
Automated Recognition of Test-Driven Development with Zorro

Philip M. Johnson
Hongbing Kou

Collaborative Software Development Laboratory
Department of Information and Computer Sciences

University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

Abstract

Zorro is a system designed to automatically deter-
mine whether a developer is complying with an oper-
ational definition of Test-Driven Development (TDD)
practices. Automated recognition of TDD can bene-
fit the software development community in a variety of
ways, from inquiry into the “true nature” of TDD, to
pedagogical aids to support the practice of test-driven
development, to support for more rigorous empirical
studies on the effectiveness of TDD in both labora-
tory and real world settings. This paper introduces
the Zorro system, its operational definition of TDD,
the analyses made possible by Zorro, and our ongoing
efforts to validate the system.

1 Introduction

Substantial claims have been made regarding the ef-
fectiveness of test-driven development (TDD). Evan-
gelists claim that it naturally generates 100% cover-
age, improves refactoring, provides useful executable
documentation, produces higher code quality, and re-
duces defect rates [1]. Unfortunately, the empirical re-
search results have been equivocal. Some results are
positive: Bhat and Nagappan found that introducing
TDD at Microsoft decreased defect rates significantly
in two projects [2], and Maximilien and Williams tran-
sitioned an IBM development team to TDD with a
50% improvement in quality [8]. But other results
are negative: Muller and Hanger found that TDD re-

sulted in lower reliable software than the control group
[9] and Erdogmus found that TDD software was of no
higher quality than the control group [3].

Why might the research results on TDD be so
mixed? We believe that part of the reason stems from
methodological issues that both impede progress on
understanding TDD’s current effectiveness and future
improvements to the technique.

A first problem is that TDD is often introduced in a
relatively simplistic way, such as with the “Red-Green-
Yellow” stoplight metaphor. This definition of TDD
can mislead developers into thinking that all software
development to which TDD applies must easily re-
duce to “Write a little test that doesn’t work; Make
the test work quickly, committing whatever sins are
necessary in the process; and eliminate the duplication
created while keeping all tests passing.” While that
definition may suffice for the problems used to illus-
trate and teach TDD, real world software development
scenarios tend to be more complicated. As one simple
example, must one always begin in TDD with a test
case that doesn’t work? What about maintenance sce-
narios where one encounters code that is missing ap-
propriate tests, and so the developer writes a test that
happens to work the first time? Must that be classi-
fied as “not TDD” simply because it does not fit the
Red-Green-Yellow pattern? As we learned in our re-
search, developers don’t tend to be binary, either uti-
lizing TDD practices perfectly correctly all the time or,
alternatively, never doing TDD at all.

A second methodological problem with TDD re-
search involves compliance, or verification that the

1



participants who aresupposedto be doing TDD are
actually doing TDD. Many published papers on TDD
case studies and experiments provides little discussion
of how they verified compliance with the TDD pro-
cess. Both Janzen and Wang discuss how the question
of compliance weakens the validity of TDD research
[4, 10].

These two issues lead to confusion in both the prac-
tice of and research on TDD. An overly simplistic def-
inition of TDD can lead software developers to aban-
don the approach when they encounter development
situations outside the contexts where the Red-Green-
Yellow pattern applies directly. Alternatively, some
developers might believe that they are doing TDD due
to an excessively relaxed personal version of the defi-
nition, when other expert TDD practitioners might dis-
agree. The lack of compliance controls on experimen-
tal settings means that differences in outcomes may be
due, at least in part, to variance in understanding what
TDD actually is, as opposed to differences between the
control and experimental groups.

To address these problems, we believe that the com-
munity needs to agree upon one (or more) standard,
operational definitions of TDD. Furthermore, these
definition(s) must allow for a practical way to assess
compliance in both laboratory and real-world settings.

In this paper, we report on our results so far with
Zorro, a system for automated recognition of TDD
practices. In essence, Zorro gathers a stream of low-
level developer behaviors (such as invoking a unit
test, editing production code, invoking a refactoring
operation) while programming in an IDE, partitions
this event stream into a sequence of development
“episodes”, then applies a rule-based system to deter-
mine whether or not each episode constitutes an in-
stance of a TDD practice.

