AUTOMATED INFERENCE OF SOFTWARE DEVELOPMENT BEHAVIORS:
DESIGN, IMPLEMENTATION AND VALIDATION OF ZORRO FOR TEST-DRVEN
DEVELOPMENT

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘l IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN
COMPUTER SCIENCE

DECEMBER 2007

By
Hongbing Kou

Dissertation Committee:

Philip M. Johnson, Chairperson
David Pager
Kim Binsted
Wes Peterson
Daniel Port

We certify that we have read this dissertation and that, mopinion, it is
satisfactory in scope and quality as a dissertation for #wrek of Doctor
of Philosophy in Computer Science.

DISSERTATION COMMITTEE

Chairperson

©Copyright 2007

by
Hongbing Kou

Dedicated to:
My wife, Rong,
| will achieve nothing without you.
My Son, Daniel,
Every smile counts.
My Mother,
You enlighten me to do all the right things.
My Father,
Your love is always with me no matter where | go.
My Brothers,

Your unconditional supports are treasures beyond compare.

Acknowledgments

I would like to express my deep and sincere gratitude to mysadvProfessor Philip Johnson.
Your wide knowledge and creative way of thinking have beemneatgvalue of me. Thank you for
spending numerous hours on proof-reading this manuscrips thesis would never have become
possible without you.

I would like to thank Dr. Hakan Erdogmus from National ResbaCouncil of Canada. With
your guidance and mentoring, August 2006 has become the pnaodtictive month in my thesis
research.

| would like to thank Dr. Daniel Suthers, Dr. Dan Port and Davi2l Pager. Your advising and
support have been priceless in my graduate studies.

I would like to thank my thesis committee members: Dr. WeeReh and Dr. Kim Binsted.

Your time and support are precious to me.

I would like to thank my fellow CSDL hackying buddies: Qin Zitg Joy Augustin, Aaron
Kagawa, Julie Sakuda, Takuya Yamashita, Mike PauldingeRdrewer, Pavel Senin, Austen Ito,
Jitender Miglani and Christopher Lofi.

| would like to thank Wesley Sugimoto and Janice Oda-Ng frobmDepartment of Information
and Computer Sciences. Thank you two for spending so muahdimthe tedious paper work for
me.

Lastly, | would like to thank my friends Xin Zhao, Qin Guo, Myi.iu, Hao Zhou, Hu Li (Tiger),
Decheng Yang, Hongbo Ding, Ying Zhang, Shidong Kai, Yangh2heng, Yuhuan Li, Rui Xue,
Xiangli Xu and many others. Life would not be so wonderfulhitit you guys.

Abstract

A recent focus of interest in software engineering researam low-level software processes,
which define how software developers or development teamddlearry on development activities
in short phases that last from several minutes to a few hdurscdotal evidence exists for the pos-
itive impact on quality and productivity of certain low-kevsoftware processes such as test-driven
development and continuous integration. However, ermadinesearch on low-level software pro-
cesses often yields conflicting results. A significant thtedhe validity of the empirical studies on
low-level software processes is that they lack the abibityigorously assess process conformance.
That is to say, the degree to which developers follow the llovel software processes can not be

evaluated.

In order to improve the quality of empirical research on lewel software processes, | devel-
oped a technique called Software Development Stream As4$BDSA) that can infer development
behaviors using automatically collected in-process safwnetrics. The collection of development
activities is supported by Hackystat, a framework for awdted software process and product met-
rics collection and analysis. SDSA abstracts the collestd#tivare metrics into a software devel-
opment stream, a time-series data structure containingr$tamped development events. It then
partitions the development stream into episodes, and theairule-based system to infer low-level

development behaviors exhibited in episodes.

With the capabilities provided by Hackystat and SDSA, | deped the Zorro software system
to study a specific low-level software process called Testdd Development (TDD). Experience
reports have shown that TDD can greatly improve softwarditguaith increased developer pro-
ductivity, but empirical research findings on TDD are ofteed. An inability to rigorously assess
process conformance is a possible explanation. Zorro ganaisly assess process conformance to
a specific operational definition for TDD, and thus enableerzmntrolled, comparable empirical

studies.

Vi

My research has demonstrated that Zorro can recognize thelel software development
behaviors that characterize TDD. Both the pilot and classr@case studies support this conclu-
sion. The industrial case study shows that the automatedcdéection and development behavior

inference has the potential to be useful for researchers.

vii

Table of Contents

Acknowledgments e v
Abstract e Vi
Listof Tables e Xiv
Listof Figures e e XVi
1 Introduction e 1
1.1 Test-DrivenDevelopment e 2
1.2 TDDChallenges e 3
1.2.1 Mixed TDD Research Findings 3

1.2.2 Measures of TDD Usage and Adoption 4

1.3 Proposed Solution: Zorro Software System 5

1.3.1 SDSA: A Framework of Development Stream Analysis 7

1.3.2 Zorro Software System e 8

1.4 Research Statement e 12

1.5 Empirical Evaluations e 13
151 PilotStudy e

152 ClassroomCaseStudy 16

153 IndustrialCaseStudy 0. 17

1.6 Contributions 18

1.7 Dissertation Structure e 19

2 Related Work 21

2.1 Test-Driven Development: A Short Introduction 22

viii

2.1.1 Characteristics of TDD 24

2.1.2 Benefits of TDD to Software Development 26
2.2 TDDResearchWork 27
2.2.1 Empirical Evaluation in Academic Settings 27
2.2.2 Empirical Evaluation in Industrial Settings 28
2.2.3 Discussion of Empirical Evaluation Studies 29
2.2.4 Process Conformanceof TDD 32
2.3 Automated Software ProcessResearch 33
2.3.1 Automating Process Discovery and Validation. 34
2.3.2 Discovering and Modeling Open Source Software Peases 34
2.3.3 Discussion of Automated Process Conformance Rdsearc 36
2.4 ChapterSummary 37
Software Development Stream Analysis (SDSA) 39
3.1 Hackystat e 40
3.1.1 Software Metrics Collection, Persistence, and Badti. 40
3.1.2 Extension Mechanism 41
3.2 SDSAFramework 41
3.2.1 Software Development Stream Construction 42
3.2.2 Software Development Stream Partition 45
3.2.3 Development Behaviors Inference 47
3.24 AnExample e 47
3.3 ChapterSummary e e e e 49
Zorro Implementation 50
4.1 Extensions to Hackystat’'s Data Collection 50
4.2 Extensionsto SDSA 51
4.2.1 ZorroDevelopmentStream. 52
4.2.2 TDD Development Stream Partition 53
4.2.3 Inference of TDD DevelopmentBehavior b4

4.2.4 TDDConformancCe v v e e e 57

425 Zorro's TDD Episode Inference 59
4.3 Extensions to Hackystat's Functionalites 60
4.3.1 TDDAnNalyses e 60
4.3.2 TDD Telemetry Streams 66
4.4 Chapter Summary e e e e e 69
Research Questions and Methodology 70
5.1 ResearchQuestions iiiiunn 70
5.2 Research Methodology 71
521 PilotStudy 73
522 ClassroomCase Study 73
523 Industry Case Study 74
5.3 ChapterSummary e e e 74
PilotStudy e e e e e 75
6.1 PurposeoftheStudy 75
6.2 ResearchQuestions 75
6.3 ExperimentDesign e 76
6.3.1 Participants 76
6.3.2 Materials 76
6.3.3 Instrument 76
6.3.4 Procedure e 77
6.4 ThreatstoValidity. e 78
6.5 DataAnalyses e 78
6.5.1 Infer Development Behaviors with Zorro 78
6.5.2 Participant Observation., 80
6.5.3 \Validation of Zorro’s Data Collection 80
6.5.4 \Validation of Zorro’s TDD Behaviors Inference 84
6.6 ResearchConclusions e 85

6.7 Discussion and Zorro Improvements e .

7.1
7.2
7.3

7.4
7.5

7.6

6.7.1 DataCollection
6.7.2 TDD Behaviors Classification
6.7.3 Process Conformance Inference
6.8 ChapterSummary e e e e e
Classroom Case Study e e
Purposeofthe Study
Research Questions i nnn
ExperimentDesign e e
7.3.1 Participants e
7.3.2 Materials
7.3.3 Instruments
7.3.4 Procedure
7.35 DataCollection
ThreatstoValidty e
Data Analysis Methods for An Individual Participant
7.5.1 Participant Observation and Validation of Data Gaiésn
7.5.2 Validation of TDD Behaviors and TDD Compliance Infece
7.5.3 Cross-validation of TDD Behaviors and TDD Compliahderence
7.5.4 Participant Interview Analysis using the Coding Meth.
7.5.5 Reporting Usefulness of Zorro's Analyses
Classroom Study Data AnalysisResults,
7.6.1 Anunexpected phenomenon and participant grouping.
7.6.2 \Validation of Data Collection.c....
7.6.3 Validation of TDD Behaviors and TDD Compliance Infece
7.6.4 Cross-validation of Zorro using participant comrsent
7.6.5 Participantinterview analysis
7.6.6 Usefulnessanalysis

Xi

7.7 ChapterSummary i e e e e e e 125

Industrial Case Study e e e 128
8.1 PurposeoftheStudy 128
8.2 ResearchQuestions i 128
8.3 CaseStudyJournal e 129
8.3.1 ThePreludeofthisstudy 129
8.3.2 Preparation e 391
8.3.3 Collaborative Research Activities 140

8.3.4 Phone Interview with the Researcher. 146

8.4 Conclusions 148
8.5 ChapterSummary e e e 148
Research Summary, Contributions and Future Directions. 150
9.1 ResearchSummary e 150
9.11 DataCollection 152
9.1.2 Development Behavioral Inference 153
9.1.3 Usefulness 315
9.2 Research Contributions 153
9.2.1 Software Development Stream Analysis (SDSA) Framlewa 154
9.2.2 Automated recognition of TDD with Zorro 154
9.2.3 Empirical evaluationofZorro 155
9.3 Future Directions 155
9.3.1 TDD Evaluation Studies 155
9.3.2 Unified operational definitonof TDD 155

9.3.3 More practical uses of Zorro's inference results 156

9.3.4 Other low-level software processes 157

9.35 Datamining. e e 715
A PilotStudy Material 158
A.l Introductionto TDD e 158

Xii

A.1l.1 TDDQuickReference, 581
A.l.2 Rhythmof TDD e 158
A.2 Stack ImplementationinTDDa... 159
B User Stories for Stack Data Structure 164
C User Stories for Roman Numeral 167
D Case Study ConsentForm e 170
E User Stories for Bowling Score Keeper i 172
F Participant Interview GuidelineinCase Study 177
G Participant Selections of TDD Analysis Usefulness Areas. 180
Bibliography e 182

Xiii

Table

1.1

2.1

3.1

4.1
4.2
4.3
4.4

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

List of Tables

Research Work of TDD on Software Quality and DevelopedBetivity

Research Work of TDD on Software Quality and DevelopedBetivity

An Excerpt of a Software Development Stream

Sensor Data Types Required by Zorro

Zorro episode types, definitions, and TDD conformance

Duration Average by Episode Category ciee ...

