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Abstract

A recent focus of interest in software engineering researchis on low-level software processes,

which define how software developers or development teams should carry on development activities

in short phases that last from several minutes to a few hours.Anecdotal evidence exists for the pos-

itive impact on quality and productivity of certain low-level software processes such as test-driven

development and continuous integration. However, empirical research on low-level software pro-

cesses often yields conflicting results. A significant threat to the validity of the empirical studies on

low-level software processes is that they lack the ability to rigorously assess process conformance.

That is to say, the degree to which developers follow the low-level software processes can not be

evaluated.

In order to improve the quality of empirical research on low-level software processes, I devel-

oped a technique called Software Development Stream Analysis (SDSA) that can infer development

behaviors using automatically collected in-process software metrics. The collection of development

activities is supported by Hackystat, a framework for automated software process and product met-

rics collection and analysis. SDSA abstracts the collectedsoftware metrics into a software devel-

opment stream, a time-series data structure containing time-stamped development events. It then

partitions the development stream into episodes, and then uses a rule-based system to infer low-level

development behaviors exhibited in episodes.

With the capabilities provided by Hackystat and SDSA, I developed the Zorro software system

to study a specific low-level software process called Test-Driven Development (TDD). Experience

reports have shown that TDD can greatly improve software quality with increased developer pro-

ductivity, but empirical research findings on TDD are often mixed. An inability to rigorously assess

process conformance is a possible explanation. Zorro can rigorously assess process conformance to

a specific operational definition for TDD, and thus enable more controlled, comparable empirical

studies.
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My research has demonstrated that Zorro can recognize the low-level software development

behaviors that characterize TDD. Both the pilot and classroom case studies support this conclu-

sion. The industrial case study shows that the automated data collection and development behavior

inference has the potential to be useful for researchers.
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Chapter 1

Introduction

Throughout the history of software engineering, much effort has been put on the description and

understanding of high-level software processes. The waterfall model, the very first software pro-

cess, has contributed to the success of many large software systems. High-level software processes

divide the software development process into phases, whereeach phase lasts from a few days to

several months [54, 56]. For example, the requirements analysis phase may last months before the

design phase starts. Recently, increasing effort has been put on low-level software processes [46, 1],

in which a phase may last from several minutes to a few hours only. Each phase defines how devel-

opers and the development team should carry on the work on a daily basis. The Personal Software

Process (PSP) [29] and Extreme Programming (XP) [32, 4, 20] are two examples of a low-level

software process. Although proven to be useful in improvingsoftware quality[21, 43, 70, 31], low-

level software processes are hard to execute correctly and repeatedly. Low-level software processes

have the potential to require new skills from software organizations, project managers, and software

developers. For example, in Test-Driven Development (TDD), each developer is a requirements an-

alyst, designer, tester, and coder. As a result, a low-levelsoftware process could be used differently

in different software organizations. Worse yet, an organization might think they are using a particu-

lar low-level process, such as TDD, but in reality, they are doing something quite different. In order

to improve the quality on practice and research of low-levelsoftware processes, it would be helpful

to have tools to support the understanding of what low-levelsoftware processes are actually being

performed by organizations, and what the impact of these processes are on the outcome of develop-

ment. In my dissertation research, I focused on one low-level software process called Test-Driven

Development (TDD) [6], and developed the Zorro software system to study it.
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1.1 Test-Driven Development

“Clean code that works”[6] is the goal of Test-Driven Development. To achieve this goal, TDD

summarizes its low-level software development process as two basic rules: “(1) Write new code only

if an automated test has failed; (2) Eliminate duplication.” Kent Beck, the pioneer of Test-Driven

Development, stated that there is an implicit order to software development using TDD [6]:

1. Red - Write a little test that does not work, and perhaps does not even compile at first.

2. Green - Make the test work quickly, committing whatever sins are necessary in the process.

3. Refactor - Eliminate all the duplication created by merely getting the test to work.

The red/green/refactor order is a pithy summary of TDD. In reality, TDD is significantly more

complicated than that. Given a requirement, a TDD developeranalyzes it and outlines a To-Do list

with a few tasks. After picking a task from the To-Do list, thedeveloper immediately writes a test,

which is then used to motivate the implementation of actual system. If the test fails, the developer

does whatever is necessary to make it pass as quickly as possible, not worrying about the quality

or generality of the results. Only after getting the test case to pass does the developer perform a

pass over the code base to improve its quality without changing its functionality. This is called the

“refactoring” phase. Then the developer crosses out this task from the To-Do list, and adds new

tasks to it if new requirements occur to him.

Because a test is always created first to drive the design and implementation, TDD used to be

called Test-First Design (TFD) or Test-First Development (TFD). My opinion is that “test first” is

better than “test driven” for describing the order of test and production coding activities. Therefore,

in the rest of this document, I will use “test first” when it is necessary to emphasize the order of

programming in TDD, but there is no difference between “testfirst” and “test driven”.

TDD is one of the innovative practices of Extreme Programming. In TDD, the software de-

velopment process is iterative and incremental [46]. Thereis only one task to accomplish in an

iteration. In any particular iteration, a unit test corresponding to the task is created first, followed

by production code implementation. TDD is built on the foundation of the XUnit framework [59],

which has been ported to more than 30 languages. Unit testinghas become a defacto standard in the

software industry. TDD is widely adopted by software professionals. An informal survey [73] con-

ducted by the Method and Survey magazine found that 46% of thestudied software organizations
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perform unit testing informally, 41% of the studied organizations document their unit test cases, and

14% of the studied organizations use the TDD approach.

1.2 TDD Challenges

At first glance, TDD might seem easy, but in fact, it is a very difficult low-level software pro-

cess that requires much discipline to carry out correctly. First, software developers are not typically

educated to write unit tests for the programs they develop. Therefore, in a lot of cases, software

systems are not designed for easy testing. Consequently, developers often find it is hard to write

testing code at all, much less write testing code prior to implementation. Second, following the

red/green/refactor software development pattern requires a lot of discipline. In TDD, software de-

velopers must continuously remain in the mindset of test-first, which is initially counter-intuitive

to many of them [5, 74]. So they often apply it differently according to their own experience level

and understanding [5]. Third, the best way to divide a complicated problem into a set of tasks that

can be finished in short iterations is not always obvious. Perhaps as a result,the research findings

on TDD’s impact on software quality and developer productivity are mixed. In order to improve

the TDD practices and empirical evaluations, it is necessary to measure the usage and adoption of

TDD. In this section, I will first present some TDD research findings, followed by a discussion of

the “construct validity” problem of these studies.

1.2.1 Mixed TDD Research Findings

So far, software engineering researchers have focused heavily on the important outcomes that

TDD brings to software products and software developers. Both pedagogical [50, 18, 25, 53, 19, 44]

and industrial [23, 49, 7] evaluations of TDD have been conducted in the last few years. Table 1.1

lists most relevant TDD research work. It is interesting to note that while the industrial empirical

evaluations results are often positive, on the contrary, the pedagogical evaluations results are often

negative toward TDD. The industrial studies found that TDD helped to improve software quality

at the cost of development time according to Table 1.1. Most pedagogical studies did not find

the improvements of software quality and degradation of developer productivity. Instead, some

pedagogical studies found that students as participants improved their productivity. As presented in

Table 1.1, discrepancies exist among empirical research findings, and they are not trivial. Although
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Table 1.1. Research Work of TDD on Software Quality and Developer Productivity

Investigator Participants Software Quality Developer Productivity
George [23] 24 TDD passed 18% more

tests
16% more time

Geras [25] 14 TDD has the edge on
quality

No impact

Industrial Maximilien [49] 9 50% reduction in defect
density

Minimal impact

Williams[76] 9 40% reduction in defect
density

No change

Bhat [7] 11 2-4 times reduction in de-
fect density

35% and 15% more time

Kaufmann [44] 8 N/A 50% improvement
Edwards [18] 59 54% fewer defects N/A

Academic Erdogmus [19] 35 No change Improved productivity
Müller [50] 19 Less reliable, but better

reuse
No change

Pancǔr [53] 38 No change No change

it is commonly understandable that empirical research workcan not be repeated easily, the TDD

research findings are too inconsistent to discount as mere replication variability. Next, I will discuss

the process conformance problem, one of the most possible reasons that contributed to the mixed

results, and motivate the need to measure TDD usage and adoption.

1.2.2 Measures of TDD Usage and Adoption

Much of the research work on TDD suffers from the threat of “construct validity” [74] because

of the what has been termed as the “process conformance” problem. Wang and Erdogmus defined

process conformance as the ability and willingness of the subjects to follow a prescribed process.

The process conformance problem of TDD can be expressed as a simple question, “Do test-driven

developers really do test-first?” It is a question that implies two sub questions.

1. Do test-driven developers have the abilities to develop software in TDD?

2. Do test-driven developers develop software in TDD consistently?

An empirical study has the construct validity problem if theanswer to the first question is not a firm

“yes”, and it has the internal validity problem if the answerto the second question is not a firm “yes”.
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Unfortunately, researchers have not paid much attention toeither of these validity problems in the

empirical studies I mentioned in the previous section. Someresearchers used pair programming

[23] and verbal confirmation [50] as the process control methods, but they are not reliable sources.

So process conformance is one possible explanation to the mixed research findings of TDD.

In the software industry, TDD is gradually becoming well accepted for software development

[73]. Some companies even put TDD in their job descriptions.Yet there are still problems in

testability and differences in the understanding of this methodology. In [31], Janzen and Saiedian

warned that measuring the adoption of TDD is necessary. Manyorganizations might be using it

without talking about it. Others might claim to be using TDD when in fact they are misapplying it.

Worse yet, they might be advertising its use falsely. Surveys could be conducted to gauge the usage

of TDD, but often only those who are much in favor or much opposed to it will respond.

The inability to accurately characterize process conformance is harmful to TDD. Therefore,

measuring the usage and adoption of TDD has become an important issue for both researchers

and practitioners. However, Janzen and Saiedian [31] stated that measuring the use of a software

development methodology is hard. They claimed it is so hard to do accurately that published data

on the level of TDD adoption in industry is either indirect orinaccurate [31, 73].

Fortunately, as my initial case study demonstrates [45], measuring the use of certain software

development methods such as TDD is becoming feasible with the emergence of technologies such

as the Hackystat system [60, 40, 41, 39], an in-process software metrics collection and analysis

framework.

1.3 Proposed Solution: Zorro Software System

In this research, I developed the Zorro software system to measure the usage of TDD with the

capabilities introduced by the Hackystat system, a framework of automated software metrics col-

lections and analyses. Figure 1.1 illustrates the infrastructure of the Zorro software system. Zorro

is built on top of Hackystat, and it uses Hackystat’s data collection and analysis services for de-

velopment behavior inference of TDD. In Figure 1.1, betweenHackystat and Zorro layers, there

is a middle tier named SDSA. The SDSA stands for the Software Development Stream Analysis,

a generic framework for development event stream analysis including three components —soft-

ware development stream construction, development streampartition, and development behavior
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inference. The SDSA is an extension of Hackystat, and it can be used to study low-level software

processes.

1.3.1 SDSA: A Framework of Development Stream Analysis

The SDSA uses software metrics of development activities collected by Hackystat sensors to

monitor, identify and characterize high-level development behaviors with the support of JESS [22],

a rule-based system in Java. Figure 1.2 illustrates the datamodels and work flow of SDSA. The data

1. Construct

3. Recognize

Episodes

Software

Process

Metrics

Software

Development 

Stream

2. Partition

Development

Behaviors

Figure 1.2. SDSA Framework

models of SDSA include “software development stream”, “episode”, and “development behavior”.

A linear work flow connects software metrics and these three data models together in SDSA. First,

SDSA processes the software metrics of development activities collected by Hackystat sensors. Af-

ter reducing software process metrics into development activities, SDSA organizes development

activities of a same type into a time-series event stream, which is a sub stream of the software

development stream. SDSA assembles different event streams together to construct a “software

development stream”, which is also a time-series. Second, due to the complexity of digesting long

development streams with heterogeneous development activities, SDSA uses a partition technique.

A development stream can be partitioned into many episodes delimited by characteristic develop-

ment activities. The episode is in turn a time-series collection of development activities. Third,

SDSA includes a driver and interface to recognize the development behaviors in episodes using

JESS.

SDSA is tool and process independent. It can be instantiatedto measure a software development

method or low-level software process.
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1.3.2 Zorro Software System

Zorro is an instantiation of the SDSA framework for TDD. It extends SDSA at three points:

1. Development Stream Construction

As Figure 1.1 illustrates, Hackystat sensors collect a variety of software metrics, and SDSA

can construct a development stream with all of them. But thisis not desirable because some

development activities might not be relevant to the development method or process under

study. Using TDD as an example, debugging is not interestingbecause it is not part of the

process of TDD. In a nutshell, the essential development activities required by Zorro for TDD

behavior inference are:� editing activities including document, production and unit test editing,� buffer transition activities,� refactoring activities including addition, deletion, renaming, and moving of object com-

ponents,� unit testing activities,� compilation activities.

Respectively, Zorro constructs the development streams ofTDD with event streams including

“EditStream”, “BuffTransStream”, “RefactoringStream”,“UnitTestStream”, and “Compila-

tionStream”.

2. Tokenization

Zorro uses the “test-pass” tokenizer, which partitions theTDD development stream into a set

of episodes that are delimited by successful unit test invocations.

3. Development Behavior Recognition

In Zorro, I defined a set of specific rules for TDD according to Beck [5, 6] and others who

have described the practices of TDD. The “test-pass” episodes are categorized as “test-first”,

“refactoring”, “test-addition”, “regression”, “code-production”, “test-last”, “long”, or “un-

known”. Chapter 4 has the detailed description of the episode classification schema.

After inferring development behaviors in episodes and categorizing them, Zorro uses the clas-

sification results as well as the context of episodes to reason the conformance of TDD. Figure 1.3
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is an excerpt of Zorro’s TDD inference result for an experienced TDD developer. This experienced

Figure 1.3. Demo of Zorro’s TDD Inference

developer solved the Roman numeral conversion problem (Appendix C) using TDD in the Eclipse

IDE. The Hackystat Eclipse sensor was installed to instrument the development process to collect

development activities. Zorro partitioned them into 16 episodes using the “test-pass” tokenizer, and

inferred the process conformance of TDD. In the table illustrated in Figure 1.3, the last column con-

tains the reasoning process and result. According to this table, the first three episodes are all TDD

conformant. The first episode is “test-first” but atypical because production code was not edited

to make test pass after the test invocation failed at (18). The second episode is “test-first” due to

the perfect match of development activities to the red/green/refactor metaphor. The last episode is

“regression’ because no progress was made although the production code was edited. Based upon
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the reasoned development behaviors and the context of episodes, Zorro inferred that all the three

episodes are TDD compliant.

With the automated software metrics collection and inference of TDD, a lot of useful analyses

that once were thought impossible have become plausible. A handful of analyses (see Chapter 4)

were implemented in Zorro. Figure 1.4 illustrates one of them, the “TDD Episode Demography”

analysis. This analysis provides an overview of a TDD programming session, which is partitioned

Figure 1.4. TDD Episode Demography

into 17 episodes, and 65% of them are TDD compliant. Note that� each small box with a two-letter acronyms represents a single episode,� TDD-conformant episodes are shown in green. Non TDD-conformant episodes are transpar-

ent.

For the TDD programming session illustrated in Figure 1.4, if Zorro was not used, the developer

would falsely claim that he/she complied with TDD. In fact, as it turned out, the developer did

not conform to the idealized TDD process all the time. According to Zorro’s inference, 65% per-

cent of the episodes in this session are TDD-Conformant, andsome episodes are “test-last”. In

addition to reporting the compliance of TDD, the “TDD Episode Demography” analysis can also

be used to look for the development patterns. Episodes are ordered by time when they occurred.

The researchers and developers can retrospectively reviewthe development process for training or

improvement.

Besides typical analyses such as “TDD Episode Demography”,I also implemented a group of

telemetry analyses. The Software project telemetry [40, 79] was developed by Qin Zhang in the

Collaborative Software Development Lab at the University of Hawaii. It can aggregate metrics data

together to perform daily, weekly, or monthly analyses of the software metrics to support in-process

software project management and decision makings.

10



Some goals of this dissertation research are to assist the education, training, improvement, and

empirical evaluations of TDD. Software project telemetry is an infrastructure that can be used by

Zorro to pursue these goals. In Zorro, I have already defined telemetry streams including “TDD

percent of development time”, “TDD percent of episodes”, “development time ratio of test and

production code”, “size ratio of test and production code”,and so forth. Figure 1.5 is a weekly

telemetry chart showing percentage of TDD development and test coverage. From the week of Sep

Figure 1.5. Proportion of TDD vs Test Coverage

30, 2006 to the week of Nov 18, 2006, I worked on the Zorro software system and implemented

Zorro’s web validation interface. I used TDD in my development. Due to the fact that testing

web interfaces requires a lot of additional effort, my percent of TDD development dropped down
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significantly in that period. As a result, the test coverage of Zorro dropped from above 90% to below

70% over the course of eight weeks software development.

The synergy of Zorro and telemetry allows practitioners andresearchers to improve the practice

and research of TDD with no additional overhead. Both systems are automated based on Hackystat’s

automatic software metrics collection with sensors attached to the development environment tools.

1.4 Research Statement

In this dissertation, I created the Zorro software system tostudy the conformance of Test-Driven

Development in practice with the aids of the Hackystat framework and the Software Development

Stream Analysis (SDSA) framework that I have developed. Thedesign of the Zorro software system

is a combination of bottom-up and top-down methods. The development environment tools are

instrumented by Hackystat sensors to collect software process and product metrics. A variety of

software metrics are abstracted into development activities and then are merged together to form

the time-series software development stream, which is thenpartitioned into small chunks named

“episode”. This portion is bottom-up. Given a software development method or low-level software

process, the process description, guideline, and knowledge can be translated into a set of rules.

The rules can be used to evaluate episodes partitioned from the software development stream. This

portion is top-down.

The success of Zorro relies on the software metrics collection capability as well as the com-

prehension of TDD. The software metrics that are related to TDD must be collected. In the long

run, it is important for the software development communityto reach some kind of consensus on an

appropriate definition (or definitions) for TDD. Until thereis concrete experience from Zorro, this

consensus is not feasible. The development of Zorro is thus iterative and progressive. Figure 1.6

illustrates the time line of this research project including a few milestones. I have conducted three

empirical evaluations in my development process of Zorro toinvestigate whether Zorro can collect

enough software metrics and how well it can infer TDD compliance. The Eclipse Screen Recorder

(ESR, [17]), an Eclipse plug-in that can record developmentactivities in the Eclipse IDE, was de-

veloped to assist the evaluations. ESR can capture Eclipse screen at the rate of 1 frame per second,

and thus it provides high fidelity movies for the purpose of validation. The last empirical case study
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Figure 1.6. Development Timeline of the Zorro Software System

was conducted off-site in Norway to investigate what valuesZorro can provide for researchers and

project managers.

1.5 Empirical Evaluations

Three longitudinal case studies — a pilot study, a classroomcase study, and an industrial case

study were conducted to empirically validate the Zorro software system in this dissertation research.

The primary goal of these studies was to validate Zorro’s software metrics collection as well as TDD

inference abilities. The secondary goal was to investigatehow useful Zorro would be. An additional

goal was to investigate how the metrics collection and inference rules can be improved.

1.5.1 Pilot Study

After researching related work on TDD and stream analysis techniques, I designed and imple-

mented the Zorro software system based upon my observation and analysis of TDD development

patterns. By the Spring 2005, I had solved all the difficulties of metrics collection in the Eclipse

IDE as a pilot, implemented the SDSA framework, and developed the first set of TDD recognition

rules.

I refined the initial version of Zorro in the Summer 2005, and conducted a pilot validation study

in the Fall 2005. Six experienced Java programmers participated in this study. Each participant

developed a implementation of the stack data structure (Appendix A) using TDD in the Eclipse

13



IDE, which was instrumented by the Hackystat Eclipse sensor. I compared Zorro’s inference to an

independently collected source regarding their development behaviors.

One approach to independent data collection would be to havean observer watching develop-

ers as they programmed, taking notes as to what development behavior they are conducting and

whether they are pertaining to TDD or not. I considered this but discarded it as unworkable: given

the rapidity of development activities in TDD, it would be very hard for an observer to notate all of

the TDD-related development activities that can occur literally within seconds of each other. There-

fore, I took another approach by developing the Eclipse Screen Recorder [17]. The ESR generates

a QuickTime movie containing time-stamped screen shots of the Eclipse Window at the regular

intervals. One frame/second was found to be sufficient for validation, generating file sizes of ap-

proximately 7-8 MB per hour of video. The QuickTime movie created by ESR provides a visual

record of development behaviors that can be manually compared to the Zorro analysis using the

timestamps for validation purpose. Figure 1.7 is a screen copy showing the recorded development

process movie played in the QuickTime Pro software [58].

The participants spent 28 to 66 minutes on the programming task. Zorro partitioned the overall

development efforts into 92 episodes, out of which 86 were classifiable; 6 were unclassifiable. It

classified 76 out of 86 episodes correctly resulting in classification accuracy rate 88.4%.

The pilot study showed that Zorro is promising at inferring high-level development behaviors

with low-level development activities collected as software metrics at least in a simple environment

setting. The pilot study also showed that the metrics collection missed some information that led to

inference errors.

In the Spring 2006, I improved the Hackystat Eclipse sensor for metrics collection, and refac-

tored Zorro’s inference rules. In the Summer 2006, under thesuggestion of Dr. Philip Johnson, I

went to National Research Council of Canada (C-NRC), where Icollaborated with Dr. Hakan Er-

dogmus, a senior agile process researcher who pioneered theidea of automated TDD conformance

inference. The collaborative research at the C-NRC and the follow-up collaboration in the Fall 2006

resulted in a classroom case study and an industrial case study in the Spring 2007.
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Figure 1.7. Analysis of QuickTime Video
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1.5.2 Classroom Case Study

I, the author of Zorro, compared the recorded movies with Zorro’s inference to validate Zorro’s

metrics collection and TDD development inference in the pilot study. I could be biased both at

judging what software metrics are necessary, as well as at inferring development behaviors from

the observed activities in the ESR movies. One man’s subjective judgment, especially the one from

author himself or herself, perhaps is not a valid measure in acase study [78]. This is notably called

“construct validity” problem according to [78]. Using multiple data sources, establishing the chain

of evidence, and having key informants review draft case study report are three viable tactics that

a researcher can use to avoid the construct validity problem. Thus, in the Fall 2006, I developed a

web interface to collect participant’s comments, the thirddata source.

In the Fall 2006, I conducted the classroom case study in the software engineering classes at

the University of Hawaii. The experimental design of this study is very close to the pilot study.

Participants also developed using TDD in the Eclipse IDE with the instrumentations of the Hackystat

Eclipse sensor and ESR. The differences were that the Hackystat Eclipse sensor was more robust

and the new problem (Bowling Score Keeper at Appendix E) was much harder than the stack data

structure (Appendix A).

Eleven students from the software engineering classes voluntarily participated in this study. The

participants developed in TDD for 90 minutes, followed by a 10 minute interview and a 20 minutes

Zorro inference validation session. In the interview, I asked them questions regarding their opinions

on unit testing and Test-Driven Development. A digital voice recorder was used in the interview

and in the following validation session for their verbal comments.

The classroom case study data analysis supported the claim that Zorro’s metrics collection is

as good as ESR, if it is not better. Zorro’s TDD compliance inference has two steps. It infers

development behaviors in episode first, and then uses the inferred results and context to reason

the conformance of TDD. The video analysis validated that Zorro inferred episode development

behaviors with 70.1% accuracy and TDD compliance with 89.1%accuracy. The third data source,

cross-validation with participant comments, is only slightly different from my video observation

analysis.

The participant interview analysis suggested that unit testing is good at yielding high quality

software but majority of participants (7 out of 10) admittedthat they did not test enough. Perhaps
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TDD should be used to improve both developers’ confidence andsoftware quality. The data analysis

also suggested that TDD is hard to do although half of participants like to develop software using

TDD in the future. Therefore, providing a tool such as Zorro to assist practice of TDD has the

potential to help beginners. The usefulness evaluation conducted in this study suggested that some

of Zorro’s TDD analyses are useful for this purpose.

1.5.3 Industrial Case Study

On one hand, I planned the classroom case study for an extended validation after the pilot

study. On another hand, I worked with Dr. Philip Johnson and Dr. Hakan Erdogmus to solicit the

collaboration with other researchers and practitioners who are also interested in empirical study of

TDD. The Zorro demo [80] was developed to demonstrate how Zorro works and what analyses it

provides. This effort led to collaboration with Dr. Geir Hanssen and Dr. Tor Erlend Fægri from

SINTEF ICT of Norway. They are performing research on the effectiveness of TDD, in contrast to

Test-Last Development, the opposite side of TDD. They foundthat collecting the information about

TDD is very hard and Zorro has the potential to provide higherquality information about TDD.

A European software company that provides a packaged software product for marketing and

customer surveys [27] is the participant of this industrialcase study. However, the development tool

is Visual Studio .NET Team Edition and the programming language is C#. We rapidly developed a

Zorro compatible Visual Studio sensor for this industrial case study. A Hackystat server is installed

on a Windows 2000 server provided by the company. I remotely managed the server for this indus-

trial case study. Out of 20 participants, 12 were in the TDD project and the remaining 8 were in

the non-TDD project. Unfortunately, the participation in this study was very low. As to my report

written at the end of March 2007, 25% of developers installedthe sensor and collected development

data, 25% of developers installed the sensor but did not update it as requested, 25% of developers

installed the sensor but the sensor did not send any data to the server after a pilot, and the rest 25%

of developers did not install the sensor according to my observation of the Hackystat server status.

The project manager indicated that Zorro’s inferred development behaviors did not agree with what

developers actually did, but provided no detailed information. It turned out that it is much harder

to have industry participants install the sensor, and it is also hard to relate collected data to actual

development behaviors, particularly if the study had to be conducted remotely. However, Dr. Geir
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Hanssen and Tor Erlend Fægri have expressed interests to continue using Zorro in the future studies.

This case study served as a pilot test only.

1.6 Contributions

My contributions include the SDSA framework, the Zorro software system, and the systematic

empirical evaluation of Zorro:

1. SDSA Framework

The Software development is a very complicated process including a series of continuous

development activities, yet not independent of each other.The SDSA framework abstracts

continuous, interwoven development activities collectedby Hackystat sensors in a program-

ming session into a software development stream. The software development stream is a

linear, time-series data structure.

A development stream can be partitioned by SDSA using tokenizers into episodes, another

abstract data type representing a micro-iteration of a software process. Tokenizers are ex-

pandable and selectable. A different set of tokenizers can be applied according to the studied

software process.

The SDSA framework characterizes development behaviors inepisodes using JESS, a rule-

based system in Java. A classifier interface is provided in SDSA to flexibly supply inference

rules. Moreover, the rules can be changed on the fly.

In my thesis research, I instantiated the SDSA framework on Test-Driven Development (TDD),

and the system resulting from this work is the Zorro softwaresystem that can automatically

infer the development behaviors and the compliance of TDD. This research work demon-

strated that the SDSA framework has the potential to be useful for researching other low-level

software processes.

2. Automated Recognition of TDD with Zorro

Zorro recognizes TDD automatically with the software metrics collected by Hackystat sensors

in the IDEs. The contributions of Zorro’s implementation include the enhanced Eclipse and

Visual Studio .NET sensors, a suite of TDD recognition rules, and many useful analyses for

understanding TDD in practice.
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The Eclipse and Visual Studio .NET Team Edition are two IDEs that are Zorro compatible.

The sensors of these two IDEs collect a variety of process metrics such as editing, refactoring,

testing, compilation, and so on. Many useful product metrics such as methods, statements,

test cases, and assertions are collected too. The progressive changes of software product

metrics are very useful information for software engineering research.

The recognition rules are from the descriptions of many well-known TDD practitioners in-

cluding Beck [6], Doshi [15], and Erdogmus, and my grounded observation of TDD in prac-

tice.

Many analyses were developed to display Zorro’s inference processes and results, report dif-

ferent aspects of TDD such as episode duration distribution. The TDD telemetry streams

were developed to support the in-process decision makings for software project management.

3. Empirical Evaluations

My contribution to the empirical evaluations are:

(a) ESR [17], a software system that can record Eclipse usage;

(b) The availability of the Zorro software system for use by other researchers under an open

source license;

(c) The experimental method exemplified by the case studies,which shows how to conduct

research on TDD that does not suffer from the process conformance problem;

(d) The actual results of the case studies, which show (i) theZorro can identify TDD, that

(ii) users found Zorro analyses to be useful in certain casesand not in others, and (iii)

that industrial case studies on TDD are more difficult than classroom case studies, as

it is more difficult to get developers to install sensors, andmore difficult to relate data

back to their development.