Zorro illustrates one approach to addressing the is-
sues mentioned above that hinder the research and
practice of TDD today. Automatic collection and anal-
ysis of data makes Zorro practical for use in both lab-
oratory and real-world settings: once installed, there is
no overhead on the developer with respect to data col-
lection. Second, Zorro can be used to develop a vari-
ety of operational definitions of TDD. A Zorro “TDD
definition” consists of the set of developer behaviors
that must be collected, the manner in which this times-
tamped stream of events are partitioned into episodes,

and the rules used to determine if an episode is TDD.
By providing a way to define an operational defini-
tion of TDD, Zorro addresses the compliance problem
by enabling researchers and practitioners to precisely
characterize the extent to which the given definition of
TDD was applied (or not) in any given development
scenario.

2 Zorro’s Architecture

As illustrated in Figure 1, the Zorro architecture
consists of three subsystems: (1) Hackystat, which
collects low-level developer behaviors; (2) SDSA
(Software Development Stream Analysis), a Hackystat
application that supports generic analysis of develop-
ment event streams; and (3) Zorro, an SDSA applica-
tion, which defines the specific rules and analyses nec-
essary for recognition and interpretation of the TDD
behavior of a developer.

2.1 Hackystat

Hackystat is an open source framework for auto-
mated collection and analysis of software engineering
process and product data that we have been develop-
ing since 2001. Hackystat supports unobtrusive data
collection via specialized “sensors” that are attached
to development environment tools and that send struc-
tured “sensor data type” instances via SOAP to a web
server for analysis via server-side Hackystat “applica-
tions”. Over two dozen sensors are currently avail-
able, including sensors for IDEs (Emacs, Eclipse, Vim,
VisualStudio, Idea), configuration management (CVS,
Subversion), bug tracking (Jira, Bugzilla), testing and
coverage (JUnit, CppUnit, Emma, JBlanket), system
builds and packaging (Ant), static analysis (Check-
style, PMD, FindBugs, LOCC, SCLC), and so forth.
Applications of the Hackystat Framework in addition
to our work on SDSA and Zorro include in-process
project management [6], high performance computing
[7], and software engineering education [5].

2.2 SDSA

Software Development Stream Analysis (SDSA) is
a Hackystat application that provides a generic frame-
work for organizing and analyzing the various kinds



Figure 1. The Zorro Architecture

of data received by Hackystat as input to a rule-based,
time-series analysis.

SDSA begins by merging the events collected by
various sensors into a single sequence, ordered by
time-stamp, called the “development stream”. This
is followed by a process called tokenizing, which re-
sults in a sequence of higher-level “episodes”. These
constitute the atomic building blocks for whatever pro-
cess is being recognized. For any given application of
the SDSA framework, tokenization involving defining
the specific events to be combined to generate the de-
velopment stream, as well as the boundary condition
that separates the final event in one episode from the
initial event in the next. For example, development
events could include things like a unit test invocation, a
file compilation, a configuration management commit,

or a refactoring operation. Example boundary condi-
tions could include a configuration management sys-
tem checkin, test pass event, or a buffer transition.

Once the development stream has been abstracted
into a sequence of episodes, the next step in SDSA is
to classify each episode according to whatever process
is under analysis. SDSA provides an interface to the
JESS rule-based system engine to enable developers
to specify part or all of the classification process as a
set of rules.

2.3 Zorro

The Zorro architectural layer provides extensions
to Hackystat and SDSA necessary for the automated
recognition of Test Driven Development behaviors.



2.3.1 Zorro extensions to Hackystat sensors

Zorro requires the developer’s IDE to be instrumented
with a Hackystat sensor that can collect at least the fol-
lowing kinds of events: unit test invocations (and their
results), compilation events (and their results), refac-
toring events (such as renaming, moving), and edit-
ing (or code production) events (such as whether the
file has changed in state during the previous 30 sec-
onds, and what the resulting size of the file is in state-
ments, methods, and/or test case assertions). While
these event types are both language and IDE inde-
pendent, our current implementation requires the use
of the Java programming language, the JUnit testing
framework, and the Eclipse IDE.

2.3.2 Zorro extensions to SDSA

Zorro’s extensions to SDSA begin with the specifi-
cation of the episode boundary condition, which for
TDD is the occurrence of a passing test case.

Zorro also extends SDSA with a set of rules that
enable instances of episodes to be classified as one of
22 episode types. Figure 2 lists these episode types,
their definition in terms of their internal development
stream structure, and an indication of their TDD con-
formance.

Zorro organizes the 22 episode types into eight cat-
egories: Test First (TF), Refactoring (RF), Test Last
(TL), Test Addition (TA), Regression (RG), Code Pro-
duction (CP), Long (LN), and Unknown (UN). All of
these episode types (except UN-2) always ends with a
“Test pass” event, since that is the episode boundary
condition. (UN-2 is provided as a way to classify a
development session where there is no unit testing at
all.)