Episode Duration Distribution by Category

Zorro’s Inference Results for Pilot Study

TDD Development Behavior Validation

Number of Development Activities

Comparison between Zorro Inference and Video Observati.

Participants’ Comments on their Development Behaviors.

List of Interview Questions and Answers e o

Table of Usefulness Scale .

Table of Useful Areas e

The First Participant’'s Usefulness Evaluation

Participant Groups

Page

30
45

51
55
64
65

79
85

97
98
100

101
102
102
103

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27

8.1

Cl1
C.2

G.1

Summary of Development Activities oL

Video observation validation of development behavior.
Video observation validation of development beha/forG1
Video observation validation of development behaforG2
Video observation validation of TDD compliance
Validation of TDD Compliance Inference for GroupG1

Validation of TDD Compliance Inference for Group G2

Zorro's TDD Compliance Inference Error
TDD Compliance Comparison i i ittt i
Participant Comments on TDD Compliance
Group G1's comments on TDD Compliance

Group G2's comments on TDD Compliance

Mapping schema from participant’'s comment to Zorrdédi Analysis inference . .

Participant’s Validation of Episode Behaviors

Participant Categorieson UnitTestingo. o oo oo ..

Participant Categories on Perception of TDD

Participant Categories on Acceptanceof TDD

Survey on TDD Analysis Usefulness

Summary of Useful Areas of TDD analyses

Structure of the Interview with the Researcher

Roman Numerals

Roman Numerals Conversion Table

TDD Analysis Useful Areas i

XV

Figure

11
1.2
1.3
1.4
15
1.6
1.7

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

List of Figures

Zorro Infrastructure
SDSAFramework L
Demo of Zorro's TDD Inference
TDD Episode Demography
Proportion of TDDvs TestCoverage
Development Timeline of the Zorro Software System

Analysis of QuickTimeVideo

Network of Extreme Programming Practices[4]

Discovery of ISPW 6/7 Process (MARKOV)[11]

Data Model and Work Flow of the SDSA Framework
Software Development Stream Construction
Class Diagram of Development Actions
Class Diagram of Action Streams
Partition of Development Stream
Class Structure of SDSA Tokenizers
Developer Behavior Inference

AnSDSAExample

Zorro's Extensions to the SDSA Framework

XVi

11
13
15

24
35

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

5.1

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5

Episode Sequence Example A e 58

Episode Sequence ExampleB L o 58
Optimistic and Pessimistic Heuristic Algorithms 59
Demo of TDD Conformance Inference 59
Episode Demography Analysis e 61
Test Effort vs. Production Effort 62
Test Size vs. Production Size 63
Episode Duration e 64
Episode DurationBin e 65
TDD Percentage and TestingCoverage oo 68
Eclipse Screen Recorder e 72
TDD Development Stream Analysis 0. .. 79
ESRVIdeo e 81
Observation ResultsinExcel 82
Comparison of Development Activities between ZorroB&R 83
Heuristic Algorithms of TDD Conformance 87
Zorro Evaluation Wizard 94
TDD Episode Validation 94
Validation of Zorro’s Development Activities 106
Invisible Problems View inEclipse 107
Useful Areasof TDD Analyses i iaa. . 126
ZorroDemoWizard 130
TDD Episode Inference Demo e e 131
TDD Episode Demography e e 132
Tooltip of Episode Synopsis e 133
Episode Details with Back Button 133

XVil

8.6 TDD Episode T/P Ratio of Development Time 134
8.7 TDD Episode T/P Ratioof Code Size 135
8.8 TDDEpisode Duration e 136
8.9 TDDEpisode DurationBins 137
8.10 ZorroDemo Feedback 138
8.11 Output of Visual Studio .NET Sensor Installation Scrip 141

XViii

Chapter 1

Introduction

Throughout the history of software engineering, much &fias been put on the description and
understanding of high-level software processes. The vaditenodel, the very first software pro-
cess, has contributed to the success of many large softystenss. High-level software processes
divide the software development process into phases, wdaare phase lasts from a few days to
several months [54, 56]. For example, the requirementgy/sisghhase may last months before the
design phase starts. Recently, increasing effort has haampow-level software processes [46, 1],
in which a phase may last from several minutes to a few hougs Bach phase defines how devel-
opers and the development team should carry on the work oiyabdais. The Personal Software
Process (PSP) [29] and Extreme Programming (XP) [32, 4, &0tvao examples of a low-level
software process. Although proven to be useful in improwaofjware quality[21, 43, 70, 31], low-
level software processes are hard to execute correctlyeguegtedly. Low-level software processes
have the potential to require new skills from software oig@tions, project managers, and software
developers. For example, in Test-Driven Development (T,[22gh developer is a requirements an-
alyst, designer, tester, and coder. As a result, a low-&yivare process could be used differently
in different software organizations. Worse yet, an orgation might think they are using a particu-
lar low-level process, such as TDD, but in reality, they aseng something quite different. In order
to improve the quality on practice and research of low-leaftware processes, it would be helpful
to have tools to support the understanding of what low-leefiivare processes are actually being
performed by organizations, and what the impact of thesegsses are on the outcome of develop-
ment. In my dissertation research, | focused on one lowt-ke#ware process called Test-Driven
Development (TDD) [6], and developed the Zorro softwardesysto study it.

1.1 Test-Driven Development

“Clean code that works”[6] is the goal of Test-Driven Deyaiwent. To achieve this goal, TDD
summarizes its low-level software development process@basic rules: “(1) Write new code only
if an automated test has failed; (2) Eliminate duplicatidkent Beck, the pioneer of Test-Driven

Development, stated that there is an implicit order to safendevelopment using TDD [6]:

1. Red - Write a little test that does not work, and perhaps do¢ even compile at first.
2. Green - Make the test work quickly, committing whatevessire necessary in the process.

3. Refactor - Eliminate all the duplication created by meggatting the test to work.

The red/green/refactor order is a pithy summary of TDD. hlitg TDD is significantly more
complicated than that. Given a requirement, a TDD develapatyzes it and outlines a To-Do list
with a few tasks. After picking a task from the To-Do list, tiheveloper immediately writes a test,
which is then used to motivate the implementation of actysiesn. If the test fails, the developer
does whatever is necessary to make it pass as quickly adbl@pssot worrying about the quality
or generality of the results. Only after getting the tesecmspass does the developer perform a
pass over the code base to improve its quality without clmgnigs functionality. This is called the
“refactoring” phase. Then the developer crosses out tisis frmm the To-Do list, and adds new

tasks to it if new requirements occur to him.

Because a test is always created first to drive the designnapliérnentation, TDD used to be
called Test-First Design (TFD) or Test-First Developmé&rfD). My opinion is that “test first” is
better than “test driven” for describing the order of tedd anoduction coding activities. Therefore,
in the rest of this document, | will use “test first” when it isagessary to emphasize the order of

programming in TDD, but there is no difference between “fiest’ and “test driven”.

TDD is one of the innovative practices of Extreme Prograngmiin TDD, the software de-
velopment process is iterative and incremental [46]. Themnly one task to accomplish in an
iteration. In any particular iteration, a unit test corrasging to the task is created first, followed
by production code implementation. TDD is built on the foation of the XUnit framework [59],
which has been ported to more than 30 languages. Unit tdstis@pecome a defacto standard in the
software industry. TDD is widely adopted by software prefesals. An informal survey [73] con-
ducted by the Method and Survey magazine found that 46% dfttithed software organizations

2

perform unit testing informally, 41% of the studied orgaatians document their unit test cases, and

14% of the studied organizations use the TDD approach.

1.2 TDD Challenges

At first glance, TDD might seem easy, but in fact, it is a verfficlilt low-level software pro-
cess that requires much discipline to carry out correcilgt Fsoftware developers are not typically
educated to write unit tests for the programs they develdmeréfore, in a lot of cases, software
systems are not designed for easy testing. Consequentigiogers often find it is hard to write
testing code at all, much less write testing code prior tolémgntation. Second, following the
red/green/refactor software development pattern regjainet of discipline. In TDD, software de-
velopers must continuously remain in the mindset of test;fivhich is initially counter-intuitive
to many of them [5, 74]. So they often apply it differently ading to their own experience level
and understanding [5]. Third, the best way to divide a cooapéid problem into a set of tasks that
can be finished in short iterations is not always obvioush&&s as a result,the research findings
on TDD’s impact on software quality and developer produstiare mixed. In order to improve
the TDD practices and empirical evaluations, it is necgssameasure the usage and adoption of
TDD. In this section, | will first present some TDD researchiinys, followed by a discussion of

the “construct validity” problem of these studies.

