wizard to analyze their TDD development and validate Zorro’s TDD

behavior inference (Figure 4.8).

4. Interview (15 minutes)

In the end I will interview participants. The purpose of thisinterview is to learn participant’s

opinions on unit testing and TDD, discover questions and problems they may have, and inves-

tigate whether and how Zorro can help TDD beginners. The interview protocol and outline

are available at Appendix F.

31

Data Collection

Hackystat sensor data and the participants’ Zorro evaluations will be stored at the remote

Hackystat server. ESR will record the TDD development process into QuickTime movie files in the

lab computers. In the interview I will use notepad and tape recorder to record the conversations with

participants.

4.2.4 Proposed Data Analyses

Zorro Data Collection Validation

The Hackystat Eclipse sensor collects low-level development activities. These raw sensor

data are sent to a Hackystat server. Zorro processes these raw sensor data to perform TDD behavior

inference. One purpose of this analysis is to verify that theHackystat Eclipse sensor can collect

enough development activity data, and collect it correctlyfor TDD developer behavior inference.

There are two aspects of this problem. One aspect is whether collected data are accurate, which

is research question Q2a. The other aspect is whether the data collection errors will cause episode

misclassification, which is related to research questions Q2a and Q2b.

I will use the same analysis method as in the pilot study. First, I will play the development

process video recorded by ESR to observe the development activities. Then I will write down the

observed development activities into Excel as shown in Figure 4.5.

The observed development activities are used for comparison against the development

activities reduced by Zorro (Figure 4.1) from raw sensor data. Figure 4.6 is an excerpt of the

comparison of the development activities from these two data sources. Comparing the two sources

of data will allow us to verify Zorro’s data collection completeness and correctness.

I will use the descriptive analysis to summarize analysis results after comparing the two

data sources. For example, assuming there is a problem in collecting unit test invocations, I will

present it as follows:� Problem: Two unit test invocations are grouped together.� Result: Two or more episodes can be grouped together so that they cannot be classified

correctly.� Affected Episodes: 2

32

Figure 4.5. Example of ESR Video Script

hongbing@hawaii.edu
Development Stream Episode

Alicia admin | analyses | preferences | alerts | extras | help | home

Development Stream: Displays Development stream and episode classification. (more...) Analyze

Project: StackWithTDD

StartDay: 01 January 2006

EndDay: 02 January 2006

Episode

Classification

Episode Actions

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase

01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java

01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()

01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, AI=+1

01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type

01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java

01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack

01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java

01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()

01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1

01/01/2006 23:32:31 TestStack.java UNIT TEST TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()

01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, AI=+1

01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack

01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)

01/01/2006 23:35:02 Stack.java PRODUCTION EDIT 0sec MI=+1, SI=0

01/01/2006 23:35:13 TestStack.java UNIT TEST TEST FAILED

01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag

01/01/2006 23:36:19 Stack.java PRODUCTION EDIT 0sec MI=0, SI=+1

01/01/2006 23:36:34 TestStack.java UNIT TEST TEST OK

(tdd, 2)

Figure 4.6. Example of Development Activity Comparison between Zorro and ESR

33

Validating Zorro’s TDD Behavior Inference

The purpose of this analysis is to answer research question Q2b, that is, whether Zorro’s

TDD behavior inference agrees with the observed behaviors of the participants using ESR. ESR

video is the method used for participant observation in thisstudy. As in the pilot study, we will use

the ESR video to validate Zorro’s TDD behavior inference. Byplaying the movie files produced

by ESR, we can observe the participants’ development behaviors (Figure 4.7). For example, in the

Figure 4.7. Example of Development Behavior Observed via ESR

programming session Figure 4.7, Zorro failed to recognize alegitimate TDD development behavior

because the inference rules were insufficient. I will use a table as shown in Table 4.3 to summarize

the episode validation results.

Subject Duration Finished Total Correctly Recognized Inference
ID User Stories Episodes Episode Accuracy

1 44:53 10 15 15 100%
2 28:17 13 20 19 95%
3 48:00 8 14 13 93%
4 66:32 12 20 18 90%
5 43:14 11 22 22 100%
6 45:57 9 15 13 87%

Table 4.3. Example of TDD Episode Validation Results

34

Using Developer’s Feedback as a Second Method for Zorro Validation

TDD is a new practice aiming at “clean code that works”. Red/green/refactor is Beck’s

simple model of TDD; however, it may be too simple for real world situations. For example, ex-

perienced TDD developers often write a series of tests that do not require additional production

code implementation. In Zorro, I developed a set of rules to infer developer’s TDD behavior based

on Beck’s TDD principle and additional knowledge from TDD practitioners. Therefore, Zorro’s

TDD inference is somewhat subjective. The purpose of this analysis is to provide additional data

from participants to cross-validate Zorro’s TDD behavior inference. This effort supplies research

question Q2-4, that is, whether participants agree with Zorro’s TDD developer behavior inference.