1.7 Dissertation Structure

This thesis is organized into the following chapters.� Chapter 1 introduces the TDD challenges and the motivation of this research.� Chapter 2 presents the related research work.
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� Chapter 3 describes the SDSA framework in details.� Chapter 4 describes the Zorro software system in details.� Chapter 5 briefs the research questions and methodology of this dissertation.� Chapter 6 reports the pilot study data analysis in details.� Chapter 7 reports the classroom case study data analysis in details.� Chapter 8 reports the industrial case study conducted off-site.� Chapter 9 synthesizes the results from the empirical case studies, presents the conclusions of

this research, and discusses the future work.
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Chapter 2

Related Work

Test-Driven Development (TDD), a core practice of Extreme Programming, has been widely

adopted by software industry and studied by software engineering researchers. Industry practition-

ers have put increasing effort into evaluating and understanding TDD in recent years. Many books

[6, 3, 51, 47, 30] directly related to TDD have been published. XUnit[59, 77], the foundation of

TDD, has been ported to more than 30 languages. Development tools such as Eclipse, NetBeans,

and Visual Studio have been enhanced to support unit testing, which makes it easier for practitioners

to develop software in TDD. The community of TDD [65, 63] is continuously growing, and some

enthusiastic practitioners [48, 2, 62, 69, 57] even write about their personal experiences in their

blogs. In addition to this industrial interest, software engineering researchers have begun study-

ing TDD as an enabling software development method. Both pedagogical[50, 18, 53, 19, 44] and

industrial [23, 49, 25, 76, 7] evaluations of TDD have been conducted in the last few years.

So far, software engineering researchers have focused mostof their energy on the outcomes

that applying TDD brings to software products and software developers. However, compared to the

claims made by practitioners, research findings of TDD on software quality and developer produc-

tivity are mixed. In fact, much of the research work on TDD suffers from the threat of “construct

validity” [74] because of the “process conformance” problem. Wang and Erdogmus define process

conformance as “the ability and willingness of subjects to follow a prescribed process”. Janzen and

Saiedian warn that the inability to accurately characterize process conformance is harmful to TDD

research, and that it is so hard to measure the usage of a development method such as TDD that

current reports on adoption of TDD are not valid. Surveys areoften used to measure the adoption

of TDD, but only those who are much in favor or much opposed to it will respond. Janzen and
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Saiedian concluded that the combination of popularity of XP, JUnit and Eclipse likely implies a

certain degree of adoption of TDD [31]. However, this is a very indirect measure.

Some of research work [11, 34, 45, 74, 75] has been done on software process compliance

using development activities and software artifacts collected from the development process. In my

dissertation research, I focus on studying the process conformance of low-level software processes

and Test-Driven Development in particular.

Janzen claimed that TDD is a kind of software development method, not a process model, and

that it has emerged out of a particular set of process models [31]. In contrast, Beck and Cunning-

ham, the pioneers of TDD, put it this way: “test-first coding is not a testing technique but is rather

about design.” [5] If TDD is a design technique and it drives the implementation of product code,

then classifying it as a software process sounds reasonable. In my research, I have characterized

practices such as Test-Driven Development and Personal Software Process (PSP) as low-level soft-

ware processes. A common characteristic of low-level software processes is that they are defined by

many frequent and rapid short-duration activities. Unlikehigh-level and long duration phases such

as “requirement analysis” that might last weeks to months, the activities in low-level software pro-

cess such as “refactor class Foo to extract interface IFoo” may take only seconds to a few minutes

[45].

This chapter begins with a detailed introduction to TDD, followed by a discussion of TDD

empirical studies. The research results are mixed because of differences in experiment settings, and

the empirical studies suffer from construct validity because of the process conformance problem of

TDD. In the second part, I present other related work on automated process conformance in contrast

to my research that is built on the automated software metrics collection machinery of Hackystat

[35, 37, 36, 38].

2.1 Test-Driven Development: A Short Introduction

“Test-first coding isn’t new. It’s nearly as old as programming.”
— Kent Beck

Test-Driven Development[6] is a software development bestpractice popularized by Extreme

Programming [32, 4]. It has two basic rules: “(1) Write new code only if an automated test has
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failed; (2) Eliminate duplication.” Kent Beck, the pioneerof Test-Driven Development, stated that

there is an implicit order of programming in TDD [6]:

1. Red - Write a little test that does not work, and perhaps does not even compile at first.

2. Green - Make the test work quickly, committing whatever sins are necessary in the process.

3. Refactor - Eliminate all the duplication created by merely getting the test to work.

The key characteristic of TDD is “test-first”, with which developers should always write a test first

according to the requirement, and then implement the functional code to make the test pass. Because

a test is always created first to drive the design and implementation, TDD used to be called Test-

First Design (TFD) or Test-First Development (TFD) [4]. My opinion is that “test first” is better than

“test driven” with respect to describing the order of test and production coding activities. Therefore,

in the rest of this document, I will use “test first” when it is necessary to emphasize the order of

programming in TDD, otherwise there is no difference between “test first” and “test driven”.

Test first is as old as programming, and has been used for decades [76, 4, 5]. Beck recalled that

his first programming experience was actually in test-first using output and input tapes [5]. Indebted

to the philosophy and popularity of Extreme Programming (XP), Test-Driven Development has

emerged as a notable best practice for software development[4, 32].

XP is a light weight software development methodology that is intended for use when con-

fronted by vague and rapidly changing requirements [4]. It is rooted in observations on repeated

best practices in software development. The philosophy of XP is to take common-sense principles

and practices to an “extreme” level [4, 32]:� If code reviews are good, we’ll review code all the time (PairProgramming).� If testing is good, everybody will test all the time (unit testing), even the customers
(Functional Testing).� If design is good, we will make it part of everybody’s daily business (Refactoring).� If simplicity is good, we will always leave the system with the simplest design that
supports its current functionality (the simplest thing that could possibly work).� If architecture is important, everybody will work defining and refining the archi-
tecture all the time (Metaphor).� If integration testing is good, then we will integrate and test several times a day
(Continuous Integration).
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� If short iterations are good, we will make the iteration really, really short — sec-
onds and minutes and hours, not weeks and months and years (Planning Game).

Figure 2.1 illustrates the supporting network of twelve XP practices [4]. XP proposes TDD as

On-site Customer Planning Game

Metaphor

Collective Ownership Continuous Integration

Coding Standard

Pair Programming Testing

Short Release

Simple DesignRefactoring

40 Hour Work

Figure 2.1. Network of Extreme Programming Practices[4]

the glue to hold the process together. TDD helps create a comprehensive suite of unit tests such that

developers have the courage to consistently refactor code into a much simpler design.

Though born as a practice of XP, TDD is often thought as an independent software develop-

ment method. It can be used by practitioners and organizations that do not or partially practice XP

[6, 65, 63]. Many TDD training workshops [66, 67, 61, 68, 64, 52] have been provided by experi-

enced practitioners and consulting companies. An informalsurvey [73] conducted by the Method

and Survey magazine found that 46% of the studied software organizations perform unit testing

informally, 41% of the studied organizations document their unit test cases, and 14% of the studied

organizations use the TDD approach.

2.1.1 Characteristics of TDD

“Never write a line of functional code without a broken test case.”
— Kent Beck

“Test first coding is not a testing technique.”
— Ward Cunningham
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Recall that the two basic rules of TDD are to “(1) Write new code only if an automated test has

failed; (2) Eliminate duplication.” Following the first rule, given a requirement, a TDD developer

analyzes it first, and then outlines a To-Do list with a few tasks. The tasks can be very simple but

should suffice to enable some development to occur. The developer can start a task that is either

easy to do or essential to the problem to be solved [3, 6]. After picking a task, the developer writes a

unit test first, and then invokes it. The test invocation might fail because it tests something that does

not exist. The failing test drives the implementation of newfunctional code to make it pass. Often,

it is also necessary to run all tests to make sure nothing is broken. The second rule is to eliminate

the duplication. If redundancy is introduced in the first step, the developer should refactor either

test code or functional code to remove it. It is also necessary to run all tests after refactoring to

confirm that nothing is broken. This is an iteration of TDD. A common belief is that TDD iterations

should not last more than 10 minutes [16]. After an iterationis over, the developer can cross out the

finished task from the To-Do list, and pick another task to begin a new iteration. Additionally, the

developer should add new tasks to the To-Do list whenever he or she wants. The characteristics of

TDD are :

Test First

Test first is the key characteristic of TDD. Importantly, in TDD, developers should “never write

a line of functional code without a broken test case” [5].

Short Iterations

Quickly adding functional code to make test pass is important to TDD. An iteration should last

a few seconds to several minutes only. If hours of work is needed to make a test pass, probably the

developer should divide the programming task into several sub tasks that can be solved in a shorter

period of time.

Frequent Refactoring

Code is consistently refactored in TDD to create the simplest possible design. The existence of

a suite of unit tests gives developers the “courage” to refactor the code [6].
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Rapid Feedback

Unit testing is usually supported by the XUnit[59] framework that is available in most main-

stream languages. After new functional code is added, developers can invoke the unit tests to test it

right away. The feedback is available within seconds or minutes.

One Ball in the Air at Once

In typical software development, a developer usually carries a baggage with the requirement,

system structure design, algorithm, code efficiency, readability and communication with other code

etc. Martin Fowler described that the process is like keeping several balls in the air at once (Page

215 in [6]), while the developer only keeps one ball in the airat once and concentrates on that ball

properly in TDD. In the development step, the developer onlyneeds to make the test pass without

worrying about whether it is a good or bad design. In the refactoring step, the developer only worries

about what makes a good design.

Always Working Code

The code should be always working in TDD because developers run all tests at the end of each

iteration. If any test has failed, the developer should fix itright away. The fix should be easy because

only a small amount of code is written in each iteration. If running all tests after an iteration is not

feasible, the continuous integration can be set up to run them all once a day or several times a day.

2.1.2 Benefits of TDD to Software Development

“ I have spent enough time in my career on silly bug-hunting, with TDD those days
are gone. Yes, there are still bugs, but they are fewer and farless critical.” [2]

—Thomas Eyde

The two most notable benefits of TDD are high quality and developer productivity [5, 31] :
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High Quality

Probably the most advocated benefit of TDD is the high code quality. Because software quality

is hard to measure, practitioners and researchers often usecode coverage as the proxy of software

quality. The code developed in TDD should be 100% covered since no functional code is created

without a unit test.

High Productivity

Functional code and test code are both products. Testing is part of the design process, and it

does not take a long time to write a small test. If developers need to write same amount of test code,

TDD should save development time because less time is spent on tests than in the traditional test last

or ad-hoc development methods. In addition, TDD users claimthat the method reduces the overall

amount of time spent on debugging, with a resulting increasein overall productivity[76].

2.2 TDD Research Work

Much research work has been conducted on studying importantoutcomes of TDD such as soft-

ware quality and developer productivity in recent years. Inaddition to anecdotal experience reports

[24, 49, 76, 44, 18, 7], researchers have run controlled experiments [50, 53, 19] to compare TDD

against other development methods such as test last and ad hoc. Depending on whether the test sub-

jects are students or professional developers, the research work can be categorized into academic

and industrial studies.

2.2.1 Empirical Evaluation in Academic Settings

Müller and Hanger [50] conducted a study in an XP class in Germany to test TDD against

traditional programming. The acceptance tests were provided to both the TDD group and the control

group. Interestingly, students in the TDD group spent more time but their programs were less

reliable than the control group.

Edwards [18] adopted TDD in a junior-level class to compare whether students got more reliable

code after the use of TDD and WEB-CAT, an assignment submission system. It turned out that

27



the students using TDD reduced their defect rate dramatically (45% fewer defects/KSLOC using

a proxy metric) after adopting TDD, and a posttest survey found that TDD students were more

confident of the correctness and robustness of their programs.

Similarly, Kaufmann and Janzen [44] conducted a pilot studyon implications of TDD in an

advanced project-oriented software engineering course. They also reported that TDD helped to

improve software quality and programmers’ confidence.

Pančur, Ciglarič, Trampuš, and Vidmar [53] designed a controlled experiment to compare TDD

with Iterative Test-Last approach (ITL), which is a slightly modified TDD development process in

the order of “code-test-refactor”. This study found that TDD is somewhat different from ITL but

the difference is very small.

A more recent study on the effectiveness of TDD conducted by Erdogmus, Morisio and Torchi-

ano [19] used the well-defined test-last and TDD approaches as Pančur did in [53]. This study

concluded that TDD programmers wrote more tests per unit of programming effort. More test code

tends to increase software quality. Thus, TDD appears to improve the quality of software but TDD

group in the study did not achieve better quality on average than test-last group.

2.2.2 Empirical Evaluation in Industrial Settings

Several attempts have been made by researchers to study software quality and developer pro-

ductivity improvements of TDD in industrial settings.

George and Williams [24] ran a set of structured experimentswith 24 professional pair pro-

grammers in three companies. Each pair was randomly assigned to a TDD group or a control group

to develop a bowling game application. The final projects were assessed at the end of the experi-

ment. They found that TDD practice appears to yield code withsuperior external code quality as

measured by a set of blackbox test cases, and TDD group passed18% more test cases. However,

the TDD group spent 16% more time on development, which couldhave indicated that achieving

higher quality requires some additional investment of time. Interestingly, and in the contrast to the

empirical findings, 78% of the subjects indicated that TDD practice would improve programmers’

productivity.
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Maximilien and Williams [49] transitioned a software team from an ad-hoc approach to testing

to TDD unit testing practice at IBM, and this team improved software quality by 50% as measured

by Functional Verification Tests (FVT).

Williams, Maximilien, and Vouk [76] conducted another casestudy in IBM to study TDD.

Compared to a baseline project developed in a traditional fashion, the defect density of the project

developed in TDD was reduced by 40% as measured by functionalverification and regression tests.

The productivity was not impacted by the additional focus onproducing test code.

Geras, Smith and Miller [25] isolated TDD from other XP practices, and investigated the impact

of TDD on developer productivity and software quality. In their research, TDD does not require

more time but developers in TDD group wrote more tests and executed them more frequently, which

may have led to future time savings on debugging and development.

Another study of TDD at Microsoft conducted by Bhat and Nagappan [7] reported remarkable

software quality improvement as measured in number of defects per KLOC. After introduction of

TDD, project A (Windows) reduced its defects rate by 2.6 times, and project B (MSN) reduced its

defect rate by 4.2 times, compared to the organizational average. Reportedly, developers in project

A spent 35% more development time, and developers in projectB spent 15% more development

time, than the developers in non-TDD projects spent.

2.2.3 Discussion of Empirical Evaluation Studies

The research findings of empirical studies are mixed on software quality and developer pro-

ductivity as shown in Table 2.1. The study conducted in Microsoft [7] and the study conducted in

University of Karlsruhe [50] are two extreme cases. In [7], the developers improved software qual-

ity up to four times after adopting TDD. In comparison, the TDD group in [50] yielded less reliable

programs than the control group. In the following, I will compare the research results according to

the differences in experiment settings.

Students vs. Professional Developers

One difference is in population. The studies in academic settings used students as test subjects,

while the studies in industrial settings recruited professional developers. Of 10 empirical studies
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Investigator Study Type Participants Software Quality Developer Productivity
George [23] Controlled Experiment 24 TDD passed 18% more tests 16% more time
Geras [25] Controlled Experiment 14 TDD has the edge on quality No impact

Industrial Maximilien [49] Case Study 9 50% reduction in defect density Minimal impact
Williams[76] Case Study 9 40% reduction in defect density No change
Bhat [7] Case Study 11 2-4 times reduction in defect density35% and 15% more time

Kaufmann [44] Controlled Experiment 8 N/A 50% improvement
Edwards [18] Case Study 59 54% fewer defects N/A

Academic Erdogmus [19] Controlled Experiment 35 No change Improved productivity
Müller [50] Controlled Experiment 19 Less reliable, but better reuse No change
Pančur [53] Controlled Experiment 38 No change No change

Table 2.1. Research Work of TDD on Software Quality and Developer Productivity
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listed in Table 2.1, 5 were conducted in academic settings, and the other 5 were conducted in in-

dustrial settings. The studies conducted in industrial settings found evidence of software quality

improvements, but often at the cost of decrease of developerproductivity. On the contrary, the

studies in academic settings often found no software quality improvement but increase of developer

productivity.

How come the research findings are so divided among studies conducted within different pop-

ulation? Did professional developers pay more attention tosoftware quality than students? Were

students more concerned about productivity than professional developers? A caveat of industrial

studies is that they must be beneficial to participants. In [49], Maximilien and Williams proposed

TDD as a solution to reduce the defect rate. In [76], Williams, Maximilien and Voulk assigned

a dedicated coach to the development team. George and Williams [23] noticed that the control

group did not write worthwhile automated tests, partially due to the lack of incentives. Brilliant and

Knight [9] note that industry does not perceive a significantbenefit from working with academic

researchers in many cases. Researchers have to be able to convince industry practitioners of the

benefits and provide assistance in order to conduct researchin industrial settings. The benefits are

important to the participants of industrial studies, otherwise the quality of research would degrade.

Geras, Smith and Miller reported that professional developers are hard to recruit when participation

is voluntary [25].

Students are generally less experienced at software development when compared to professional

software developers. It is unclear whether students are appropriate participants for effectively study-

ing TDD [19]. Müller and Hagner reported that the TDD group produced code with 74% branch

converage only, while the control group produced code with 80% branch coverage [50]. Erdogmus,

Morisio and Torchiano [19] discussed the causal relationship between research findings and par-

ticipant skill levels. They found that the students with high skill rate improved productivity more

dramatically than the students with low skill rate.

Case Study vs. Controlled Experiment

Another difference between the academic and industry basedresearch is in research methods.

Case study and controlled experiment are the two most popular research methods. Of the 10 studies

listed in Table 2.1, 6 are controlled experiments and 4 are case studies. Most of the controlled

experiments were conducted in academic settings because classroom settings are more amenable to
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controlled experimentation. Since industry rarely repeats the same project twice, it is hard to have

controlled experiments in industrial settings. Three out of five industrial studies were case studies.

In controlled experiments, researchers often isolated test first from TDD to compare it against

other development methods such as test last and ad-hoc [50, 53, 19, 23, 25]. Half of the controlled

experiments [23, 44, 19] observed productivity improvement in TDD groups, but only two studies

found evidence of software quality improvement. On the contrary, the participants in the case

studies improved software quality dramatically after adopting TDD, but they also spent more time

on development.

Rivalry Development Methods

The third difference of experiment settings is in the development methods that TDD was com-

pared against. Researchers compared TDD against the traditional test-last[44, 25], ad hoc[50, 23],

and iterative test last (ITL) [53, 19] methods. TDD did not help to improve software quality when it

was compared against ITL. But it helped to improve software quality when it was compared with ad

hoc and test last methods. Though TDD developers spent more development time, they also wrote

more tests [23, 19] and ran tests more frequently [25].

2.2.4 Process Conformance of TDD

In the previous section, I have discussed the mixed researchfindings of TDD due to differences

in population, research methods and the development methods that TDD was compared to. How-

ever, the research findings of studies in the same group were often consistent. For example, all the

case studies found evidence of software quality improvement of TDD. Perhaps this phenomenon

indicates that there are flaws in the empirical studies of TDD.

Erdogmus, Morisio and Torchiano [19] discussed that a threat to the validity is “process confor-

mance”, which is the level of conformance of the subjects to the prescribed techniques. In order to

improve process conformance, they informed participants of the importance of following the proper

procedures, and conducted a post test survey to filter unconformant data points[19]. Although they

first identified process conformance as a threat to the validity of research results of TDD, they were

not alone in dealing with it. Müller and Hagner [50] also indicated that their experiment was not

technically controlled. During the experiment, they had toask TDD groups if they were following
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the test-first process. Pančur, Ciglarič, Trampuš, and Vidmar [53] instrumented Eclipse, the devel-

opment tool used in their study, to report unit test invocation frequency, results and time taken. A

similar instrumentation method was used by Geras, Smith andMiller [25]. However, instrument-

ing test invocation is a poor measure for process conformance of TDD because developers in test

last groups can also run tests frequently. In [23, 76, 49], researchers studied test-first along with

pair programming, which served as the process control method. Clearly, none of these methods is

reliable at controlling participants’ compliance to TDD orthe rivalry development methods.

Test first is a key characteristic of TDD, and developers should “never write a line of functional

code without a broken test case.” [5]. Short iterations, frequent refactoring, one ball in the air

at once, and always working code are other characteristics of TDD. Developing software in TDD

needs skills, practice, and discipline. On one hand, it is being widely adopted and embraced by

software industry. Many developers simply enjoy the “dance” of test first and claim that they are

“test-infected”, a phrase that is often used by the members of TDD community. On the other hand,

the empirical research findings of TDD are often mixed. One ofthe causes of confused research

results is the process conformance problem. In my thesis research, I have focussed on developing

an automated machinery to evaluate the TDD conformance. Moreover, this work can be extended to

study other low-level software processes as well. In a broader view, my work belongs to the research

of automated software process. Some work has been conductedon this direction [11, 10, 33, 34].

2.3 Automated Software Process Research

Software process research is historically top-down. Process programming[42], modeling[8] and

simulation[71, 34] are typical research methods for studying software processes. These top-down

methods are not usable for studying the process conformanceof low-level software processes. They

are appropriate when processes are confined and variations are very rare. However, these conditions

are not easily met for low-level software processes that define how developers should carry on

development activities at the granularity of minutes and hours. Given a low-level software process,

the actual process can be very different from the ideal process [14, 55, 37], which in turn leads to

the issue of process conformance.

In my research, I used a bottom-up research method. I appliedrules on automatically gath-

ered low-level development activities to infer the actual process, and compared the inferred process
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against the idealized process automatically, enabled by the rule-based system. My work is related

to Cook’s “Automating Process Discovery and Validation” and Jensen’s “Discovering and Model-

ing Open Source Software Processes” because we all studied the automated evaluation of software

processes using low-level development activities and software artifacts.

2.3.1 Automating Process Discovery and Validation

Cook and Wolf [11, 10] developed a client-server system named Balboa to automate the process

discovery using finite state machine (FSM). Balboa collectsdevelopers’ invocations of Unix com-

mands and CVS commits to construct event streams. It then uses a neural network, a MARKOV

chain, and data mining algorithms to discover the FSM of software processes. With Balboa, Cook

and Wolf were able to reproduce the ISPW 6/7 process in their research. Figure 2.2 illustrates the

ISPW 6/7 process they discovered using the Markov Model. Thenumbered circles in Figure 2.2

are the process states, and the arrows represent the development event data. Although Cook demon-

strated that the generated FSM in Figure 2.2 is very close to the actual ISPW 6/7 process, FSM does

not look like an ideal technique for automated process discovery and validation. The process FSM

can be too complicated to be useful. In [11], the three algorithms RNET, KTAIL and MARKOV

generated 15, 20 and 25 states respectively, and the states are interwoven in complicated manners

as shown in Figure 2.2. It is very hard to interpret the monolithic state chart without a thorough

understanding of Balboa and the adopted software process.

2.3.2 Discovering and Modeling Open Source Software Processes

Jansen and Scacchi [33, 34] simulated an automated approachto discover and model the open

source software development processes. They took advantage of prior knowledge to discover the

software development processes by modeling the process fragments using a PML description. Their

prototype simulation found that they could detect unusually long activities and problematic cycles

of activities. They suggested that a bottom-up strategy, together with a top-down process meta-

modeling is suitable for automated process discovery. But they don’t have a working software

system except for a prototype implementation of the “requirement and release” process of the open

source project NetBeans.
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Figure 2.2. Discovery of ISPW 6/7 Process (MARKOV )[11]
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2.3.3 Discussion of Automated Process Conformance Research

Automated process conformance is essentially about knowledge discovery and data mining, in

which ordered data streams are processed to discover and classify naturally recurring patterns.

Cook and Wolf used artificial neural network with RNET algorithm, MARKOV probability

model with Bayesian learning algorithm, and KTAIL algorithm to mine the development event

streams for discovering software processes [11]. But generating a monolithic process model repre-

sented in FSM does not appear to be a very usable solution for process conformance validation of

complicated software processes. In addition, generating FSM is very time consuming according to

the performance report [11].

Jansen and Scacchi [33] modeled the requirement and releaseprocess of a large open source

project using PML. They applied the modeled process to examine the development activities and

behaviors. This bottom-up strategy, together with a top-down process meta-modeling, seems more

plausible than FSM for dealing with complicated development behaviors.

In my thesis research, after researching the knowledge discovery and data mining algorithms

and techniques, I chose a rule-based system to study processconformance of low-level software

processes. Instead of asking process experts to inspect theFSM of the executed process as Cook

and Wolf did [11], I converted the process knowledge into a set of rules and used them to infer the

software development behaviors. My method is very close to Jansen’s and Scacchi’s approach [33]

except that I used rules rather than PML for process descriptions.

An intriguing phenomenon of automated software process research is the scarcity of directly

related literature work. Perhaps this is due to the difficulty of collecting the process execution data.

Cook and Wolf ignored the problem of data collection in theirresearch and claimed that it is site-

specific [11]. Jansen and Scacchi took advantage of rich information on the web and hypothesized

that the proposed model can be used for the process deployment, validation and improvement [33].

Fortunately, with the development of sophisticated software metrics collection system such as

Hackystat, software development data can be collected automatically and unobtrusively [35, 37,

36, 38]. In my thesis research, based upon low-level development activities collected by Hackystat

sensors, I conducted the research of the process conformance of Test-Driven Development.
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Wang and Erdogmus [74] argued that the empirical research ofTDD suffers from the construct

validity problem (as is also the case in some other empiricalsoftware engineering research) be-

cause it lacks process conformance. They developed a prototype called “TestFirstGauge” to study

the process conformance of TDD by mining the in-process log data collected by Hackystat. Test-

FirstGauge aggregates software development data collected by Hackystat to derive programming

cycles of TDD. They used T/P ratio (lines of test code verse lines of production code), testing effort

against production effort and cycle time distribution as the indicator of TDD process conformance.

This project precedes the Zorro software system[45], and infact it stimulated our research interest

in studying low-level software process conformance. Unlike the prototype implementation of Test-

FirstGauge in VBA using an Excel spreadsheet, Zorro is integrated into the Hackystat system for

automation, reuse, and flexibility using rule-based system[22].

Similarly, Wege [75] also focused on automated support of TDD process assessment, but his

work has a limitation in that it uses the CVS history of code. Developers will not commit on-going

project data at the granularity of seconds, minutes or hourswhen they develop the software system,

making this data collection technique problematic for the purpose of TDD inference. Collecting

rapid low-level development activities is a must in order toinfer the low-level software process such

as TDD automatically.

2.4 Chapter Summary

In this chapter, I introduced Test-Driven Development (TDD), a widely adopted core practice

of Extreme Programming. The key characteristic of TDD is to develop software by writing tests

first. The software industry has widely adopted TDD and significant efforts have been put into

it by practitioners (see Section 2.1). Often, it is claimed that TDD can greatly help to improve

software quality and developer productivity. The other claimed benefits of TDD include simple

design, programmer confidence, and time saving on maintenance because less time is needed for

bug hunting and debugging (see Section 2.1). Much research work has been conducted on TDD

about software quality and developer productivity (see Section 2.2), but the research findings are

divided. Interestingly, the research results are consistent when the experiment settings were similar.

A possible explanation for this phenomenon is process conformance, which is a construct validity

threat for the research findings (see Section 2.3).
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To address these problems and produce greater consistency in research results, I propose the

automated process conformance inference with support froma rule-based system. In this chapter, I

compared my research to Cook’s automated process discoveryand validation, Jansen’s simulation of

open source software project process, Wang’s and Erdogmus’s TestFirstGauge project, and Wege’s

automated support for process assessment in TDD (see Section 2.3).
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Chapter 3

Software Development Stream Analysis

(SDSA)

SDSA is a Hackystat extension that provides a generic framework for organizing various kinds

of software metrics received by Hackystat into a form appropriate as input to a rule-based, time-

series analysis (Figure 1.1). SDSA supports (1) construction of software development streams, (2)

partition of software development streams, and (3) inference of development behaviors.

The SDSA framework supports completely automated analysis, once configured. First, the

data collection is automated because SDSA uses software process metrics collected by Hackystat

sensors. The sensors collect in-process software metrics automatically and unobtrusively. Second,

the construction and partitioning of the software development stream is automated. SDSA reduces

software process metrics into development activities for construction of a software development

stream, which is then partitioned into episodes. Once a development stream has been partitioned

into a sequence of episodes, SDSA can analyze the development behaviors in these episodes and

classify them according to whatever process is under analysis. Finally, the inference process is also

automated because SDSA uses JESS[22], a rule-based system in Java. Developers can specify part

or all of the studied process as a set of rules.

The SDSA framework is designed to be customized for a specificsoftware process of interest.

Developers can selectively choose the event streams to merge in the software development stream

construction phase (see Section 3.2.1). For a software process, developers can use different tokeniz-
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ers to partition the development streams (see Section 3.2.2). Also, different rules can be supplied

for development behaviors inference (see Section 3.2.3).

This chapter begins with an introduction to the Hackystat framework on which the SDSA frame-

work is built, followed by a description of the SDSA framework itself.