1.2.1 Mixed TDD Research Findings

So far, software engineering researchers have focusedyheavhe important outcomes that
TDD brings to software products and software developersh Bedagogical [50, 18, 25, 53, 19, 44]
and industrial [23, 49, 7] evaluations of TDD have been cotetliin the last few years. Table 1.1
lists most relevant TDD research work. It is interesting édenthat while the industrial empirical
evaluations results are often positive, on the contrag/ptdagogical evaluations results are often
negative toward TDD. The industrial studies found that TDdplkd to improve software quality
at the cost of development time according to Table 1.1. Mestagogical studies did not find
the improvements of software quality and degradation okelitger productivity. Instead, some
pedagogical studies found that students as participamsoiad their productivity. As presented in

Table 1.1, discrepancies exist among empirical researdmis, and they are not trivial. Although

Table 1.1. Research Work of TDD on Software Quality and Dmyel Productivity

Investigator

Participants

Software Quality

Developer Productivity

George [23]

24

TDD passed 18% mor
tests

p 16% more time

Geras [25] 14 TDD has the edge on Noimpact
quality
Industrial | Maximilien [49] | 9 50% reduction in defect Minimal impact
density
Williams[76] 9 40% reduction in defect No change
density
Bhat [7] 11 2-4 times reduction in der 35% and 15% more timg¢
fect density
Kaufmann [44] | 8 N/A 50% improvement
Edwards [18] 59 549% fewer defects N/A
Academic| Erdogmus [19] | 35 No change Improved productivity
Muller [50] 19 Less reliable, but better No change
reuse
Pancur [53] 38 No change No change

\U

it is commonly understandable that empirical research wark not be repeated easily, the TDD

research findings are too inconsistent to discount as mplieagon variability. Next, | will discuss

the process conformance problem, one of the most possiad@me that contributed to the mixed

results, and motivate the need to measure TDD usage and@dopt

1.2.2 Measures of TDD Usage and Adoption

Much of the research work on TDD suffers from the threat oft&touct validity” [74] because

of the what has been termed as the “process conformancelepiobVang and Erdogmus defined

process conformance as the ability and willingness of thigests to follow a prescribed process.

The process conformance problem of TDD can be expressedimple gjuestion, “Do test-driven

developers really do test-first?” It is a question that implwo sub questions.

1. Do test-driven developers have the abilities to devetfpvare in TDD?

2. Do test-driven developers develop software in TDD cdestly/?

An empirical study has the construct validity problem if #reswer to the first question is not a firm

“yes”, and it has the internal validity problem if the ansuethe second question is not a firm “yes”.

Unfortunately, researchers have not paid much attentiaither of these validity problems in the
empirical studies | mentioned in the previous section. Soesearchers used pair programming
[23] and verbal confirmation [50] as the process control dsh but they are not reliable sources.

So process conformance is one possible explanation to tkedmésearch findings of TDD.

In the software industry, TDD is gradually becoming well gmied for software development
[73]. Some companies even put TDD in their job descriptioiYet there are still problems in
testability and differences in the understanding of thishoéology. In [31], Janzen and Saiedian
warned that measuring the adoption of TDD is necessary. Maggnizations might be using it
without talking about it. Others might claim to be using TDDemw in fact they are misapplying it.
Worse yet, they might be advertising its use falsely. Suswesuld be conducted to gauge the usage

of TDD, but often only those who are much in favor or much oggb® it will respond.

The inability to accurately characterize process conforweais harmful to TDD. Therefore,
measuring the usage and adoption of TDD has become an impdstae for both researchers
and practitioners. However, Janzen and Saiedian [31]dstat measuring the use of a software
development methodology is hard. They claimed it is so haudbtaccurately that published data

on the level of TDD adoption in industry is either indirectioaccurate [31, 73].

Fortunately, as my initial case study demonstrates [45hsueng the use of certain software
development methods such as TDD is becoming feasible wétkethergence of technologies such
as the Hackystat system [60, 40, 41, 39], an in-process amdtmetrics collection and analysis

framework.

1.3 Proposed Solution: Zorro Software System

In this research, | developed the Zorro software system t@sore the usage of TDD with the
capabilities introduced by the Hackystat system, a framkewb automated software metrics col-
lections and analyses. Figure 1.1 illustrates the infuatiire of the Zorro software system. Zorro
is built on top of Hackystat, and it uses Hackystat's datdectibn and analysis services for de-
velopment behavior inference of TDD. In Figure 1.1, betwekatkystat and Zorro layers, there
is a middle tier named SDSA. The SDSA stands for the Softwaeedpment Stream Analysis,
a generic framework for development event stream analysisiding three components —soft-

ware development stream construction, development stpaatition, and development behavior

Infrastructure of Zorro Software System

Z5RRO

ﬁ

T T
U i U

Episode 1 Episode 2 Episode n
Write Test Edit A
Create Object Compile V;L'T,‘e.: : sstt
Compile RunTest

el EElE

gele g ¥ L3 et
R \ ::‘; T~ ~
rccysic S
L X
[e © @O O
Development —1 + o

Producrion Unit Test

Figure 1.1. Zorro Infrastructure

inference. The SDSA is an extension of Hackystat, and it eanded to study low-level software

processes.

1.3.1 SDSA: A Framework of Development Stream Analysis

The SDSA uses software metrics of development activitidleated by Hackystat sensors to
monitor, identify and characterize high-level developiM@haviors with the support of JESS [22],
arule-based system in Java. Figure 1.2 illustrates thendadizls and work flow of SDSA. The data

Software Software
Process Development

Metrics Stream

Development)

Figure 1.2. SDSA Framework

models of SDSA include “software development stream”, $egde”, and “development behavior”.
A linear work flow connects software metrics and these thega thodels together in SDSA. First,
SDSA processes the software metrics of development aetivibllected by Hackystat sensors. Af-
ter reducing software process metrics into developmeriaes, SDSA organizes development
activities of a same type into a time-series event stream¢chnis a sub stream of the software
development stream. SDSA assembles different event stréagether to construct a “software
development stream”, which is also a time-series. Secamlialthe complexity of digesting long
development streams with heterogeneous developmenttiastnSDSA uses a partition technique.
A development stream can be partitioned into many episodisited by characteristic develop-
ment activities. The episode is in turn a time-series ctibacof development activities. Third,
SDSA includes a driver and interface to recognize the deweémt behaviors in episodes using

JESS.

SDSA s tool and process independent. It can be instantiatextasure a software development

method or low-level software process.

1.3.2 Zorro Software System
Zorro is an instantiation of the SDSA framework for TDD. Itesds SDSA at three points:

1. Development Stream Construction

As Figure 1.1 illustrates, Hackystat sensors collect eetyf software metrics, and SDSA

can construct a development stream with all of them. Butithi®t desirable because some
development activities might not be relevant to the develept method or process under
study. Using TDD as an example, debugging is not interedigtause it is not part of the

process of TDD. In a nutshell, the essential developmeivities required by Zorro for TDD

behavior inference are:

e editing activities including document, production andtiest editing,
e buffer transition activities,

e refactoring activities including addition, deletion, eening, and moving of object com-

ponents,
e unit testing activities,

e compilation activities.

Respectively, Zorro constructs the development strear®f with event streams including
“EditStream”, “BuffTransStream”, “RefactoringStreantynitTestStream”, and “Compila-

tionStream”.

2. Tokenization

Zorro uses the “test-pass” tokenizer, which partitionstb® development stream into a set

of episodes that are delimited by successful unit test etvogs.

3. Development Behavior Recognition

In Zorro, | defined a set of specific rules for TDD according &cB [5, 6] and others who
have described the practices of TDD. The “test-pass” episade categorized as “test-first”,

“refactoring”, “test-addition”, “regression”, “code-pduction”, “test-last”, “long”, or “un-
known”. Chapter 4 has the detailed description of the egisdalssification schema.

After inferring development behaviors in episodes andgmiging them, Zorro uses the clas-

sification results as well as the context of episodes to rettem conformance of TDD. Figure 1.3

8

is an excerpt of Zorro’s TDD inference result for an experehTDD developer. This experienced