Zorro provides an episode validation analysis for users. This analysis presents Zorro’s

TDD behavior inference and the underlying reasoning process. It provides three choices for par-

ticipants to indicate whether they agree or not with Zorro’sinference on their TDD development

behaviors. In the same analysis, they can also use a set of check-boxes and a text-box to provide

additional information about their actual development behaviors (Figure 4.8).

Figure 4.8. Episode Feedback

This analysis cross-validate the TDD behavior validation analysis using ESR video. I will

use tables 4.4 and 4.5 to report the analysis results. I will employ categorization and description to

interpret the research findings. Tables 4.4 and 4.5 illustrate the summary of this analysis.

35

Subject ID Episodes TDD Episodes Episodes agreed Episodes disagreedUnsure
1 20 18 16 1 1
2 14 14 14 0 0
3 19 15 15 0 0
4 24 20 19 0 1
5 22 22 22 0 0

Table 4.4. Example of TDD Episode Feedback Summary

Subject ID Episodes Non-TDD Episodes Episodes agreed Episodes disagreedUnsure
1 20 2 1 0 1
2 14 0 0 0 0
3 19 4 3 1 0
4 24 4 4 0 0
5 22 0 0 0 0

Table 4.5. Example of Non-TDD Episode Feedback Summary

Analysis of Participant Interviews

The purpose of this analysis is to answer research question Q2-4, that is, whether Zorro

provides useful information for TDD beginners. I will use the interview research method to collect

data about: participant’s opinions on unit testing and TDD,Zorro’s usefulness, and whether Zorro

is helpful for TDD beginners. I will put participants in two categories according to their opinions

on unit testing: developers who are strongly in favor of unittesting for high quality software, and

those who are not. Since TDD depends on unit testing, this categorization will help us understand

TDD beginners’ needs better.

In the interview, I will ask participants to evaluate the usefulness of Zorro’s 5 TDD anal-

yses. If an analysis is useful, then I will ask what it can be used for. I will use the pattern matching

analytic technique to summarize the interview data. For example, participants who are enthusiastic

about TDD improvement may find the “Zorro Demography Analysis” to be very helpful for them.

The participants who do not buy into TDD may only want to know whether their manager will be

okay with their TDD performance if it is required.

36

4.3 External Case Study

The pilot study and case study are the foundations of this research for evaluating the au-

tomation of TDD behavior inference. This last study complements the previous studies by gathering

feedback from the community of TDD practitioners and researchers.

4.3.1 Purpose of the study

The first two studies tested the capabilities of Zorro’s TDD behavior inference in labora-

tory environments. The purpose of this study is to:� validate Zorro’s rule-based inference of developer’s TDD behaviors;� investigate Zorro’s uses for TDD learning, improvement, and research.

4.3.2 Research Questions

The specific questions for this research are:� Question Q3a: Does Zorro infer the TDD behaviors correctly as participants’ perception?� Question Q3b: Are Zorro’s TDD analyses useful for participants?� Question Q3c: How can Zorro be used to assist TDD learning, improvement, or research?

4.3.3 Research Methodology and Design

Participants

The participants of this study will be TDD learners, practitioners, and researchers from

the TDD community. We will solicit participation from the TDD community using email and news

group.

Design and Experimental Manipulation

This external case study will use the one-shot case study research method. Zorro will be

the treatment of this study. We will collaborate with participants evaluating Zorro in their environ-

ments. We will interview the participants to collect data.

37

Procedure

1. Zorro Demo Implementation

As a first step, I implemented a demonstration wizard of Zorroshowing the capabilities of

Zorro [47]. This application demonstrates 5 analyses Zorroprovides, each comes with the

introduction and interesting findings. The demo also provides a feedback page for viewers to

reach us.

2. Participation Invitation

We will disseminate an email with the description and purpose of this study to the community

of empirical software researchers and XP practitioners. The future actions will depend on

what feedback we will get.

38

Appendix A

Pilot Study Material

A.1 Introduction to TDD

Test-driven development is a new way to develop software. With TDD developers(1)

write new code only if an automated test has failed; (2) eliminate duplication iteratively in software

development.We will be implementing a stack data structure in TDD. Pleasekeep this in mind

while you are participating this study. I provided you with aquick reference [8] and the rhythm of

TDD [9] to help you do TDD programming.

A.1.1 TDD Quick Reference

(Picture of Gunjan Doshi’s TDD quick reference guide [8].)

A.1.2 Rhythm of TDD

(Picture of Gunjan Doshi’s TDD rhythm guide [9].)