Once each episode instance has been assigned an
episode type by the SDSA rule set, the final step in
the Zorro classification process is to determine the
TDD conformance of that instance. Figure 2 shows
that instances of some of the episode types are easy
to characterize. For example, every instance of a Test
First episode type is automatically TDD conformant,
just every instance of a Test Last, Long and Unknown
episode type is automatically not TDD conformant.

Interestingly, several of the episode types, such as
Refactoring, Test Addition, Regression, and certain
Code Productions are ambiguous: in certain contexts,

they could be TDD conformant, while in others they
could be TDD non-conformant. This is because, for
example, “Refactoring” can legitimately occur while a
developer is either doing Test Driven Design or some
different development approach, such as Test Last pro-
gramming. In order to classify instances of these
episode types, Zorro applies the following heuristic:
if a sequence of one or more ambiguous episodes
are bounded on both sides by non-TDD conformant
episodes, then these ambigous episodes types are clas-
sified as non-TDD conformant.

To make this clear, let’s consider some examples,
such as the episode sequence [TF-1, RF-1, CP-1, TF-
2]. In this sequence, Zorro classifies the ambiguous
episodes (RF-1 and CP-1) as TDD conformant, since
they are surrounded by TDD conformant episode types
(TF-1 and TF-2). Now consider the sequence: [TL-1,
RF-1, CP-1, TL-2]. In this sequence, Zorro classifies
the same two ambiguous episodes (RF-1 and CP-1) as
TDD non-conformant, since they are surrounded by
non-TDD episode types (TL-1 and TL-2).

Now consider a sequence like: [TF-1, RF-1, CP-
1, TL-1]. Here, the two ambiguous episodes (RF-1
and CP-1) are surrounded on one side by an unam-
biguously TDD conformant episode (TF-1) and on the
other side by an unambiguously TDD non-conformant
episode (TL-1). In this case, Zorro’s rules could im-
plement an “optimistic” classification, and assign the
ambiguous episodes as TDD, or a “pessimistic” clas-
sification, and assign the ambiguous episodes as non-
TDD. The current Zorro definition of TDD imple-
ments an “optimistic” classification for this situation.

The Zorro classification system illustrates two im-
portant advances in our approach to TDD. First, it re-
places the simplistic three episode type (red, green,
yellow) approach to TDD developer behavior with a
more sophisticated classification scheme based upon
22 distinct episode types. Second, it reveals that
the mapping from developer behaviors to TDD is not
straightforward. One can reasonably question whether
the “optimistic” classification scheme currently cho-
sen for Zorro is correct. The resolution to this ques-
tion, and indeed to questions regarding any chosen op-
erational definition of TDD, isvalidation: the process
of gathering evidence to determine whether the chosen
definition matches reasonable expectations for what
constitutes TDD and what doesn’t. We will return to



Figure 2. Zorro episode types, definitions, and TDD conformance

this issue in Section 3.

2.3.3 Zorro extensions to Hackystat Analyses

Having collected the raw data using Hackystat sensors,
and having abstracted the raw data into episodes and
classified it using SDSA, the final step in Zorro is to
provide analyses that are useful to both TDD develop-
ers and TDD researchers. This section overviews a few
of the analyses provided by Zorro to provide a flavor
for what is possible with this approach.

The first analysis, illustrated in Figure 3, is designed
to provide visibility into the Zorro data collection and
classification process.

Figure 3 displays two episodes, the first containing
19 development stream events and the second contain-
ing 10 development stream events. The display of each
event includes its time-stamp, its associated file (if ap-

plicable), and some additional information about the
associated sensor data. The final column provides in-
formation abouthow Zorro classified the episode (as
either TDD conformant, or TDD non-conformant), as
well aswhyZorro classified the episode that way (via
a textual summary of the episode structural character-
istics used in the classification).

The analysis in Figure 3 is useful for those wishing
to understand Zorro’s operational definition of TDD
in the context of actual development, either for learn-
ing or validation purposes. Figure 4 provides a higher
level perspective, by showing only the sequence of
episode types, with each TDD conformant episode
shaded in green. Clicking on an episode type drills
down to a more detailed description similar to that
shown in Figure 3.