) Hackystat - TDD Episode Inference Demo - Mozilla Firefox

Fle Edt View History Bookmarks Tools Help
@- - @ . (8 himyocahost 8080 hackystatjcontroler Gifcosge =8
Time File Ewvent Type Raw Event Torro's Inference ~
1 (1) 07:20:53 TestntegerToRoman.javaADD METHOD TestintegerToRoman(String) This portion of development
(2) 07:20:54 TestIntegerToRoman,java ADD CLASS Testinteger Tofoman . java appears to be TOD conformant
(3) 07:20:54 TestIntegerToRoman.javaBUFF TRANS FROM TestStack.java because:
(4) 07:21:05 TestIntegerToRoman. java 400 METHOD void testZerofeturnsEmpty() - +
(5) 07:24:44 TestintegerToRoman.java TEST EDIT 212sec MI=+2(2), SI=+3(1), TI=+1{1), Al=+1(0}, FI=+307{307) Tesuayweke wrirten before]
(6) 07:24:44 TestintegerToRoman. java COMPILE Roman cannat be resolved to a type Produciion code) i
(73 07:25:08 Roman.java ADD CLASS Roman.java
(8) 07:25:09 Ruman._!ava BUFFTRANS FROM TestIntegerToRoman.java This episoda looks like a atypical
(93 07:25:22 Roman.java ADD METHOD Roman(int . : o
(103 07:25:38 anan.]!ava ADD FIELD int int\galu:; et At pieln beouutt
(11) 07:26!19 Roman.java PRODUCTION EDIT 36sec MI=+1(1), SI=+1(1), FI=+153(158) Sane Tests were: Added
{12) 07:26:12 FRoman.java COMPILE integeryzlue cannot be resolved GpaljEelRen AT EANp LG Soa i
(13) 07:26:42 Roman.java PRODUCTION EDIT Dsec MI=0{1}, SI=0{1), Fi=+16(174) Eimor; oreirned | (b) ¢ Thek |
(14) 07:26:48 Roman.java 40D METHOD Sitring toString() iproducton code. uas. aduedi
(15) 07:27:09 Roman.java PRODUCTION EDIT Dsec Mi=+1(2), SI=0(1), FI=+25(193) {i1),, Hoskvee, trofoitan |
(16) 07:27:09 Romanjava COMPILE This method must return a result of type String BhEIu Bl b o i
{17) 07:27:16 Roman.java PRODUCTION EDIT 4sec MI=0(2), SI=+1(2), FI=+10(209)
{18) 07:27:35 TestintegerToRoman.java TEST FAILED
(18) 07:27:39 TestIntegerToRoman.java BUFFTRANS FROM Roman,java
{20) 07:28:05 TestIntegerToRoman. java COMPILE The method toSting() is undefined for the type Roman
(21) 07:28:08 TestIntegerToRoman.jav NS 7557 OK
2 (1) 07:28:12 TestintegerToRoman.java TEST EDIT Osec Mi=0(2), S51=0(1), TI=0(1), Al=0({0), FI=+1{308) This portion of development
(2) 07:28:22 TestIntegerToRoman.java ADD METHOD void testOneReturnsl() appacrs to be TOD confermant
(3) 07:28:46 TestIntegerToRoman.java TEST EDIT dsac MI=+1(3), SI=0(1}, TI=+1{2), Al=0(0), FI=+111{419} [tum—
(4) 07:28:46 TestIntegerToRoman. java COMPILE Syntax error, insert *,* to compiete Statement ; : :
(5) 07:28:40 TestintegerToRoman,java TEST EDIT Osec MI=0{3), SI=+2(2), TI=0(2), Al=+1(0), Fl=+1{420) et A L S s
(6) 07:28:56 TestintagerToRoman. java TEST FAILED jproductann codey i
(73 07:29:05 TestintegerToRoman.java BUFF TRANS FROM TestStack.java
: Ruman.ja\ra BUFFTRANS FROM TestintegerToRoman.java This episode looks like a fypical
Roman,java PRODUCTION EDIT B2sec MI=0{2), Sl=+1(3), Fl=+44(253) ekt it picads Bangine
TestintegerToRoman.java TEST OK S e
(2}. Then a compilation
error occurred (4). Then i
production code was i
edited (9). Then tescs
were run vith failures
{6} . Then production code:
was agaln edited (9).
3 (1) 07:32:04 Roman.java PRODUCTION EDIT 21sec MI=0{Z), SI=0(Z), FI=0{253) This portion of development
(2) 07:32:06 TestIntegerToRoman. java TEST OK appears fo be TDD conformant
because:
Only tests were ran,
following a
ThD-conformant episode.
v
Done

Figure 1.3. Demo of Zorro’'s TDD Inference

developer solved the Roman numeral conversion problemédAgig C) using TDD in the Eclipse

IDE. The Hackystat Eclipse sensor was installed to instnirttee development process to collect
development activities. Zorro partitioned them into 16sepgies using the “test-pass” tokenizer, and
inferred the process conformance of TDD. In the table itatsd in Figure 1.3, the last column con-
tains the reasoning process and result. According to this,téhe first three episodes are all TDD
conformant. The first episode is “test-first” but atypicat#ese production code was not edited
to make test pass after the test invocation failed at (18 Sdtond episode is “test-first” due to
the perfect match of development activities to the redfyreéactor metaphor. The last episode is
“regression’ because no progress was made although thagtimal code was edited. Based upon

the reasoned development behaviors and the context ofdgsis@orro inferred that all the three

episodes are TDD compliant.

With the automated software metrics collection and infeeeof TDD, a lot of useful analyses
that once were thought impossible have become plausiblean@iftl of analyses (see Chapter 4)
were implemented in Zorro. Figure 1.4 illustrates one ohthéhe “TDD Episode Demography”

analysis. This analysis provides an overview of a TDD progréng session, which is partitioned

TDD Episode Demography Evaluation
(65% of the episodes in this session are TDD-canformant.}
IL IE IE BE TL EE TE RE IE EE RE PR RF TL TF T& LN

Episode Category Acronym

TF=test-first:5 RF=refactoring:& TA=test-addition:1 RG=regression:0 PR=production:1 Tl=test-last:3 LG=long:0 UN=unknown:1

Figure 1.4. TDD Episode Demography

into 17 episodes, and 65% of them are TDD compliant. Note that

e each small box with a two-letter acronyms represents aesigigisode,

e TDD-conformant episodes are shown in green. Non TDD-condoit episodes are transpar-

ent.

For the TDD programming session illustrated in Figure 1f.Zarro was not used, the developer
would falsely claim that he/she complied with TDD. In facg iaturned out, the developer did

not conform to the idealized TDD process all the time. Acawgdo Zorro’s inference, 65% per-

cent of the episodes in this session are TDD-Conformant,sante episodes are “test-last”. In
addition to reporting the compliance of TDD, the “TDD Episodemography” analysis can also
be used to look for the development patterns. Episodes dexeat by time when they occurred.
The researchers and developers can retrospectively réfredevelopment process for training or

improvement.

Besides typical analyses such as “TDD Episode Demograptafso implemented a group of
telemetry analyses. The Software project telemetry [4QwéB developed by Qin Zhang in the
Collaborative Software Development Lab at the Universftidawaii. It can aggregate metrics data
together to perform daily, weekly, or monthly analyses efsbftware metrics to support in-process

software project management and decision makings.

10

Some goals of this dissertation research are to assist tlwa#oh, training, improvement, and
empirical evaluations of TDD. Software project telemesyan infrastructure that can be used by
Zorro to pursue these goals. In Zorro, | have already defiaknietry streams including “TDD
percent of development time”, “TDD percent of episodes’evelopment time ratio of test and

production code”, “size ratio of test and production codaid so forth. Figure 1.5 is a weekly
telemetry chart showing percentage of TDD development esiccbverage. From the week of Sep

Percentage of TDD Episodes (time) and Coverage

r 100
n | jeta)
HeTa]
. a5
- f=T]
'.III L]
e \ F 70
A @S
3 g I"-.l G0
D ao "'-,' [55 a
z \ ,r' 50 O
T |
= / Las F
[
i -]
8 / 35
a ; f 0
M i it
b / 25
: ¥ / 20
= ™ 15
\\
1Y o] 10
2 - g .H_._, u - | =
R e
% e s 1]
o o o o o o
e o o & & oF & oF
o n o A=y’ s¥ & i &
& & 't-’dh h & b‘g} N‘Q {,?:p
& & & % 4 o W b

24-5ep-2006 to 12-Mov-2006 (Weeks)

| - Coverage-Percentage<** line= - TDDPercent=time:=;

Figure 1.5. Proportion of TDD vs Test Coverage

30, 2006 to the week of Nov 18, 2006, | worked on the Zorro safeasystem and implemented
Zorro’s web validation interface. | used TDD in my developrne Due to the fact that testing

web interfaces requires a lot of additional effort, my patcgf TDD development dropped down

11

significantly in that period. As a result, the test coveraiggasro dropped from above 90% to below

70% over the course of eight weeks software development.

The synergy of Zorro and telemetry allows practitioners sgarchers to improve the practice
and research of TDD with no additional overhead. Both systara automated based on Hackystat's

automatic software metrics collection with sensors attddb the development environment tools.

1.4 Research Statement

In this dissertation, | created the Zorro software systestudy the conformance of Test-Driven
Development in practice with the aids of the Hackystat fraom& and the Software Development
Stream Analysis (SDSA) framework that | have developed. ddsegn of the Zorro software system
is a combination of bottom-up and top-down methods. The Idpwgent environment tools are
instrumented by Hackystat sensors to collect softwarega®and product metrics. A variety of
software metrics are abstracted into development aetsvind then are merged together to form
the time-series software development stream, which is paetitioned into small chunks named
“episode”. This portion is bottom-up. Given a software degenent method or low-level software
process, the process description, guideline, and knowledq be translated into a set of rules.
The rules can be used to evaluate episodes partitioned fresoftware development stream. This

portion is top-down.

The success of Zorro relies on the software metrics cofieatapability as well as the com-
prehension of TDD. The software metrics that are relatedD® Tnhust be collected. In the long
run, it is important for the software development commutidtyeach some kind of consensus on an
appropriate definition (or definitions) for TDD. Until thei®concrete experience from Zorro, this
consensus is not feasible. The development of Zorro is tieustive and progressive. Figure 1.6
illustrates the time line of this research project inclgdafew milestones. | have conducted three
empirical evaluations in my development process of Zornonestigate whether Zorro can collect
enough software metrics and how well it can infer TDD compi@ The Eclipse Screen Recorder
(ESR, [17]), an Eclipse plug-in that can record developnaetit/ities in the Eclipse IDE, was de-
veloped to assist the evaluations. ESR can capture Eclgpeersat the rate of 1 frame per second,
and thus it provides high fidelity movies for the purpose didadion. The last empirical case study

12

5/05 10/05 10/06 2/07

Version 0.1 Version 1.0 Version 1.0 Visual Studio Sensor
Initial Beta (For Validation) Telemetry Streams
3/03 - 5/05 6/05 - 10/05 2/06 - 7/06
Research & Improvement Sensor and Rules 7/06 - 11/06 2/07 - 6/07

Development & ESR Development Improvement Collaboration with NRC Telemetry Streams
/_M /—H 4 5 Y 5 A f_H
: | 10/05 - 1/06 | 10106 - 1/07 i 2/07 - 6/07

Pilot Study ! Classroom : Industrial
i Cdse Study ; Case Study

T

Figure 1.6. Development Timeline of the Zorro Software 8yst

was conducted off-site in Norway to investigate what valieso can provide for researchers and

project managers.