3.1 Hackystat

Hackystat is an open source framework for automated collection and analysis of software engi-

neering process and product metrics. Hackystat supports unobtrusive data collection via specialized

“sensors” that are attached to development environment tools. These sensors send structured “sensor

data type” instances via SOAP to a web server for analysis viaserver-side Hackystat “applications”.

Over two dozen sensors are currently available, including sensors for IDEs (Emacs, Eclipse, Vim,

VisualStudio, Idea), configuration management (CVS, Subversion), bug tracking (Jira, Bugzilla),

testing and coverage (JUnit, CppUnit, Emma, JBlanket), system builds and packaging (Ant), static

analysis (Checkstyle, PMD, FindBugs, LOCC, SCLC), and so forth.

Hackystat is tool, environment, and process independent. It does not presume a specific operat-

ing system platform, a specific integrated development environment, or a specific software process.

It is designed to be extensible. It provides not only genericservices such as software metrics col-

lection, persistence and retrieval, and project definitionmanagement for conglomerating discrete

software metrics from both an individual and other project members, but also an extension mech-

anism where new modules (sensors or applications) can be added. Applications of the Hackystat

framework in addition to SDSA include in-process project management [40], high performance

computing [41], and software engineering education [39].

3.1.1 Software Metrics Collection, Persistence, and Retrieval

When developers are programming in a development environment tool with its sensor installed

and enabled, the sensor will collect both the process and product metrics unobtrusively. The sensors

then send them via SOAP to a web server that hosts Hackystat. The architecture of Hackystat is

client-server. The“clients” can be development environment such as Emacs, Eclipse, and Microsoft

Visual Studio. The“server” is the framework itself and its extended applications. On the server-
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side Hackystat handles metrics data persistence automatically. It stores them in XML formats and

implements a self-managed caching mechanism to retrieve them when requested by the applications.

3.1.2 Extension Mechanism

The Hackystat system provides an extension mechanism to support new functionalities includ-

ing sensor data types (metrics), sensors, applications, documentation, and so forth. Each function-

ality needs to specify a configuration file in XML saying what it is about and what part of Hackystat

it will extend. For instance, if you are developing a new sensor for the Java development environ-

ment tool NetBeans, you will specify a sensor definition file such as netbeans.sensor.def.xml. It will

include the sensor name and what metrics it collects. The further information on how to implement

an extended functionality can be found at the Hackystat homepage:http://www.hackystat.org.

3.2 SDSA Framework

SDSA is an application extending the Hackystat framework. It organizes various kinds of pro-

cess metrics data into a time-series software development stream and conducts rule-based analyses.

SDSA is data oriented. Figure 3.1 illustrates its data modeland work flow.

1. Construct

3. Recognize

Episodes

Software

Process

Metrics

Software

Development 

Stream

2. Partition

Development

Behaviors

Figure 3.1. Data Model and Work Flow of the SDSA Framework

SDSA models a software development process as a software development stream, which is

a time-series data structure consisting of continuous software development activities collected by

Hackystat sensors. The development stream is then partitioned into episodes delimited by boundary
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conditions. Each episode is a data model that represents an atomic components of the software pro-

cess of interest. Eventually, the goal of SDSA is to recognize the development behaviors embodied

within each episode.

The data model breaks down the SDSA framework into three components(Figure 3.1): (1) a

software development stream construction subsystem, (2) asoftware development stream partition

subsystem, and (3) a development behavior inference subsystem.

3.2.1 Software Development Stream Construction

SDSA begins with the development stream construction subsystem that translates variety kinds

of software process and product metrics into a development stream. Figure 3.2 illustrates the process

of software development stream construction.
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Figure 3.2. Software Development Stream Construction

Hackystat sensors collect the software process and productmetrics and abstract them as the

structured “sensor data type”. A sensor data entry represents a development activity or an in-process

product metric change that has been caused by a development activity. Because sensor data mixes
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software process and product metrics, SDSA must restructure them as development actions in order

to infer the development behaviors. The development actionis SDSA’s internal representation of

the software development activities that are collected by Hackystat sensors.

Development Action

Figure 3.3 is the class diagram of variety of development actions SDSA abstracted. All the

development actions are subtypes of the “Action” type. Eachaction has a clock attribute indicating

when it occurs and a duration attribute indicating how much time it takes.
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Figure 3.3. Class Diagram of Development Actions

After reading the software metrics of a sensor data type, SDSA transforms them into develop-

ment actions, and then forms a time-series action stream.

Action Stream

Figure 3.4 illustrates the class diagram of action streams.The “DataStream” is the super class

of all action stream classes. Each action stream has the capability of transforming a type of sensor

data into a time-series action stream.

In addition to converting sensor data into development actions, an action stream can implement

a callback function to compress itself. This function can group a set of continuous sensor data that
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Figure 3.4. Class Diagram of Action Streams

represents a single development action. Using unit test invocation in the Eclipse IDE as an example,

the Eclipse sensor collects and sends 3 “UnitTest” sensor data entries if the invoked unit test has

3 test cases. Because they are the consequence of a unit test invocation, the UnitTestStream can

implement a compress function to group them into a single “UnitTest” development action.

Development Stream

Many kinds of action streams from a developer over a time period can merge together to form

a software development stream as illustrated in Figure 3.2.The “DevelopmentStream” is an object

representing a software development stream. It is the container of action streams. The following

code demonstrates the usage of “DevelopmentStream” class.Table 3.1 is an example that shows a

software development stream’s internal representations.

DevelopmentStream stream =
new DevelopmentStream(project, user, startDay, endDay);

stream.addSubstream(new EditStream(user));
stream.addSubstream(new BuffTransStream(user));
stream.addSubstream(new RefactoringStream(user));
stream.addSubstream(new UnitTestStream(user));
stream.addSubstream(new CompilationStream(user));
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stream.assemble();

Table 3.1. An Excerpt of a Software Development Stream

Time File Event Metrics
12:35:29 TestBowlingGame.java ADD METHOD void TestGameCreation()
12:37:47 TestBowlingGame.java TEST EDIT 120sec MI=+1(3),SI=+1(4),TI=+1(3),AI=0(1)
12:38:07 BowlingGame.java ADD CLASS BowlingGame.java
12:38:08 BowlingGame.java BUFFTRANS FROM TestBowlingGame.java
12:38:13 TestBowlingGame.java BUFFTRANS FROM BowlingGame.java
12:39:17 TestBowlingGame.java TEST EDIT 0sec MI=0(3),SI=-1(3),TI=0(3),AI=0(1)
12:39:17 TestBowlingGame.java COMPILE The constructor Frame() is undefined
12:39:28 BowlingGame.java ADD METHOD BowlingGame(Frame)
12:39:30 BowlingGame.java BUFFTRANS FROM TestBowlingGame.java
12:39:35 TestBowlingGame.java BUFFTRANS FROM BowlingGame.java
12:39:48 BowlingGame.java PRODUCT EDIT 0sec MI=+1(1),SI=0(0),FI=+124(124)
12:39:50 BowlingGame.java BUFFTRANS FROM TestBowlingGame.java

3.2.2 Software Development Stream Partition

The second component of SDSA is the software development stream partition subsystem. The

software development stream is a time-series data structure that may have hundreds to thousands

development activities. Though applying machine learningalgorithm is plausible [11], I proposed

a mechanism to partition the development streams into episodes using the boundary conditions

(Figure 3.5).

Larman and Basili[46] claim that the software development is iterative and incremental. Thus,

tokenizing development streams not only simplifies mining large volumes of data, but also provides

an approach to comparing actual software development processes to software process theories. Fig-

ure 3.5 illustrates the design of the software development stream partition algorithm. Tokenizers,

which partition software development streams using boundary conditions, can be chained together.

Currently, four tokenizers have been developed in SDSA. Figure 3.6 illustrates their class diagram.

Of course, developers can implement and add new tokenizers if necessary.� Commit Tokenizer partitions development streams by source code repository commit ac-

tions.� Command Tokenizerpartitions development streams by commands invoked in a shell win-

dow.
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Figure 3.5. Partition of Development Stream� Test Pass Tokenizerpartitions development streams by successful unit test invocations.� Buffer Transition Tokenizer partitions development streams by buffer changes in an IDE.
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Figure 3.6. Class Structure of SDSA Tokenizers

Although it is possible, it is not necessary to have multipletokenizers in a single run. In my

dissertation research, I found that the “test pass” tokenizer is sufficient for the inference of Test-

Driven Development behaviors.
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3.2.3 Development Behaviors Inference

SDSA infers development behaviors using JESS [22], a rule-based system. Figure 3.7 illustrates

how SDSA interacts with JESS to infer development behaviorsfrom development actions in an

episode.
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Figure 3.7. Developer Behavior Inference

The inference process is a mix of top-down and bottom-up methods. For the process of interest,

developers can convert the process knowledge into a set of rules, which are then fed into JESS’s

working memory. JESS can infer development behavior after all development actions in an episode

are asserted in JESS as facts. Inferred results can be queried by applications via a classifier, the

interface between JESS and SDSA.

3.2.4 An Example

Now that we have shown how SDSA uses software process and product metrics for develop-

ment behavior inference, I will use an example to demonstrate it. Figure 3.8 illustrates the usage of

SDSA for inferring development behaviors. From 15:51:21 to16:01:10, a developer implemented

two user stories of the bowling game in Test-Driven Development. We used Hackystat to instrument

the development process and collected software process metrics including refactoring, editing, com-

pilation and test invocations. Following the development stream construction method described in

Section 3.2.1, they were read and converted into development actions for construction of the devel-

opment stream. Part 1 of Figure 3.8 illustrates the internalstructure of the development stream that
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Development Stream
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Figure 3.8. An SDSA Example
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has 21 development actions. Among them, two are successful test invocations that are painted in

green background. Then, in part 2 of Figure 3.8, SDSA’s “TestPass Tokenizer” (See Section 3.2.2)

was used to partition the development stream into two episodes. Further, development actions in

the first episode were fed into JESS to evaluate using an interface provided by SDSA. In part 3 of

Figure 3.8, the inference rules detected a sequence of development activities that were in the order

of (1) test creation, (2) compilation failures on test code,(3) method stub of production code, (4)

production code editing, and (5) successful test invocation. Thus the development behavior in the

first episode was recognized as “TF”, a short name of Test-First. Similarly, the second episode was

also recognized as “TF” by the inference rules.

3.3 Chapter Summary

In this chapter, I first introduced Hackystat, a generic framework for software metrics collection

and analyses, which makes it possible to design the SDSA framework for studying low-level soft-

ware processes. SDSA has three sub-processes: (1) softwaredevelopment stream construction, (2)

software development stream partition, and (3) development behavior inference. SDSA is config-

urable and extensible. I concluded this chapter with an example in Section 3.2.4 using a portion of

a development stream developed in TDD.
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Chapter 4

Zorro Implementation

With the capabilities provided by Hackystat and SDSA, as part of my dissertation research,

I implemented the Zorro software system for the automation of Test-Driven Development (TDD)

behavior inference. As illustrated in Figure 1.1, Zorro is aspecialization of the SDSA framework

for TDD, supported by Hackystat. Zorro not only uses Hackystat’s generic services such as sensor

data collection and persistence, but also contributes new functionalities to Hackystat. Zorro defines

several analyses and telemetry streams to study TDD using activities collected in development envi-

ronment tools. This chapter starts with Zorro’s extensionsto the Hackystat and SDSA frameworks,

followed by a collection of Zorro’s TDD analyses.

4.1 Extensions to Hackystat’s Data Collection

Zorro has special requirements for Hackystat sensors that are responsible for collecting software

metrics. In order to partition development streams and recognize TDD development behaviors,

certain software development activities must be collected. Table 4.1 contains a list of the required

development activities including edit, compile, test, switch file, and refactor. The “DevEvent” is a

sensor data type defined in Hackystat to represent these kinds of development activities using the

combination of “Type” and “Subtype” attributes. In addition, DevEvent defines a special attribute

named “PropertyMap” to hold the required metrics, which arelisted in the “Product or Process

Metrics” column of Table 4.1. Note that DevEvent does not have the “Kind” attribute as you can

see in Table 4.1. It is for the sake of clarification for sensordevelopers to determine what metrics are

mandatory. For instance, if a test is edited, the “current-test-method” and “current-test-assertion”
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metrics must be collected in addition to other metrics required for editing activities on production

code.

Table 4.1. Sensor Data Types Required by Zorro

Development DevEvent Product or Process Metrics
Activity Type Subtype Kind Names
Edit Edit StateChange

and Save
Document current-size

Production current-size, class-name, current-
methods, current-statements

Test current-size, class-name, current-
methods, current-statements, current-
test-methods, current-test-assertions

Compile Build Compile success, error
Test Test UnitTest test-name, success, test-count, test-

indice, elapsed-time, run-time
Switch File Edit BufferTransition from-buff-name, to-buff-name
Refactor Edit ProgramUnit Unary op (add or remove), unit-name, unit-

type, language
Binary op (rename or move), unit-type, from-

unit-name, to-unit-name, language

These development activities are language and IDE independent. I wrote a sensor for Eclipse

to gather these activities and more recently wrote a similarsensor for Visual Studio .NET. It should

be possible to enhance a wide range of IDEs to collect necessary development activities for Zorro’s

automated TDD behavior inference.

4.2 Extensions to SDSA

Zorro is a specialization of SDSA for automated inference ofdevelopment behaviors of TDD.

Figure 4.1 illustrates how Zorro specializes SDSA. First, Zorro requires certain types of devel-

opment activities, as described in Section 4.1. Thus, the development stream in Zorro is a spe-

cial type of software development stream, which collects specific development activities useful for

TDD recognition. Second, Zorro uses the “test pass” tokenizer defined in the SDSA framework

to partition the development stream. Last, a special set of rules are defined in Zorro to infer TDD

development behaviors. In this section, I will describe Zorro’s specialization of SDSA in detail.
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Figure 4.1. Zorro’s Extensions to the SDSA Framework

4.2.1 Zorro Development Stream

Edit, compile, test, switch file, and refactor are five types of development activities required by

Zorro. Though other development activities such as commandline invocations can be conducted by

developers, Zorro does not include them in the development stream because they are not useful for

recognition of TDD. The following code shows how Zorro constructs a development stream using

SDSA.

DevelopmentStream stream =
new DevelopmentStream(project, user, startDay, endDay);

stream.addSubstream(new EditStream(user));
stream.addSubstream(new BuffTransStream(user));
stream.addSubstream(new RefactoringStream(user));
stream.addSubstream(new UnitTestStream(user));
stream.addSubstream(new CompilationStream(user));
stream.assemble();

This piece of code instantiates a “DevelopmentStream” for agiven project, a project member, and

a specified time period indicated by the start day and the end day. It assembles five action streams

together to create the TDD development stream.
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4.2.2 TDD Development Stream Partition

Zorro uses the “test pass” tokenizer defined in the SDSA framework (see Section 3.2.1). As a

result, a development stream is partitioned into a sequenceof “test pass” episodes all of which end

with successful unit test invocations. Figure 3.8 illustrates this process.

Before we move on, let’s pause a while and think about the methods we are using. The devel-

opment stream in Zorro contains five types of development activities that occur in an IDE when a

developer is programming. These activities are not TDD specific. Moreover, the “test pass” tok-

enizer is used to divide the TDD development stream into “test pass” episodes. Again, the “test

pass” tokenizer is not TDD specific and a developer might invoke tests no matter what development

methods he/she is using. Given this, how can we recognize development behaviors in TDD? Can

we use a dedicated tokenizer for TDD such as a “TDD Iteration”tokenizer?

Recall that the order of programming in TDD is “Red/Green/Refactor”. If a developer programs

in TDD, tests should be invoked one or more times. Given a taskfrom the To-Do list (see Section

2.1), a developer quickly writes a test and then invokes it. He or she will get a red bar if the test

fails. After implementing functional code for the task, he or she will invoke the test again to see

it pass. Therefore, when the “test pass” tokenizer is used, we will get an episode containing the

“Red/Green” development portion of a TDD cycle. If there is any redundancy in the code, the

developer will refactor it and then invoke the test again. Asa result, we will get another episode

containing the “Refactoring” portion of a TDD cycle. If we can successfully recognize the “test

first” behavior in the first episode and the “refactoring” behavior in the second episode, then we will

be able to recognize TDD development behavior using the divide-conquer method. This shows that

the “test pass” tokenizer is sufficient for recognition of development behaviors in TDD. The first

question is answered.

Can we have a “TDD Iteration” tokenizer? The answer is probably no. First, detecting refac-

toring development behaviors is hard. It is hard to tell whether a developer is adding new code or

refactoring for simpleness and clarification. Second, as wehave discussed in Chapter 1, developers

may or may not conform to TDD, the Red/Green/Refactor cycle may not exist sometimes. Fortu-

nately, the test pass tokenizer is sufficient for us to find theboundary of TDD’s Red/Green/Refactor

cycles as we just showed in last paragraph.
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4.2.3 Inference of TDD Development Behavior

Zorro also extends SDSA with a set of rules that enable instances of test pass episodes to be

classified as one of 22 episode types. Table 4.2 lists these episode types, their definition in terms of

their internal patterns of development activities, and an indication of their TDD conformance.

Zorro organizes the 22 episode types into eight categories:Test First (TF), Refactoring (RF),

Test Last (TL), Test Addition (TA), Regression (RG), Code Production (CP), Long (LN), and Un-

known (UN). All of these episode types (except UN-2) always end with a “Test Pass” event, since

that is the episode boundary condition. UN-2 is provided as away to classify a development stream

where there is no unit testing at all.

Test First

“Test First” can be seen as the Red/Green portion of a TDD cycle. In a “Test First” episode, a

test method or assertion statement is created first, followed by production code editing. Depending

on compilation and test invocation results, an episode can be one of the four types: TF-1, TF-2,

TF-3, or TF-4, as illustrated in Table 4.2.

Refactoring

Refactoring behaviors in reality are a bit complicated to recognize automatically because de-

velopers can refactor code in many different ways. A simple scenario of refactoring is to change a

method implementation without changing its input and output. To accomplish this, the developer

can edit code directly or abstract a new method from it for reuse. Directly matching the patterns

of refactoring behaviors is hard, but we can observe them indirectly. First of all, there should be

no test created. Second, code being refactored should not increase in size. If it does, the increase

should be relatively small. With these two principles in mind, we can define rules to infer refactor-

ing behaviors. Table 4.2 lists five kinds of refactoring episodes: RF-1, RF-2, RF-3, RF-4, and RF-5.

Among them, RF-1 and RF-2 are refactoring on test, RF-3 and RF-4 are refactoring on production

code, and RF-5 defines mixed refactoring on both test and production code.
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Table 4.2. Zorro episode types, definitions, and TDD conformance

ID Definition TDD Conformant
Test First
TF-1 Test creation! Test compilation error! Code editing! Test failure! Code editing! Test pass Yes
TF-2 Test creation! Test compilation error! Code editing! Test pass Yes
TF-3 Test creation! Code editing! Test failure! Code editing! Test pass Yes
TF-4 Test creation! Code editing! Test pass Yes
Refactoring
RF-1 Test editing! Test pass Context sensitive
RF-2 Test refactoring operation! Test pass Context sensitive
RF-3 Code editing (number of methods or statements decrease)! Test pass Context sensitive
RF-4 Code refactoring operation! Test pass Context sensitive
RF-5 [Test Editing && Code editing (number of methods or statements decrease)]+! Test pass Context sensitive
Test Addition
TA-1 Test creation! Test pass Context sensitive
TA-2 Test creation! Test failure! Test editing! Test pass Context sensitive
Regression
RG-1 Non-editing activities! Test pass Context sensitive
RG-2 Test failure! Non-editing activities! Test pass Context sensitive
Code Production
CP-1 Code editing (number methods unchanged, statements increase)! Test pass Context sensitive
CP-2 Code editing (number methods /statements increase slightly (source code size increase� 100 bytes)! Test pass Context sensitive
CP-3 Code editing (number methods /statements increase significantly (source code size increase> 100 bytes)! Test pass No
Test Last
TL-1 Code editing! Test editing! Test pass No
TL-2 Code editing! Test editing! Test failure! Test editing!Test pass No
Long
LN-1 Episode with many activities (> 200)! Test pass No
LN-2 Episode with a long duration (> 30 minutes)! Test pass No
Unknown
UN-1 None of the above! Test pass No
UN-2 None of the above No
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Test Addition

If you are a TDD developer, you probably have never heard of “Test Addition” since Beck

did not explicitly define it in [6]. However, you may occasionally add a test that does not drive

implementation of new production code, thus “Test Addition” exists even if you do not realize it.

It is fundamentally different from the refactoring behavior on test code because test methods and

assertion statements are added. Zorro defines two types of “Test Addition” behaviors: TA-1 and

TA-2.

Regression

It is always a good habit to run existing tests before adding any new code into the system,

especially at the beginning. This development behavior is called the regression test. The tests may

fail due to problems such as incorrect environment settings, so the regression behavior has two

categories: RG-1 and RG-2.

Code Production

Recall that developers might not develop software following the pattern of Red/Green/Refactor

all the time, as we discussed in Chapter 1. Also, some developers may use other software devel-

opment methods, such as Test Last Programming. For example,it is possible that a big chunk of

production code can be inserted into the system without corresponding tests. Although tests are

invoked in the end, the development behavior is actually about writing production code. Zorro

therefore defines “Code Production” to classify this variety of development behaviors. Depend-

ing on the size increase of production code, “Code Production” has three types: CP-1 (statement

increase only), CP-2 (small code increase), and CP-3 (big production code increase).

Test Last

“Test Last” is not a development behavior of TDD, but it is useful to define it. Researchers have

compared TDD to Test Last Programming or Iterative Test Last[19, 53]. If Zorro differentiates

TDD from “Test Last”, it can greatly help empirical researchers to study TDD in practice. “Test
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First” is opposed to “Test Last” where a test is created afterproduction code implementation. “Test

Last” has two types: TL-1 and TL-2, however, the difference between the two types is very small.

Long

Development behaviors in long episodes such as ones with toomany development activities or

ones that last a very long time (over 30 minutes) are very hardto recognize. Therefore, Zorro does

not infer development behaviors of long episodes. This is acceptable because iterations of TDD

should be just seconds or minutes in duration[5]. If an episode is very long, it is very likely not to

be TDD conformant.

Unknown

The last type of development behavior is “Unknown”. UN-2 is defined to classify development

streams that do not have any successful unit test invocation. UN-1 is defined to incorporate the

situation that the rule set is insufficient, which is very rare but we can not exclude it.

4.2.4 TDD Conformance

Once each episode instance has been assigned an episode type, the final step in the Zorro clas-

sification process is to determine the TDD conformance of that instance. Table 4.2 shows that

instances of some of the episode types are easy to characterize. For example, every instance of a

“Test First” episode type is automatically TDD conformant,and every instance of a “Test Last”,

“Long” and “Unknown” episode type is automatically not TDD conformant.

Interestingly, several of the episode types, such as “Refactoring”, “Test Addition”, “Regres-

sion”, and certain “Code Production” are ambiguous: in certain contexts, they could be TDD

conformant, while in others they could be TDD non-conformant. This is because, for example,

“Refactoring” can legitimately occur while a developer is either doing TDD or some different de-

velopment approach, such as Test Last Programming. In orderto classify instances of these episode

types, Zorro applies the following heuristic: if a sequenceof one or more ambiguous episodes are

bounded on both sides by TDD non-conformant episodes, then these ambiguous episodes types are

classified as TDD non-conformant.
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To make this clear, let’s consider some examples, such as theepisode sequence [TF-1, RF-1,

CP-1, TF-2]. In this sequence, Zorro classifies the ambiguous episodes (RF-1 and CP-1) as TDD

conformant, since they are surrounded by TDD conformant episode types (TF-1 and TF-2). Figure

4.2 illustrates this scenario. In Figure 4.2, a rectangle with letters represents an episode, and it is

painted with green background if it is TDD conformant according to the heuristic.

TF-1

RF-1

CP-1

TF-2

TF-1

RF-1

CP-1

TF-2

TF-1

RF-1

CP-1

TF-2

Figure 4.2. Episode Sequence Example A

Now consider the sequence: [TL-1, RF-1, CP-1, TL-2]. In thissequence, Zorro classifies the

same two ambiguous episodes (RF-1 and CP-1) as TDD non-conformant, since they are surrounded

by TDD non-conformant episode types (TL-1 and TL-2). This scenario is illustrated in Figure 4.3

where an episode is painted with red background if it is TDD non-conformant.

TL-1

RF-1

CP-1

TL-2

TL-1

RF-1

CP-1

TL-2

TL-1

RF-1

CP-1

TL-2

Figure 4.3. Episode Sequence Example B

Now consider a sequence like: [TL-1, RF-1, CP-1, TF-1] illustrated in Figure 4.4. Here, the two

ambiguous episodes (RF-1 and CP-1) are surrounded on one side by an unambiguously TDD con-

formant episode (TL-1) and on the other side by an unambiguously TDD non-conformant episode

(TF-1). In this case, Zorro’s rules could implement an “optimistic” classification, and assign the

ambiguous episodes as TDD, or a “pessimistic” classification, and assign the ambiguous episodes

as TDD non-conformant. Figure 4.4 illustrates both of heuristics. Again, an episode is painted with

green background if it is TDD conformant, otherwise it is painted with red background. Both of

heuristics are supported by Zorro. In default, the optimistic one is used, but Zorro allows developers

to switch to the pessimistic heuristic.

58



TL-1

RF-1

CP-1

TF-1

TL-1

RF-1

CP-1

TF-1

TL-1

RF-1

CP-1

TF-1

TL-1

RF-1

CP-1

TF-1

OR

Figure 4.4. Optimistic and Pessimistic Heuristic Algorithms

4.2.5 Zorro’s TDD Episode Inference

With episode categorization and TDD conformance heuristics, both of which are supported by

the rule-based system, Zorro can automate the recognition of TDD. I conducted the “TDD Episode

Inference” analysis using a real TDD development stream to demonstrate the Zorro’s inference re-

sult. An experienced developer solved the Roman numeral conversion problem (see Appendix C)

Figure 4.5. Demo of TDD Conformance Inference
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using TDD in the Eclipse IDE. The Hackystat Eclipse sensor was installed to instrument the de-

velopment process for collecting development activities.Zorro partitioned his development stream

into 16 episodes, and inferred his development behaviors. The screen-shot in Figure 4.5 shows the

first three episodes with inferred development behaviors. They are all types of “Test First” and

conformant to TDD according to Zorro’s inference.

This analysis is useful at demonstrating to new users how Zorro infers development behaviors.

Another use of this analysis is to validate the correctness of Zorro’s inference results. I will show

how I enhanced this analysis for Zorro’s validation in Chapter 7. Next, I will introduce Zorro’s

extensions to Hackystat’s functionalities.

4.3 Extensions to Hackystat’s Functionalities

TDD conformance is very important according to the discussion of related work in Chapter

2, and therefore I implemented the Zorro software system to provide explicit support for process

conformance. Besides TDD conformance, with the capabilityof automated inference of TDD be-

haviors, more useful analyses that once were very hard can beconducted now. In the course of my

research, I implemented TDD analyses including “Episode Demography”, “T/P Effort Ratio”, and

“Episode Duration Distribution” etc., for studying TDD (see Section 4.3.1). Moreover, with the

aid of Software project telemetry infrastructure, I implemented TDD telemetry reducers to assist

research and management of software development in TDD (seeSection 4.3.2).

4.3.1 TDD Analyses

The following Zorro analyses have been developed to study software development in TDD and

other development methods that include unit testing.

Episode Demography

The episode demography analysis provides an overview of a programming session as shown in

Figure 4.6. In Figure 4.6, each small box with a two-letter acronym represents an episode. The

legend explains the links between two-letter episode acronyms and episode types. The background
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Figure 4.6. Episode Demography Analysis

color of an episode tells its TDD conformance. If the episodeis TDD conformant, the background

is green; otherwise it is transparent. Episodes are clickable in the actual analysis. Clicking on an

episode takes users to another analysis that is similar to the one illustrated in Figure 4.5.

Some useful information can be obtained using the episode demography analysis. For instance,

the example presented in Figure 4.6 shows that this programming session has 17 episodes, of which

69% are TDD conformant. Four episodes are “Test First”, six are “Refactoring”, and two are “Test

Last”. This information can be used to improve TDD conformance. If a higher degree of TDD

conformance is wanted, developers can study what are the legitimate TDD episodes to improve

their compliance with TDD. Moreover, this analysis can alsobe used to find development patterns.

For instance, in Figure 4.6, we can observe two patterns (TF)(TA)+ and (TA)(RF)+. The pattern

(TF)(TA)+ means that a “Test First” episode is followed by one or more “Test Addition” episodes.

The (TA)(RF)+ means that a “Test Addition” episode is followed by one or more “Refactoring”

episodes.