A.2 Stack Implementation in TDD

I provide additional instructions for this pilot study. This section includes description and

instructive procedure to implement the stack data structure in TDD. Stack works in Last-In-Last-Out

(LILO) principle. Its operations includePush, Pop, Top, andisEmpty.� ThePushfunction inserts an element onto the top of theStack.� ThePopfunction removes the topmost element and returns it.

39

� TheTopfunction returns the topmost element but does not remove it from theStack.� The isEmptyfunction returns true when there are no elements on theStack.

Note: some of this documentation are excerpted from [35].

1. Test List (or TO-DO list)

The first step is to brainstorm a list of tasks. The goal of thisactivity is to create a task list

from the requirements. Note that this list does NOT have to becompleted at beginning and

you may dynamically maintain it on the fly. Here is a task list example maintained by Kent

Beck in his book “Test-Driven Development by Example” [4]:

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()

Same as Beck did, you may work out a list of tasks for stack.� Create aStackand verify thatisEmptyis true.� Pusha single object on theStackand verify thatisEmptyreturns false.� Pusha single object,Popthe object, and verify thatisEmptyreturns true.� Pusha single object, remembering what it is;Pop the object, and verify that the two

objects are equal.� Pushthree objects, remembering what they are;Popeach one, and verify that they are

removed in the correct order.� PopaStackthat has no elements.� Pusha single object and then callTop. Verify that isEmptyis false.� Pusha single object, remembering what it is; and then callTop. Verify that the object

returned is the same as the one that was pushed.� Call Topon aStackwith no elements.

40

2. Choose the First Test

There is a list of tasks to start with. The philosophy of TDD isto choose the simplest test

that gets you started and solves a small piece of the problem.The simplest one in the list

is: “Create a Stack and verify that isEmpty is true.” It is also an option to choose a test

that describes the essence of what you are trying to accomplish. Using stack as an example,

functionsPushandPop are essential.

3. Test 1: Create aStack and verify that isEmpty is true.

You start with a class called TestStack and add one assertionto check whether isEmpty returns

truth.

public void testStackEmptiness() {
Stack stack = new Stack();
assertTrue("Test emptiness of Stack", stack.isEmpty());

}

This code will not compile because there is no Stack object created yet. You should go ahead

to implement Stack and provideisEmpty(). To make it simple you can just return constant

boolean value true in body ofisEmpty().

public boolean isEmpty() {
return true;

}

4. Test 2: Push a single object on the stack and verify thatisEmpty is false.

Remember to start with test first NOT to create push before yousee compilation error or test

failure.

public void testPushOne() {
Stack stack = new Stack();
stack.push("first element");
assertFalse("Stack has one element, it is not empty",

stack.isEmpty());
}

5. Test 3: Push a single object,Pop the object, and verify that isEmpty is true.

This test introduces a new method called Pop, which returns the topmost element and removes

it from the Stack.

41

public void testPop() {
Stack stack = new Stack();
stack.push("first element");
stack.pop();
assertTrue("Stack has no element after pop", stack.isEmpty());

}

6. Test 4: Push a single object, remembering what it is;Pop the object, and verify that the

two objects are equal.

public void testPushPopContent() {
Stack stack = new Stack();
String value = "9001";
stack.push(value);
String result = (String) stack.pop();
assertEquals("The popped up value equals to the pushed one",

value, result);
}

Please keep in mind that you don’t have to have the correct implementation to make test pass.

You can always add a little, run the test to see it fail, and rework until it passes the test.

7. Test 5: Push three objects, remembering what they are;Pop each one, and verify that

they are correct.

In previous implementation you can simply have one element to make all those tests pass.

With this test you will very likely implement an array, ArrayList, or vector to hold objects

that are pushed onto the stack.

8. Test 6: Pop a Stack that has no elements.

As you may work on Java for a while, exception should be thrownwhen there is illegal

operation like this one.

public void testPopEmptyStack() {
try {

stack.pop();
fail("Exception is expected when pop value from empty stack");

}
catch (Exception e) {

//Do nothing. Exception is expected.
}

}

42

9. Test 7: Push a single object and then callTop. Verify that isEmpty returns false.

public void testPushTop() {
Stack stack = new Stack();
stack.push("42");
stack.top();
assertFalse("Stack is not empty after top() is called.",

stack.isEmpty());
}

10. Test 8: Push a single object, remembering what it is; and then callTop.

Verify that the object returned is equal to the one that was pushed.

11. Test 9: Push multiple objects, remembering what they are; callTop, and verify that the

last item pushed is equal to the one returned byTop.

12. Test 10: Push one object and callTop repeatedly, comparing what is returned to what

was pushed.

13. Test 11: Call Top on a Stack that has no elements.

14. Test 12: Push null onto the Stack and verify that isEmpty is false.

15. Test 13: Push null onto the Stack, Pop the Stack, and verify that the value returned is

null.

