
Ultra-automation and ultra-autonomy for software engineering management of
ultra-large-scale systems

Philip M. Johnson
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

Abstract

“Ultra-Large-Scale Systems: The Software Challenge of
the Future” [10] identifies “Engineering Management at
Large Scales” as an important focus of research. Engineer-
ing management for software typically involves measure-
ment and monitoring of products and processes in order to
maintain acceptable levels of important project character-
istics including cost, quality, usability, performance, relia-
bility, and so forth. Our research on software engineering
measurement over the past ten years has exhibited a trend
towards increasing automation and autonomy in the collec-
tion and analysis of process and product measures. In this
position paper, we extrapolate from our work so far to con-
sider what new forms of automation and autonomy might
be required for software engineering management of ULS
systems.

1. From PSP to Leap to Hackystat

About ten years ago, I was smitten by the Personal Soft-
ware Process[1], which appeared to provide an elegant ap-
proach to giving software developers empirical, objective,
and actionable feedback regarding their activities. I prac-
ticed and taught the PSP in its original form for several
semesters, and came to the conclusion that all it really
lacked was an adequate toolset. Filling out Word docu-
ments by hand was simply too much overhead and had
the potential to introduce significant mistakes in collec-
tion and analysis, regardless of the potential benefits of the
information[5].

Thus began Project LEAP, an attempt to reduce the over-
head involved in collecting and analyzing PSP-style metrics
through tools, as well as enable experimental comparison
of the PSP method with variants, such as alternatives to the

PROBE estimation method. One outcome of that work was
the realization that in many cases, “you can’t even get them
to push a button” [3]. Put another way, developers don’t like
to interrupt their flow state to interact with a measurement
tool, even if that interaction is reduced to the most simple
interaction possible.

Project LEAP was thus superceded by Project
Hackystat[2], a new approach in which developers
wouldn’t have to doanythingto collect software engineer-
ing process and product data. Instead, software “sensors”
would be attached to their development tools. These
sensors would unobtrusively collect information and send
it to a centralized server. The centralized server would
aggregate together all of the various kinds of information
sent by all of the project team members and analyze it.
If anything interesting was discovered, it would send
an email off to developers with information about the
development metrics and trends to which they might want
to pay attention.

Hackystat is now five years old, and consists of over
350,000 lines of code. The set of sensors is extensible
and currently includes support for over 30 tools includ-
ing: IDEs (Eclipse, Emacs, JBuilder, Vim, Visual Stu-
dio, Idea), testing (JUnit, CppUnit, Emma, NUnit), build
(Ant, Make), configuration management (CVS, Subver-
sion), static analysis (Checkstyle, FindBugs, PMD), bug
tracking (Jira, Bugzilla), size metrics for over twenty five
programming languages (SCLC, LOCC,CCCC), and man-
agement (Microsoft Office, OpenOffice.org).

The low-level data sent by sensors is represented in
terms of an extensible set of abstractions called “sensor data
types”, such as Activity, CodeIssue, Coverage, or FileMet-
ric, which facilitate data consistency and simplify higher
level processing.

On the server side, an extensible set of analysis mod-
ules process the raw sensor data to create higher-level ab-



stractions that support software development research and
management. For example, the Software Project Telemetry
module provides support for trend analysis of multiple sen-
sor data streams to aid in-process decision-making [6], the
Zorro module provides support for automated recognition
of Test Driven Development [8], the MDS module provides
support for build process analysis for NASA’s Mission Data
System project [4], the HPC module supports analysis of
high performance computing software development [7], and
the CGQM module provides a “continuous” approach to the
Goal-Question-Metric paradigm [9].

An organization can use Hackystat to instantiate a tai-
lored system by selecting components from our public
repository, and can also augment the public components
with proprietary Hackystat components they develop in-
house. We host a public server with over 600 registered
users, and Hackystat has been installed and used by a vari-
ety of research and commercial organizations world-wide.

2. (Way) Beyond Hackystat

Engineering management of ultra-large-scale systems
would appear to require not one but two research “order of
magnitude” advances over the current approach to software
engineering process and product measurement and analysis
as embodied by Hackystat. To make this more concrete,
let me offer some observations on what Hackystat currently
fails to do well from our experience using Hackystat to sup-
port the development of the Hackystat software system it-
self.

One shortcoming of Hackystat is that it does not real-
ize the potential to provide software agents as first class
developers. For example, our daily automated build pro-
cess behaves in many ways like a regular developer: it
checks out the code from Subversion, compiles the sys-
tem, builds and installs test servers, runs the unit tests and
other quality assurance tools, and is instrumented with sen-
sors so that the results of these activities are reported to the
Hackystat server. Some of our alerts have a crude kind
of “intelligence”—for example, we have a build analysis
mechanism that analyzes the failure reports, compares them
to the Subversion commit data, and generates an email to
developers containing its conjectures on the “culprits” who
failed the build. These facilities fail to be real “agents” in
part because they are not “reactive” in any real sense–both
are essentially cron jobs as opposed to entities that actively
monitor their environment and react to it.