1.5 Empirical Evaluations

Three longitudinal case studies — a pilot study, a classroase study, and an industrial case
study were conducted to empirically validate the Zorrowaft system in this dissertation research.
The primary goal of these studies was to validate Zorro'sasok metrics collection as well as TDD
inference abilities. The secondary goal was to investigate useful Zorro would be. An additional

goal was to investigate how the metrics collection and ériee rules can be improved.

1.5.1 Pilot Study

After researching related work on TDD and stream analysisriigjues, | designed and imple-
mented the Zorro software system based upon my observaiwmralysis of TDD development
patterns. By the Spring 2005, | had solved all the difficsltié metrics collection in the Eclipse
IDE as a pilot, implemented the SDSA framework, and develdpe first set of TDD recognition

rules.

| refined the initial version of Zorro in the Summer 2005, andducted a pilot validation study
in the Fall 2005. Six experienced Java programmers paatietpin this study. Each participant
developed a implementation of the stack data structure éAgix A) using TDD in the Eclipse

13

IDE, which was instrumented by the Hackystat Eclipse sersmompared Zorro’s inference to an

independently collected source regarding their developriehaviors.

One approach to independent data collection would be to &aaabserver watching develop-
ers as they programmed, taking notes as to what developnetat/ior they are conducting and
whether they are pertaining to TDD or not. | considered thisdiscarded it as unworkable: given
the rapidity of development activities in TDD, it would berydnard for an observer to notate all of
the TDD-related development activities that can occurditg within seconds of each other. There-
fore, | took another approach by developing the Eclipsee&cRecorder [17]. The ESR generates
a QuickTime movie containing time-stamped screen shoth@fEclipse Window at the regular
intervals. One frame/second was found to be sufficient fbda&@on, generating file sizes of ap-
proximately 7-8 MB per hour of video. The QuickTime movieated by ESR provides a visual
record of development behaviors that can be manually caedptar the Zorro analysis using the
timestamps for validation purpose. Figure 1.7 is a scre@y sbowing the recorded development
process movie played in the QuickTime Pro software [58].

The participants spent 28 to 66 minutes on the programmsig #orro partitioned the overall
development efforts into 92 episodes, out of which 86 weassifiable; 6 were unclassifiable. It

classified 76 out of 86 episodes correctly resulting in di@ssion accuracy rate 88.4%.

The pilot study showed that Zorro is promising at inferririghhlevel development behaviors
with low-level development activities collected as softevenetrics at least in a simple environment
setting. The pilot study also showed that the metrics ctitleanissed some information that led to

inference errors.

In the Spring 2006, | improved the Hackystat Eclipse sensonfetrics collection, and refac-
tored Zorro’s inference rules. In the Summer 2006, undestiggestion of Dr. Philip Johnson, |
went to National Research Council of Canada (C-NRC), whedldborated with Dr. Hakan Er-
dogmus, a senior agile process researcher who pioneergethef automated TDD conformance
inference. The collaborative research at the C-NRC andoif@f-up collaboration in the Fall 2006

resulted in a classroom case study and an industrial casg istthe Spring 2007.

14

e Window Help

Sourey Felactor Mavepsbr Seanch Pro@er Bun windoe belp

T Yreves Bva

L —l

Figure 1.7. Analysis of QuickTime Video

15

| @ |- |- 0-Q- | EWE- |
[r—r—— o o e I i
= e stadkTad Ipackade edu.bavell.svacks =1}
=1 gre =
B t_Eu\:I.l.hmd.m Limport junit, framework. TestCase; s e ¥
3| Stack.jas Start with Green
=i 4] TestStack.jsva v
= 2 Tostseack 6 v Tests th o appllcmet
s giff*’@"‘““m.“"“-5'”ﬂ'] Bs pawthwr Aaroa k. Kegawa
- =
= i0public class TestZFtack extends TestCase <
f¥* Tests the isZnpty metuod 0f stadk. *f
public void ceasleSmpepl) |
Frack stmck = new Stecki):
dagaertTrus | "Checking chan che atsck 13 eMpty”, SLRcR. 1Ewenyw()) @
7
18
18]
82 oure 13 - AEN e T =0
@ edu.hawal stack
o iwport dackuorions
=B TedStach
- @ testdsEmptyd)
%%~ o0
[rosoce | inFowser | sogmk|
|
|
b L = ===t — — |
Wrkekic Sk froert | 1614 Lavins gy (8033 L
20:57:34:00
00:00:13

T —

1.5.2 Classroom Case Study

I, the author of Zorro, compared the recorded movies with@einference to validate Zorro's
metrics collection and TDD development inference in thetpstudy. | could be biased both at
judging what software metrics are necessary, as well adeatimg development behaviors from
the observed activities in the ESR movies. One man’s subgejcidgment, especially the one from
author himself or herself, perhaps is not a valid measurecasa study [78]. This is notably called
“construct validity” problem according to [78]. Using miplie data sources, establishing the chain
of evidence, and having key informants review draft casdystaport are three viable tactics that
a researcher can use to avoid the construct validity prablEms, in the Fall 2006, | developed a

web interface to collect participant's comments, the thiata source.

In the Fall 2006, | conducted the classroom case study indfievare engineering classes at
the University of Hawaii. The experimental design of thigdst is very close to the pilot study.
Participants also developed using TDD in the Eclipse IDB Wit instrumentations of the Hackystat
Eclipse sensor and ESR. The differences were that the HatKyslipse sensor was more robust
and the new problem (Bowling Score Keeper at Appendix E) washharder than the stack data
structure (Appendix A).

Eleven students from the software engineering classestanlly participated in this study. The
participants developed in TDD for 90 minutes, followed byGandinute interview and a 20 minutes
Zorro inference validation session. In the interview, leskhem questions regarding their opinions
on unit testing and Test-Driven Development. A digital woiecorder was used in the interview

and in the following validation session for their verbal coents.

The classroom case study data analysis supported the dlainZorro’s metrics collection is
as good as ESR, if it is not better. Zorro's TDD complianceeiahce has two steps. It infers
development behaviors in episode first, and then uses tbeeredf results and context to reason
the conformance of TDD. The video analysis validated thar@mmferred episode development
behaviors with 70.1% accuracy and TDD compliance with 89al¥uracy. The third data source,
cross-validation with participant comments, is only slighdifferent from my video observation

analysis.

The participant interview analysis suggested that untirtgds good at yielding high quality
software but majority of participants (7 out of 10) admittbdt they did not test enough. Perhaps

16

TDD should be used to improve both developers’ confidencesaftaiare quality. The data analysis
also suggested that TDD is hard to do although half of pasditis like to develop software using
TDD in the future. Therefore, providing a tool such as Zowaassist practice of TDD has the
potential to help beginners. The usefulness evaluatiodweiad in this study suggested that some

of Zorro’s TDD analyses are useful for this purpose.

1.5.3 Industrial Case Study

On one hand, | planned the classroom case study for an exteradilation after the pilot
study. On another hand, | worked with Dr. Philip Johnson andHakan Erdogmus to solicit the
collaboration with other researchers and practitionere are also interested in empirical study of
TDD. The Zorro demo [80] was developed to demonstrate howaZaeorks and what analyses it
provides. This effort led to collaboration with Dr. Geir Hmen and Dr. Tor Erlend Feegri from
SINTEF ICT of Norway. They are performing research on theaf¥eness of TDD, in contrast to
Test-Last Development, the opposite side of TDD. They fdimadl collecting the information about
TDD is very hard and Zorro has the potential to provide highelity information about TDD.

A European software company that provides a packaged seftpraduct for marketing and
customer surveys [27] is the participant of this indusitide study. However, the development tool
is Visual Studio .NET Team Edition and the programming lagguis C#. We rapidly developed a
Zorro compatible Visual Studio sensor for this industriase study. A Hackystat server is installed
on a Windows 2000 server provided by the company. | remotelgaged the server for this indus-
trial case study. Out of 20 participants, 12 were in the TDBjgmt and the remaining 8 were in
the non-TDD project. Unfortunately, the participation lmststudy was very low. As to my report
written at the end of March 2007, 25% of developers instatedsensor and collected development
data, 25% of developers installed the sensor but did nottaptas requested, 25% of developers
installed the sensor but the sensor did not send any data setlier after a pilot, and the rest 25%
of developers did not install the sensor according to my mlagien of the Hackystat server status.
The project manager indicated that Zorro’s inferred dgwuelent behaviors did not agree with what
developers actually did, but provided no detailed infoiorat It turned out that it is much harder
to have industry participants install the sensor, and itde hard to relate collected data to actual

development behaviors, particularly if the study had to dwedcicted remotely. However, Dr. Geir

17

Hanssen and Tor Erlend Faegri have expressed intereststioumnsing Zorro in the future studies.

This case study served as a pilot test only.

1.6 Contributions

My contributions include the SDSA framework, the Zorro s@lte system, and the systematic

empirical evaluation of Zorro:

1. SDSA Framework

The Software development is a very complicated processiditgy a series of continuous
development activities, yet not independent of each otliee SDSA framework abstracts
continuous, interwoven development activities colledigdHackystat sensors in a program-
ming session into a software development stream. The saftdevelopment stream is a

linear, time-series data structure.