16. Test 14: Push null onto the Stack, call Top, and verify that the value returned is null.

We don’t have either instructional code in last 7 test cases.Stack is a simple data structure

and TDD does not have high technique requirements you shouldbe able to implement it and make

all these tests pass with small amount of effort.

43

Appendix B

User Stories for Stack Data Structure

44

A Hands-on Practice of TDD: User Stories of Stack

The objective of this assignment is to practice TDD development with stack problem. User stories

are provided to help you develop stack in TDD iteratively. Stack is a data structure that works in

Last-In-First-Out principle. It includes four basic operations: Push, Pop, Top, and isEmpty.� The Push function inserts an integer element onto the top of the Stack.� The Pop function removes the topmost integer element and returns it.� The Top operation returns the topmost integer element but does not remove it from the Stack.� The isEmpty function returns truth when there are no elements on the Stack and false other-

wise.

Please note that this assignment is not just about programming a stack data structure. Instead, it is

a hands-on practice on Test-Driven Development. You shouldimplement stack iteratively using the

following user stories.

1. Create a stack and verify that it is empty

Requirement: Be able to construct a stack which is empty initially. Verifythat it is empty.

2. Push an integer value and verify that stack is not empty.

Requirement: Push value 1001 onto the stack, check whether stack is not empty afterward.

3. Push an integer value, pop it, and verify that stack is empty.

Requirement: Push value 1001 onto the stack, call pop, check to make sure that stack is empty.

4. Push an integer value, remember what it is; pop a value fromstack, verify that it is equal to the

one pushed.

Requirement: Push value 1001 onto the stack, call pop, examine whether thepopped value is 1001.

5. Push three integer values, remember what they are; pop each one, and verify that they are correct.

Requirement: Push integer values 1001, 2001, 3001 onto the stack, call popthree times. It should

return 3001, 2001 and 1001 respectively.

45

6. Pop an integer value from stack that is empty.

Requirement: Exception StackEmptyException should be thrown when trying to pop a value from

an empty stack.

7. Push an integer value, call top, and verify that the returned value equal to the pushed value.

Requirement: Push value 1001 onto the stack, call top, the returned value should be 1001.

8. Push three integer values, call top three times, and verify the returned values always equal to the

last value.

Requirement: Push 1001, 2001, 3001 onto the stack, call top three times, and the returned values

should be 3001.

9. Push one integer value, call top repeatedly, comparing what is returned to what was pushed.

Requirement: Push 1001 onto the stack, call top three times, and the returned values should be

1001.

10. Call top on a stack with no element.

Requirement: Exception StackEmptyException should be thrown when trying to top a value from

an empty stack.

46

Appendix C

User Stories for Roman Numeral

47

A Hands-on Practice of TDD: User Stories of Roman

Numeral Conversion

Roman numerals are written as combinations of the seven letters in the Table C.1 (ex-

cerpted from URL http://www.yourdictionary.com/crossword/romanums.html). If smaller numbers

I=1 C=100
V=5 D=500
X=10 M=1000
L=50

Table C.1. Roman Numerals

follow larger numbers, the numbers are added. If a smaller number precedes a larger number, the

smaller number is subtracted from the larger. For example:� VIII = 5 + 3 = 8� IX = 10 - 1 = 9� XL = 50 - 10 = 40

1 I 11 XI 21 XXI 31 XXXI 41 XLI
2 II 12 XII 22 XXII 32 XXXII 42 XLII
3 III 13 XIII 23 XXIII 33 XXXIII 43 XLIII
4 IV 14 XIV 24 XXIV 34 XXXIV 44 XLIV
5 V 15 XV 25 XXV 35 XXXV 45 XLV
6 VI 16 XVI 26 XXVI 36 XXXVI 46 XLVI
7 VII 17 XVII 27 XXVII 37 XXXVII 47 XLVII
8 VIII 18 XVIII 28 XXVIII 38 XXXVIII 48 XLVIII
9 IX 19 XIX 29 XXIX 39 XXXIX 49 XLIX
10 X 20 XX 30 XXX 40 XL 50 L

Table C.2. Roman Numerals Conversion Table

Please note that this assignment is not just about programming a roman numerals conver-

sion. Instead, it is a hands-on practice on Test-Driven Development. You should use the provided

user stories to write test case first, and let the tests to drive the code implementation.