Zorro provides a number of additional analyses that
enable the developer to understand the impact of TDD



Figure 3. Zorro Classification Analysis

Figure 4. Zorro Episode Demography

practices on their software product and process. Fig-
ure 5 shows how the ratio of test code to non-test (pro-
duction) code changes during the course of a devel-
opment session. The horizontal bar at 1.0 represents
equal amounts of test and production code. This fig-
ure illustrates a scenario of initial module development
in which there was significantly more production code
than test code at the beginning of the session, but the
proportion of test code rose until it doubled the amount
of production code, before returning to 1.5 times the
production code at the end of the session.

The final example analysis illustrated in Figure 6
pops up to yet another level of abstraction by using
Software Project Telemetry, a capability of Hackystat

that enables the visualization of trends in process and
product data over days, weeks, or months. In this real
world data, two trends are displayed over the course
of eight weeks: the percentage of TDD conforming
episodes, and the test case coverage of the system un-
der development. Interestingly, the level of test case
coverage co-varies with the “level” of TDD practiced
by the developer.

3 Validation

In order to feel confident in Zorro as an appropri-
ate tool to investigate TDD, we must address two basic
validation questions: (1) Does Zorro collect the behav-



Figure 5. Zorro Test/Production Size Ratio

iors necessary to determine when TDD is occurring,
and (2) Does Zorro correctly recognize test-driven de-
velopment when it is occurring?

The first validation issue addresses the use of auto-
mated, unobtrusive, sensor-based data collection, and
whether this approach can actually acquire the data
necessary to determine when TDD is taking place.

The second validation issue addresses our opera-
tional definition of TDD based upon episode-based
classification, and whether it provides a robust, useful,
and acceptable definition of TDD.

We began Zorro validation in the Spring of 2006
with a pilot study, and are building on that initial work
in 2007.

3.1 The pilot validation study

To obtain some initial validation data on Zorro, we
conducted a pilot study in Spring of 2006 in which
we instrumented the development environment with

Zorro sensors, asked a small set of students to do some
simple TDD development, then compared the result-
ing Zorro TDD classifications to an independently col-
lected source of data regarding their development be-
haviors.

One approach to independent data collection would
be to have an observer watching the developers as they
programmed, taking notes as to whether they are per-
forming TDD or not. We considered this but discarded
it as unworkable: given the rapidity with which TDD
cycles can occur, it would be quite hard for an observer
to notate all of the TDD-related events that can occur
literally within seconds of each other. We would end
up having to validate our validation technique!

Instead, we developed a plugin to Eclipse called
the “Eclipse Screen Recorder” (ESR). This system
generates a Quicktime movie containing time-stamped
screen shots of the Eclipse window at regular intervals.
One frame/second was found to be sufficient for vali-
dation, generating file sizes of approximately 7-8 MB



Figure 6. Zorro TDD Episode Telemetry

per hour of video. The Quicktime movie created by
ESR provides a visual record of developer behavior
that can be manually compared to the Zorro analysis
using the timestamps and used to answer the two vali-
dation questions.

Our pilot validation study involved the following
procedure. First, we obtained agreement from seven
volunteer student subjects to participate in the pilot
study. These subjects were experienced with both Java
development and the Eclipse IDE, but not necessarily
with test-driven development. Second, we provided
them with a short description of test-driven design, and
a sample problem to implement in a test-driven design
style. The problem was to develop a Stack abstract
data type using test-driven design, and we supplied
them with an ordered list of tests to write and some
sample test methods to get them started. Finally, they
carried out the task using Eclipse with both ESR and
Zorro data collection enabled.

To analyze the data, we created a spreadsheet in
which we recorded the results of watching the Quick-
time movie and manually encoding the developer ac-
tivities that occurred. Then, we ran the Zorro analyses,
added their results to the spreadsheet, and validated the
Zorro classifications against our analysis of the video
record.

The participants spent between 28 and 66 minutes
to complete the task. Zorro partitioned the overall
development effort into 92 distinct episodes, out of
which 86 were classified as either Test-Driven, Refac-
toring, or Test-Last; the remainder were “unclassi-
fied”, which normally corresponded to startup or shut-
down activities. Note that the version of Zorro used in
Spring 2006 used a somewhat less sophisticated clas-
sification ruleset than the current version.

Out of the 92 episodes under study, 82 were val-
idated as correctly classified, for an accuracy rate of
89%.



3.2 Ongoing validation

The pilot study provided us with valuable feedback
about the potential utility of Zorro, as well as deeper
insight into the process of validation itself. Our current
research is focused on enhancing our understanding of
the strengths and weaknesses of Zorro with several ad-
ditional validation studies.