T/P Effort Ratio

Unlike “Episode Demography”, the “T/P Effort Ratio” analysis is not directly derived from

Zorro’s inference. In Section 4.1, we discussed that Zorro extends Hackystat’s data collection. One

extension is that it requires numbers of test methods and assertion statements. With this information,

we can easily tell if a developer is working on test code at a given time. The T/P Effort Ratio stands

for the effort a developer spent on test code, compared to theeffort spent on production code. Figure

4.7 shows an example of the T/P Effort Ratio analysis using the same TDD programming session

used in Figure 4.6. In Figure 4.7, the horizontal axis is the elapsed development time in minutes,

and the vertical axis is the ratio of effort spent on test codeto effort spent on production code. The
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Figure 4.7. Test Effort vs. Production Effort

T/P ratio over 1.0 indicates more effort on writing test codethan on writing production code. The

vertical bars are episode borders, thus, the span between bars can represent episode durations.

The example illustrated in Figure 4.7 shows that the effort spent on testing code is consistent

over the course of this TDD development session. Approximately, on average, effort on testing code

is about 80% of effort on production code. This analysis can be applied to not only TDD but also

other development methods that include unit testing. An interesting use of it would be to compare

T/P effort ratio differences between TDD and Test Last Programming.

T/P Size Ratio

Same as the T/P Effort Ratio analysis, the T/P Size Ratio analysis is also based upon Zorro’s

extension to Hackystat’s data collection. In Table 4.1, we have shown that the Zorro compatible

sensor collects size information (current-size, mostly line of code) for both of test and production

code. With this information, we can compute the incrementalchanges of test code size, production

code size, and the ratio of the two. Figure 4.8 shows an example of the T/P Size Ratio analysis using

the same TDD programing session. The interpretation to thisanalysis is exactly the same to Figure
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Figure 4.8. Test Size vs. Production Size

4.7, except that each value in Figure 4.8 is the ratio of test code size to production code size.

The example illustrated in Figure 4.8 shows that test code isalways more than production code.

Again, this analysis is applicable to any development methods where unit testing is practiced.

Episode Duration

The Episode Duration analysis is inspired by TDD’s characteristically short durations that I

discussed in Section 2.1. How frequently unit tests are invoked is an alternative indicator of TDD

conformance [74]. Figure 4.9 shows an example of the EpisodeDuration analysis. The interpre-

tation of this analysis is very straightforward. The horizontal axis has the two-letter acronym for

each episode. The vertical axis is the episode duration in minutes. As we can see in Figure 4.9,

with a little hill climbing at the beginning, tests were invoked frequently in this TDD programming

session.

Similarly, this analysis is applicable to any development methods where unit testing is practiced.

The durations in Figure 4.9 are mostly short, which supportsthe short duration claim made about

TDD iterations. In practice, I rarely observed episodes that were longer than 30 minutes in duration.
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Figure 4.9. Episode Duration

In that case, the conformance to TDD is likely not stringent any more. A tabular report (Table 4.3)

is also available for comparing episode duration differences among episode categories.

Table 4.3. Duration Average by Episode Category

Category Average Duration (minutes)
TF 3.2
RF 1.3
TA 0.2
RG 0
PR 1.3
TL 1
LG 0
UN 0

Episode Duration Bin

The Episode Duration analysis lines up episodes with their durations, which is useful at display-

ing progressive changes. An alternative presentation is toarrange episodes with close durations into
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a bin. Figure 4.10 is an example showing the Episode DurationBin analysis. In Figure 4.10, the

Figure 4.10. Episode Duration Bin

horizontal axis has a set of bins of episode durations, and the vertical axis is the number of episodes.

Similar to the Episode Duration analysis, this analysis canbe used to verify TDD’s short dura-

tion characteristic. An ideal TDD development session should have many short episodes with no

or very few long episodes. If too many long episodes are observed, perhaps developers should take

actions to develop and run tests more frequently. An episodeduration distribution table (see Table

4.4) is attached to this analysis.

Table 4.4. Episode Duration Distribution by Category

Category <2 min 2˜5 min 5˜10 min 10˜20 min 20 ˜30 min>30 min Total
TF 2 1 1 4
RF 4 2 6
TA 2 2
RG 0
PR 1 1 2
TL 2 2
LG 0
UN 0
Total 11 4 1 0 0 0 16
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4.3.2 TDD Telemetry Streams

The analyses in Section 4.3.1 leverage Zorro’s recognitionof TDD development behaviors.

They can be used to understand and improve TDD development for individuals. In order to sup-

port project management and improvement, I implemented a group of TDD telemetry streams in

my research. Because Zorro abstracts software metrics intolow-level development behaviors, the

synergy of Zorro and Software telemetry allows better management of software projects developed

in TDD. In this section, I will introduce Software telemetry, and present TDD telemetry analyses.

Software Project Telemetry and TDD Telemtry Reducers

The Software project telemetry [40, 79] was developed by QinZhang in the Collaborative Soft-

ware Development Lab at the University of Hawaii. It is an infrastructure to aggregate metrics data

together to perform daily, weekly, or monthly analyses to support in-process software project man-

agement and decision makings. Software telemetry abstracts software metrics into streams, charts

and reports. The telemetry stream contains a series of time-stamped events in the daily, weekly, or

monthly granularity. The telemetry charts and reports provide visualization of telemetry streams.

Detecting changes and covariance in the trend of telemetry streams enables an incremental, visible,

and experimental approach to manage software projects [79].

The telemetry reducer is the extension point of Software telemetry, which can be used to extend

the existing telemetry stream base. The following lists TDDtelemetry reducers supplied in Zorro.� TDDPercent Reducer:

Computes a single telemetry stream for percentage of TDD development time to overall de-

velopment time. Alternatively, the percentage can also be the number of TDD compliant

episodes to the number of total episodes.� TDDProductionDevTime Reducer:

Computes a single telemetry stream of development time on production code. Though its

name suggests that this reducer is for TDD, it can actually beapplied to other development

methods as well.� TDDTestDevTime Reducer:

Computes a single telemetry stream of development time on test code. Same as TDDPro-
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ductionDevTime, it can be applied to development methods other than TDD if unit testing is

used.� TDDDevTime Reducer:

Computes a single telemetry stream of total development time. Note that Software telemetry

already defines a DevTime, which is different from TDDDevTime. The TDDDevTime can be

thought as the summation of development time on production,test, and others such as XML

configuration files.� EpisodeAverageDuration Reducer:

Computes a single telemetry stream of average episode duration. It can be applied to TDD

and other development methods. It indicates how frequentlyunit test is invoked.� TDDMemberProductionDevTime Reducer:

Computes multiple telemetry streams for development time on production code, one telemetry

stream for each project member.� TDDMemberTestDevTime Reducer:

Computes multiple telemetry streams for development time on test code, one telemetry stream

for each project member.� TDDMemberDevTime Reducer:

Computes multiple telemetry streams for total developmenttime, one telemetry stream for

each project member.� MemberEpisodeAverageDuration Reducer:

Computes multiple telemetry streams for average episode durations, one telemetry stream for

each project member.

TDD Telemetry Analyses

The availability of TDD telemetry reducers enables developers to invoke telemetry analyses

using Zorro’s recognized low-level development behaviors.

Recall that a benefit of TDD is that the code developed in TDD should be 100% covered because

no functional code is created without a unit test (see Section 2.1). So it would be interesting to

study this claim. Since Zorro has the TDDPercent Reducer, wecan define a telemetry stream
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reporting percentages of TDD development and correlate it with the test coverage stream that is

already included in Software telemetry(Page 59 [79]). The following code is a definition of the

telemetry stream and chart for this investigation.

streams TDDPercent(type) = {
"Percentage of Test-Driven Development",
TDDPercent(type) * 100

};

chart TDD-Coverage-Percentage-Chart() = {
"Percentage of TDD Episodes (time) and Coverage",
(TDDPercent("time"), percentageYAxis("TDD \%")),
(Coverage-Percentage("**", "line"),
percentageYAxis("Coverage \%"))

};

Figure 4.11 is a weekly telemetry chart showing percentage of TDD development and test cov-

erage. From the week of Sep 30, 2006 to the week of Nov 18, 2006,I worked on the Zorro software

Figure 4.11. TDD Percentage and Testing Coverage
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system and implemented Zorro’s web validation interface. Due to the fact that testing web inter-

faces requires a lot of additional effort, my conformance toTDD dropped down significantly in that

period. As a result, the test coverage dropped from 90% to below 70% over the course of eight

weeks software development. Though we can not directly verify the claim of 100% test coverage

characteristic of TDD, indeed the analysis shows that deviating from TDD caused decrease of test

coverage. In turn, this indicates that TDD can help to improve test coverage.

4.4 Chapter Summary

In this chapter, I introduced Zorro’s implementation with the support of the Hackystat and SDSA

frameworks. Zorro extends Hackystat’s data collection, specializes SDSA’s low-level development

behaviors inference for TDD, and supplies new functionalities to Hackystat. Zorro’s development

behaviors and conformance of TDD were detailed in this chapter, along with an introduction to

TDD analyses and telemetry reducers implemented in Zorro.
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Chapter 5

Research Questions and Methodology

The long-term goal of my research is to improve the consistency of empirical evaluation research

on low-level software processes. As a step in this direction, I designed and developed the Software

Development Stream Analysis (SDSA) framework (Chapter 3) that can infer development behaviors

using automatically collected in-process software metrics. I used the SDSA framework to specify

a low-level software process called Test-Driven Development (TDD) and implemented Zorro, a

software system that can recognize development behaviors and measure the developer’s process

conformance to TDD. If Zorro, a specification of the SDSA framework, can be experimentally

validated, I will have provided evidence that SDSA is an enabling technique for recognizing at least

certain types of low-level development activities.

In order to validate Zorro, I designed a series of case studies including a pilot study,a class-

room case study and an industrial case study. The purpose of the pilot and classroom validation

studies was to validate Zorro’s data collection and TDD behavioral inference in controlled environ-

ments. The purpose of the industrial case study was to explore how Zorro can be used by external

researchers. Section 5.1 introduces the central research questions of my thesis research. Section 5.2

presents my research methods including participant observation, interview and survey.

5.1 Research Questions

The central research questions of the Zorro validation studies were:
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� Q1: Can Zorro automate the recognition of TDD behaviors using automatically collected

software metrics?

This question can be further divided into three sub-questions:

– Can Zorro collect software metrics correctly?

– Does Zorro collect the necessary software metrics?

– Can Zorro infer TDD behaviors correctly based upon automatically collected software

metrics?� Q2: How useful is Zorro?

This question is hard to answer but it can be divided into three sub-questions based upon

users’ roles.

– For beginners, can Zorro help them improve their complianceto TDD?

– For experienced TDD practitioners, will Zorro help them improve their TDD practice

by providing them with new insight into their TDD development behaviors?

– For researchers, can Zorro help them reach legitimate research conclusions on TDD

experiments by providing them with TDD process conformanceinformation?

5.2 Research Methodology

Answering the above research questions requires a “mixed methods” research methodology

according to [12]. Question Q1 can be investigated using theparticipant observation. In order to

investigate the research question Q2, we need to collect users’ feedback or interview them.

To use the participant observation method, we can observe participants in the field, take notes

about their development activities and behaviors to provide an independent data source for val-

idating Zorro’s data collection and TDD behaviors inference. However, this manual participant

observation method [12] does not work for studying low-level software development activities that

could occur in seconds and minutes. It is simply too demanding for the observer to record all of the

necessary information about a low level software process, where significant events can occur every

few seconds. Thus, I developed a recording tool called “Eclipse Screen Recorder” (ESR) to assist

participant observation. ESR is an Eclipse plugin that can generate a QuickTime movie containing
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time-stamped screen shots of the Eclipse window at regular intervals. With ESR, observers will not

need to worry about missing rapid development activities.

Figure 5.1 illustrates the Eclipse window with ESR installed. The two pictured buttons on the

toolbar menu are defined by ESR. Pressing the green button canstart the recording process and

make the red button become enabled. The recorder will stop ifeither the red button is pressed or

Eclipse is closed. Figure 1.7 in Chapter 1 illustrates the recorded movie being played by QuickTime.

Figure 5.1. Eclipse Screen Recorder

The embedded timeline at bottom of videos (See Figure 1.7) can be used to synchronize videos with

development activities collected by Zorro for validation.ESR allows customization of recording

rate (0.5-2 frames per second), picture quality, and resolution. One frame/second was found to be

sufficient for validation, generating file sizes of approximately 7-8MB per hour of video.

The development of Zorro was iterative and incremental. So was the validation of Zorro. I have

conducted three case studies — a pilot study, a classroom case study, and an industrial case study.

Next, I will introduce the research methods I used in these case studies.
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5.2.1 Pilot Study

I designed and implemented the Zorro software system based upon descriptions in books [6, 3,

51, 47, 30] and my observation of TDD in practice. By Spring 2005, I had enhanced the Hackys-

tat Eclipse sensor to collect necessary development activities, designed the SDSA framework and

implemented the Zorro software system to infer TDD development behaviors automatically. In the

following Fall semester, I conducted a pilot Zorro validation case study.

The purpose of the pilot study was to test ESR as a tool to provide independent evidence for

validating Zorro, as well as to validate Zorro’s data collection and TDD behavior inference. The

research method was participant observation using ESR as the data collection tool. I played recorded

QuickTime videos to observe participants’ TDD developmentactivities and behaviors for Zorro

validation.

5.2.2 Classroom Case Study

The pilot study showed that participant observation with ESR is a suitable research method

for conducting Zorro validation study. Though Zorro was notperfect at collecting necessary soft-

ware metrics and inferring TDD behaviors, the pilot demonstrated that it was promising. Based

on research results from the pilot study, I improved Zorro’sdata collection, enhanced Zorro’s TDD

behaviors inference, added heuristics on process conformance of TDD, and provided many TDD

analyses and telemetry reducers (See Chapter 4). With theseimprovements, I conducted an ex-

tended validation study on Zorro in the software engineering classes at the University of Hawaii in

Fall 2006.

The purpose of the classroom case study was to validate Zorroin a controlled environment

and investigate its usefulness for TDD beginners. The research method of the validation was also

participant observation. Participants developed software using TDD in Eclipse with instrumenta-

tion including the Hackystat Eclipse sensor and ESR. ESR served as the data collection tool for

participant observation and the recorded videos were analyzed to validate Zorro.

A caveat with the pilot study was that I, the author of the Zorro software system, analyzed the

recorded videos for Zorro validation. This creates a “construct validity” threat with regard to this

experiment design because ESR was the only source of evidence and my analysis could be biased.
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Therefore, in order to increase the construct validity of classroom case study, multiple sources of

evidence were used according to suggestions from Yin in [78](Page 34). Participants’ comments

were the third source of information I used to cross-validate video analysis results. Prior to the

study, I developed a Zorro validation wizard in web pages to let participants comment.

To explore whether Zorro can help TDD beginners, I interviewed participants on their TDD

development experiences. After the interview, each participant used the Zorro validation wizard to

analyze his/her TDD development behaviors. Meanwhile, an embedded survey was conducted to

evaluate Zorro’s usefulness. To improve quality of the survey, I asked participants to justify their

answers verbally.

5.2.3 Industry Case Study

In Spring 2007, I conducted an industry case study to test Zorro’s usefulness to TDD researchers.

Using Zorro as a tool to assess TDD process conformance, Dr. Geir Hanssen and Dr. Tor Erlend Fæ-

gri from SINTEF ICT of Norway conducted a TDD vs. non-TDD comparison study in a Norwegian

software company.

The purpose of this study was to explore how Zorro can be used by researchers to increase

quality of TDD’s evaluation research. I deployed Zorro in the software company, assisted the project

manager and the researcher on analyzing process conformance data, and conducted a survey at the

end of the study.

5.3 Chapter Summary

This chapter introduced my research statement and Zorro’s validation case studies. The central

research questions were: (1) Can Zorro automate the recognition of TDD behaviors using automat-

ically collected software metrics? and (2) How useful Zorrois? To address these questions, I have

conducted a pilot study, a classroom case study and an industry case study in which I used research

methods such as participant observation, interviews and surveys. In order to improve the quality of

data collection for participant observation, I developed ESR, a tool that can record the Eclipse win-

dow in high fidelity. Both the pilot study and the classroom case study used ESR as a data collection

tool for Zorro validation.
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Chapter 6

Pilot Study

I employed the case study research strategy [78] to empirically study Zorro’s TDD development

behaviors inference. In order to validate Zorro, I conducted a pilot study at the University of Hawaii

in Fall 2005. This study shows that the participant observation research method using ESR is an ac-

ceptable research method for Zorro validation and it also shows that Zorro can accurately recognize

development behaviors of TDD in a simple project development setting.

6.1 Purpose of the Study

The pilot study served as a dry-run test to the chosen case study research strategy. As mentioned

in Chapter 5, the purpose of the pilot study was to test ESR, aswell as to validate Zorro’s data

collection and behaviors inference of TDD.

6.2 Research Questions

The specific research questions for the pilot study were:� Q1a: Is ESR a suitable tool for Zorro validation study?� Q1b: Does Zorro collect enough low-level development activities to infer developer’s TDD

behaviors?� Q1c: Does Zorro’s inference of TDD agree with analyses basedupon participant observation?
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Note that these specific research questions corresponded tothe main research questions Q1:Can

Zorro automate the recognition of TDD behaviors using automatically collected software metrics?

6.3 Experiment Design

The pilot study was largely a one-shot case study in which participants were exposed to TDD.

Creswell [12] suggests the following notation for it:

Group A X —— O

where group A represents a group of participants, X represents an exposure of a group to an

experimental variable or event, and O represents an observation or measurement on an instrument.

In this study, TDD was the treatment and Zorro was the instrument.

6.3.1 Participants

In this study, I recruited seven experienced Java developers who were familiar with unit testing.

6.3.2 Materials

The programming problem was the stack data structure. I gavethe developers user stories

which described the activities they were to perform in orderto implement the stack.. Eclipse was

the development tool. In addition, I also provided Doshi’s TDD Rhythm [16] and TDD Quick

Reference Guide [15] as supporting materials. In order to improve participants’ commitment to

TDD, a To-Do list was supplied as the reference.

6.3.3 Instrument

I instrumented participants’ TDD development processes with the Hackystat Eclipse sensor

and ESR. Participants were required to install the Hackystat Eclipse sensor and send the collected

development activities to a remote Hackystat server. They also installed ESR which recorded their

Eclipse windows as they participated in this study.
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6.3.4 Procedure

Since the pilot study configuration was very simple, participants were given the option to either

work on a lab computer or on their own computers at home. For those who opted to work at home,

I provided detailed step-by-step instructions to them.

1. Setup

Prior to the study I confirmed that the lab computer had the following software installed:� JDK� Eclipse IDE� Hackystat Eclipse Sensor [26]� Eclipse Screen Recorder [17]

When participants chose to work at home on their own computers, I asked them to configure

these software before participating in this study.

2. Introduction to TDD

When participants did not have prior knowledge of TDD, I briefly introduced TDD to them

using Beck’s simple abstraction of TDD: Red/Green/Refactor.

3. Development in TDD

Stack is a well-known data structure that works according tothe Last-In-First-Out (LIFO)

principle. The participants developed a program to implement the Stack data structure using

TDD. I provided them with three documents: the graphic illustration of TDD rhythm, the

TDD reference guide, and the user stories of stack with a To-Do list. They are available at

Appendix A. In this step, both the Hackystat Eclipse sensor and ESR were turned on.

4. Data Collection

The Hackystat Eclipse sensor collected and sent development activities to a remote Hacky-

stat server. I asked participants’ permissions to access their data for this study. For videos

recorded by ESR, I asked participants to send them to me via email attachments.
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6.4 Threats to Validity

There were several threats to construct validity. One of them was that some participants did not

know TDD prior to the study. For these participants, I gave them a brief tutorial at the beginning

of the study, and provided a graphic illustration of the rhythm [16] and the reference guide [15]

of TDD. Another threat was the process conformance of TDD. Tominimize its effects, I used

Stack, a simple and well-known data structure, and provideduser stories with a To-Do list to help

participants comply with TDD.

With regard to validity of data collection, I used unobtrusive data collection utilities: Hackystat

Eclipse Sensor and ESR. Both tools required a little overhead from participants [39, 35] at the

beginning and at the end of the study.

There were two external validity threats in this study. The first one was the simplicity and

stringency of TDD. In the pilot study, I interpreted TDD as strictly as Beck suggested in [5, 6] and

Doshi recommended in [16, 15]. The second one was that only 7 developers participated in this

study. To address both of them, I conducted an extended validation study and an industrial case

study in my thesis research following this pilot study.

6.5 Data Analyses

I collected two sources of data about TDD development in thisstudy. The Hackystat Eclipse

sensor collected low-level development activities that were used by Zorro to recognize participants’

TDD development behaviors. The development process videosrecorded by ESR were the second

source of data that served as participant observation. I used the observational results from videos

recorded by ESR to validate Zorro in data analyses.

6.5.1 Infer Development Behaviors with Zorro

To use Zorro, I defined a Hackystat project for each participant and then conducted the “TDD

Development Stream” analysis provided by Zorro. Figure 6.1illustrates the inferred results using

my own data. Recall that Zorro partitions development streams using the “Test-Pass” tokenizer as

described in Chapter 4, which yielded a sequence of “Test-Pass” episodes as shown in Figure 6.1.
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hongbing@hawaii.edu
Development Stream Episode

Alicia admin | analyses | preferences | alerts | extras | help | home

Development Stream: Displays Development stream and episode classification. (more...) Analyze

Project: StackWithTDD

StartDay:    01 January 2006

EndDay:    02 January 2006

Episode

Classification

Episode Actions

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase

01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java

01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()

01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, AI=+1

01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type

01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java

01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack

01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java

01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()

01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1

01/01/2006 23:32:31 TestStack.java UNIT TEST TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()

01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, AI=+1

01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack

01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)

01/01/2006 23:35:02 Stack.java PRODUCTION EDIT 0sec MI=+1, SI=0

01/01/2006 23:35:13 TestStack.java UNIT TEST TEST FAILED

01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag

01/01/2006 23:36:19 Stack.java PRODUCTION EDIT 0sec MI=0, SI=+1

01/01/2006 23:36:34 TestStack.java UNIT TEST TEST OK

(tdd, 2) 

Figure 6.1. TDD Development Stream Analysis

The “Episode Actions” column on the right displays episodes’ internal structures. Corresponding

to the Red/Green/Refactor metaphor of TDD, Zorro highlights test failures in red and test passes in

green backgrounds. In addition, compilation errors were highlighted in a yellow background. The

“Episode Classification” column on the right presents development behaviors inferred by Zorro.

The inferred results were summarized in Table 6.1. For each participant, it lists the development

duration and number of total, TDD, Refactoring, Test-Last and Unclassified episodes. According to

Table 6.1. Zorro’s Inference Results for Pilot Study

Subject ID Duration Episode TDD Refactoring Test-Last Unclassified
1 44:53 15 6 1 7 1
2 28:17 13 5 0 8 0
3 48:00 14 9 0 5 0
4 66:32 14 5 1 8 0
5 43:14 16 3 1 7 5
6 45:57 11 4 0 7 0
7 32:40 9 4 1 3 0

Total 92 36 4 45 6

Table 6.1, participants spent 28-45 minutes to implement Stack using TDD and yielded 92 episodes.
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Zorro recognized 86 of them, which accounts for 93.6% of all episodes. Interestingly, among 6

unrecognizable episodes, 5 of them were from one participant only. It was also notable that par-

ticipants almost never refactored, and they did “Test-Last” half of the time (in the unit of episode

number). Here “Test-Last” means that participants write test code after production code has been

implemented, which is the opposite side of TDD.

In the pilot study Zorro inferred TDD behaviors as “TDD”, “Refactoring” or “Test-Last”. This

development behaviors classification reflected Beck’s [6] simple abstraction of TDD. Further re-

search found that this classification can not represent actual TDD developments, and thus a more

sophisticated TDD development behaviors classification schema was developed as described in

Chapter 4.

6.5.2 Participant Observation

An ESR video contains time-stamped Eclipse windows that were captured at the rate of one

frame per second. I played and watched the recorded videos asa form of participant observation.

Figure 6.2 is a screen-shot showing an ESR video that I playedusing QuickTime[58]. At the time

when Figure 6.2 was captured, the participant who produced the video had just finished a TDD

iteration ending with a successful unit test invocation. The video also includes a time-line at the

bottom indicating the time when the window was captured. Note that the comment at the top-right

corner in Figure 6.2 was not part of the video. I added this remark in my observation analysis.

When I observed a TDD-realted activity in the ESR videos, I recorded it into an Excel spread-

sheet for bookkeeping (See Figure 6.3). Each activity has a start time, an end time, an abstract, and

additional annotations. As seen in Figure 6.3, activities such as compilations, failed test invocations

and successful test invocations were highlighted in contrast to Zorro’s TDD Development Stream

analysis results as shown in Figure 6.1.

6.5.3 Validation of Zorro’s Data Collection

I used activities observed from the ESR videos to validate Zorro’s data collection. The compar-

ison between activities recorded by ESR and activities collected by Zorro allowed me to perform a

partial validation of Zorro by determining which activities were missed by Zorro and which activ-

80



Figure 6.2. ESR Video
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Figure 6.3. Observation Results in Excel

ities were not correctly collected by Zorro. This section introduces the analysis method, followed

by analysis results.

Validation Analysis Method

After watching each participant’s video, I compared the activities observed by me to activities

collected by Zorro and presented by the TDD Development Stream analysis. Figure 6.4 illustrates

the comparison for a participant. The sub-figure on the left is a screen-shot showing activities col-

lected by Zorro and the sub-figure on the right is the Excel spreadsheet with development activities

I observed for a programming period. Using this comparison method, I validated Zorro’s data col-

lection for all of the development streams produced by pilotstudy participants. The next section

presents this analysis result.
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hongbing@hawaii.edu
Development Stream Episode

Alicia admin | analyses | preferences | alerts | extras | help | home

Development Stream: Displays Development stream and episode classification. (more...) Analyze

Project: StackWithTDD

StartDay:    01 January 2006

EndDay:    02 January 2006

Episode

Classification

Episode Actions

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase

01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java

01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()

01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, AI=+1

01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type

01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java

01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack

01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java

01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()

01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java

01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1

01/01/2006 23:32:31 TestStack.java UNIT TEST TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()

01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, AI=+1

01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack

01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)

01/01/2006 23:35:02 Stack.java PRODUCTION EDIT 0sec MI=+1, SI=0

01/01/2006 23:35:13 TestStack.java UNIT TEST TEST FAILED

01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag

01/01/2006 23:36:19 Stack.java PRODUCTION EDIT 0sec MI=0, SI=+1

01/01/2006 23:36:34 TestStack.java UNIT TEST TEST OK

(tdd, 2) 

Figure 6.4. Comparison of Development Activities between Zorro and ESR

Validation Results

Overall Zorro was capable of capturing development activities. Compared to activities ob-

served from ESR videos, Zorro collected almost all of them, and thus it was pointless to literally

report number of missed and incorrectly collected activities. Instead, I decided to summarize types

of missed and incorrectly collected activities that affected Zorro’s inference. The following is a

summary of problems I found with regard to Zorro’s data collection:� Problem 1: Insignificant editing work.

Severity: High
Reason: Editing work did not change object metrics such as statements and

methods. Or developers quickly edited code, which resultedin one state
change event only.

Result: Episodes were misclassified since editing activities were not captured.
Resolution: Change the implementation of file edit sub stream in SDSA to look for

file size change as well.
Affected: 6 episodes.� Problem 2: Missed compilation errors to test code.

Severity: Medium
Reason: Changes to production code caused compilation errors to inactive test

code.
Results: Episode were misclassified.
Resolution: Fix the Hackystat Eclipse sensor to report compilation errors on inac-

tive files as well.
Affected: 2 episodes� Problem 3: Two unit test invocations were grouped together or one unittest invocation was

divided into two continuous episodes.
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Severity: Medium
Reason: Eclipse sensor collected multiple data entries for one testinvocation.
Results: Two or more episodes were grouped together or divided resulting that

they were not classified correctly.
Resolution: Tag unit tests with run time to group multiple unit test entries belong to

one test invocation together.
Affected: 3 episodes

Of the three problems listed above, one was high and the othertwo were medium in severity. In

total, they affected 11 out of 92 episodes.

6.5.4 Validation of Zorro’s TDD Behaviors Inference

As seen in Figure 6.4 and Table 6.1, Zorro inferred development behaviors as “TDD”, “Refac-

toring” or “Test-Last”. For each behavior category, Zorro also defined sub-types as seen in Figure

6.4, but I will not discuss them in this analysis because sub-types are for Zorro’s internal uses

only. In this analysis, I compared development behaviors I observed in ESR videos to development

behaviors inferred by Zorro.

Validation Analysis Method

In Section 6.5.2, I introduced how I did participant observation using videos. After observing

low-level development activities, I played the videos again to derive development behaviors of TDD.

The remark in a yellow background at the top-right corner of Figure 6.2 was a visual presentation of

my derivation of development behaviors. In this data analysis, similar to what I have done in Section

6.5.3, I compared the development behaviors derived from ESR videos to development behaviors

inferred by Zorro for validation.