Roman Numeral Conversion User Stories:

48

1. The conversion program returns empty string “ ” to value 0.

2. Roman numeral is “I” to value 1.

3. Roman numeral is “II” to value 2

4. Roman numeral is “III” to value 3

5. Roman numeral is “IV” to value 4, not ”IIII”

6. Roman numeral is “V” to value 5

7. Roman numeral is “VI” to value 6

8. Roman numeral is “VIII” to value 8

9. Roman numeral is “IX” to value 9, not VIIII

10. Roman numeral is “X” to value 10

11. Roman numeral is “XI” to value 11

12. Roman numeral is “XV” to value 15

13. Roman numeral is “XIX” to value 19

14. Roman numeral is “XX” to value 20

15. Roman numeral is “XXX” to value 30

49

Appendix D

Case Study Consent Form

50

University of Hawai‘i at Manoa
Department of Information and Computer Sciences

Collaborative Software Development Laboratory
Professor Philip Johnson, Director

POST Room 307• 1680 East-West Road • Honolulu, HI 96822

Voice: +1 808 956-3489 • Fax: 956-3548

Email: johnson@hawaii.edu

Thank you for agreeing to participate in our research on understanding test-driven development

practices using the Zorro tool. This research is being conducted by Hongbing Kou as part of his

Ph.D research in Computer Science at the University of Hawaii under the supervision of

Professor Philip Johnson.

As part of this research, you will be asked to develop or modify a program using test-driven

design practices and the Eclipse IDE using the Hackystat Eclipse sensor. While you are working

on your programming task, you will be sending data about how you program, including the

statements that you write, the test cases that you develop, the times that you invoke the tests and

their outcomes to a remote Hackystat server. You own the development activity data you send to

the server, and it shall not be used by anyone for any purpose other than the one stated in this

form without your consent.

At the beginning of the study, we are going to survey your opinions on doing test-driven

development. Then, you will do test-driven development using the instrumentation of the

Hackystat Eclipse sensor, and use the Zorro analysis package to understand your compliance of

test-driven development process. Another survey will be conducted after you use Zorro. Your

participation is voluntary, and you may decide to stop participation at any time, including after

your data has been collected.

The survey data that we collect will be treated strictly confidential, and there will be no identifying

information about you in any analysis of this data for all purposes, your data will remain anonymous.

If you have questions regarding this research, you may contact Professor Philip Johnson,

Department of Information and Computer Sciences, University of Hawaii, 1680 East-West Road,

Honolulu, HI 96822, 808-956-3489. If you have questions or concerns related to your treatment

as a research subject, you can contact the University of Hawaii Committee on Human Studies,

2540 Maile Way, Spalding Hall 253, University of Hawaii, Honolulu, HI 96822, 808-539-3955.

Please sign below to indicate that you have read and agreed to these conditions.

Thank you very much!

_________________________________ ___________________________

Your name/signature Date

Cc: A copy of this consent form will be provided to you to keep.

51

Appendix E

User Stories for Bowling Score Keeper

52

Test-Driven Development Exercise: Bowling Score Keeper

The objective is to develop an application that can calculate the score of a SINGLE bowl-

ing game using TDD. There is no graphic user interface. You work on objects and JUnit test cases

only in this assignment. We divide the bowling game requirements into a set of user stories, which

can serve as your to-do list. You should be able to come up witha solution without much compre-

hension of the bowling game rules. We encourage you to solve this programming task using TDD

as much as possible.

1. Frame

10 pins are arranged in an equilateral triangle in bowling game. It is called “frame”. The goal of

a frame is to knock all 10 pins down. The player has two chances, called “throws”, to do so.

Requirement: Define frame so that it has two integer attribute values. Eachvalue represents a

throw.

Example: [2, 4] is a frame with two throws. Note that you don’t have to check parameters.

2. Frame Score

The frame score is the sum of the first throw and second throw. For example, score of frame [3,5] is

8; score of frame[0,0] is 0, which is called “gutter” in bowling game.

Requirement: Compute score of a frame.

Example: The score of frame [2, 6] is 8. Frame [0, 9]’s score is 9.

3. Game

A single bowling game consists of 10 frames.

Requirement: Define bowling game which consists of 10 frames.

Example: A sequence of frames [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6] is a game.

Note that we will use this game many times from now on. We will modify only a few frames each

time to represent different bowling game scenarios.

4. Game Score

The score of a bowling game is the sum of its 10 frames.

Requirement: Compute the score of a bowling game.

Example: The score of above game is 81.

53

5. Strike

A frame is called “strike” if 10 pins are knocked down by the first throw. In this case, there is no

second throw. A strike frame can be written as [10,0]. The score of a strike is 10 plus the following

two throws. Suppose there are consecutive frames such as [10, 0] and [3, 6], then the strike frame

score will be 10 + 3 + 6 = 19.

Requirement: Compute the score of a bowling game with a strike frame.

Example: Let’s suppose the first throw in above game is a strike. The bowling game will have

frames [10,0] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. Its score will be 94.

6. Spare

A frame is called “Spare” when 10 pin are knocked down by two throws. For example, [1,9], [4,6],

[7,3] are all spares. The score of a spare frame is 10 plus the next throw following it. If you have

two frames [1,9] and [3,6] in a row, the spare frame score willbe 10 + 3 = 13.