Our next validation study will also involve students,
and will expand on the pilot study by cross-validating
the Zorro operational definition of TDD against two
independent data sources: the ESR video stream and
the feedback of the participants themselves following
the TDD development session. We will ask them to
review the TDD episodes generated by Zorro and pro-
vide their personal feedback on the classifications.

Following this second student-based validation
study, we plan to gain insight into the strengths and
weaknesses of Zorro in professional settings. For this
case study, we will invite developers who practice
TDD and who use Eclipse, Java, and JUnit to help
us validate Zorro. The process involves installing the
Hackystat Eclipse sensor for Zorro into their devel-
opment environment, performing development for a
few days with the sensors installed, then reviewing the
classifications made by Zorro and providing us with
feedback regarding its accuracy.

We also plan to obtain feedback from the TDD re-
search community. We believe that Zorro can provide
useful infrastructure for research on test driven devel-
opment. For this case study, we will invite researchers
to evaluate Zorro against their experimental require-
ments and provide us with feedback as to the suitabil-
ity of Zorro for their own work.

4 Conclusions

TDD has great potential as a software development
technique, but to fully realize this potential, the soft-
ware development community must gain deeper in-
sight into its strengths and weaknesses. The Zorro sys-
tem shows how it is possible to define an operational
definition of Test Driven Development that can be
used to address the process conformance problem and
other methodological issues confronting researchers in
TDD. Zorro also enables TDD to be analyzed and un-
derstood with more precision and nuance than ever be-

fore: instead of red-green-refactor, one can now talk
about the percentage of TDD episodes and which of
22 episode types have been used. When combined
with other Hackystat analysis techniques such as Soft-
ware Project Telemetry, Zorro enables developers to
gain deeper empirical insight into how TDD practice
impacts on other process and product metrics, such as
test case size and coverage.

In our experience, however, Zorro is more than sim-
ply an experimental infrastructure or a TDD learning
device. Zorro demonstrates that it is now possible to
observe and analyze interesting “micro-processes” in
software development. By building Zorro on top of the
more generic SDSA and Hackystat frameworks, its ar-
chitecture makes it more easily possible to study not
only TDD, but other interesting developer “best prac-
tices” on this fine-grained level. For example, there are
many best practices surrounding the appropriate time
to commit file changes to a configuration management
repository, and at least some of these best practices
could be operationalized in a set of Hackystat sensors
and SDSA rules.

Finally, we want to emphasize the open source na-
ture of the Zorro system and the research process. We
encourage you to download the system and try it out,
or contact us if you wish to participate in the research
process.

References

[1] K. Beck. Test-Driven Development by Example. Ad-
dison Wesley, Massachusetts, 2003.

[2] T. Bhat and N. Nagappan. Evaluating the efficacy of
test-driven development: industrial case studies. In
ISESE ’06: Proceedings of the 2006 ACM/IEEE inter-
national symposium on International symposium on
empirical software engineering, pages 356–363, New
York, NY, USA, 2006. ACM Press.

[3] H. Erdogmus. On the effectiveness of the test-first
approach to programming.IEEE Trans. Softw. Eng.,
31(3):226–237, 2005.

[4] D. Janzen and H. Saiedian. Test-driven develop-
ment:concepts, taxonomy, and future direction.Com-
puter, 38(9):43–50, 2005.

[5] P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang,
A. Kagawa, and T. Yamashita. Practical automated
process and product metric collection and analysis in
a classroom setting: Lessons learned from Hackystat-
UH. In Proceedings of the 2004 International Sym-



posium on Empirical Software Engineering, Los An-
geles, California, August 2004.

[6] P. M. Johnson, H. Kou, M. G. Paulding, Q. Zhang,
A. Kagawa, and T. Yamashita. Improving software
development management through software project
telemetry.IEEE Software, August 2005.

[7] P. M. Johnson and M. G. Paulding. Understand-
ing HPCS development through automated process
and product measurement with Hackystat. InSecond
Workshop on Productivity and Performance in High-
End Computing (P-PHEC), February 2005.

[8] E. M. Maximilien and L. Williams. Accessing Test-
Driven Development at IBM. InProceedings of the
25th International Conference in Software Engineer-
ing, page 564, Washington, DC, USA, 2003. IEEE
Computer Society.

[9] M. M. Muller and O. Hagner. Experiment about Test-
first Programming. InEmpirical Assesment in Soft-
ware Engineering (EASE). IEEE Computer Society,
2002.

[10] Y. Wang and H. Erdogmus. The role of process mea-
surement in test-driven development. InXP/Agile
Universe, pages 32–42, 2004.