A development stream can be partitioned by SDSA using takesiinto episodes, another
abstract data type representing a micro-iteration of avsolt process. Tokenizers are ex-
pandable and selectable. A different set of tokenizers eaapplied according to the studied

software process.

The SDSA framework characterizes development behavioepisodes using JESS, a rule-
based system in Java. A classifier interface is provided i85 flexibly supply inference

rules. Moreover, the rules can be changed on the fly.

In my thesis research, | instantiated the SDSA frameworkest-Driven Development (TDD),
and the system resulting from this work is the Zorro softweygtem that can automatically
infer the development behaviors and the compliance of TDils Tesearch work demon-
strated that the SDSA framework has the potential to be Useftesearching other low-level

software processes.

2. Automated Recognition of TDD with Zorro

Zorro recognizes TDD automatically with the software nestdollected by Hackystat sensors
in the IDEs. The contributions of Zorro’s implementatiorlude the enhanced Eclipse and
Visual Studio .NET sensors, a suite of TDD recognition ruégsl many useful analyses for

understanding TDD in practice.

18

1.7

The Eclipse and Visual Studio .NET Team Edition are two IDizt tare Zorro compatible.
The sensors of these two IDEs collect a variety of procesdeaatuch as editing, refactoring,
testing, compilation, and so on. Many useful product metsigch as methods, statements,
test cases, and assertions are collected too. The progredsinges of software product

metrics are very useful information for software enginegniesearch.

The recognition rules are from the descriptions of many sketiwn TDD practitioners in-
cluding Beck [6], Doshi [15], and Erdogmus, and my groundbeseovation of TDD in prac-
tice.

Many analyses were developed to display Zorro’s inferemoegsses and results, report dif-
ferent aspects of TDD such as episode duration distributibne TDD telemetry streams

were developed to support the in-process decision makorgoftware project management.

. Empirical Evaluations

My contribution to the empirical evaluations are:

(a) ESR [17], a software system that can record Eclipse ysage

(b) The availability of the Zorro software system for use ltysp researchers under an open

source license;

(c) The experimental method exemplified by the case studieish shows how to conduct

research on TDD that does not suffer from the process comfocmproblem;

(d) The actual results of the case studies, which show (igtiveo can identify TDD, that
(i) users found Zorro analyses to be useful in certain caselsnot in others, and (iii)
that industrial case studies on TDD are more difficult thassioom case studies, as
it is more difficult to get developers to install sensors, amate difficult to relate data
back to their development.

Dissertation Structure

This thesis is organized into the following chapters.

e Chapter 1 introduces the TDD challenges and the motivatichi®research.

e Chapter 2 presents the related research work.

19

Chapter 3 describes the SDSA framework in details.

Chapter 4 describes the Zorro software system in details.

Chapter 5 briefs the research questions and methodolodysadissertation.
Chapter 6 reports the pilot study data analysis in details.

Chapter 7 reports the classroom case study data analy<saitsd

Chapter 8 reports the industrial case study conductedteff-s

Chapter 9 synthesizes the results from the empirical casiest presents the conclusions of

this research, and discusses the future work.

20

Chapter 2

Related Work

Test-Driven Development (TDD), a core practice of ExtremnegPamming, has been widely
adopted by software industry and studied by software elgimg researchers. Industry practition-
ers have put increasing effort into evaluating and undedstg TDD in recent years. Many books
[6, 3, 51, 47, 30] directly related to TDD have been publish&nit[59, 77], the foundation of
TDD, has been ported to more than 30 languages. Developmastduch as Eclipse, NetBeans,
and Visual Studio have been enhanced to support unit testimgh makes it easier for practitioners
to develop software in TDD. The community of TDD [65, 63] imtiouously growing, and some
enthusiastic practitioners [48, 2, 62, 69, 57] even writeutliheir personal experiences in their
blogs. In addition to this industrial interest, softwaregmeering researchers have begun study-
ing TDD as an enabling software development method. Botlagegical[50, 18, 53, 19, 44] and
industrial [23, 49, 25, 76, 7] evaluations of TDD have beendtted in the last few years.

So far, software engineering researchers have focused ahdiseir energy on the outcomes
that applying TDD brings to software products and softwareetbpers. However, compared to the
claims made by practitioners, research findings of TDD otwsok quality and developer produc-
tivity are mixed. In fact, much of the research work on TDDfers from the threat of “construct
validity” [74] because of the “process conformance” probleNang and Erdogmus define process
conformance as “the ability and willingness of subjectsoltoiv a prescribed process”. Janzen and
Saiedian warn that the inability to accurately charactepmocess conformance is harmful to TDD
research, and that it is so hard to measure the usage of aopmeait method such as TDD that
current reports on adoption of TDD are not valid. Surveysddien used to measure the adoption

of TDD, but only those who are much in favor or much opposed teill respond. Janzen and

21

Saiedian concluded that the combination of popularity of XPnit and Eclipse likely implies a

certain degree of adoption of TDD [31]. However, this is anadirect measure.

Some of research work [11, 34, 45, 74, 75] has been done owaseftprocess compliance
using development activities and software artifacts ctdle from the development process. In my
dissertation research, | focus on studying the processomiahce of low-level software processes

and Test-Driven Development in particular.

Janzen claimed that TDD is a kind of software developmenhatktnot a process model, and
that it has emerged out of a particular set of process mo@g]s [n contrast, Beck and Cunning-
ham, the pioneers of TDD, put it this way: “test-first codisgiot a testing technique but is rather
about design.” [5] If TDD is a design technique and it drivies implementation of product code,
then classifying it as a software process sounds reasonlablay research, | have characterized
practices such as Test-Driven Development and Personl&@efProcess (PSP) as low-level soft-
ware processes. A common characteristic of low-level sofvprocesses is that they are defined by
many frequent and rapid short-duration activities. Unlikgh-level and long duration phases such
as “requirement analysis” that might last weeks to monthes aictivities in low-level software pro-
cess such as “refactor class Foo to extract interface IF@y take only seconds to a few minutes
[45].

This chapter begins with a detailed introduction to TDD)daled by a discussion of TDD
empirical studies. The research results are mixed becdulfenences in experiment settings, and
the empirical studies suffer from construct validity bezmof the process conformance problem of
TDD. In the second part, | present other related work on aatethprocess conformance in contrast
to my research that is built on the automated software nsetatiection machinery of Hackystat
[35, 37, 36, 38].

2.1 Test-Driven Development: A Short Introduction

“Test-first coding isn’t new. It's nearly as old as programgiin
— Kent Beck

Test-Driven Development[6] is a software development peattice popularized by Extreme

Programming [32, 4]. It has two basic rules: “(1) Write newdewnly if an automated test has

22

failed; (2) Eliminate duplication.” Kent Beck, the pioneafrTest-Driven Development, stated that

there is an implicit order of programming in TDD [6]:

1. Red - Write a little test that does not work, and perhaps do¢ even compile at first.
2. Green - Make the test work quickly, committing whatevessire necessary in the process.

3. Refactor - Eliminate all the duplication created by megaitting the test to work.

The key characteristic of TDD is “test-first”, with which d&wpers should always write a test first
according to the requirement, and then implement the fanaticode to make the test pass. Because
a test is always created first to drive the design and impléatien, TDD used to be called Test-
First Design (TFD) or Test-First Development (TFD) [4]. Mpinion is that “test first” is better than
“test driven” with respect to describing the order of ted production coding activities. Therefore,
in the rest of this document, | will use “test first” when it isgessary to emphasize the order of
programming in TDD, otherwise there is no difference betwéest first” and “test driven”.

Test first is as old as programming, and has been used foreef#@l, 4, 5]. Beck recalled that
his first programming experience was actually in test-fisgt@ output and input tapes [5]. Indebted
to the philosophy and popularity of Extreme Programming)(XFest-Driven Development has
emerged as a notable best practice for software develodehe3].

XP is a light weight software development methodology tisaintended for use when con-
fronted by vague and rapidly changing requirements [4]s ltoted in observations on repeated
best practices in software development. The philosophyR®isto take common-sense principles
and practices to an “extreme” level [4, 32]:

¢ If code reviews are good, we'll review code all the time (FRaiogramming).

e Iftesting is good, everybody will test all the time (unittieg), even the customers
(Functional Testing).

¢ If design is good, we will make it part of everybody’s dailysmess (Refactoring).

¢ If simplicity is good, we will always leave the system witletiimplest design that
supports its current functionality (the simplest thingttbauld possibly work).

e If architecture is important, everybody will work definingdarefining the archi-
tecture all the time (Metaphor).

e If integration testing is good, then we will integrate ansdtteeveral times a day
(Continuous Integration).

23

¢ If short iterations are good, we will make the iteration lgakally short — sec-
onds and minutes and hours, not weeks and months and yeansifi®) Game).

Figure 2.1 illustrates the supporting network of twelve XBqbices [4]. XP proposes TDD as

On-site Customer e

Metaphor ||
N>
/m

Standard
Collective Ownership

N Planning Game

40 Hour Work

4

R—,
N

Refactoring

Short Release

1 Continuous Integration

Figure 2.1. Network of Extreme Programming Practices[4]

the glue to hold the process together. TDD helps create aradrapsive suite of unit tests such that

developers have the courage to consistently refactor eddeimuch simpler design.

Though born as a practice of XP, TDD is often thought as anpeddent software develop-

2.1.1 Characteristics of TDD

ment method. It can be used by practitioners and organimatiwat do not or partially practice XP
[6, 65, 63]. Many TDD training workshops [66, 67, 61, 68, 62] Bave been provided by experi-
enced practitioners and consulting companies. An infosnaley [73] conducted by the Method
and Survey magazine found that 46% of the studied softwayanirations perform unit testing
informally, 41% of the studied organizations documentrthait test cases, and 14% of the studied
organizations use the TDD approach.