A second shortcoming of Hackystat is that it always re-
quires humans to “close the loop” in terms of reacting to
the data and analyses collected by the sensors. In other
words, data can be automatically collected, automatically
analyzed, and automatically provided back to developers.
But, any process or productchangesindicated by that data

must always be made by developers. If we could become
sufficiently confident of the analyses made by Hackystat,
then we could “close the loop” by enabling the system (or
agents interacting with the system) to make process or prod-
uct changes in addition to the human developers. For exam-
ple, certain kind of build failures can be prevented by the
developers taking additional actions in their local environ-
ment before committing changes. We do not enforce these
actions, because they are time-consuming and costly and
experienced developers avoid making these mistakes. How-
ever, under certain circumstances it would be useful to have
the environment recognize the introduction of “novice” de-
velopers and impose additional process constraints on them
based upon the kinds of build failures that they generate.

A third shortcoming of Hackystat is its inability to un-
derstand the nature of the users interacting with it, and
make decisions about the kind of information that they need.
Hackystat has grown to the point where the range of po-
tential analyses available is bewildering to beginning users,
and uncomfortable for veteran users, both of whom often
feel that they are probably missing something important in
the data. Even though Hackystat accumulates a great deal of
behavioral information about its users, it makes no attempt
to use this information to create a user model that would en-
able it to provide tailored information of more relevance to
the individual.

3. Ultra Large Scale Software Engineering
Process and Product Measurement

My particular interest in ULS is thus on ways to support
software engineering process and product measurement and
analysis. My intuition is that addressing all of the shortcom-
ings noted above would only get Hackystat to the “large
scale”. What would it mean to jump up yet another level in
scale and complexity?

One possibility is that the system would have to have
new levels of autonomy in terms of the ways it makes con-
nections between data. For example, current Hackystat
servers only perform analyses on Projects that are explic-
itly defined by users. In ULS, one would assume that the
system would not only need to be able to decide for itself
what constitutes a “Project”, but also autonomously estab-
lish connections with other Hackystat servers in order to
share data. This, in turn, implies the need for a concept
of “locality” with respect to software development so that
servers could request data “near” to them from a measure-
ment point of view.

A second possibility is that the system would need to be
able to define its own sensors, sensor data types, and analy-
ses in response to emergent conditions, or at least be able to
autonomously instantiate generic sensors, sensor data types,
and analyses with parameters based upon the context at



hand.
While these possibilities form exciting research direc-

tions for ULS engineering management, they also raise the
question of evaluation: how can one perform an initial eval-
uation of a ULS mechanism outside the context of actual
ULS systems in order to assess their feasibility and effec-
tiveness? In other words, what would constitute a useful
“laboratory model” of a ULS system: one that preserves
some of the important characteristics of ULS systems while
eliminating other scales in order to support experimenta-
tion?

With respect to engineering management, I believe that
current open source system projects (such as the Linux op-
erating system, the Eclipse IDE, the Apache web server,
and even the Hackystat Framework) can be potentially use-
ful “models” for evaluation of certain ULS engineeering
management innovations. Systems such as Linux, Eclipse,
Apache, and Hackystat share a diverse user and devel-
oper community that are simultaneously extending these
frameworks in orthogonal, potentially incompatible direc-
tions. As open source, they can support experimentation
with new, decentralized paradigms for measurement and
management. Finally, they provide a level of transparency
in product and process that can facilitate objective, scien-
tific evaluation of the strengths and weaknesses of new ap-
proaches.

The ULS program provides a way to push the research
trajectory of software engineering measurement from its
humble beginnings as Word templates to self-adapting, au-
tonomous federations of systems. I look forward to an op-
portunity to gather together with other researchers to learn
from their perspectives and refine my own.

References

[1] W. S. Humphrey. A Discipline for Software Engineering.
Addison-Wesley, New York, 1995.

[2] P. M. Johnson. Hackystat Framework Home Page.
http://www.hackystat.org/.

[3] P. M. Johnson. You can’t even ask them to push a button: To-
ward ubiquitous, developer-centric, empirical software en-
gineering. InThe NSF Workshop for New Visions for Soft-
ware Design and Productivity: Research and Applications,
Nashville, TN, December 2001.

[4] P. M. Johnson. The Hackystat-JPL configuration: Overview
and initial results. Technical Report CSDL-03-07, Depart-
ment of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822, October 2003.

[5] P. M. Johnson and A. M. Disney. A critical analysis of PSP
data quality: Results from a case study.Journal of Empirical
Software Engineering, December 1999.

[6] P. M. Johnson, H. Kou, M. G. Paulding, Q. Zhang, A. Ka-
gawa, and T. Yamashita. Improving software development
management through software project telemetry.IEEE Soft-
ware, August 2005.

[7] P. M. Johnson and M. G. Paulding. Understanding HPCS
development through automated process and product mea-
surement with Hackystat. InSecond Workshop on Produc-
tivity and Performance in High-End Computing (P-PHEC),
February 2005.

[8] H. Kou and P. M. Johnson. Automated recognition of low-
level process: A pilot validation study of Zorro for test-
driven development. InProceedings of the 2006 Inter-
national Workshop on Software Process, Shanghai, China,
May 2006.

[9] C. Lofi. Continuous GQM: An automated framework for
the goal-question-metric paradigm. M.S. Thesis CSDL-05-
09, Department of Software Engineering, Fachbereich Infor-
matik, Universitat Kaiserslautern, Germany, August 2005.

[10] L. Northrup. Ultra-large-scale systems: The software chal-
lenge of the future. Technical report, Software Engineering
Institute, 2006.