Requirement: Compute the score of a bowling game with a spare frame.

Example: Similarly let’s assume the first frame in above game is a spare[1,9], then it will have

frames [1,9] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1][2, 6]. Its score will be 88.

7. Strike and Spare

A strike frames is followed by a spare frame. For example, [10,0], [4,6], [7, 2] are three consecutive

frames with a strike followed by a spare. Score for the strikeis 10 + 4 + 6 = 20, and score for the

spare is 10 + 7 = 17.

Requirement: Compute the score of a bowling game with a spare frame followsa strike.

Example: Similarly let’s assume the first two frames are [10, 0] and [4,6] in above game. The

game will have frames [10,0] [4,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. Its score will be

103.

8. Multiple Strikes

Two strikes in a row is possible in a real bowling game. To three frames [10, 0], [10, 0] and [7,2],

score for the first strike will be 10 + 10 + 7 = 27. The second strike score will be 10 + 7 + 2 = 19.

Requirement: Compute the score of a bowling game with two strikes in a row.

Example: Let’s assume the first two frames are both strikes, then the bowling game will look like

[10,0] [10,0] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. Its score will be 112.

54

9. Multiple Spares

Two spares in a row is another case.

Requirement: Compute the score of a bowling game with two spares in a row.

Example: Assuming the first two frames are spares, then the bowling game will look like [8,2]

[5,5] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. The game score will be 98.

10. Spare as the Last Frame

When the last frame is a SPARE, the player will be given a bonusthrow. However, this throw does

not belong to a regular frame. It is only used to calculate thescore of the last spare.

Requirement: Compute the score of a bowling game when the last frame is a spare.

Example: Assuming the last frame is a spare in above game, then game will be [1,5] [3,6] [7,2]

[3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 8] with bonus throw [7]. Its score will be 90.

11. Strike as the Last Frame

When the last frame is a STRIKE, the player will be given two bonus throws. However, these two

throws do not belong to a regular frame. They are used to calculate score of the last strike frame

only.

Requirement: Compute the score of a bowling game when the last frame is a strike.

Example: Assuming the last frame is a strike in above game, it will be [1,5] [3,6] [7,2] [3,6] [4,4]

[5,3] [3,3] [4, 5] [8, 1] [10, 0] with bonus throws [7, 2]. The game score will be 92.

12. Bonus is a strike

Bonus strike will not be counted as strike in a bowling game.

Requirement: Assuming the last frame is a spare and the bonus is a strike, compute the score of

this game.

Example: Assuming the last frame is a spare and the bonus is a strike in above game, the game will

be [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4,5] [8,1] [2,8] with bonus throw [10, 0]. The game score

will be 93.

13. Best Score

Requirement: Compute the score of the bowling game when all frames are strikes.

Example: Assuming all frames are strikes including bonus. The game looks like [10,0] [10,0]

55

[10,0] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0] with bonus throws [10,10]. It is a perfect

game and the game score is 300.

14. A Real Game

Requirement: To a game with frames [6,3] [7,1] [8,2] [7,2] [10,0] [6,2] [7,3] [10,0] [8,0] [7,3]

[10], its score is 135.

56

Appendix F

Participant Interview Guideline in Case

Study

Purpose

The purpose of this interview is to gather participants’ experience of TDD including how they think

about TDD, whether and how TDD affects their software development, whether can Zorro help

them, and how Zorro can be used? The protocol of the interviewis described here.

Interviewer

Hongbing Kou

Interviewees

Participants of the Zorro case study

Time and place

Participants will be interviewed by me in the lab after they finish validating Zorro’s inference on

their behaviors. The interview will last from 15 to 20 minutes.

Facility

Notepad, pen, and tape recorder. I will ask interviewee’s permission for the use of tape recorder.

Outline� Questions from the participant

57

� Experiences and opinions on unit testing and Test-Driven Development� Opinions on TDD measurement with Zorro. In what way does the measurement tool help?� Zorro usefulness evaluation� Possible improvements of Zorro

List of interview questions

1. Questions from the participants

I will give interviewees some time at the beginning to ask me questions. They may ask ques-

tions about TDD, Zorro or this study. Purpose of this is to letparticipants feel comfortable

before the interview starts. This may lead them to get involved and start talking.

2. Unit testing and Test-Driven Development� When and where did you learn unit testing?� How do you apply unit testing in your software development?

Do you write testing code when you are not confident about a program?

Do you write testing code after you finish a program?

Do you write testing code when you want to improve your testing coverage?

Did you ever write testing code first before you learned TDD?� How much testing code do you write?

How much is the code coverage of the programs you wrote in the software engineering

class?