“Never write a line of functional code without a broken testeda

— Kent Beck

“Test first coding is not a testing technique.

— Ward Cunningham

24

Recall that the two basic rules of TDD are to “(1) Write new eaahly if an automated test has
failed; (2) Eliminate duplication.” Following the first rel given a requirement, a TDD developer
analyzes it first, and then outlines a To-Do list with a fewkgasThe tasks can be very simple but
should suffice to enable some development to occur. The @j@metan start a task that is either
easy to do or essential to the problem to be solved [3, 6].rftking a task, the developer writes a
unit test first, and then invokes it. The test invocation rmfgh because it tests something that does
not exist. The failing test drives the implementation of fawnctional code to make it pass. Often,
it is also necessary to run all tests to make sure nothingolelor. The second rule is to eliminate
the duplication. If redundancy is introduced in the firsipstiihe developer should refactor either
test code or functional code to remove it. It is also necgstgarun all tests after refactoring to
confirm that nothing is broken. This is an iteration of TDD.@&ntmon belief is that TDD iterations
should not last more than 10 minutes [16]. After an iteraioover, the developer can cross out the
finished task from the To-Do list, and pick another task toilegnew iteration. Additionally, the
developer should add new tasks to the To-Do list whenever se@wants. The characteristics of
TDD are :

Test First

Test first is the key characteristic of TDD. Importantly, iDD, developers should “never write
a line of functional code without a broken test case” [5].

Short Iterations

Quickly adding functional code to make test pass is impotaid DD. An iteration should last
a few seconds to several minutes only. If hours of work is eded make a test pass, probably the
developer should divide the programming task into severaltasks that can be solved in a shorter
period of time.

Frequent Refactoring

Code is consistently refactored in TDD to create the simlessible design. The existence of
a suite of unit tests gives developers the “courage” to tefabe code [6].

25

Rapid Feedback

Unit testing is usually supported by the XUnit[59] frameWwdhat is available in most main-
stream languages. After new functional code is added, deged can invoke the unit tests to test it

right away. The feedback is available within seconds or tesu

One Ball in the Air at Once

In typical software development, a developer usually eard baggage with the requirement,
system structure design, algorithm, code efficiency, feititeand communication with other code
etc. Martin Fowler described that the process is like keggiveral balls in the air at once (Page
215 in [6]), while the developer only keeps one ball in theationce and concentrates on that ball
properly in TDD. In the development step, the developer or@gds to make the test pass without
worrying about whether it is a good or bad design. In the tefawgy step, the developer only worries

about what makes a good design.

Always Working Code

The code should be always working in TDD because developerall tests at the end of each
iteration. If any test has failed, the developer should fiigiit away. The fix should be easy because
only a small amount of code is written in each iteration. Hming all tests after an iteration is not
feasible, the continuous integration can be set up to rum gdeonce a day or several times a day.

2.1.2 Benefits of TDD to Software Development

“I have spent enough time in my career on silly bug-huntintgy WDD those days
are gone. Yes, there are still bugs, but they are fewer antbfar critical” [2]
—Thomas Eyde

The two most notable benefits of TDD are high quality and dsei productivity [5, 31] :

26

High Quality

Probably the most advocated benefit of TDD is the high codétguBecause software quality
is hard to measure, practitioners and researchers oftecogeecoverage as the proxy of software
quality. The code developed in TDD should be 100% coverecesno functional code is created

without a unit test.

High Productivity

Functional code and test code are both products. Testingrisopthe design process, and it
does not take a long time to write a small test. If developeedro write same amount of test code,
TDD should save development time because less time is speests than in the traditional test last
or ad-hoc development methods. In addition, TDD users cthahthe method reduces the overall

amount of time spent on debugging, with a resulting increéaseerall productivity[76].

2.2 TDD Research Work

Much research work has been conducted on studying impartaoabmes of TDD such as soft-
ware quality and developer productivity in recent yearsaddition to anecdotal experience reports
[24, 49, 76, 44, 18, 7], researchers have run controlledrarpats [50, 53, 19] to compare TDD
against other development methods such as test last anadaBé&pending on whether the test sub-
jects are students or professional developers, the résesmk can be categorized into academic

and industrial studies.

2.2.1 Empirical Evaluation in Academic Settings

Muller and Hanger [50] conducted a study in an XP class inntaery to test TDD against
traditional programming. The acceptance tests were pedvio both the TDD group and the control
group. Interestingly, students in the TDD group spent more tbut their programs were less
reliable than the control group.

Edwards [18] adopted TDD in a junior-level class to compahetier students got more reliable
code after the use of TDD and WEB-CAT, an assignment subonissystem. It turned out that

27

the students using TDD reduced their defect rate drambti¢#% fewer defects/KSLOC using
a proxy metric) after adopting TDD, and a posttest surveyndothat TDD students were more
confident of the correctness and robustness of their pragram

Similarly, Kaufmann and Janzen [44] conducted a pilot stadyimplications of TDD in an
advanced project-oriented software engineering courdeey Blso reported that TDD helped to

improve software quality and programmers’ confidence.

Pancur, Ciglari¢, Trampus, and Vidmar [53] designedrratied experiment to compare TDD
with Iterative Test-Last approach (ITL), which is a slighthodified TDD development process in
the order of “code-test-refactor”. This study found thatOO’3 somewhat different from ITL but

the difference is very small.

A more recent study on the effectiveness of TDD conductedridp@nus, Morisio and Torchi-
ano [19] used the well-defined test-last and TDD approackdBaacur did in [53]. This study
concluded that TDD programmers wrote more tests per unitagdramming effort. More test code
tends to increase software quality. Thus, TDD appears todwepthe quality of software but TDD
group in the study did not achieve better quality on averhga test-last group.

2.2.2 Empirical Evaluation in Industrial Settings

Several attempts have been made by researchers to studpisofijuality and developer pro-
ductivity improvements of TDD in industrial settings.

George and Williams [24] ran a set of structured experimerits 24 professional pair pro-
grammers in three companies. Each pair was randomly assigraeTDD group or a control group
to develop a bowling game application. The final projectsenssssessed at the end of the experi-
ment. They found that TDD practice appears to yield code siferior external code quality as
measured by a set of blackbox test cases, and TDD group pa8%ednore test cases. However,
the TDD group spent 16% more time on development, which cbale indicated that achieving
higher quality requires some additional investment of tilméerestingly, and in the contrast to the
empirical findings, 78% of the subjects indicated that TDBgtice would improve programmers’
productivity.

28

Maximilien and Williams [49] transitioned a software teararf an ad-hoc approach to testing
to TDD unit testing practice at IBM, and this team improvettware quality by 50% as measured
by Functional Verification Tests (FVT).

Williams, Maximilien, and Vouk [76] conducted another cadady in IBM to study TDD.
Compared to a baseline project developed in a traditiorshlida, the defect density of the project
developed in TDD was reduced by 40% as measured by functienification and regression tests.

The productivity was not impacted by the additional focugporducing test code.

Geras, Smith and Miller [25] isolated TDD from other XP preges, and investigated the impact
of TDD on developer productivity and software quality. Ireithresearch, TDD does not require
more time but developers in TDD group wrote more tests anduggd them more frequently, which

may have led to future time savings on debugging and devedopm

Another study of TDD at Microsoft conducted by Bhat and Namgap[7] reported remarkable
software quality improvement as measured in number of tefeer KLOC. After introduction of
TDD, project A (Windows) reduced its defects rate by 2.6 8rend project B (MSN) reduced its
defect rate by 4.2 times, compared to the organizationabgee Reportedly, developers in project
A spent 35% more development time, and developers in prgespent 15% more development

time, than the developers in non-TDD projects spent.

2.2.3 Discussion of Empirical Evaluation Studies

The research findings of empirical studies are mixed on swévquality and developer pro-
ductivity as shown in Table 2.1. The study conducted in Miofo[7] and the study conducted in
University of Karlsruhe [50] are two extreme cases. In [fi§ tlevelopers improved software qual-
ity up to four times after adopting TDD. In comparison, thelXBroup in [50] yielded less reliable
programs than the control group. In the following, | will cpare the research results according to

the differences in experiment settings.

Students vs. Professional Developers

One difference is in population. The studies in academiinggstused students as test subjects,

while the studies in industrial settings recruited praf@sasl developers. Of 10 empirical studies

29

0€

14

C

Investigator Study Type Participants| Software Quality Developer Productivity
George [23] Controlled Experiment 24 TDD passed 18% more tests 16% more time
Geras [25] Controlled Experiment 14 TDD has the edge on quality No impact

Industrial | Maximilien [49] | Case Study 9 50% reduction in defect density Minimal impact
Williams[76] Case Study 9 40% reduction in defect density No change
Bhat [7] Case Study 11 2-4 times reduction in defect density35% and 15% more tim¢
Kaufmann [44] | Controlled Experiment 8 N/A 50% improvement
Edwards [18] Case Study 59 549% fewer defects N/A

Academic| Erdogmus [19] | Controlled Experiment 35 No change Improved productivity
Muller [50] Controlled Experiment 19 Less reliable, but better reuse No change
Pancur [53] Controlled Experiment 38 No change No change

Table 2.1. Research Work of TDD on Software Quality and Deyedt Productivity

listed in Table 2.1, 5 were conducted in academic settingd,tlae other 5 were conducted in in-
dustrial settings. The studies conducted in industrigirggt found evidence of software quality
improvements, but often at the cost of decrease of develpmetuctivity. On the contrary, the

studies in academic settings often found no software gquialipbrovement but increase of developer

productivity.