Validation Results

Table 6.2 is a summary of the validation results. For each participant, it lists number of to-

tal, classified and wrongly classified episodes along with the percentage of classification errors.

According to Table 6.2, 11.6% of episodes were wrongly classified. On the other hand, it indicated

that Zorro inferred TDD behaviors correctly for 88.4% of episodes.
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Table 6.2. TDD Development Behavior Validation

Subject ID Episode Classified Wrongly Classified Percentage
1 15 14 2 13.3%
2 13 13 3 23.3%
3 14 14 1 7.1%
4 14 14 1 7.1%
5 16 11 1 9.1%
6 11 11 1 9.1%
7 9 9 1 12.5%

Total 92 86 10 11.6%

In addition, the validation analysis helped me to discover an inference problem for very long

episodes that occurred when developers did not invoke unit tests frequently. It is described in the

following:� Problem 4: An episode had too many activities.

Severity: Low
Reason: Participants did not invoke unit testing frequently enough.
Results: Episodes were misclassified.
Resolution: Introduce long episode type and avoid inferring episode with too many

activities.
Affected: 2 episodes

This behavior is clearly a violation to TDD’s short-duration characteristic, but Zorro did not have

an episode behavior category for it when I conducted the pilot study. Later I included this behavior

in the new development behavior classification schema in current version of Zorro (See Chapter 4).

6.6 Research Conclusions

The above analyses show that the one-shot case study research strategy is useful for Zorro

validation. ESR, an Eclipse screen recording tool, is capable of recording incremental small changes

made by participants for the purpose of participant observation. Although ESR caused a small delay

when it was initialized, participants did not notice much delay in the pilot study. With ESR videos,

I was able to validate both Zorro’s data collection and TDD behaviors inference. Thus, ESR is

suitable for Zorro validation studies and the research question Q1a is answered.
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Using videos recorded by ESR for participant observation, Ifound that Zorro had 3 types of

solvable data collection problems. The validation analysis of Zorro’s data collection shows that

Zorro can collect sufficient low-level development activities accurately for the purpose of TDD

development behavior inference. This supports the research question Q1b.

Only two out of 93 episodes were incorrectly inferred by Zorro because they had too many

activities in them. Other than this, Zorro’s inference rules recognized TDD development behaviors

correctly when low-level development activities were sufficient. Thus this pilot study provides the

supporting evidence to research question Q1c.

6.7 Discussion and Zorro Improvements

In a simple environment setting, I validated that Zorro worked well at collecting low-level de-

velopment activities and inferring developer’s TDD behaviors. However, as described above, this

pilot study also identified several areas that could be improved.

6.7.1 Data Collection

Section 6.5.3 addressed three data collection problems that prevented Zorro from inferring TDD

behaviors correctly. Following the pilot study, I fixed themin the current version of Zorro.

6.7.2 TDD Behaviors Classification

The validation analysis in Section 6.5.4 showed that applying inference rules on episodes that

had too many development activities caused inference errors. More interestingly, about 50% of

episodes were “Test-Last” in the pilot study. There are several possibilities that could explain this

phenomenon. One possibility could be that the programming problem (Stack) is too simple and

developers did not need to fail tests first to have the correctimplementation. Another possibility

could be that Beck’s concise summary of TDD is just too simple, while real TDD development

is much more complicated than what he described. For instance, a developer can add a new test

that does not fail initially because the functional code works well even without any change. This

development behaviors is none of “TDD”, “Refactoring” and “Test-Last”. Therefore, after the pilot
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study, I developed a much sophisticated TDD behaviors classification schema as seen in Table 4.2

that can best describe real development behaviors. The longepisode behavior is part of this schema.

6.7.3 Process Conformance Inference

In the pilot study, I did not directly calculate process conformance of TDD. Instead, I used

development behaviors to describe process conformance: “TDD” and “Refactoring” behaviors were

TDD conformant automatically while “Test-Last” was not. According to this simple measurement

and Table 6.1, in the pilot study, only less than 50% (40 out of92 episodes) of episodes were TDD

conformant, which was very contrary to what I had anticipated before the study. Further research

indicated that this simple measurement was very limited.

With the introduction of the new episode classification schema, I defined a more sophisticated

two-step model for process conformance of TDD (See Figure 6.5) using heuristics. The first step

is to infer development behaviors in episodes and then look up episode context to determine their

process conformance. There are three lists in Figure 6.5. The left-most one is a list of development
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Two-wayOne-way

Refactoring

Refactoring

Refactoring

Test-addition

Test-addition

Refactoring
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Figure 6.5. Heuristic Algorithms of TDD Conformance

behaviors recognized by Zorro’s inference rules. As their names indicate, the episodes can be “test-
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first”, “test-addition”, “refactoring”, or “test-last” etc. The one-way and two-way TDD heuristic

algorithms are on the right side of Figure 6.5. The one-way algorithm uses look-forward approach to

determine whether an episode is TDD conformant, while the two-way heuristic algorithm uses both

look-forward and look-backward approaches. Figure 6.5 indicates this difference using a single-

head arrow and a double-head arrow. I implemented these heuristic rules with the support of JESS

[22]. Section 4.2.4 in Chapter 4 has a detailed description to this heuristic. Our preliminary work

suggests that the two-way heuristic algorithm can understand real world situations better than the

one-way algorithm.

6.8 Chapter Summary

This chapter introduced the pilot study, a test to investigate how to validate Zorro using par-

ticipant observation supported by ESR. The study showed that Zorro’s data collection and TDD

behaviors inference can be validated by analyzing development videos recorded by ESR. This study

also identified several problems that helped to improve Zorro. With these improvements, I con-

ducted an extended classroom case study following the pilotstudy in my thesis research.
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Chapter 7

Classroom Case Study

Following the pilot study and collaborative research with Dr. Hakan Erdogmus1, I improved

Zorro and conducted an extended validation study in the software engineering classes at the Univer-

sity of Hawaii in Fall 2006. This study shows that Zorro can collect low-level development activities

and infer TDD development behaviors accurately. This studyalso provides evidence that Zorro is

helpful for beginners who do not have much prior experience with the TDD practice.

7.1 Purpose of the Study

The purpose of this study was to validate Zorro using the casestudy research method tested by

the pilot study (Chapter 6) and investigate how useful Zorrois for TDD beginners.

7.2 Research Questions

The specific research questions for the classroom case studywere:� Q2a: Does Zorro collect software development activities accurately enough for episode par-

titioning and TDD behavioral inference?1Dr. Hakan Erdogmus is a Senior Research Officer in the NRC-IITSoftware Engineering Group (http://iit-iti.nrc-
cnrc.gc.ca/personnel/erdogmushakane.html). He has interests in Software Economics, Agile Software Development,
and Software Process Measurement and Awareness.
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� Q2b: Does Zorro’s inference of TDD behaviors agree with analyses based upon participant

observation?� Q2c: Does Zorro’s inference of TDD behaviors agree with whatparticipants believe to be

their TDD behaviors?� Q2d: Does Zorro provide useful information for beginners tounderstand TDD and improve

their TDD development?

Research questions Q2a, Q2b, and Q2c are three specific research questions for the thesis re-

search question Q1, “Can Zorro automate the recognition of TDD behaviors using automatically

collected software metrics?”. The research question Q2d corresponds to the thesis research question

Q2, “How useful is Zorro?”

7.3 Experiment Design

To address the above research questions, I used the one-shotcase study research method as in

the pilot study. TDD was the treatment. We taught TDD to participants and asked them to develop

software using TDD in this study.

7.3.1 Participants

TDD beginners were the targeted population. I recruited participants from a senior-level soft-

ware engineering class and a graduate-level software engineering class, both of which were taught

by Professor Philip Johnson in Fall 2006 at the University ofHawaii. There were 16 students in two

classes and 11 of them agreed to participate in this study.

7.3.2 Materials

I conducted this study in the Collaborative Software Development Laboratory (CSDL) at the

University of Hawaii. Three Windows-based lab computers were used, one of them acted as a

Hackystat server and the other two were used by participantsto develop software for this study. I
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configured two development computers with necessary software including JDK, Eclipse, the Hack-

ystat Eclipse Sensor, QuickTime and ESR. Bowling Score Keeper, a famous problem that has been

widely used in empirical evaluation research of TDD[23, 19], was the programming task. Since

participants were TDD beginners, I designed user stories inplain text (Appendix E) to help them

develop the program without needing prior experience with the game. Since user stories are or-

dered from the easiest one to the hardest one, they can also beused as the “To Do” list for TDD

development.

7.3.3 Instruments

I instrumented the development processes with the Hackystat Eclipse sensor and ESR. Prior to

the study, I created a Hackystat key for each participant andconfigured the Hackystat Eclipse sen-

sor for him/her. At the beginning of the study, I asked participants to enable ESR so that it would

record their development processes. Participants validated Zorro’s TDD behavioral inference using

the “TDD Episode Validation” (Figure 7.2) analysis. The “Web Validation Wizard” was another

instrumentation tool that I used to collect participant’s evaluation. Additionally I interviewed par-

ticipants in the study and recorded the interviews using a digital voice recorder.

7.3.4 Procedure

This experiment included a TDD lecture and a 2-hour lab session.

1. TDD Lecture

In both software engineering classes, Professor Philip Johnson gave the same TDD lecture to

students. The lecture included following contents:� Introduction to TDD

– Two principles of TDD from [6]

– Red/green/refactor pattern of TDD

– TDD Rhythm [16]

– TDD vs. Unit Testing

– A TDD example: implementing stack by writing test first
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� Why TDD?

– Developer gets quick feedback.

– TDD improves software quality.

– TDD promotes simple design.

– Microsoft has successful story on TDD [7]

– Test-Driven Development proves useful at Google[72]� About TDD

– TDD may not be appropriate for everybody.

– TDD is about design.

– Some studies show that TDD improves software quality.

– TDD may reduce productivity.

– TDD references including testdriven.com, mailing list andblogs.� Reading and programming assignments

– Page 1-20 of Beck’s book “Test-Driven Development by Example” [6]

– TDD Quick Reference [15]

– Practice TDD on Roman Numeral Problem (Appendix C)

After the lecture, students practiced TDD by working on an in-class assignment, the Roman

Numeral Conversion (Appendix C). Then they were asked to voluntarily participate in this

study. The study was conducted in CSDL under my supervision.The 2-hour lab session

included 90-minute of development using TDD, Episode Validation, Participant Interview

and Zorro Usefulness Evaluation.

At the beginning of the study, I introduced the purpose and content of this research study

to participants, followed by the consent form signing. ThenI gave them user stories of the

Bowling Score Keeper problem (Appendix E) and explained that they only needed to spend

90 minutes on the programming task. Following a five minute introduction, I asked them to

start up Eclipse, enable the ESR recorder and begin programming.

2. TDD Development (90 minutes)

Each participant developed a program to compute bowling game scores in TDD following the

provided user stories. I suggested that they use the user stories as a To-Do list to help them
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develop in TDD. The time limit was 90 minutes. It was acceptable if they did not finish all

user stories by the end within the 90 minutes.

3. Validating Zorro’s Inference about Their TDD Behaviors (15 minutes)

After 90 minutes of development in TDD, participants exitedEclipse, which forced the

Eclipse sensor to send all remaining development activities to the Hackystat server and stopped

the ESR recorder. Following a five minutes coffee break, I then directed them to login into

the Hackystat server and asked them to invoke the “TDD Episode Validation” (Figure 7.2)

analysis in which they provided their feedback to Zorro’s inference results. As seen in Figure

7.2, they commented on Zorro’s inference of development behaviors and compliance to TDD.

4. Interview (5 minutes)

I conducted an interview with each participant after he/shefinished reviewing Zorro’s infer-

ence of their development behaviors. The interview lasted 5minutes. In the interview, I asked

participants questions regarding their development experiences on software engineering best

practices, unit testing, TDD and software quality.

5. Zorro Usefulness Evaluation (10 minutes)

At the end of the lab session, participants conducted several analyses using the “Evalua-

tion Wizard” (Figure 7.1) provided by Zorro to evaluate its usefulness. Participants used the

wizard to review five analyses that were created based on Zorro’s inference: Episode Demog-

raphy, T/P Effort Ratio, T/P Size Ratio, Episode Duration and Episode Duration Bin.

7.3.5 Data Collection

Similarly to the pilot study, I collected development activities using the Hackystat Eclipse sensor

and development process videos using ESR. Development activities were saved on the Hackystat

server, and ESR videos were saved on the lab PCs. To collect participants’ validation comments,

Zorro provides the “TDD Episode Validation” analysis (Figure 7.2), which is an extension to the

“TDD Development Stream” analysis (Figure 6.1) discussed in Section 6.5. In addition to present-

ing inference results, this analysis also supplies Zorro’sreasoning process and allows participants

to give feedback, which was saved to the Hackystat server. Participants conducted Zorro usefulness

evaluation using the “Evaluation Wizard” analysis (Figure7.1) that saved the evaluation results to

the Hackystat server too.
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Figure 7.1. Zorro Evaluation Wizard

Figure 7.2. TDD Episode Validation
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7.4 Threats to Validty

A construct validity problem existed in the pilot study. I, the author of Zorro, compared the

recorded movies with Zorro’s inference to validate Zorro’smetrics collection and TDD develop-

ment behavioral inference. I could be biased both at judgingwhat software metrics are necessary,

as well as at inferring development behaviors from the observed activities in the recorded movies.

One person’s subjective judgment, especially the one from the author, perhaps is not a valid mea-

sure in case studies [78]. Therefore, I employed the additional evidence of participant comments

to improve the construct validity. The participant comments were analyzed to cross-validate my

video analysis. Compared to the pilot study, this additional source of evidence helped to solidify

research conclusions, but note that a caveat did exist because the student participants could have

given feedback that favored Zorro’s behavioral inference.

It is challenging to validate Zorro because participants might not want to be instrumented by the

sensors, not to mention having their development processesrecorded with ESR. In my study, I used

two lab PCs and carefully stated that participants were not evaluated based upon their performances,

and they gained extra credit as long as they participated in this study. Moreover, participants’

identities were not disclosed in any written documents. Theconsent form I used is available at the

Appendix D.

In term of external validity, only 11 students participatedin this study. The sample size is

small, which makes it difficult for me to generalize these research findings. Also, students in the

software engineering classes at the University of Hawaii might not be representative of all TDD

beginners since professional developers can also be TDD beginners. To improve external validity,

replication studies need to be conducted in other organizations. For this purpose, I made all my

research materials available to public.

7.5 Data Analysis Methods for An Individual Participant

I processed every participant’s data and drew research conclusions by putting analysis results of

all participants together. This section introduces the analysis methods for an individual participant

using the first participant’s data.
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7.5.1 Participant Observation and Validation of Data Collection

The first step was to observe the first participant by playing his development video recorded by

ESR. This observation helped to validate Zorro’s software metrics collection for him.

Analysis Method

Similarly to the pilot study, I observed low-level development activities by playing the recorded

ESR video from the first participant. Then I logged what I observed into an Excel spreadsheet for

bookkeeping (See Figure 6.3 in Chapter 6). Recall that SDSA constructs the development stream

using software metrics collected by sensors (Section 3.2.1), so we can also construct another devel-

opment stream using development activities that occurred in the participant’s development process

and that I observed in the recorded development video. To validate Zorro’s data collection, I simply

compared two development streams that were illustrated in Figure 6.4 in Chapter 6.

Analysis Result

The first participant finished 7 of the 13 user stories in 90 minutes. I observed that he conducted

153 development activities, which were then divided into 10episodes. For each episode, Table 7.1

lists both the number of activities collected by Zorro and the number of activities I observed. The

difference between the two numbers is in the “Difference” column. Descriptive analysis results are

available at the bottom of this table.

Note that ESR captures the Eclipse window once per second, soit should capture almost every-

thing that happens in a programming session. However, according to Table 7.1, activities collected

by Zorro outnumbered activities I observed in the recorded video of the same development process

conducted by the first participant. Moreover, the differences in activity numbers were significant

according to the descriptive analysis. Zorro collected 19.8 activities per episode, which were 4.5

more than the number of activities per episode I observed in the video.
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Table 7.1. Number of Development Activities

Episode Activities (Zorro) Activities (Video) Difference
1 4 4 0
2 6 5 +1
3 13 11 +2
4 19 15 +4
5 23 19 +4
6 14 9 +5
7 46 35 +11
8 22 15 +7
9 5 5 0
10 46 35 +11

Total 198 153
Mean 4.5
Median 4
STDEV 4.1

7.5.2 Validation of TDD Behaviors and TDD Compliance Inference

The second step was to validate Zorro’s inference of TDD development behaviors and TDD

compliance.

Analysis Method

In Section 7.5.1, I introduced how I observed development activities in the recorded video. In

this step, I played the video again to observe TDD development behaviors of the first participant.

Following this observation, I analyzed the TDD compliance of each episode. Similarly to what I

did in Section 7.5.1, I validated Zorro’s inference resultsof TDD behaviors and TDD compliance

by comparing what Zorro inferred to what I observed.

Analysis Result

I list the analysis result in Table 7.2 in which Zorro’s inference results are on the left and my

observation analysis results are on the right. Recall that Zorro infers development behaviors in

episodes first, and then infers TDD compliance based upon development context using heuristic

algorithms (Section 4.2.4). Therefore, I present Zorro’s inference results in two columns in Table
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7.2: one is for TDD development behaviors and the other one isfor TDD compliance. In order to

compare Zorro’s inference results to my observation results, I also list the observation results in two

columns: one is for development behaviors and the other one is for TDD compliance.

Table 7.2. Comparison between Zorro Inference and Video Observation

Zorro Observation
Index

Behavior Is TDD? Behavior Is TDD?
1 test-addition Yes test-addition Yes
2 refactoring Yes refactoring Yes
3 refactoring Yes refactoring Yes
4 test-first Yes test-first Yes
5 test-first Yes test-first Yes
6 test-first Yes test-first Yes
7 test-first Yes test-first Yes
8 test-first Yes test-first Yes
9 test-addition Yes test-addition Yes
10 unknown No test-first Yes

From Table 7.2, we can see that participant observation results are identical to Zorro’s inference

results except for the last episode. Due to the 90-minute time constraint, the first participant did not

finish the last user story he worked on. Thus the last episode did not end with any successful unit

test invocation, which prevented Zorro from inferring the development behavior in it. In Chapter 4,

we introduced that Zorro classifies an episode as “Unknown” if it does not end with a successful

unit test invocation. This is often the situation at the end of a programming session.

7.5.3 Cross-validation of TDD Behaviors and TDD ComplianceInference

As the author of Zorro, my observation of development behaviors could be biased (Section

7.4). This bias would decrease construct validity [78] if participant observation were the only data

analysis method. To improve construct validity, I used an additional source of data – participants’

validation comments that were acquired through the “TDD Episode Validation” analysis (Section

7.3.5).
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Analysis Method

Similarly to the participant observation analysis in the previous step, I compared the first partic-

ipant’s validation comments episode by episode to Zorro’s inference results for cross-validation.

Analysis Result

In Table 7.3, I listed the first participant’s comments alongwith both Zorro’s inference and my

video observation results. Note that the participant’s comments on development behaviors are differ-

ent from what Zorro inferred and what I observed in the ESR video because participants described

their development behaviors by selecting them from the following list:� adding new functionality,� refactoring,� adding test,� just running tests,� can’t tell,� other

for each episode. Because of this, it is impossible to directly compare what the participant agreed

upon to be his development behaviors to what Zorro inferred and what I observed. Thus, I will in-

troduce a mapping schema to make them comparable in Section 7.6 after processing all participants’

data.

In term of TDD compliance, the first participant believed that his development process was

100% TDD compliant, which is slightly different from what Zorro inferred but conformant to what

I observed in the video. As I discusssed in Section 7.5.2, this difference is caused by Zorro’s

stringent requirement that an episode must end with successful unit test invocations.
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Zorro Inference Video Observation Participant Comment
Index

Behavior Is TDD? Behavior Is TDD? Behavior Is TDD?
1 test-addition Yes test-addition Yes adding test Yes
2 refactoring Yes test-first Yes refactoring Yes
3 refactoring Yes refactoring Yes refactoring Yes
4 test-first Yes test-first Yes adding new functionality, adding test Yes
5 test-first Yes test-first Yes refactoring Yes
6 test-first Yes test-first Yes adding new functionality, adding test Yes
7 test-first Yes test-first Yes adding new functionality, refactoring, adding testYes
8 test-first Yes test-first Yes adding new functionality, adding test Yes
9 test-addition Yes test-addition Yes adding test Yes
10 unknown No test-first Yes adding new functionality, refactoring, adding testYes

Table 7.3. Participants’ Comments on their Development Behaviors

100



7.5.4 Participant Interview Analysis using the Coding Method

I analyzed the first participant’s interview data to study his opinions on unit testing and TDD

using the coding analysis method.

Analysis Method

Coding is a data analysis method that can generate a description of setting or people as well

as categories or themes[12, 13]. For interview conducted inthis study, I coded participants into

different categories according to their opinions on software development, unit testing, and TDD.

Analysis Result

Table 7.4 summarizes the interview questions and answers from the first participant.

Table 7.4. List of Interview Questions and Answers

Interview Question Participant’s Response
Unit testing experience Several years.
Prior unit testing strategy Write test after production iteratively.
How much unit testing Not all the time.
TDD’s impact on unit testing TDD is messy and leads to wrong design. TDD is

better if there is good design first.
Comfortableness of TDD Hard, especially when a refactoring activity caused

previous tests failed (regression test failure).
Full-scale use of TDD Do not want to do so until I get accustomed to it.

Likes the idea of TDD.

In the interview, the first participant stated that unit testing was a practice that was required in

his prior software development. In his opinion, iteratively implementing test cases afterward makes

more sense than writing test first. Additionally, TDD may lead to wrong design and messy code if

there is no good design first. Therefore, implementing software in TDD is hard and it takes time

to get accustomed to it. With these answers, I coded a category named“somewhat in favor of unit

testing but not in favor of TDD”.
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7.5.5 Reporting Usefulness of Zorro’s Analyses

With the navigation of the “Zorro Evaluation Wizard”, participants conducted five Zorro’s anal-

yses on their own TDD development conducted in this study. After reviewing each analysis, they

evaluated its usefulness. I generated the usefulness evaluation results in this step.

Analysis Method

The evaluation of usefulness varies from “Strongly Disagree” to “Strongly Agree”, which are

quantified into values from 1 to 5 (Table 7.5). In addition to the scale of usefulness, participants

Table 7.5. Table of Usefulness Scale

Strengthen Scale
Strongly Disagree 1
Disagree 2
Neutral 3
Agree 4
Strongly Agree 5

also checked areas that were helpful after reviewing each analysis. Table 7.6 lists all possible useful

areas that are encoded to UA-1, UA-2, and UA-3 etc.

Table 7.6. Table of Useful Areas

Code Useful Area
UA-1 Acquiring awareness of my programming patterns
UA-2 Learning TDD
UA-3 Mastering TDD
UA-4 Monitoring my pace
UA-5 Improving my programming skills
UA-6 Discovering the situations in which TDD is useful
UA-7 Discovering the situations in which TDD is applicable
UA-8 Gauging how much testing I am doing
UA-9 Other
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Analysis Result

Table 7.7 is a summary of the first participant’s evaluation on Zorro’s usefulness. Note that he

only evaluated 4 of 5 analyses because the “Effort T/P Ratio”analysis had a bug at that time, which

was fixed after he finished participating in this study.

Table 7.7. The First Participant’s Usefulness Evaluation

Areas
Analysis Name Scale

UA-1 UA-2 UA-3 UA-4 UA-5 UA-6 UA-7 UA-8 UA-9
Demography Analysis 3 X X X
Effort T/P Ratio N/A
Size T/P Ratio 2 X
Duration 3 X
Duration Histogram 2 X

The first participant thought that Zorro’s analyses were somewhat useful to him. According to

his evaluation, the “TDD Episode Demography” analysis was most useful for learning TDD whereas

other analyses were only good at showing his development pace.

7.6 Classroom Study Data Analysis Results

In the data analysis, I assigned letters ‘A’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, and ‘T’ to

11 participants as their identifications. Using the data analysis methods introduced in the previous

section (Section 7.5), I analyzed data collected from all participants and presented results in the

following.

7.6.1 An unexpected phenomenon and participant grouping

First, I will introduce an unexpected phenomenon I discovered in the data analysis. In Chapter

2, we have discussed that TDD is iterative and incremental. The rhythm of TDD is[6]:

1. Quickly add a test.

2. Run all the tests and see the new one fail.

3. Make a little change.
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4. Run all tests and see them all succeed.

5. Refactor to remove duplication.

Based upon the rhythm of TDD, I designed Zorro to partition a TDD development stream over

a time period into episodes using successful test invocations as tokens (Chapter 4). Also in Chapter

4, I have shown that the “Test-Pass” tokenizer is sufficient for identifying TDD iterations. However,

in this study, I found an unexpected phenomenon that made thepartitioning of several episodes

problematic. The cause is that in the step 2 of the TDD rhythm,“run all the tests and see the new

one fail” does not occur as expected when compilation errorsexist. Although Eclipse, the IDE I

used in this study, prompted a warning message in this case and allowed developers to cancel test

invocations, some developers opted not to. As a result, sometimes test invocations succeeded unex-

pectedly regardless of compilation errors. In consequence, Zorro failed to partition some episodes,

which led to development stream partitioning and behavioral inference errors.

To investigate how this phenomenon affected Zorro, I divided participants into groups G1 and

G2 based upon their test invocation behaviors.� G1 Participants who canceled a test invocation when compilation error(s) existed.� G2 Participants who continued a test invocation regardless ofthe existence of compilation

error(s).

Among 11 participants, 4 of them are in group G1 and 7 of them are in group G2 (see Table 7.8).

Because development stream partitioning and behavioral inference errors only occurred to partici-

Table 7.8. Participant Groups

Group Participants
G1: K, L, O, and R
G2: A, M, N, P, Q, S, and T

pants in group G2, I will term this phenomenon as G2-DevBehavior in the rest of this document. I

will also discuss how Zorro can be improved if we can avoid this problem.
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7.6.2 Validation of Data Collection

Using the participant observation research method discussed in Section 7.5.1, I validated Zorro’s

data collection for all participants.

Analysis Result

Table 7.9 presents numbers of development activities for each participant. The first column

includes participant IDs. The second column has numbers of episodes that were partitioned by

Zorro. For each participant, I listed his/her development activities per episode in columns 3 and 4.

The number of activities collected by Zorro is in column 3 andthe number of activities I observed

is in column 4. The rest two columns have mean and median values of episode activity number

differences.

Table 7.9. Summary of Development Activities

Activities per Episode Activity Difference
ID Episodes

Zorro Video Observation Mean Median
A 19 12.7 11.9 0.8 0
K 10 19.8 15.3 4.5 4
L 8 32.5 30.4 2.1 2
N 9 20.4 18.2 2.2 3
O 16 15.3 13.6 1.7 0.5
P 18 13.7 11.7 2.1 1.5
Q 21 9.8 9.6 0.5 0
R 14 12.6 11.2 1.4 0
S 9 16.3 12.7 3.7 2
T 13 15.3 13.2 2.1 1
Mean 13.8 16.8 14.8 2.1 1.4

Note that I excluded data from participant ‘M’ in Table 7.9 that helped me find a bug in the

Eclipse sensor. The bug was caused by the G2-DevBehavior I discussed in the previous section

(Section 7.6.1). At the time when G2-DevBehavior occurred,a run time exception was thrown but

the Eclipse sensor did not handle it gracefully such that some development activities from participant

‘M’ were missing. Though I improved the Eclipse sensor afterfinding this bug, some data from

participant ‘M’ were permanently lost. So in the rest of thisdocument, I will not include his data,

which reduced the number of effective participants to 10.
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Discussion

According to analysis results presented in Table 7.9, Zorrois capable of collecting develop-

ment activities. On average, Zorro collected more development activities (16.8 per episode) than

what I observed (14.8 per episode). Both the mean and median values of episode activity number

differences are positive.

In addition to computing differences of development activities, I also did further investigation

to find what caused them by comparing development activitiescollected by Zorro to development

activities I observed.

Figure 7.3. Validation of Zorro’s Development Activities

With side by side comparison (Figure 7.3), I found two categories of situations that were re-

sponsible for Zorro’s excessive data collection in the following. First, Zorro sometimes reported

two or more activities while I only observed one developmentactivity as what I described in the

item of “Kill two birds with one stone”. Second, though technically ESR should capture everything

that happens in the Eclipse IDE, it did not in situations thatwere described in items of “Invisible

editing activities” and “Problems view of Eclipse could be hidden”.

1. Kill two birds with one stone
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When a developer changed statements that were associated with object components such as

import, package declaration, attributes, method name, method return type, or method parame-

ters, the Eclipse sensor collected two types of developmentactivities: editing and refactoring.

Similarly the Eclipse sensor would also collect both types of development activities when

a developer used refactoring commands supplied in Eclipse.In both cases, Zorro doubled

development activities.