Can you comment on the use of unit testing in software development?� Can you compare TDD to the testing strategy you did before?

How do you think of TDD? Is it helpful to improve software quality?

How comfortable it is for you to do TDD programming? What problems you have when

you programmed in TDD?

3. Please use scale 1 to 5 to assess the usefulness of Zorro’s TDD analyses (1 stands for least

useful and 5 stands for most useful). I would like you to justify your answers.� Episode Inference

58

� TDD Episode Demography� TDD Episode Duration Distribution’s� Test Effort vs. Production Effort� Test Size vs. Production Size

4. What other information you wish to have about TDD development?

How about an Eclipse plug-in indicating whether you are doing TDD?

How about an analysis showing your TDD performance over the time?

59

Appendix G

Participant Selections of TDD Analysis

Usefulness Areas

60

TDD Analysis Useful Areas A K L N O P Q R S T
UA-1 X X X X X X X X
UA-2 X X X X X X X
UA-3 X X X
UA-4 X X X X
UA-5 X X X
UA-6 X X
UA-7 X X

Episode Demography

UA-8 X X X X X X
UA-1 X X X X X X X X X
UA-2 X X X
UA-3 X
UA-4 X X X X X X X
UA-5 X X
UA-6 X X
UA-7 X X

T/P Effort Ratio

UA-8 X X X X X X X
UA-1 X X X X X X
UA-2 X X X X
UA-3 X X
UA-4 X X X X
UA-5 X
UA-6 X X
UA-7 X

T/P Size Ratio

UA-8 X X X X X X
UA-1 X X X X X X X
UA-2 X X X
UA-3 X
UA-4 X X X X X X X
UA-5
UA-6 X
UA-7 X

Episode Duration

UA-8 X
UA-1 X X X X X X
UA-2 X X X X X X
UA-3 X X
UA-4 X X X X X
UA-5 X X
UA-6 X X X
UA-7

Duration Distribution

UA-8 X X X

Table G.1. TDD Analysis Useful Areas

61

Bibliography

[1] Manifesto for agile software development.<http://www.agilemanifesto.org/>.

[2] Kent Beck. Extreme Programming Explained: Embrace Change. Addison Wesley, Mas-

sachusetts, 2000.

[3] Kent Beck. Aim, fire.IEEE Softw., 18(5):87–89, 2001.

[4] Kent Beck.Test-Driven Development by Example. Addison Wesley, Massachusetts, 2003.

[5] Thirumalesh Bhat and Nachiappan Nagappan. Evaluating the efficacy of test-driven develop-

ment: industrial case studies. InISESE ’06: Proceedings of the 2006 ACM/IEEE international

symposium on International symposium on empirical software engineering, pages 356–363,

New York, NY, USA, 2006. ACM Press.

[6] Jonathan E. Cook and Alexander L. Wolf. Automating process discovery through event-data

analysis. InICSE ’95: Proceedings of the 17th international conferenceon Software engi-

neering, pages 73–82, New York, NY, USA, 1995. ACM Press.

[7] John W. Creswell.Research design: qualitative, quantitative, and mixed methods approaches.

Sage Publications, Thousand Oaks, California, 2003.

[8] Gunjan Doshi. Test-driven development quick referenceguide. http://www.

gunjandoshi.com/mtarchives/TestDrivenDevelopmentReferenceGui%

de.pdf.

[9] Gunjan Doshi. Test-driven development rhythm.http://www.gunjandoshi.com/

mtarchives/TDDRhythmReference.pdf.

[10] Eclipse screen recorder.http://csdl.ics.hawaii.edu/Tools/Esr/.

62

[11] Stephen H. Edwards. Using software testing to move students from trial-and-error to

reflection-in-action. InProceedings of the 35th SIGCSE technical symposium on Computer

science education, pages 26–30. ACM Press, 2004.

[12] Hakan Erdogmus. On the effectiveness of the test-first approach to programming.IEEE Trans.

Softw. Eng., 31(3):226–237, 2005.

[13] Extreme programming: A gentle introduction.<http://www.xprogramming.org/>.

[14] Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Susan Macke, and Annette Matvya.

Results of applying the personal software process.Computer, 30(5):24–31, 1997.

[15] Ernest Friedman-Hill.JESS in Action. Mannig Publications Co., Greenwich, CT, 2003.

[16] Boby George and Laurie Williams. An Initial Investigation of Test-Driven Development in

Industry.ACM Sympoium on Applied Computing, 3(1):23, 2003.

[17] Boby George and Laurie Williams. A Structured Experiment of Test-Driven Development.

Information & Software Technology, 46(5):337–342, 2004.

[18] A. Geras, M. Smith, and J. Miller. A Prototype EmpiricalEvaluation of Test Driven Devel-

opment. InSoftware Metrics, 10th International Symposium on (METRICS’04), page 405,

Chicago Illionis, USA, 2004. IEEE Computer Society.