2. The problems view of Eclipse was hidden

In videos of participants ‘K’, ‘M’, and ‘T’, the problems view of Eclipse was overlapped by

other views for a while (see Figure 7.4). I cannot observe compilation errors in this situation

because Eclipse reports them in the problems view. For instance, in Figure 7.4, the JavaDoc

view overlapped the problems view. Since the title of the problems view was highlighted,

it probably meant that there should have had compilation errors, but I could not tell it by

watching the ESR video.

Figure 7.4. Invisible Problems View in Eclipse

3. Invisible editing activities

A developer could input a few blank spaces while programming. Since ESR captured the

screen of Eclipse, I would not be able to observe this kind of development activities because

there is no visible changes.

The above three items can answer why Zorro collected more development activities than what I

observed in recorded videos. However, there were also a few cases in which Zorro missed develop-

ment activities (see items “Quick editing” and “Quick buffer transition”).

1. Quick editing

The Eclipse sensor uses “state change” as the foundation to detect editing development activ-

ities. A timer thread in the sensor wakes up every 10 seconds to check the active buffer. If
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there are any changes made to the active buffer, the sensor will fire a “state change” event.

Zorro reduces a series of consecutive “state change” eventsinto an editing activity when pro-

cessing development streams. This mechanism works well unless a developer edits a file for

less than 10 seconds and then switches to another buffer. If so, the Eclipse sensor will miss

an editing development activity.

2. Quick buffer transition

The Eclipse sensor collects “buff trans” activities by checking the active buffer. A timer thread

wakes up every 5 seconds to detect whether there is a buffer transition activity. Five-second

is a small time period, but it is long enough for a developer tochange the active buffers two

or more times. If two or more consecutive buffer transition activities occur in less than 5

seconds, the Eclipse sensor might fail to capture some or allof them.

Conclusion

In this section, I summarized Zorro’s data collection validation results (see Table 7.9). It turned

out that Zorro collected more development activities per episode than I observed for every partic-

ipant. Further investigation indicated that Zorro only missed a few development activities when

participants quickly edited code or switched buffers. Also, Zorro collected development activities

that were invisible in recorded videos. The analysis in thissection indicates that there is partial sup-

porting evidence for the research questions Q2a because Zorro can collect development activities

more precisely than ESR, a recorder that can capture almost every development activity that occurs

in the Eclipse IDE.

7.6.3 Validation of TDD Behaviors and TDD Compliance Inference

Zorro recognizes TDD development through two steps (Chapter 4): (1) inferring development

behaviors by matching development activities in episodes to a set of predefined development be-

haviors; (2) and then deducing TDD compliance using inferred episode behaviors. Thus, in this

study, the validation analysis also had two steps: episode behavioral inference validation and TDD

compliance inference validation, both of which were introduced in Section 7.5.2 for an individ-

ual participant. After validating Zorro for all participants, I summarized validation results in this

section.

108



Validation of Development Behavioral Inference

For an individual participant I created a table similar as Table 7.2 after validating Zorro’s infer-

ence of his/her development behaviors. I then assigned the value 1 to an episode if the development

behavior I observed in the video agrees with the developmentbehavior Zorro inferred. In the end,

I counted the number of 1’s episodes and presented results inTable 7.10 in which the last column

is the percentage of 1’s episodes to total episodes. This percentage could be an indicator of Zorro’s

development behavioral inference accuracy.

Table 7.10. Video observation validation of development behaviors

ID Episodes 1’s Episodes Percentage
A 19 15 78.9%
K 10 8 80.0%
L 8 7 87.5%
N 9 4 44.4%
O 16 15 93.8%
P 18 12 66.7%
Q 21 11 52.4%
R 14 13 92.9%
S 9 2 22.2%
T 13 9 69.2%
Total 137 96 70.1%

In total, the participant observation analysis agreed thatZorro correctly inferred development

behaviors in 96 episodes resulting in 70.1% inference accuracy. But the inference accuracy is in-

consistent from participant to participant. The lowest is 22.2% and the highest is 93.8% (Table

7.10).

To address this inconsistency, one thing we can do is to studythe impact of G2-DevBehavior

by separating Table 7.10 into two sub-tables: one for group G1 (Table 7.11), and the other one for

group G2 (Table 7.12). Clearly, Zorro performed much betteron inferring development behaviors

for group G1 than for group G2. For G1, the average inference accuracy was 89.6%, which is

much higher than the average accuracy for G2. It indicates that G2-DevBehavior, which affected

24 out of 89 episodes, had a substantial impact on the accuracy of Zorro’s inference of development

behaviors.
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Table 7.11. Video observation validation of development behaviors for G1

ID Episodes 1’s Episodes Percent
K 10 8 80.0%
L 8 7 87.5%
O 16 15 93.8%
R 14 13 92.9%
Total 48 43 89.6%

Table 7.12. Video observation validation of development behaviors for G2

ID Episodes 1’s Episodes Percent Episodes with G2-DevBehavior
A 19 15 78.9% 3
N 9 4 44.4% 3
P 18 12 66.7% 4
Q 21 11 52.4% 9
S 9 2 22.2% 2
T 13 9 69.2% 3
Total 89 53 59.6% 24

Validation of TDD Compliance Inference

Table 7.2 lists not only development behaviors I observed but also TDD compliance for an indi-

vidual participant. An episode is TDD compliant if its development behavior is either a portion of

a TDD iteration such as refactoring or a complete TDD iteration. After observing TDD compliance

for all participants, I summarized results in Table 7.13 forvalidation.

In Table 7.13, the “TDD Compliant Episodes” column has numbers of TDD compliant episodes.

It is divided into three sub-columns: “By Zorro”, “By Video Analysis” and “Difference”. With

values in Table 7.13, we can compute percentages of TDD compliant episodes in the following:TDD(Zorro)% = CompliantEpisodes(Zorro)TotalEpisodes � 100= 113137 � 100= 82:5;TDD(V ideoAnalysis)% = CompliantEpisodes(V ideoAnalysis)TotalEpisodes � 100= 128137 � 100= 93:4:
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Table 7.13. Video observation validation of TDD compliance

TDD Compliant Episodes
ID Episodes

By Zorro By Video Analysis Difference
A 19 10 12 -2
K 10 9 10 -1
L 8 7 7 0
N 9 6 8 -2
O 16 15 16 -1
P 18 16 18 -2
Q 21 21 21 0
R 14 13 14 -1
S 9 3 9 -6
T 13 13 13 0
Total 137 113 128 -15
Mean -1.5
Median -1
STDEV 1.78

Using episode numbers as the measurement, Zorro is somewhatconservative on inferring TDD

compliance compared to the participant observation analysis. The latter found that participants in

this study complied to TDD in 93.4% of episodes, while Zorro inferred that 82.5% of episodes were

TDD compliant. In Table 7.13, I computed the episode number difference for all participants. The

mean value is -1.5 and the standard deviation is 1.78, both ofwhich are very small.

However, the above evidence was not sufficient because the sample size was too small. Eleven

students participated in this study and I can only analyze data collected from 10 of them. In order to

generalize research conclusions, it is necessary to include more participants. But the resource was

limited in this study since the two software engineering classes only had 16 students (Section 7.3).

Next, I will discuss whether and how G2-DevBehavior affected Zorro’s TDD inference by sep-

arating participants into groups G1 and G2.

Discussion of G2-DevBehavior’s Impact on TDD Compliance Inference

Using G2-DevBehavior we can separate Table 7.13 into two sub-tables: one for group G1 (Table

7.14) and the other one for group G2 (Table 7.15).
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Table 7.14. Validation of TDD Compliance Inference for Group G1

TDD Compliant Episodes
ID Episodes

By Zorro By Video Analysis Difference
K 10 9 10 -1
L 8 7 7 0
O 16 15 16 -1
R 14 13 14 -1
Total 49 45 48 -3
Mean -0.75
Median -1
STDEV 0.5

Table 7.15. Validation of TDD Compliance Inference for Group G2

TDD Compliant Episodes
ID Episodes

By Zorro By Video Analysis Difference G2-DevBehavior
A 19 10 12 -2 1
N 9 6 8 -2 1
P 18 16 18 -2 1
Q 21 21 21 0 0
S 9 3 9 -6 2
T 13 13 13 0 0
Total 89 69 81 -12 5
Mean -2
Median -2
STDEV 2.2

There is noticeable difference between Table 7.14 and Table7.15. Using participant obser-

vation analysis results as the benchmark, Zorro inferred many fewer episodes as TDD compliant

for group G2 than for group G1. Zorro’s inference has a wide confidence interval because of the

G2-DevBehavior. The standard deviation was 0.5 for group G1in contrast to 2.2 for group G2.

Next, I will discuss the inference errors that were unrelated to the G2-DevBehavior.

Discussion of Zorro’s Inference Errors

Out of 137 total episodes, Zorro inferred that 113 were TDD compliant, whereas the participant

observation analysis validated that 128 were TDD compliant(see data in Table 7.13). So the par-

ticipant observation did not agree with Zorro’s inference for 15 episodes. In Table 7.15, we learned
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that the G2-DevBehavior caused the inference error for 5 episodes. In this section, I will investigate

what happened to the remaining 10 episodes.

It turned out that both Zorro’s inference rules and participants’ development behaviors played

important roles for the inference errors. To make it simple Iwill term all of these errors as “In-

ference Error”. In Table 7.16, for each participant, I included episodes that are affected by both

G2-DevBehavior and Inference-Error. We can see that each participant, except for participant ‘S’,

Table 7.16. Zorro’s TDD Compliance Inference Error

TDD Compliant Episodes
ID Episodes

By Zorro By Video Analysis Difference G2-DevBehavior Inference-Error
A 19 10 12 -2 1 1
K 10 9 10 -1 0 1
L 8 7 7 0 0 0
N 9 6 8 -2 1 1
O 16 15 16 -1 0 1
P 18 16 18 -2 1 1
Q 21 21 21 0 0 0
R 14 13 14 -1 0 1
S 9 3 9 -6 2 4
T 13 13 13 0 0 0
Total 137 113 128 -15 5 10

had at most one episode affected by G2-DevBehavior and one episode affected by Inference-Error.

By carefully comparing development activities collected and behaviors inferred by Zorro (Fig-

ure 7.3), I identified several causes for Inference-Error.

1. Additional production code editing before the next TDD episode

Data Source: 1 episode from participant ‘A’ and 1 episode from participant ‘R’

Description: After implementing a new feature, the TDD process typically requires a devel-

oper to refactor. Then the developer should rerun all the tests to make sure that the refactoring

does not break anything. Should the developer rerun all the tests if the changes made to pro-

duction code turn out to be very trivial? Strictly speaking,the answer for TDD is “Yes”.

Despite this, participants ‘A’ and ‘R’ refactored production code a small amount but opted

not to run all tests. As a result, editing activities on production code fell into the following

TDD episode. So the following episode began with productionediting activity, which is in-
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ferred as a “test-last” episode. For example, the 9th episode from participant ‘A’ was inferred

as “test-last” because he refactored following code

int first;
int second;

to

int first = 0;
int second = 0;

but did not rerun all tests.

2. No successful test invocations at the end

Data Source: 1 episode from participant ‘K’

Description: Successful test invocations are characteristic activities that mark the completion

of a TDD iteration. An episode that does not end with successful test invocation is “unknown”

to Zorro, and as a consequence, it is not TDD compliant. In this study, participant ‘K’ did

not finish the last user story; therefore, he ended with an “unknown” episode although he was

doing TDD.

3. Insufficient Inference Rules

Data Source: 1 episode from participant ‘N’, 1 episode from participant‘O’, and 1 episode

from participant ‘P’

Description: The design of Zorro’s TDD inference rules was rooted from the Red/Green/Refactor

model in which tests should always have been created first. When test creations spread out

in a TDD iteration, Zorro gets confused. For example, in the 7th episode from participant

‘N’, he added the test method “TestGameScore()” first, then implemented the functionality to

compute the score of a bowling game, and then added assertionstatements. So the test was

created in two steps. As a result, this episode was wrongly inferred as “test-last”.

4. Unit tests were not properly structured

Data Source: 4 episodes from participant ‘S’

Description: Zorro recognizes the unit test class based upon the existence of test methods and

assertion statements. A unit test could be wrongly recognized as production code, particularly

at the beginning of a programming session when there are not any test methods or assertion
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statements. In this situation, Zorro infers the development behavior as “test-last”, not “test-

first”. For example, test code in the first episode from participant ‘S’ did not have any test

method and assertion statement at the beginning. As a result, the first episode was inferred as

“test-last” although participant ‘S’ thought that he was doing TDD. In turn, due to the chain

effect, following three refactoring episodes were also inferred as TDD noncompliant.

Conclusion

In this section, using participant observation, I validated Zorro’s inference of TDD development

behaviors and TDD compliance. The validation indicates that Zorro inferred development behaviors

with 70.1% accuracy. Regarding TDD compliance, Zorro inferred that particpants in this study com-

plied to TDD in 80.4% of episodes, while participant observation indicates that 93.9% of epsidoes

were TDD compliant. The further discussion on G2-DevBehavior indicated that Zorro’s inference

accuracy and consistency would be improved if Zorro could correctly interpret G2-DevBehavior.

In addition, to investigate causes for Zorro’s inference errors, I compared development activities

collected and behaviors inferred by Zorro to what I observedin ESR videos. Interestingly, most of

the inference errors were caused by participants’ nonstringent execution of TDD. Also, some of

them were caused by insufficiently precise rules in Zorro.� The culprit of G2-DevBehavior

I discovered the G2-DevBehavior in this study, the development behavior to invoke tests

regardless of compilation errors. When it occurs, the test invocation may succeed, which

leads to episode partitioning and development behavior inference errors.� Research question Q2a: Does Zorro collect software development activities accurately

enough for episode partition and TDD behavior inference?

This study provides evidence that Zorro collects a sufficient number of development activities

accurately. Compared to participant observation using ESR, Zorro actually collected more

development activities. A bug in the Eclipse sensor caused some data loss for one participant

but I fixed it for the remaining 10 participants. The participant observation analysis validated

that Zorro inferred development behaviors with 70.1% accuracy and TDD compliance with

more than 80.4% accuracy. Both of these numbers would increase if Zorro could correctly
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interpret G2-DevBehavior. So the validation analysis in this section supports the research

question Q2a.� Research question Q2b: Does Zorro’s inference of TDD behaviors agree with analyses

based upon participant observation?

According to participant observation, Zorro infers development behaviors correctly for 70.1%

of episodes. It infers that 80.4% of episodes were TDD compliant while the particpant ob-

servation validated that 93.9% of episodes were TDD compliant. Further discussion indi-

cates that Zorro can perform better if there were not G2-DevBehavior, and only 3 out of 128

episodes have inference errors. All these conclusions provided supporting evidence to the

research question Q2b.

7.6.4 Cross-validation of Zorro using participant comments

In the previous section, we have shown that participant observation agreed with Zorro’s infer-

ence on development behaviors and TDD compliance. In this section, I will analyze participants’

comments to cross-validate the research conclusions we have drawn above.

In Section 7.5.3, I demonstrated how I conducted cross-validation analysis for one participant.

Following the same method described in Section 7.5.3, I analyzed all participants’ comments and

described validation results in the following.

Cross-validation of TDD Compliance Inference

Table 7.17 is a summary of cross-validation results for all episodes produced by participants

in this study. An episode could be “compliant”, “noncompliant”, or “don’t know”. Interestingly,

Table 7.17. TDD Compliance ComparisonXXXXXXXXXXXMethod
Episodes

Compliant Noncompliant Don’t know

Zorro 110 27
Video Analysis 128 9
Participant Comment 111 11 15

based upon numbers in Table 7.17, participant comments on TDD compliance were much closer to
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Zorro’s inference results than to participant observationanalysis results. Participants commented

that 111 episodes were TDD compliant, which is just 1 episodedifferent from what Zorro inferred.

There are two possible explanations to this phenomenon. Oneexplanation is that Zorro was

really good at inferring TDD compliance. The other explanation is that participants simply went

along with Zorro’s perspective on their behaviors due to lack of experience with TDD. After review-

ing Zorro’s reasoning process and inference results, participants commented on their development

behaviors. Therefore, in order to improve validity of participants’ comments, I explained to them

that their comments would help to improve Zorro’s inferenceand encouraged them to read aloud

while commenting. Also, I used a digital voice recorder to record their verbal comments.

I listed detailed cross-validation results for all participants in Table 7.18. Zorro inferred that 110

of 137 episodes were compliant and 27 were noncompliant. In contrast, the participant observation

analysis validated that 128 were compliant and only 9 were noncompliant. Finally, participants

commented that 111 were compliant, 11 were noncompliant, and 15 were neither of them. Most of

the time, participants agreed that Zorro inferred their TDDcompliance very well. When they were

not sure to the TDD compliance of an episode, they declared itas “Don’t know”. Fifteen episodes

are in this category.

Discussion of G2-DevBehavior

I broke Table 7.18 into Table 7.19 and Table 7.20 by separating participants according to G2-

DevBehavior. Participants in group G1 commented that Zorroalmost perfectly inferred their TDD

compliance (Table 7.19). It also showed that the participant observation analysis was not biased

because these two analyses reached the same conclusion. Because of G2-DevBehavior, participants

in group G2 did not completely agree with what Zorro inferredabout their compliance to TDD, but

the difference was not big (Table 7.20).

Cross-validation of Episode Behavior Inference

Participants used the web page illustrated in Figure 7.2 to give their feedback after reviewing

their development activities and remembering what they have done in an episode. Meanwhile, in

order to get as much feedback as possible, I also recorded their verbal comments.
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Compliant Episodes Noncompliant Episodes Don’t know
ID Episode

Zorro Video Analysis Participant CommentZorro Video Analysis Participant CommentParticipant Comment
A 19 10 12 9 9 7 7 3
K 10 9 10 9 1 0 0 1
L 8 7 7 7 1 1 1 0
N 9 6 8 7 3 1 0 2
O 16 15 16 16 1 0 0 0
P 18 16 18 18 2 0 0 0
Q 21 19 21 17 2 0 0 4
R 14 13 14 12 1 0 0 2
S 9 3 9 7 6 0 2 0
T 13 12 13 9 1 0 1 3

Total 137 110 128 111 27 9 11 15

Table 7.18. Participant Comments on TDD Compliance

118



Table 7.19. Group G1’s comments on TDD Compliance

Compliant Noncompliant
ID Episode

Zorro Video Analysis Participant Zorro Video Analysis Participant
K 10 9 10 9 1 0 0
L 8 7 7 7 1 1 1
O 16 15 16 16 1 0 0
R 14 13 14 12 1 0 0

Total 48 44 47 44 4 1 1

Table 7.20. Group G2’s comments on TDD Compliance

Compliant Noncompliant
ID Episode

Zorro Video Analysis Participant Zorro Video Analysis Participant
A 19 10 12 9 9 7 7
N 9 6 8 7 3 1 0
P 18 16 18 18 2 0 0
Q 21 19 21 17 2 0 0
S 9 3 9 7 6 0 2
T 13 12 13 9 1 0 1

Total 89 66 81 67 23 8 10

Participants commented on their episode behaviors by selecting from a set of development be-

haviors including “adding new functionality”, “adding test”, and “just running tests” etc. Therefore,

in order to compare their comments with episode behaviors inferred by Zorro and that I observed

in recorded videos, it is necessary to code their comments and build a mapping schema to connect

them. Table 7.21 defines a mapping schema I used in this data analysis. In the participant comments

Table 7.21. Mapping schema from participant’s comment to Zorro/Video Analysis inference

Participant Comments Relation Zorro/Video Analysis
adding new functionality + adding test + [more] + TDD � test-first
adding new functionality + adding test + [more] +�TDD � test-last
adding new functionality + [more] + TDD � test-first
adding new functionality + [more] +�TDD � production
adding test + [just running tests] � test-addition
adding test + [just running tests] + TDD � test-first
refactoring + [just running tests] � refactoring
just running tests � regression
no comment ? anything
other 6= anything

column, ’+’ means combination of development behaviors, a development behavior is optional if it

is embraced by a pair of closed brackets, ’�’ sign stands for negation, and “[more]” matches any
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development behavior. In the relation column, ’�’ stands for the equivalent relationship, ’6=’ stands

for the nonequivalent relationship, and the question mark ’?’ stands for the unsure relationship.

Using this mapping schema, I compared development behaviors indicated by participant com-

ments to development behaviors inferred by Zorro. I marked an episode as “agreed” if I can map

the participant’s comment to the development behavior inferred by Zorro, “disagreed” if the two

are not equivalent using the schema in Table 7.21, or “unsure” if the participant did not comment

or no mapping exists. Comparison results are available in Table 7.22. In addition, I also appended

comparison results between participant observation and Zorro in the same table. This table makes

Table 7.22. Participant’s Validation of Episode Behaviors

Participant v.s. Zorro Video Analysis v.s. Zorro
ID Episode

Agreed Disagreed UnsureAgreed Disagreed
A 19 12 5 2 15 4
K 10 8 2 0 8 2
L 8 6 2 0 7 1
N 9 6 2 1 4 5
O 16 14 2 0 15 1
P 18 14 4 0 11 7
Q 21 12 5 4 11 10
R 14 12 1 1 13 1
S 9 6 3 0 2 7
T 13 10 2 1 9 4

Total 137 100 28 9 95 42

it clear that the participant comment analysis yielded veryclose findings to the participant observa-

tion analysis. With regard to agreed episodes, one is 100 andthe other is 95. Numbers of disagreed

episodes are also very close. So, on the episode level, participant comments agree with participant

observation results. This provides strong evidence that the video analysis method is not biased in

this study.

Regarding G2-DevBehavior, participants in group G2 were more likely to disagree with Zorro’s

inference of their development behaviors. For example, developer ‘N’ noticed that “one episode

goes into two because I ran the test before adding [the production code].” Developer ‘P’ commented

that “[when there is compilation error], JUnit does tell test failures if the method is not found. It

is a JUnit problem not Eclipse.” Participant ‘Q’ also pointed out that one of his episodes was

not partitioned correctly. Participant ‘T’ even brought upthe G2-DevBehavior problem before

validating Zorro.
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Conclusion

In this section, I analyzed participant comments to cross-validate Zorro’s inference on TDD

compliance and development behaviors.

With regard to TDD compliance, participants agreed with Zorro’s inference results and the par-

ticipant observation analysis results (see Table 7.17). Thus, the cross-validation provides evidence

that participant observation is a viable method for validating Zorro. By separating participants into

groups G1 and G2, we found that participants almost completely agreed with Zorro’s inference

results and participant observation analysis results for participants in group G1.

Though participant comments provided strong evidence to research question Q2c, we must be

cautious because the conclusion could be influenced by a caveat problem – the participant’s knowl-

edge of Zorro’s inference. I advised participants use Zorro’s inference results as reference only and

encourage them to read aloud to give us feedback for Zorro improvement. The cross-validation

analysis in this section provides some evidence that participants were able to comment indepen-

dently. They commented 15 episodes as “don’t know” to express their disagreements with Zorro’s

inference.

With regard to episode behaviors, I built a development behavior mapping schema to map par-

ticipant comments to development behaviors Zorro inferredand to those that I observed in recorded

videos. According to Table 7.22, participants agreed that Zorro inferred development behaviors in

73.0% (100 of 137) of episodes correctly. In comparison, theparticipant observation analysis val-

idated that Zorro inferred development behaviors in 69.3% (95 of 137) of episodes correctly. Both

validation analyses concluded that Zorro is capable of inferring development behaviors, but there is

still room for improvements.

7.6.5 Participant interview analysis

Before this study, the instructor of the software engineering classes introduced TDD to students

after they finished the semester-long course projects. Unittesting was a required practice in their

course projects. The students also practiced what they had learned in the TDD lecture using the

Roman numeral conversion problem (see Appendix C).
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Following the interview guideline in Appendix F, I interviewed participants on unit testing and

TDD at the end of this study. Then I processed the interview script using the coding research method

[12, 13] to categorize the participants.

Unit Testing Survey

Among the participants, only one has used unit testing for a long time at work, one had practiced

unit testing for a while, and the others had just started to learn unit testing since the beginning of

the software engineering classes. Since most participantswere new to unit testing, I decided not to

differentiate them based on unit testing experience in the coding process.

The participants unanimously agreed that unit testing is good for software development, but

they had a diversity of opinions on how helpful unit testing is. However, some of them pointed that

unit testing was hard sometimes, especially when they wanted to achieve 100% test coverage.

In the open coding stage, I wrote down the values of properties including unit testing assessment,

experience, testing behavior, testing effort and test coverage. I categorized participants based on

these properties. Using coding and memoing methods, I categorized the participants and listed the

core categories in Table 7.23 based upon the property values.

Table 7.23. Participant Categories on Unit Testing

Category Description Participant
Good-but-Small-Effort Test is good for quality but I do

not write test often and I have
excuses.

A, L, O, P, R, S, and T

Must-and-Test-Last All code must have unit test. The
work flow is design, think, code
and test.

K

VeryGood-and-Much-Effort Test is very good and I spent
quite some effort on it

N and Q

The majority of the students acknowledged that unit testingis good for improving software

quality but they did not devote enough effort on it.
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TDD Survey

TDD is very different from unit testing. It not only reversesthe order of production and test

developments, but also advocates unit tests as the driving force for software design. I coded the

interview data using properties including TDD’s impacts onunit testing and software quality, and

how hard it is to develop software in TDD. Table 7.24 lists thecore categories.

Table 7.24. Participant Categories on Perception of TDD

Category Description Participant
Negative Messy design. Straight TDD is

weird.
K and S

No-Change No guarantee for quality. May
take longer such that yields bet-
ter quality.

A and L

Positive-With-Condition More time on testing and better
testing. Hard if there is no good
to-do list. Helpful when from
scratch up. Eclipse discourages
TDD because of compilation er-
ror warning.

N, O, P, Q, R, and T

A common misunderstanding of the participants is that developers should create the complete

To-Do list prior to implementation, which is not true for TDD. Instead, developers should dynami-

cally maintain the To-Do list by themselves. It is reasonable that they had this impression given the

experiment settings of this study. I provided the user stories to help participants develop solutions

for the bowling game problem (Appendix E) without spending alot of time to ensure that they un-

derstood the bowling game scoring methods. This is a trade-off we had to take because previous

studies found that it could take participants up to 48 hours to accomplish the same programming

problem [19]. Based on lessons learned from others, providing the user stories that are easy to un-

derstand is necessary for this study’s experimental design, which required a reasonable number of

TDD iterations to be completed within 90 minutes. Given thatmy research interest is on validating

Zorro’s automated inference, providing user stories is acceptable. In the interview, I explained to

participants that they should dynamically maintain the To-Do list by themselves in real situations.
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TDD Acceptance Survey

Last, I asked participants how they would respond if their project managers required everybody

to use TDD. Two developers would be against the use of TDD in daily software development.

Three developers would accept it if good design documentation and To-Do lists are in place. The

remaining five participants would be very willing to use TDD.Table 7.25 listed the participant

categories.

Table 7.25. Participant Categories on Acceptance of TDD

Category Description Participant
Against Don’t know why TDD benefits.

Nobody can tell whether I am
doing it.

S and A

Ok Will do. Good design and To-Do
list are necessary. Need time to
get used to it. May get stressed
out.

K, P, and T

Welcome Like it. Don’t mind. L, N, O, Q, and R

7.6.6 Usefulness analysis

In the following, I will report participant’s survey results on Zorro’s TDD analysis usefulness,

and then summarize the useful areas.

Survey of Usefulness

Table 7.26 is a pivot table of the TDD analysis usefulness survey. Overall, the usefulness scores

Table 7.26. Survey on TDD Analysis Usefulness`````````````̀Analysis
Participant

A K L N O P Q R S T

Episode Demography 3 4 5 4 4 5 4 4 4 4
T/P Effort Ratio 4 5 4 4 5 3 4 4 4
T/P Size Ratio 4 3 5 4 4 5 4 3 4 4
Episode Duration 4 4 5 5 4 5 4 3 4 3
Duration Distribution 4 3 5 3 4 4 4 4 3 3

to Zorro’s TDD analyses ranged from 3 to 5 according to Table 7.26. The “Duration Distribution”
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is the least useful analysis. One reasonable explanation for this could be that the episode numbers

were too small to be used for distribution analysis.

Useful Areas

The Appendix G has the participants’ selections of areas that Zorro’s TDD analyses could be

used for. Table 7.27 is a summary of their selections. The values in Table 7.27 are the numbers of

useful areas.

Table 7.27. Summary of Useful Areas of TDD analyses`````````````̀Analysis
Participant

A K L N O P Q R S T Total

Episode Demography 1 3 3 4 3 6 4 3 2 6 35
T/P Effort Ratio 3 2 4 4 5 3 2 4 6 33
T/P Size Ratio 4 1 2 2 2 6 1 2 3 3 26
Episode Duration 3 1 3 1 3 3 2 2 3 21
Duration Distribution 3 1 4 1 4 2 2 2 2 6 27

In order to compare number of areas on both analysis wise and participant wise, I plotted the

3-D Chart (Figure 7.5) with the data in Table 7.27. With Figure 7.5, we can easily compare the

differences on usefulness among these 5 analyses. The “Episode Demography” and “T/P Effort

Ratio” are the two most useful analyses. Although participants gave the least usefulness score to

the “Duration Distribution” analysis, it has the potentialto be useful basing upon its useful areas

Conclusion

The analysis in this section provided supporting evidence to the research question Q2d. Partic-

ipants generally agreed that the Zorro is useful and it can beused to understand and improve their

TDD practices.

7.7 Chapter Summary

In this chapter, I validated Zorro’s sensor data collection(sections 7.6.2) and TDD behavior

inference (7.6.3). Based upon the participant observationanalysis, these results provide supporting

evidence to research questions Q2a and Q2b (See Chapter 5).
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Figure 7.5. Useful Areas of TDD Analyses
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In this study, I used participant comments to cross-validate Zorro’s inference of development

behaviors and TDD compliance. The analysis of their comments (Section 7.6.4) provided support-

ing evidence to the research question Q2c. Participants cross-validated that Zorro inferred TDD

development behaviors accurately and that participant observation is a reasonable research method

for validating Zorro.

As part of this study, I interviewed participants to survey their opinions on unit testing and TDD.

The survey found that participants had a variety of opinionson how useful unit testing and TDD

are (Section 7.6.5). Most of them believed that unit testingand TDD can help to improve software

quality.

Participants also evaluated the usefulness of five TDD analyses provided by Zorro. The use-

fulness evaluation analysis (Section 7.6.6) found supporting evidence to the research question Q2d

(See Chapter 5).

In addition, I discovered an unexpected phenomenon (Section 7.6.1) in the data analysis. Some

participants sometimes forced Eclipse, the IDE I used in this study, to continue test invocations

regardless of compilation errors. This behavior impacted Zorro’s development stream partitioning

and development behavioral inference. In this chapter’s data analysis, I termed this development

behavior as G2-DevBehavior, and divided participants intogroups G1 and G2 for comparison. The

validation analyses showed that Zorro’s inference accuracy and consistency would improve signifi-

cantly if Zorro could correctly interpret G2-DevBehavior.Thus it is necessary to let Zorro to allow

this development behaviors in the future.
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Chapter 8

Industrial Case Study

The pilot study and the classroom case study show that Zorro can infer TDD when it occurs

in the educational and controlled environments. After these two studies, I turned my focus into

evaluating Zorro’s usefulness for researchers. In order toachieve this goal, I collaborated with Dr.

Geir Hanssen, a researcher from SINTEF ICT of Norway on an industrial case study in which Zorro

was adopted. My role in this study was the technique supporter of Zorro. I assisted Dr. Hanssen in

deploying Zorro to the site and helped him to analyze the collected data. In the end, I interviewed

him with regard to Zorro’s usefulness.

8.1 Purpose of the Study

The purpose was to test Zorro’s usefulness for researchers regardless of the accuracy of Zorro’s

data collection and correctness of Zorro’s inference of TDDdevelopment behaviors.

8.2 Research Questions

The specific research question of this study isQ3a: How can researchers use Zorro to as-

sist empirical evaluation of TDD? It supports the overall research question Q2:“How useful is

Zorro?”
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8.3 Case Study Journal

In Fall 2006, Dr. Hanssen planned to conducted an evaluationstudy of TDD against an ex-

isting Test-Last practice in an European software company named Foosball LLC1. According to

Dr. Hanssen, a barrier facing this study was that harvestingdevelopment data was very hard. The

Foosball LLC agreed to participate in this study but did not want to engage into any research activ-

ities that do not add much direct value. So Dr. Hanssen reached us for the possibility to use Zorro

in his study, which leads to this collaborative industrial case study. As a facilitator, I provided the

technique support of Zorro, assisted the project manager managing sensor installation, and analyzed

the development process using the data Zorro collects. To best describe this research, I will use a

journal to highlight the collaborative research activities I conducted.

8.3.1 The Prelude of this study

After implementing Zorro, I revamped its data collection and inference rules according to re-

search results of the pilot study (Chapter 6). In Summer 2006, I worked as an intern at the NRC-IIT
2 where I collaborated with Dr. Erdogmus3 on classification of TDD development behaviors and

inference of TDD compliance. In Fall 2006, under directionsfrom Professor Philip Johnson — my

thesis advisor, and Dr. Erdogmus, I implemented the “Zorro Demo” to illustrate Zorro’s capabilities

for the purpose of recruiting participants.

2006-10-30: Zorro Demo

I applied some TDD analyses Zorro provides to a real TDD programming session and created

the “Zorro Demo”. The demo was implemented in web pages including a start page, six analysis

pages and a feedback page. Figure 8.1 illustrates the start page that has a brief introduction to Zorro,

how it works based upon the “stop light” metaphor of TDD, and the navigation buttons “Previous”,

“Demo Home” and “Next”.1The company is real but its name is faked.2NRC-IIT stands for Institute for Information Technology ofNational Research Council Canada.3Dr. Hakan Erdogmus is a Senior Research Officer in the NRC-IITSoftware Engineering Group (http://iit-iti.nrc-
cnrc.gc.ca/personnel/erdogmushakane.html). He has interests in Software Economics, Agile Software Development,
and Software Process Measurement and Awareness.
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Figure 8.1. Zorro Demo Wizard
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1. TDD Episode Inference

Clicking the “Next” button in the start page will lead users to the first analysis, “TDD Episode

Inference” (Figure 8.2). It provides a view for end users to understand how Zorro infers

compliance to TDD using collected development activities.With this analysis, beginners can

learn how to program in TDD; experienced practitioners can validate the inference rules and

improve their compliance to TDD; and researchers can improve validity of their empirical

studies by knowing participants’ compliance to TDD.

Figure 8.2. TDD Episode Inference Demo
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2. TDD Episode Demography

Following “TDD Episode Inference” is “TDD Episode Demography” that is an overview of

a programming session (Figure 8.3). It lines up all the episodes partitioned from the devel-

opment stream, each of which is a box with a two-letter acronym representing the episode

development behavior. With this analysis, users can inspect TDD programming sessions and

look for TDD development patterns for improvement.

Figure 8.3. TDD Episode Demography

In addition to showing overall development behaviors and compliance to TDD, this analysis

can interact with the “TDD Episode Inference” analysis. When users move mouse over a box

in this analysis, a tooltip of episode synopsis will appear on the screen next to the mouse cur-

sor (Figure 8.4), and border of the box will change to blue which indicates that it is clickable.

Clicking a box will direct users to “TDD Episode Inference” (See Figure 8.5).
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Figure 8.4. Tooltip of Episode Synopsis

Figure 8.5. Episode Details with Back Button
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3. TDD Episode T/P Ratio of Development Time

The third analysis is “TDD Episode T/P Ratio of Development Time” (Figure 8.6). This

ratio is a good indicator of TDD compliance according to [74]. The drop of T/P ratio could

be a warning signal indicating that developers might slip away from TDD. If users are not

confident in Zorro’s automated inference of TDD compliance,they can inspect their unit

testing development activities using this analysis. For others who do not practice TDD but

unit testing, this analysis can provide their dynamic unit testing behaviors.

Figure 8.6. TDD Episode T/P Ratio of Development Time
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4. TDD Episode T/P Ratio of Code Size

The fourth analysis is “TDD Episode T/P Ratio of Code Size” (Figure 8.7). Similarly. it

provides another metric for measuring TDD compliance. The metric of T/P ratio of code size

measures the cumulative net increase of test code and production code relatives. This analysis

can easily tell whether test code is written incrementally.

Figure 8.7. TDD Episode T/P Ratio of Code Size
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5. TDD Episode Duration

The fifth analysis is “TDD Episode Duration”. How often should developers invoke unit

testing is a grey area of TDD. A general consensus is that an iteration of TDD should not

last more than ten minutes; otherwise, the process is not agile. In Zorro, I provide the “TDD

Episode Duration” analysis as a validation tool to observe duration of TDD iterations. It is

reasonable that most episodes in TDD are short in length of duration.

Figure 8.8. TDD Episode Duration
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6. TDD Episode Duration Bins

The last analysis is “TDD Episode Duration Bins”. Simply as its name indicates, this analysis

puts episodes into a set of bins according to their duration.Each bin defines a range of

duration. In Figure 8.9, the vertical axis is for numbers of episodes that fall into each bin.

Figure 8.9. TDD Episode Duration Bins

To the TDD programming session analyzed in this demo, most episodes fell into bins of short

durations according to Figure 8.9.
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7. Zorro Demo Feedback

The last page of the “Zorro Demo” is “Zorro Demo Feedback” that invites readers to collab-

orate on studying TDD. With this demo, we targeted at three kinds of users: TDD beginners,

experienced TDD practitioners, and TDD researchers. Afterreading information about col-

laborative research opportunity with us, readers can provide feedback to us using the box

included in this page (Figure 8.10).

Figure 8.10. Zorro Demo Feedback
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2006-11-07: Feedback from ISERN

As the first step to find collaborative opportunity with researchers of TDD, we sent an RFC of

Zorro Demo to the ISERN mailing list that contains researchers from worldwide who are interested

in empirical software engineering research. On the same daywe sent this collaboration solicitation

email, Dr. Geir Hanssen and Dr. Tor Erlend Fægri from SINTEF ICT of Norway gave very positive

feedback on Zorro, and expressed that they were very interested in using Zorro in a comparative

study between TDD and an existing Test-Last practice.

They planned to conduct this study under the assistance froman European software company

by harvesting data such as time spent for testing/coding, test code size/production code size etc.

They were also interested in finding ways of validating any effect that the TDD-practice may have

on product quality, speed of production, and also potentially on code quality (maintainability, code

design-style and others). However, doing these was very hard in practice because the software

company did not want to be disturbed when developers put maximum pressure on reaching the

release deadline. As a result, collecting data became a problem in this already planned study. Thus,

automated data collection became tempting and Zorro is sucha tool that can bring immediate values

to them.

Although Zorro was a good fit to this study, the software company used Visual Studio .NET

rather than Eclipse, and the programming language was C# rather than Java. A minimum set of

sensor data types (See Table 4.1) are required in order for Zorro to function. Unfortunately, the

Visual Studio .NET senor was very premature and it can only collect a few of them. Thus, if we

wanted to engage in this study, the most imperative task was to develop a Visual Studio .NET sensor

that can collects necessary sensor data types. Moreover, the sensor had to be implemented and tested

in a very short time frame since the software company plannedto start the project in January 2007.

8.3.2 Preparation

With confidence in Zorro and our software development skills, we decided to participate in

this collaborative industrial case study. The preparationtasks include implementation of the Visual

Studio .NET sensor and installation of Hackystat.
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Visual Studio .Net Sensor Implementation

We exchanged several emails with Dr. Hanssen to understand the company’s development en-

vironment in December 2006. With the help from Qin Zhang, another Ph.D student who was also

my colleague in CSDL, I implemented the Visual Studio .NET sensor that was Zorro-compatible.

After developing the sensor, I tested that Zorro can infer TDD development behaviors occurred in

the IDE of Visual Studio .NET.

Hackystat Server Installation

Zorro runs on the server-side of Hackystat. Foosball LLC provided a dedicated server for this

study. Using Windows’ Remote Desktop application, I loggedinto the server, installed and config-

ured a Hackystat server for this case study in February 2007.

8.3.3 Collaborative Research Activities

In March 2007, the company launched both the TDD project and the Non-TDD project with 20

developers, twelve of which developed in TDD. I assisted developers installing the Visual Studio

.NET sensor, which collected development activities in thebackground unobtrusively. Periodically,

I analyzed the collected data and generated technique reports for Dr. Hanssen and the project man-

ager regarding developers’ development behaviors.

2007-02-22: Sensor Installation Instruction

Pertaining to the least possible interruption to the development process required by the partic-

ipated company, I wrote a script to automate the sensor installation for developers. Figure 8.11

illustrates the output from this script when a developer invoked this script. For each developer, I

sent an individual email to him/her with customized installation instructions. Only one developer

encountered difficult in installing the sensor due to his customization of the Windows user profile. I

fixed this by patching the installation script.
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Figure 8.11. Output of Visual Studio .NET Sensor Installation Script

2007-02-28: #1 admin guide and sensor installation status

The admin guide is a document for Dr. Hanssen and the project manager to use Hackystat and

Zorro. This document covers following contents:� Login as the administrator,� Login as any developer,� Check sensor installation status (days with sensor data),� Check a developer’s collected development activities,� Invoke the analyses described in the Zorro Demo.

Following this guide, they can login as the administrator, check received data, define Hackystat

projects, and invoke Zorro’s analyses.

I also summarized the sensor installation status based on data received on the server. According

to this report, two developers successfully installed the sensor within a day after I sent the instruc-

tions to them.
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2007-03-02: #2 admin guide

I updated the admin guide on March 2, 2007. According to this guide, some developers sent

data to the Hackystat server. After observing the collecteddata, I registered projects for developers

who installed the sensor so that the project manager can use Zorro to analyze their development

behaviors.

When writing the sensor installation status report, I was surprised to find that none of developers

invoked any unit tests. The project manager noticed this as well and asked us whether the sensor

worked correctly with TestDriven.NET add-in. Unfortunately I never knew that developers ran tests

with TestDriven.NET, a third-party add-in to the Visual Studio .NET. Later, we discovered that

some emails from the project manager sent in January 2007 were discarded by the mail server of

the University of Hawaii as SPAMs for unknown reasons. I configured my SPAM settings to allow

emails sent from the software company, but I had to enhance the sensor to support TestDriven.NET

quickly in order to continue this collaborative research.

2007-03-05: Support for TestDriven.Net and Sensor Upgrade

TestDriven.NET was an open source project initially but turned into a proprietary Visual Studio

add-in. It is not as extensible as the JUnit plugin of Eclipseso that a third-party observer can not

listen to invocations of unit testing. Perhaps because Microsoft started a legal issue against him, the

author of TestDriven.NET did not respond to my request for help. Soon I discovered an approach

to capture and parse test running results from TestDriven.NET by observing the console output in

Visual Studio .NET. After some extensive testing, I released a new Visual Studio .NET sensor for

this collaborative industrial case study.

It was a little pity that the project manager was very unhappywith this update but there was no

alternatives if we wanted to continue this research. As a result, some developers did not install this

upgrade according to my observation of the server status. I addressed this issue in the following

reports I wrote.
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2007-03-20: #3 sensor installation status

I updated the sensor installation status report on March 20,2007. According to this report, 20

developers fell into five groups:� Group 1: Those who are successfully using the system

Four developers are sending coding and testing data regularly, indicating the sensor is installed

and updated.� Group 2: Those who need to install the sensor

Four developers have not sent any data. They appear to have not installed the sensor at all or

are not programming.� Group 3: Those who might have uninstalled the sensor

Four developers sent data at the beginning but have not sent any data recently. They have

either uninstalled the sensor or are not programming.� Group 4: Those who might need to update the sensor

Four developers are sending coding data but not testing data. Either they are not testing, or

have not updated the sensor.� Group 5: Those who apparently need to update the sensor

Four developers are sending coding data and testing data, but the test data lacks path infor-

mation indicating the need to upgrade the sensor.

Because I conducted this study off-site, the above categorization of developers was only based

upon my observation of data received on the Hackystat server. The project manager generously

agreed to have developers update the sensor following my suggestions made in this report.

2007-04-14: #4 introduction to the TDD telemetry analyses

In the report I wrote on April 14, 2007, I introduced the TDD telemetry analyses (See Section

4.3.2) to Dr. Hanssen and the project manager. In addition, Idefined two Hackystat projects for

them. One project was “The-TDD-Project” which includes allprogrammers who developed in TDD
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as project members, and the other project was “The-NON-TDD-Project”. With these two projects,

they can invoke TDD telemetry analyses to compare the TDD project and the Test-Last project. A

list of TDD telemetry analyses is in the following.� DevTime-Chart: computes development time developers spent in the Visual Studio .NET

environment.� DevTime-Members-Chart: computes and plots all project members’ development time

spent in the Visual Studio .NET environment.� DevTime-TotalProductionTest-Chart: computes and illustrates total development time, the

portion on coding, and the portion on testing.� EpisodeDurationAverage-Chart: illustrates the average episode durations.� TDD-Percent-Chart: reports the percentage of a project’s TDD compliance.� TDD-All-Members-Chart: reports and compares project members’ TDD compliance.� TDDPercent-And-DevTime-Chart: combines the TDD compliance percentage and devel-

opment time to a given project.

Basically this report opened a door to Zorro and Telemetry for Dr. Hanssen and the project

manager. With the sensor data collected from developers, Zorro can be used to not only infer

developers’ TDD development behaviors but also conduct comparative study between TDD and

Non-TDD.

According to feedback received from Dr. Hanssen regarding this report, the number of pro-

grammers producing data was disappointing, and he would contact the project manager directly

for possibility to improve it. However, he viewed this studyas a pilot and planned to replicate

it in another software company, which might have a better start and more complete data. Also,

other researchers are interested in Zorro’s automation of data collection and development behavior

inference.
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2007-05-04: #5 Comparison Between TDD and Test-Last Projects

I used Zorro’s TDD telemetry analyses to compare development behaviors between the TDD

project, and the Test-Last project and wrote a technique report on May 4, 2007. The main points

included in this reports are:� TDD-Percent-Chart (by development time)

The “TDD-Percent-Chart” telemetry analysis computes and plots percentages of development

time that developers complied to TDD based upon Zorro’s inference. Partially due to the

imperfect sensor installation, developers did not comply to TDD faithfully in this study. The

compliance percentage was 5% at the best on the weekly basis.

Living far from developers who participated in this study, Idid not have the capabilities to

investigate causes for the low TDD compliance rate. Perhapsdevelopers did not have the

necessary skills to use TDD on their development tasks, or they modified TDD according to

their needs.� TPRatio-DevTime-Chart

The “TPRatio-DevTime-Chart” telemetry analysis is a metric for measuring effort developers

devoted to testing. It was interesting to note that developers who were in TDD project evenly

divided their effort on testing and production code. On the contrary, developers in the Test-

Last project did not test much at the beginning but graduallycaught up unit testing.� DevTime-TotalProductionTest-Chart

The “DevTime-TotalProductionTest-Chart” telemetry chart analysis plots cumulative effort

spent on test and production code. According to this analysis, the TDD project had larger

growth rate of test code while the Test-Last project had larger growth rate of production code.� DurationAverage-Chart

The “DurationAverage-Chart” telemetry analysis illustrates how frequently developers in-

voked unit tests. Interestingly, the episode durations average of the two projects are far longer

than 10 minutes.

In addition to the telemetry report, I updated the sensor installation status with development

time and T/P ratio for each developer. After reading this report, Dr. Hanssen were more concerned
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about the legitimacy of the data rather than the hypotheses Iclaimed regarding the development

process. Unfortunately, the project manager concentratedon the software development and did not

respond to this report.

2007-05-25: #6 Comparison Between TDD and Test-Last Projects

Based on the report I wrote on May 25, 2007, developers in the Test-Last project started putting

more effort on testing than effort on production code, in contrast developers in the TDD project

evenly divided their effort on testing.

8.3.4 Phone Interview with the Researcher

By the time I write this chapter, developers in Foosball LLC are still working on the software

to make the next release. In this research, I installed and configured a Hackystat server for them,

developed the Visual Studio .NET sensor, managed the Hackystat server, and wrote six technique

reports for the researcher and the project manager. After four months collaboration, Professor Philip

Johnson and I interviewed the researcher on July 3, 2007. Table 8.1 lists the structure of this

interview.

Table 8.1. Structure of the Interview with the Researcher

Interviewer Hongbing Kou, Philip Johnson
Interviewee Geir Hanssen
Instrumentation Voice Recorder
Method Phone
Time 9PM July 3, 2007
Length 45 minutes
Location Collaborative Software Development Laboratory

In the interview, we mainly focused on the experiment details behind the scene as well as the

researcher’s experience regarding this collaborative research.� Research Background

It is interesting to note that the Foosball LLC was not specially recruited to participate in this

comparative study of TDD. The company worked with Dr. Hanssen before on studying Evo
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Agile, an agile process that the company has adopted. For whatsoever reason, the company

decided to include TDD in its software process and so this case study was initiated. After

seeing the Zorro Demo, Dr. Hanssen suggested that they use Zorro for data collection in this

study. Because of the unobtrusiveness of Zorro’s data collection, the Foosball LLC agreed to

have its process instrumented.� TDD Conformance

The TDD compliance percentage of this study was very low according to Zorro’s inference.

However, probing the development process to understand thesituation was impossible for me

and Dr. Hanssen as well at this moment. Typically, the Foosball LLC has good reputation in

complying to what they agreed to, but meeting the deadline has the top priority. It is worth-

while to note that Evo Agile, the software process that the company is using, has tight and

well scheduled development activities. TDD is an extra addition to the process, which might

help to explain why the project manager did not respond to ourrequests for understanding

their software process.� Concerns on Sensor Installation

In the #3 report of “Sensor Installation Status Update”, I described the sensor installation

status after a month’s deployment. We were confident that 4 developers successfully installed

and updated the sensor as requested, but not sure what happened to the rest developers. A real

problem occurred in this study was from the TestDriven.NET plugin. I had to enhance the

Visual Studio .NET sensor rapidly, and in turn, developers had to update the sensor shortly

after installation. Likely some developers gave up the sensor although upgrading the sensor

was a trivial task from our perspective.

As concerned as we were on this problem, Dr. Hanssen said thathe will call each developer

after the project is released. A questionnaire will be designed regarding the development

process, sensor installation and Zorro’s inference results.� Experience on Collaborative Research with Industry

Collaborative research with industry in generally is hard.In this research, the project manager

did not respond to Zorro’s inference regarding their development process. To the industrial

participants, meeting deadlines of project releases have much higher priority than engaging

in research activities. In Dr. Hanssen’s opinion, this is just the way it is, and as researchers,

we have to adopt this. A few key points he described in the interview were:
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– This study is a training to use tools such as Zorro that automate the data collection.

– What we can do better in the future is to let developers install Zorro, make sure that it

works.

– He is interested in conducting more of this kind of study. Other companies are interested

in TDD too.

8.4 Conclusions

This study shows that Zorro can support empirical research of TDD. The automation of data

collection makes it possible for researchers to collect data without interrupting the development

process. It provides supporting evidence to the research question Q3a, but it also shows that in-

stalling sensors to enable automated data collection can bea challenging task to the participants.

8.5 Chapter Summary

This chapter introduces the industrial case study I collaboratively conducted with Dr. Hanssen,

a TDD researcher, and an European software company. In this collaborative study, I provided

technique support of Hackystat and Zorro.

The lessons I learned from this study are:� Pilot

Pilot is a must for studies to be conducted in the industrial settings. Participants are very pre-

cious resources, and if possible, all the research activities should be pilot tested beforehand.

Otherwise, it will be very easy to make mistakes that may blowup the research opportunity.� On-site

Another lesson I learned from this study is that case studiesshould be conducted on-site

instead of off-site. Responding to requests from researchers is more or less a burden to the

participated companies. In case when the schedule is tight,participants may ignore requests

from researchers. To effectively conduct case studies, theresearchers can get maximum input

from participated companies if they can go to the field to conduct research.
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� Periodical Sensor Installation Status Check

With automated data collection, researchers may tempt to focus on other research areas in-

stead of data collection. The lesson we learned from this research is that periodically checking

data collection is necessary because many things can go wrong. For example, some unit test-

ing activities were not collected at the beginning of this industrial case study. Also, developers

might silently decline the request to instrument their development processes with sensors.� The Author’s Involvement

Finally, so far my involvement is still necessary in order touse Zorro in the evaluation case

studies of TDD. In this industrial case study, I deployed Zorro to the site, assisted developers

installing the sensor, analyzed the data, and wrote analysis reports for the researcher. For

those who have no prior experience to Hackystat and Zorro, adopting Zorro in the empirical

evaluation studies might be hard.
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Chapter 9

Research Summary, Contributions and

Future Directions

This chapter finishes up this thesis. It begins with the research summary in Section 9.1, followed

by contributions in Section 9.2. Then it discusses future directions in Section 9.3.

9.1 Research Summary

In the software engineering field, researchers and practitioners have put increasing effort on

low-level software processes [1, 46] such as PSP, TSP and Agile Processes. Though proven to

be useful in improving software quality[21, 43, 70, 31], low-level software processes are hard to

execute correctly and repeatedly. Also, low-level software processes have the potential to require

new skills from software organizations, project managers,and software developers. For example,

in Test-Driven Development (TDD), each developer is a requirements analyst, designer, tester, and

coder. As a result, a low-level software process could be used differently in different software

organizations. Worse yet, an organization might think theyare using a particular low-level process,

such as TDD, but in reality, they are doing something quite different. Thus, I put my research

effort on automated recognition of low-level software process development behaviors. As a step in

this research area, I focused on one low-level software process called TDD and implemented the

Zorro software system to automate the recognition of development behaviors of TDD. In addition,
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I proposed the Software Development Stream Analysis (SDSA)framework to assist the research on

low-level software processes.

Test-Driven Development (TDD), a core practice of Extreme Programming, has been widely

adopted by software industry and studied by software engineering researchers. So far, software

engineering researchers have focused most of their energy on the outcomes that applying TDD

brings to software products and software developers. However, compared to the claims made by

practitioners, research findings of TDD on software qualityand developer productivity are mixed.

In fact, much of the research work on TDD suffers from the threat of “construct validity” [74]

because of the “process conformance” problem. Janzen and Saiedian [31] warn that the inability to

accurately characterize process conformance is harmful toTDD research, and that it is so hard to

measure the usage of a development method such as TDD that current reports on adoption of TDD

are not valid. Fortunately, with the development of sophisticated software metrics collection system

such as Hackystat [35], it is possible to study the process conformance of TDD.

In order to study the process conformance of TDD, I implemented the Zorro software system

with the aids of the Hackystat and SDSA frameworks. Hackystat sensors instrument the develop-

ment environments to collect software process and product metrics. SDSA is a framework that I

have created for studying low-level software processes. Using SDSA, Zorro abstracts a variety of

software metrics into development activities, merges these activities together to form a time-series

software development stream, and finally partitions the stream into a group of episodes ended with

successful unit test invocations. In order to infer development behaviors of TDD, I defined a set

of specific rules in Zorro according to Beck [5, 6] and others who have described the practices of

TDD. The “test-pass” episodes are categorized as “test-first”, “refactoring”, “test-addition”, “regres-

sion”, “code-production”, “test-last”, “long”, or “unknown”. After inferring development behaviors

in episodes and categorizing them, Zorro uses the classification results as well as the context of

episodes to reason the conformance of TDD. Moreover, with the inferred results, Zorro implements

a handful of analyses that are grouped into two categories. The first category of analyses study a

single programming session and report different aspects ofTDD. One analysis in this category is

the “TDD Episode Demography” analysis that can be used to look for the development patterns of

TDD. The second category of analyses leverage software project telemetry [40, 79] that can support

interpersonal in-process project management and decisionmakings in the granularities of daily,

weekly and monthly. For instance, I compared differences ofdevelopers’ testing effort between
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“The-TDD-Project” and “The-NON-TDD-Project” on the weekly basis using the telemetry stream

of “TPRatio-DevTime-Chart” in the industrial case study (Chapter 8).

In order to empirically evaluate Zorro, I have conducted three case studies — a pilot study

(Chapter 6), a classroom case study (Chapter 7), and an industrial case study (Chapter 8) to inves-

tigate whether Zorro can collect sufficient software metrics and how well it can infer TDD compli-

ance. I summarize the research findings of these studies in the following.

9.1.1 Data Collection

One of my primary focuses was on evaluating Zorro’s data collection because collecting neces-

sary development activities is a must for Zorro to infer development behaviors. I implemented the

Eclipse Screen Recorder (ESR [17]), an Eclipse plug-in thatcan record the software development

activities occurred in the Eclipse IDE. Most importantly, it can be configured to record the Eclipse

screen in the frequency of one frame per second and the recorded video file size is just 5-7MB per

hour. With the help of ESR, I validated Zorro’s data collection in the pilot study and the classroom

study.

According to my research in these two studies, Zorro is capable of collecting development

activities. In the classroom case study, I found that Zorro on average collected more development

activities (16.8 per episode) than what I observed (14.9 perepisode) in the recorded ESR videos

(See Table 7.9). Given that ESR can capture almost every activity occurs in the Eclipse IDE, Zorro

does a good job in collecting development activities.

In both the pilot and the classroom studies, I compared two sources of data side by side to dis-

cover any hidden problems in Zorro’s data collection. It turned out that a few problems (Sections

6.5.3 and 7.6.2) existed but none of them were significant. Instead, the G2-DevBehavior, a develop-

ment behavior that I discovered in the classroom case study,significantly impacted Zorro’s inference

accuracy of development behaviors and compliance of TDD. Ifthere were not G2-DevBehavior,

Zorro could infer TDD compliance with 90+% accuracy (Section 7.6.3). Thus, correctly recogniz-

ing the G2-DevBehavior has the potential to greatly improveZorro’s reliability.
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9.1.2 Development Behavioral Inference

The other primary focus was on evaluating Zorro’s inferenceof TDD development behaviors. I

evaluated the development behavioral inference with the help of ESR in both the pilot study and the

classroom study. In the data analyses, I watched the recorded ESR videos to observe participants’

development behaviors and used the observed results to validate Zorro’s inference.