[19] Client-side configuration: Tool sensor installation.http://hackystat.ics.hawaii.

edu/hackystat/docbook/ch02.html.

[20] Watts S. Humphrey. Pathways to process maturity: The personal software process and team

software process.<http://www.sei.cmu.edu/news-at-sei/features/1999/

jun/Background.jun99.%pdf>.

[21] David Janzen and Hossein Saiedian. Test-driven development:concepts, taxonomy, and future

direction. Computer, 38(9):43–50, 2005.

[22] Ron Jeffries. Extreme Programming Installed. Addison Wesley, Upper Saddle River, NJ,

2000.

[23] Chris Jensen and Walt Scacchi. Experience in discovering, modeling, and reenacting open

source software development processes. InProceedings of the International Software Process

Workshop, 2005.

63

[24] Philip M. Johnson. Client-side configuration: Tool sensor installation. <http:

//hackydev.ics.hawaii.edu/hackyDevSite/external/docbook/ch02.

html%>.

[25] Philip M. Johnson. Hackystat Framework Home Page. http://www.hackystat.org/.

[26] Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Qin Zhang, Aaron Kagawa, and Takuya

Yamashita. Practical automated process and product metriccollection and analysis in a class-

room setting: Lessons learned from Hackystat-UH. InProceedings of the 2004 International

Symposium on Empirical Software Engineering, Los Angeles, California, August 2004.

[27] Philip M. Johnson, Hongbing Kou, Michael G. Paulding, Qin Zhang, Aaron Kagawa, and

Takuya Yamashita. Improving software development management through software project

telemetry.IEEE Software, August 2005.

[28] Philip M. Johnson and Michael G. Paulding. Understanding HPCS development through auto-

mated process and product measurement with Hackystat. InSecond Workshop on Productivity

and Performance in High-End Computing (P-PHEC), February 2005.

[29] Jagadish Kamatar and Will Hayes. An experience report on the personal software process.

IEEE Softw., 17(6):85–89, 2000.

[30] Reid Kaufmann and David Janzen. Implications of test-driven development: a pilot study. In

OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, pages 298–299, New York, NY, USA,

2003. ACM Press.

[31] Hongbing Kou and Philip M. Johnson. Automated recognition of low-level process: A pilot

validation study of Zorro for test-driven development. InProceedings of the 2006 International

Workshop on Software Process, Shanghai, China, May 2006.

[32] Craig Larman and Victor R. Basili. Iterative and incremental development: A brief history.

Computer, 36(6):47–56, 2003.

[33] E. Michael Maximilien and Laurie Williams. Accessing Test-Driven Development at IBM. In

Proceedings of the 25th International Conference in Software Engineering, page 564, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

64

[34] M. Matthias Muller and Oliver Hagner. Experiment aboutTest-first Programming. InEmpir-

ical Assesment in Software Engineering (EASE). IEEE Computer Society, 2002.

[35] James Newkirk and Alexei A. Vorontsov.Test-Driven Development in Microsoft .NET. Mi-

crosoft Press, Seattle, 2004.

[36] Matjaz Pancur and Mojca Ciglaric. Towards empirical evaluation of test-driven development

in a university environment. InProceedings of EUROCON 2003. IEEE, 2003.

[37] Shari Lawrence Pfleeger.Software Engineering Theory and Practice. Prentice Hall, Upper

Saddle River, NJ, 2001.

[38] Roger S. Pressman.Software Engineering: A Practitioner’s Approach. McGraw Hill, Boston,

2005.

[39] Quicktime 7 for windows.http://www.apple.com/quicktime/win.html.

[40] Beck testing framework.<http://www.xprogramming.com/testfram.htm>.

[41] Hackystat.http://hackystat.ics.hawaii.edu.

[42] Microsoft’s pilot of tsp yields dramatic results. <http://www.sei.cmu.edu/

publications/news-at-sei/features/2004/2/featur%e-1-2004-2.

htm>.

[43] Iserializable - roy osherove’s blog. http://weblogs.asp.net/rosherove/

archive/2004/12/02/273833.aspx.

[44] Unit testing: Can you repeat please? http://www.methodsandtools.com/

dynpoll/oldpoll.php?UnitTest.

[45] Yihong Wang and Hakan Erdogmus. The role of process measurement in test-driven develop-

ment. InXP/Agile Universe, pages 32–42, 2004.

[46] Christian Wege.Automated Support for Process Assessment in Test-Driven Development. Ph.d

thesis, Eberhard-Karls-Universit at Tubingen, 2004.

[47] Zorro demo.http://hackystat.ics.hawaii.edu/hackystat/controller?

Key=zorrodemouser&%Command=ZorroDemoHome.

65