Compared to participant observation, Zorro’s inference accuracy of development behaviors is

88.4% in the pilot study (See Table 6.2). This value is 70.1% in the classroom study (See Table

7.10). However, these two values can not be directly compared since I revamped the classification

of development behaviors in Zorro after the pilot study. A notable phenomenon occurred in the

classroom case study was the so called G2-DevBehavior (Section 7.6.1), which diverted Zorro’s

partitioning of episodes and inference of development behaviors. Further investigation in Chapter 7

concludes that the inference accuracy is 89.6% for group G1 who did not conduct G2-DevBehavior.

All in all, it indicates that allowing Zorro to interpret G2-DevBehavior is necessary.

9.1.3 Usefulness

Last, I also focused on evaluating Zorro’s usefulness in thecase studies. The “Episode Demog-

raphy” and “T/P Effort Ratio” are two most useful analyses for beginners to understand and improve

TDD practice based on evaluation results of the classroom study. In the industrial case study, I col-

laborated with Dr. Hanssen, a researcher who conducted a comparison study between TDD and an

existing Test-Last practice in an European software company. This research supports the conclu-

sion that Zorro’s automated unobtrusive data collection and inference of development behaviors are

useful for researchers to collect data without interrupting the development process.

9.2 Research Contributions

This research has three main contributions:� Software Development Stream Analysis Framework,� Automated recognition of TDD with Zorro,
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� Empirical evaluation of Zorro.

9.2.1 Software Development Stream Analysis (SDSA) Framework

The SDSA framework is the most significant contribution of this research. A problem with

low-level software processes is that many organizations might use them differently based upon their

understanding, which makes it hard to study their impacts onsoftware development. The SDSA

framework can automatically evaluate how well an organization executes software processes with

only minimum interruption to the development process.

In order to study low-level software development processes, SDSA abstracts development ac-

tivities of a programming session into a software development stream, a linear and time-series data

structure. Corresponding to the incremental and iterativeproperty of many low-level software pro-

cesses, SDSA uses tokenizers to partition a long development stream into many short episodes,

another abstract data structure representing a micro-iteration of a software process. Finally, SDSA

uses JESS, a rule-based system in Java to recognize and classify development behaviors of parti-

tioned episodes.

In my thesis research, I instantiated the SDSA framework on Test-Driven Development (TDD),

and the system resulting from this work is the Zorro softwaresystem. Zorro can automatically infer

the development behaviors and the compliance of TDD. This research work demonstrates that the

SDSA framework has the potential to be useful for researching other low-level software processes.

9.2.2 Automated recognition of TDD with Zorro

Another significant contribution is the Zorro software system that was built on the top of the

Hackystat and SDSA frameworks. Zorro recognizes TDD development behaviors conducted in

an IDE as long as its sensor supplies all required metrics listed in Table 4.1. In my research, I

enhanced the Eclipse sensor and evaluated its data collection capability in the pilot and classroom

case studies. As part of the industrial case study, I enhanced the Visual Studio .NET sensor to be

Zorro compatible.
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Many analyses such as “Episode Demography” were developed to leverage Zorro’s reasoning

of development behaviors of TDD. Furthermore, with the helpof software project telemetry, I de-

veloped a set of telemetry reducers of TDD to support management of TDD projects.

Also, I implemented a rule set for TDD based upon the descriptions of many well-known TDD

practitioners including Beck [6], Doshi [15] and Erdogmus [74], and additionally my grounded

observation of TDD in practice.

9.2.3 Empirical evaluation of Zorro

The third contribution is the empirical evaluation studiesI conducted. The pilot and classroom

studies exemplify a paradigm of empirical validation of Zorro. All the research materials were made

public for others to validate Zorro in different environments. The industrial case study demonstrates

how to conduct TDD research that does not suffer from the process conformance problem with the

help of Zorro. In addition, the actual results of these studies are also my contributions.

1. The Eclipse sensors collect sufficient in-process metrics for inference of TDD;

2. Zorro can identify TDD when it occurs in the IDEs of Eclipseand Visual Studio .NET;

3. Zorro is helpful for beginners to understand and conform to TDD;

4. Zorro is useful for researchers to conduct TDD evaluationstudies.

9.3 Future Directions

9.3.1 TDD Evaluation Studies

First, Zorro can be used in evaluation studies of TDD to improve validity of research conclu-

sions. The industrial case study I conducted in my thesis research is an attempt in this direction.

9.3.2 Unified operational definition of TDD

Second, reaching an unified operational definition of TDD is necessary. Beck uses the red/green/refactor

to describe the order of TDD programming in [6]. Following this abstraction, I defined three types
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of development behaviors “test-first”, “refactoring” and “test-last” in the prototype implementation

of Zorro. Then I used this prototype in the pilot study in which I surprisingly found that half of the

episodes were “test-last”, which is very contradict to my intuition. With the pilot study, I realized

that TDD in reality is quite different from in theory, and revamped Zorro’s classification of TDD

development behaviors (Section 4.2.3). Moreover, I introduced a heuristic algorithm for inference

of TDD compliance (Section 4.2.4) to Zorro. This is an operational definition of TDD. It works well

according to the classroom case study conducted in my thesisresearch, but the conclusion is limited

to the environment I tested. More replication studies need to be conducted in order to reach a unified

operational definition of TDD that can be agreed upon by the community of TDD practitioners and

researchers.

9.3.3 More practical uses of Zorro’s inference results

Third, finding more practical use of Zorro is one more future direction. In my research, I

designed and implemented some typical analysis such as “Episode Demography” and “Episode

Duration Distribution” and some TDD telemetry streams. My initial evaluation concludes that they

are useful for beginners and researchers of TDD. However, inorder to fully use Zorro’s potentials

in software project management and software process improvement, finding more practical uses of

Zorro is important.

One practical use of Zorro is to study how to interpret Zorro’s inference results. For example,

will 100% be necessary in actual software projects? Or how much compliance of TDD is accept-

able? Another interesting use of Zorro is to compare the inferred results to test coverage. Beck

claims that TDD should yield 100% test coverage automatically, but more research needs to be

done to study this claim.

Zorro can be used as a CASE (Computer Aided Software Engineering) tool for software project

management. I applied Zorro to a TDD and a Non-TDD projects inthe industrial case study. With

the help of Zorro, I generated “sensor installation status”and “TDD telemetry” for the project man-

ager. These reports helped the project manager to realize that problems existed in sensor installation

and data collection. However, this research work only uses afew analyses Zorro provides. Addi-

tional research needs to be conducted to study how to use Zorro for software project managements.
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9.3.4 Other low-level software processes

Zorro was built on the top of the more generic SDSA and Hackystat frameworks, this archi-

tecture makes it easily possible to study other low-level software processes or best practices of

software development as well. For example, low-coupling isa desired property to objects in the

object-oriented programming. With Hackystat and SDSA, we can easily define rules to find objects

that are either excessively edited by developers, or overlyreferred by other objects in the develop-

ment process.

9.3.5 Data mining

At last, applying some data mining algorithms on software development streams may create

interesting applications. The SDSA framework sorts a variety of software metrics collected by

Hackystat sensors and organizes them as time-serious software development streams. I applied a

rule-based system on them to infer development behaviors and compliance of TDD in my research.

The rule-based system is powerful for recognizing well-defined development behaviors such as

TDD. However, in cases that expected development behaviorsare unknown, it will be better to use

some data mining algorithms. For example, Heierman et. al. introduce the Episode Discovery [28]

algorithm to discover and classify naturally recurring patterns from temporal sequences of human-

generated activities. This algorithm can be used to mine thesoftware development streams to find

recurring patterns of development activities.
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Appendix A

Pilot Study Material

A.1 Introduction to TDD

Test-driven development is a new way to develop software. With TDD developers(1) write

new code only if an automated test has failed; (2) eliminate duplication iteratively in software

development.We will be implementing a stack data structure in TDD. Pleasekeep this in mind

while you are participating this study. I provided you with aquick reference [15] and the rhythm of

TDD [16] to help you do TDD programming.

A.1.1 TDD Quick Reference

(Picture of Gunjan Doshi’s TDD quick reference guide [15].)

A.1.2 Rhythm of TDD

(Picture of Gunjan Doshi’s TDD rhythm guide [16].)
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A.2 Stack Implementation in TDD

I provide additional instructions for this pilot study. This section includes description and in-

structive procedure to implement the stack data structure in TDD. Stack works in Last-In-Last-Out

(LILO) principle. Its operations includePush, Pop, Top, andisEmpty.� ThePushfunction inserts an element onto the top of theStack.� ThePopfunction removes the topmost element and returns it.� TheTopfunction returns the topmost element but does not remove it from theStack.� The isEmptyfunction returns true when there are no elements on theStack.

Note: some of this documentation are excerpted from [51].

1. Test List (or TO-DO list)

The first step is to brainstorm a list of tasks. The goal of thisactivity is to create a task list

from the requirements. Note that this list does NOT have to becompleted at beginning and

you may dynamically maintain it on the fly. Here is a task list example maintained by Kent

Beck in his book “Test-Driven Development by Example” [6]:

$5 + 10 CHF = $10 if rate is 2:1
$5 * 2 = $10
Make “amount” private
Dollar side-effects?
Money rounding?
equals()
hashCode()

Same as Beck did, you may work out a list of tasks for stack.� Create aStackand verify thatisEmptyis true.� Pusha single object on theStackand verify thatisEmptyreturns false.� Pusha single object,Popthe object, and verify thatisEmptyreturns true.� Pusha single object, remembering what it is;Pop the object, and verify that the two

objects are equal.
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� Pushthree objects, remembering what they are;Popeach one, and verify that they are

removed in the correct order.� PopaStackthat has no elements.� Pusha single object and then callTop. Verify that isEmptyis false.� Pusha single object, remembering what it is; and then callTop. Verify that the object

returned is the same as the one that was pushed.� Call Topon aStackwith no elements.

2. Choose the First Test

There is a list of tasks to start with. The philosophy of TDD isto choose the simplest test

that gets you started and solves a small piece of the problem.The simplest one in the list

is: “Create a Stack and verify that isEmpty is true.” It is also an option to choose a test

that describes the essence of what you are trying to accomplish. Using stack as an example,

functionsPushandPop are essential.

3. Test 1: Create aStack and verify that isEmpty is true.

You start with a class called TestStack and add one assertionto check whether isEmpty returns

truth.

public void testStackEmptiness() {
Stack stack = new Stack();
assertTrue("Test emptiness of Stack", stack.isEmpty());

}

This code will not compile because there is no Stack object created yet. You should go ahead

to implement Stack and provideisEmpty(). To make it simple you can just return constant

boolean value true in body ofisEmpty().

public boolean isEmpty() {
return true;

}

4. Test 2: Push a single object on the stack and verify thatisEmpty is false.

Remember to start with test first NOT to create push before yousee compilation error or test

failure.
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public void testPushOne() {
Stack stack = new Stack();
stack.push("first element");
assertFalse("Stack has one element, it is not empty",

stack.isEmpty());
}

5. Test 3: Push a single object,Pop the object, and verify that isEmpty is true.

This test introduces a new method called Pop, which returns the topmost element and removes

it from the Stack.

public void testPop() {
Stack stack = new Stack();
stack.push("first element");
stack.pop();
assertTrue("Stack has no element after pop", stack.isEmpty());

}

6. Test 4: Push a single object, remembering what it is;Pop the object, and verify that the

two objects are equal.

public void testPushPopContent() {
Stack stack = new Stack();
String value = "9001";
stack.push(value);
String result = (String) stack.pop();
assertEquals("The popped up value equals to the pushed one",

value, result);
}

Please keep in mind that you don’t have to have the correct implementation to make test pass.

You can always add a little, run the test to see it fail, and rework until it passes the test.

7. Test 5: Push three objects, remembering what they are;Pop each one, and verify that

they are correct.

In previous implementation you can simply have one element to make all those tests pass.

With this test you will very likely implement an array, ArrayList, or vector to hold objects

that are pushed onto the stack.
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8. Test 6: Pop aStack that has no elements.

As you may work on Java for a while, exception should be thrownwhen there is illegal

operation like this one.

public void testPopEmptyStack() {
try {

stack.pop();
fail("Exception is expected when pop value from empty stack");

}
catch (Exception e) {

//Do nothing. Exception is expected.
}

}

9. Test 7: Push a single object and then callTop. Verify that isEmpty returns false.

public void testPushTop() {
Stack stack = new Stack();
stack.push("42");
stack.top();
assertFalse("Stack is not empty after top() is called.",

stack.isEmpty());
}

10. Test 8: Push a single object, remembering what it is; and then callTop.

Verify that the object returned is equal to the one that was pushed.

11. Test 9: Push multiple objects, remembering what they are; callTop, and verify that the

last item pushed is equal to the one returned byTop.

12. Test 10: Push one object and callTop repeatedly, comparing what is returned to what

was pushed.

13. Test 11: CallTop on aStack that has no elements.

14. Test 12: Push null onto theStack and verify that isEmpty is false.

15. Test 13: Push null onto theStack, Pop theStack, and verify that the value returned is

null.

16. Test 14: Push null onto theStack, callTop, and verify that the value returned is null.
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We don’t have either instructional code in last 7 test cases.Stack is a simple data structure and

TDD does not have high technique requirements you should be able to implement it and make all

these tests pass with small amount of effort.
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Appendix B

User Stories for Stack Data Structure
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A Hands-on Practice of TDD: User Stories of Stack

The objective of this assignment is to practice TDD development with stack problem. User stories

are provided to help you develop stack in TDD iteratively. Stack is a data structure that works in

Last-In-First-Out principle. It includes four basic operations: Push, Pop, Top, and isEmpty.� The Push function inserts an integer element onto the top of the Stack.� The Pop function removes the topmost integer element and returns it.� The Top operation returns the topmost integer element but does not remove it from the Stack.� The isEmpty function returns truth when there are no elements on the Stack and false other-

wise.

Please note that this assignment is not just about programming a stack data structure. Instead, it is

a hands-on practice on Test-Driven Development. You shouldimplement stack iteratively using the

following user stories.

1. Create a stack and verify that it is empty

Requirement: Be able to construct a stack which is empty initially. Verifythat it is empty.

2. Push an integer value and verify that stack is not empty.

Requirement: Push value 1001 onto the stack, check whether stack is not empty afterward.

3. Push an integer value, pop it, and verify that stack is empty.

Requirement: Push value 1001 onto the stack, call pop, check to make sure that stack is empty.

4. Push an integer value, remember what it is; pop a value fromstack, verify that it is equal to the

one pushed.

Requirement: Push value 1001 onto the stack, call pop, examine whether thepopped value is 1001.
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5. Push three integer values, remember what they are; pop each one, and verify that they are correct.

Requirement: Push integer values 1001, 2001, 3001 onto the stack, call popthree times. It should

return 3001, 2001 and 1001 respectively.

6. Pop an integer value from stack that is empty.

Requirement: Exception StackEmptyException should be thrown when trying to pop a value from

an empty stack.

7. Push an integer value, call top, and verify that the returned value equal to the pushed value.

Requirement: Push value 1001 onto the stack, call top, the returned value should be 1001.

8. Push three integer values, call top three times, and verify the returned values always equal to the

last value.

Requirement: Push 1001, 2001, 3001 onto the stack, call top three times, and the returned values

should be 3001.

9. Push one integer value, call top repeatedly, comparing what is returned to what was pushed.

Requirement: Push 1001 onto the stack, call top three times, and the returned values should be

1001.

10. Call top on a stack with no element.

Requirement: Exception StackEmptyException should be thrown when trying to top a value from

an empty stack.
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Appendix C

User Stories for Roman Numeral
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A Hands-on Practice of TDD: User Stories of Roman

Numeral Conversion

Roman numerals are written as combinations of the seven letters in the Table C.1 (excerpted

from URL http://www.yourdictionary.com/crossword/romanums.html). If smaller numbers follow

Table C.1. Roman Numerals

I=1 C=100
V=5 D=500
X=10 M=1000
L=50

larger numbers, the numbers are added. If a smaller number precedes a larger number, the smaller

number is subtracted from the larger. For example:� VIII = 5 + 3 = 8� IX = 10 - 1 = 9� XL = 50 - 10 = 40

Table C.2. Roman Numerals Conversion Table

1 I 11 XI 21 XXI 31 XXXI 41 XLI
2 II 12 XII 22 XXII 32 XXXII 42 XLII
3 III 13 XIII 23 XXIII 33 XXXIII 43 XLIII
4 IV 14 XIV 24 XXIV 34 XXXIV 44 XLIV
5 V 15 XV 25 XXV 35 XXXV 45 XLV
6 VI 16 XVI 26 XXVI 36 XXXVI 46 XLVI
7 VII 17 XVII 27 XXVII 37 XXXVII 47 XLVII
8 VIII 18 XVIII 28 XXVIII 38 XXXVIII 48 XLVIII
9 IX 19 XIX 29 XXIX 39 XXXIX 49 XLIX
10 X 20 XX 30 XXX 40 XL 50 L

Please note that this assignment is not just about programming a roman numerals conversion.

Instead, it is a hands-on practice on Test-Driven Development. You should use the provided user

stories to write test case first, and let the tests to drive thecode implementation.

Roman Numeral Conversion User Stories:
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1. The conversion program returns empty string “ ” to value 0.

2. Roman numeral is “I” to value 1.

3. Roman numeral is “II” to value 2

4. Roman numeral is “III” to value 3

5. Roman numeral is “IV” to value 4, not ”IIII”

6. Roman numeral is “V” to value 5

7. Roman numeral is “VI” to value 6

8. Roman numeral is “VIII” to value 8

9. Roman numeral is “IX” to value 9, not VIIII

10. Roman numeral is “X” to value 10

11. Roman numeral is “XI” to value 11

12. Roman numeral is “XV” to value 15

13. Roman numeral is “XIX” to value 19

14. Roman numeral is “XX” to value 20

15. Roman numeral is “XXX” to value 30
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Case Study Consent Form
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University of Hawai‘i at Manoa
Department of Information and Computer Sciences

Collaborative Software Development Laboratory
Professor Philip Johnson, Director

POST Room 307• 1680 East-West Road • Honolulu, HI 96822

Voice: +1 808 956-3489 • Fax: 956-3548

Email: johnson@hawaii.edu

Thank you for agreeing to participate in our research on understanding test-driven development 

practices using the Zorro tool. This research is being conducted by Hongbing Kou as part of his 

Ph.D research in Computer Science at the University of Hawaii under the supervision of 

Professor Philip Johnson. 

As part of this research, you will be asked to develop or modify a program using test-driven 

design practices and the Eclipse IDE using the Hackystat Eclipse sensor. While you are working 

on your programming task, you will be sending data about how you program, including the 

statements that you write, the test cases that you develop, the times that you invoke the tests and 

their outcomes to a remote Hackystat server. You own the development activity data you send to 

the server, and it shall not be used by anyone for any purpose other than the one stated in this 

form without your consent. 

At the beginning of the study, we are going to survey your opinions on doing test-driven 

development. Then, you will do test-driven development using the instrumentation of the 

Hackystat Eclipse sensor, and use the Zorro analysis package to understand your compliance of 

test-driven development process. Another survey will be conducted after you use Zorro. Your 

participation is voluntary, and you may decide to stop participation at any time, including after 

your data has been collected. 

The survey data that we collect will be treated strictly confidential, and there will be no identifying 

information about you in any analysis of this data for all purposes, your data will remain anonymous.  

If you have questions regarding this research, you may contact Professor Philip Johnson, 

Department of Information and Computer Sciences, University of Hawaii, 1680 East-West Road, 

Honolulu, HI 96822, 808-956-3489. If you have questions or concerns related to your treatment 

as a research subject, you can contact the University of Hawaii Committee on Human Studies, 

2540 Maile Way, Spalding Hall 253, University of Hawaii, Honolulu, HI 96822, 808-539-3955. 

Please sign below to indicate that you have read and agreed to these conditions. 

Thank you very much! 

_________________________________              ___________________________ 

Your name/signature                              Date 

Cc: A copy of this consent form will be provided to you to keep.
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Appendix E

User Stories for Bowling Score Keeper
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Test-Driven Development Exercise: Bowling Score Keeper

The objective is to develop an application that can calculate the score of a SINGLE bowling

game using TDD. There is no graphic user interface. You work on objects and JUnit test cases only

in this assignment. We divide the bowling game requirementsinto a set of user stories, which can

serve as your to-do list. You should be able to come up with a solution without much comprehension

of the bowling game rules. We encourage you to solve this programming task using TDD as much

as possible.

1. Frame

10 pins are arranged in an equilateral triangle in bowling game. It is called “frame”. The goal of

a frame is to knock all 10 pins down. The player has two chances, called “throws”, to do so.

Requirement: Define frame so that it has two integer attribute values. Eachvalue represents a

throw.

Example: [2, 4] is a frame with two throws. Note that you don’t have to check parameters.

2. Frame Score

The frame score is the sum of the first throw and second throw. For example, score of frame [3,5] is

8; score of frame[0,0] is 0, which is called “gutter” in bowling game.

Requirement: Compute score of a frame.

Example: The score of frame [2, 6] is 8. Frame [0, 9]’s score is 9.

3. Game

A single bowling game consists of 10 frames.

Requirement: Define bowling game which consists of 10 frames.

Example: A sequence of frames [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6] is a game.

Note that we will use this game many times from now on. We will modify only a few frames each

time to represent different bowling game scenarios.

4. Game Score

The score of a bowling game is the sum of its 10 frames.

Requirement: Compute the score of a bowling game.
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Example: The score of above game is 81.

5. Strike

A frame is called “strike” if 10 pins are knocked down by the first throw. In this case, there is no

second throw. A strike frame can be written as [10,0]. The score of a strike is 10 plus the following

two throws. Suppose there are consecutive frames such as [10, 0] and [3, 6], then the strike frame

score will be 10 + 3 + 6 = 19.

Requirement: Compute the score of a bowling game with a strike frame.

Example: Let’s suppose the first throw in above game is a strike. The bowling game will have

frames [10,0] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. Its score will be 94.

6. Spare

A frame is called “Spare” when 10 pin are knocked down by two throws. For example, [1,9], [4,6],

[7,3] are all spares. The score of a spare frame is 10 plus the next throw following it. If you have

two frames [1,9] and [3,6] in a row, the spare frame score willbe 10 + 3 = 13.

Requirement: Compute the score of a bowling game with a spare frame.

Example: Similarly let’s assume the first frame in above game is a spare[1,9], then it will have

frames [1,9] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1][2, 6]. Its score will be 88.

7. Strike and Spare

A strike frames is followed by a spare frame. For example, [10,0], [4,6], [7, 2] are three consecutive

frames with a strike followed by a spare. Score for the strikeis 10 + 4 + 6 = 20, and score for the

spare is 10 + 7 = 17.

Requirement: Compute the score of a bowling game with a spare frame followsa strike.

Example: Similarly let’s assume the first two frames are [10, 0] and [4,6] in above game. The

game will have frames [10,0] [4,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. Its score will be

103.

8. Multiple Strikes

Two strikes in a row is possible in a real bowling game. To three frames [10, 0], [10, 0] and [7,2],

score for the first strike will be 10 + 10 + 7 = 27. The second strike score will be 10 + 7 + 2 = 19.
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Requirement: Compute the score of a bowling game with two strikes in a row.

Example: Let’s assume the first two frames are both strikes, then the bowling game will look like

[10,0] [10,0] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. Its score will be 112.

9. Multiple Spares

Two spares in a row is another case.

Requirement: Compute the score of a bowling game with two spares in a row.

Example: Assuming the first two frames are spares, then the bowling game will look like [8,2]

[5,5] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. The game score will be 98.

10. Spare as the Last Frame

When the last frame is a SPARE, the player will be given a bonusthrow. However, this throw does

not belong to a regular frame. It is only used to calculate thescore of the last spare.

Requirement: Compute the score of a bowling game when the last frame is a spare.

Example: Assuming the last frame is a spare in above game, then game will be [1,5] [3,6] [7,2]

[3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 8] with bonus throw [7]. Its score will be 90.

11. Strike as the Last Frame

When the last frame is a STRIKE, the player will be given two bonus throws. However, these two

throws do not belong to a regular frame. They are used to calculate score of the last strike frame

only.

Requirement: Compute the score of a bowling game when the last frame is a strike.

Example: Assuming the last frame is a strike in above game, it will be [1,5] [3,6] [7,2] [3,6] [4,4]

[5,3] [3,3] [4, 5] [8, 1] [10, 0] with bonus throws [7, 2]. The game score will be 92.

12. Bonus is a strike

Bonus strike will not be counted as strike in a bowling game.

Requirement: Assuming the last frame is a spare and the bonus is a strike, compute the score of

this game.

Example: Assuming the last frame is a spare and the bonus is a strike in above game, the game will

be [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4,5] [8,1] [2,8] with bonus throw [10, 0]. The game score
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will be 93.

13. Best Score

Requirement: Compute the score of the bowling game when all frames are strikes.

Example: Assuming all frames are strikes including bonus. The game looks like [10,0] [10,0]

[10,0] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0] [10,0] with bonus throws [10,10]. It is a perfect

game and the game score is 300.

14. A Real Game

Requirement: To a game with frames [6,3] [7,1] [8,2] [7,2] [10,0] [6,2] [7,3] [10,0] [8,0] [7,3]

[10], its score is 135.
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Appendix F

Participant Interview Guideline in Case

Study

Purpose

The purpose of this interview is to gather participants’ experience of TDD including how they think

about TDD, whether and how TDD affects their software development, whether can Zorro help

them, and how Zorro can be used? The protocol of the interviewis described here.

Interviewer

Hongbing Kou

Interviewees

Participants of the Zorro case study

Time and place

Participants will be interviewed by me in the lab after they finish validating Zorro’s inference on

their behaviors. The interview will last from 15 to 20 minutes.
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Facility

Notepad, pen, and tape recorder. I will ask interviewee’s permission for the use of tape recorder.

Outline� Questions from the participant� Experiences and opinions on unit testing and Test-Driven Development� Opinions on TDD measurement with Zorro. In what way does the measurement tool help?� Zorro usefulness evaluation� Possible improvements of Zorro

List of interview questions

1. Questions from the participants

I will give interviewees some time at the beginning to ask me questions. They may ask ques-

tions about TDD, Zorro or this study. Purpose of this is to letparticipants feel comfortable

before the interview starts. This may lead them to get involved and start talking.

2. Unit testing and Test-Driven Development� When and where did you learn unit testing?� How do you apply unit testing in your software development?

Do you write testing code when you are not confident about a program?

Do you write testing code after you finish a program?

Do you write testing code when you want to improve your testing coverage?

Did you ever write testing code first before you learned TDD?� How much testing code do you write?

How much is the code coverage of the programs you wrote in the software engineering

class?

Can you comment on the use of unit testing in software development?
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� Can you compare TDD to the testing strategy you did before?

How do you think of TDD? Is it helpful to improve software quality?

How comfortable it is for you to do TDD programming? What problems you have when

you programmed in TDD?

3. Please use scale 1 to 5 to assess the usefulness of Zorro’s TDD analyses (1 stands for least

useful and 5 stands for most useful). I would like you to justify your answers.� Episode Inference� TDD Episode Demography� TDD Episode Duration Distribution’s� Test Effort vs. Production Effort� Test Size vs. Production Size

4. What other information you wish to have about TDD development?

How about an Eclipse plug-in indicating whether you are doing TDD?

How about an analysis showing your TDD performance over the time?
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Appendix G

Participant Selections of TDD Analysis

Usefulness Areas
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Table G.1. TDD Analysis Useful Areas

TDD Analysis Useful Areas A K L N O P Q R S T
UA-1 X X X X X X X X
UA-2 X X X X X X X
UA-3 X X X
UA-4 X X X X
UA-5 X X X
UA-6 X X
UA-7 X X

Episode Demography

UA-8 X X X X X X
UA-1 X X X X X X X X X
UA-2 X X X
UA-3 X
UA-4 X X X X X X X
UA-5 X X
UA-6 X X
UA-7 X X

T/P Effort Ratio

UA-8 X X X X X X X
UA-1 X X X X X X
UA-2 X X X X
UA-3 X X
UA-4 X X X X
UA-5 X
UA-6 X X
UA-7 X

T/P Size Ratio

UA-8 X X X X X X
UA-1 X X X X X X X
UA-2 X X X
UA-3 X
UA-4 X X X X X X X
UA-5
UA-6 X
UA-7 X

Episode Duration

UA-8 X
UA-1 X X X X X X
UA-2 X X X X X X
UA-3 X X
UA-4 X X X X X
UA-5 X X
UA-6 X X X
UA-7

Duration Distribution

UA-8 X X X
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