How come the research findings are so divided among studietucted within different pop-
ulation? Did professional developers pay more attentiogofowvare quality than students? Were
students more concerned about productivity than profeakidevelopers? A caveat of industrial
studies is that they must be beneficial to participants. #, [Maximilien and Williams proposed
TDD as a solution to reduce the defect rate. In [76], Williafkaximilien and Voulk assigned
a dedicated coach to the development team. George and Méllja3] noticed that the control
group did not write worthwhile automated tests, partiallgdo the lack of incentives. Brilliant and
Knight [9] note that industry does not perceive a significaanhefit from working with academic
researchers in many cases. Researchers have to be ablesiticeoindustry practitioners of the
benefits and provide assistance in order to conduct reseaictiustrial settings. The benefits are
important to the participants of industrial studies, otvise the quality of research would degrade.
Geras, Smith and Miller reported that professional devateare hard to recruit when participation
is voluntary [25].

Students are generally less experienced at software geweltt when compared to professional
software developers. Itis unclear whether students am@pppte participants for effectively study-
ing TDD [19]. Muller and Hagner reported that the TDD groupdguced code with 74% branch
converage only, while the control group produced code wih®ranch coverage [50]. Erdogmus,
Morisio and Torchiano [19] discussed the causal relatignbletween research findings and par-
ticipant skill levels. They found that the students withtikill rate improved productivity more

dramatically than the students with low skill rate.

Case Study vs. Controlled Experiment

Another difference between the academic and industry beessghrch is in research methods.
Case study and controlled experiment are the two most popsgaarch methods. Of the 10 studies
listed in Table 2.1, 6 are controlled experiments and 4 ase caudies. Most of the controlled

experiments were conducted in academic settings becaass@bm settings are more amenable to

31

controlled experimentation. Since industry rarely repélaé same project twice, it is hard to have

controlled experiments in industrial settings. Three ddive industrial studies were case studies.

In controlled experiments, researchers often isolateditss from TDD to compare it against
other development methods such as test last and ad-hoc3509523, 25]. Half of the controlled
experiments [23, 44, 19] observed productivity improvetierT DD groups, but only two studies
found evidence of software quality improvement. On the @yt the participants in the case
studies improved software quality dramatically after aadapTDD, but they also spent more time

on development.

Rivalry Development Methods

The third difference of experiment settings is in the depeient methods that TDD was com-
pared against. Researchers compared TDD against thednadlitest-last[44, 25], ad hoc[50, 23],
and iterative test last (ITL) [53, 19] methods. TDD did nolpgh® improve software quality when it
was compared against ITL. But it helped to improve softwaraity when it was compared with ad
hoc and test last methods. Though TDD developers spent negsdogyment time, they also wrote

more tests [23, 19] and ran tests more frequently [25].

2.2.4 Process Conformance of TDD

In the previous section, | have discussed the mixed resdiadings of TDD due to differences
in population, research methods and the development methat TDD was compared to. How-
ever, the research findings of studies in the same group vitere consistent. For example, all the
case studies found evidence of software quality improveraeidDD. Perhaps this phenomenon
indicates that there are flaws in the empirical studies of TDD

Erdogmus, Morisio and Torchiano [19] discussed that a thioethe validity is “process confor-
mance”, which is the level of conformance of the subjecthéoprescribed techniques. In order to
improve process conformance, they informed participahtiseoimportance of following the proper
procedures, and conducted a post test survey to filter uagoaht data points[19]. Although they
first identified process conformance as a threat to the talidiresearch results of TDD, they were
not alone in dealing with it. Miller and Hagner [50] also itated that their experiment was not

technically controlled. During the experiment, they haés$& TDD groups if they were following

32

the test-first process. Pancur, Ciglari¢, Trampus, aiddndr [53] instrumented Eclipse, the devel-
opment tool used in their study, to report unit test invamatirequency, results and time taken. A
similar instrumentation method was used by Geras, SmithMitidr [25]. However, instrument-

ing test invocation is a poor measure for process conformahd DD because developers in test
last groups can also run tests frequently. In [23, 76, 4%aechers studied test-first along with
pair programming, which served as the process control mdet@tearly, none of these methods is

reliable at controlling participants’ compliance to TDDthe rivalry development methods.

Test first is a key characteristic of TDD, and developers Ehtmever write a line of functional
code without a broken test case.” [5]. Short iterationsguent refactoring, one ball in the air
at once, and always working code are other characteristic®D. Developing software in TDD
needs skills, practice, and discipline. On one hand, it in¢pwidely adopted and embraced by
software industry. Many developers simply enjoy the “ddrafetest first and claim that they are
“test-infected”, a phrase that is often used by the membeF®® community. On the other hand,
the empirical research findings of TDD are often mixed. On¢hefcauses of confused research
results is the process conformance problem. In my thesgarels, | have focussed on developing
an automated machinery to evaluate the TDD conformanceeder, this work can be extended to
study other low-level software processes as well. In a lrpaiéw, my work belongs to the research

of automated software process. Some work has been conductéds direction [11, 10, 33, 34].

2.3 Automated Software Process Research

Software process research is historically top-down. R®peogramming[42], modeling[8] and
simulation[71, 34] are typical research methods for stoghdoftware processes. These top-down
methods are not usable for studying the process confornmao®-level software processes. They
are appropriate when processes are confined and variatinsrg rare. However, these conditions
are not easily met for low-level software processes thanddfiow developers should carry on
development activities at the granularity of minutes andrloGiven a low-level software process,
the actual process can be very different from the ideal pof®4, 55, 37], which in turn leads to

the issue of process conformance.

In my research, | used a bottom-up research method. | applied on automatically gath-

ered low-level development activities to infer the actualgess, and compared the inferred process

33

against the idealized process automatically, enabled dyule-based system. My work is related
to Cook’s "Automating Process Discovery and Validationtalensen’s “Discovering and Model-
ing Open Source Software Processes” because we all stiieitomated evaluation of software

processes using low-level development activities andvso# artifacts.

2.3.1 Automating Process Discovery and Validation

Cook and Wolf [11, 10] developed a client-server system nbBaboa to automate the process
discovery using finite state machine (FSM). Balboa colléetgelopers’ invocations of Unix com-
mands and CVS commits to construct event streams. It thenhaiseural network, a MARKOV
chain, and data mining algorithms to discover the FSM ofveafe processes. With Balboa, Cook
and Wolf were able to reproduce the ISPW 6/7 process in tesgarch. Figure 2.2 illustrates the
ISPW 6/7 process they discovered using the Markov Model. ritmbered circles in Figure 2.2
are the process states, and the arrows represent the deeglbpvent data. Although Cook demon-
strated that the generated FSM in Figure 2.2 is very clodeetadtual ISPW 6/7 process, FSM does
not look like an ideal technigue for automated process @iesgoand validation. The process FSM
can be too complicated to be useful. In [11], the three algms RNET, KTAIL and MARKOV
generated 15, 20 and 25 states respectively, and the stategexwoven in complicated manners
as shown in Figure 2.2. It is very hard to interpret the mdhiistate chart without a thorough

understanding of Balboa and the adopted software process.

2.3.2 Discovering and Modeling Open Source Software Procsss

Jansen and Scacchi [33, 34] simulated an automated appimaiscover and model the open
source software development processes. They took adeantgmior knowledge to discover the
software development processes by modeling the procagadrats using a PML description. Their
prototype simulation found that they could detect unugualhg activities and problematic cycles
of activities. They suggested that a bottom-up strategyetteer with a top-down process meta-
modeling is suitable for automated process discovery. Bey tdon’'t have a working software
system except for a prototype implementation of the “rezqagnt and release” process of the open

source project NetBeans.

34

Figure 2.2. Discovery of ISPW 6/7 Process (MARKOV)[11]

35

2.3.3 Discussion of Automated Process Conformance Resdarc

Automated process conformance is essentially about kmigeleiscovery and data mining, in
which ordered data streams are processed to discover asifglaaturally recurring patterns.

Cook and Wolf used artificial neural network with RNET alglonn, MARKOV probability
model with Bayesian learning algorithm, and KTAIL algorithto mine the development event
streams for discovering software processes [11]. But gdingra monolithic process model repre-
sented in FSM does not appear to be a very usable solutiorrdoegs conformance validation of
complicated software processes. In addition, generatBig I5 very time consuming according to

the performance report [11].

Jansen and Scacchi [33] modeled the requirement and rgleasess of a large open source
project using PML. They applied the modeled process to exartiie development activities and
behaviors. This bottom-up strategy, together with a togrdprocess meta-modeling, seems more
plausible than FSM for dealing with complicated developtriEhaviors.

In my thesis research, after researching the knowledg®ewsg and data mining algorithms
and techniques, | chose a rule-based system to study prooegsmance of low-level software
processes. Instead of asking process experts to inspeEStkeof the executed process as Cook
and Wolf did [11], | converted the process knowledge intotao$eules and used them to infer the
software development behaviors. My method is very closabsdn’s and Scacchi's approach [33]

except that | used rules rather than PML for process desmmit

An intriguing phenomenon of automated software processarel is the scarcity of directly
related literature work. Perhaps this is due to the difficaftcollecting the process execution data.
Cook and Wolf ignored the problem of data collection in thegearch and claimed that it is site-
specific [11]. Jansen and Scacchi took advantage of richnrgtion on the web and hypothesized

that the proposed model can be used for the process deplgywatdation and improvement [33].

Fortunately, with the development of sophisticated saféwaetrics collection system such as
Hackystat, software development data can be collectechaitoally and unobtrusively [35, 37,
36, 38]. In my thesis research, based upon low-level dewabop activities collected by Hackystat
sensors, | conducted the research of the process confoenshiiest-Driven Development.

36

Wang and Erdogmus [74] argued that the empirical researdiDbf suffers from the construct
validity problem (as is also the case in some other empisofiware engineering research) be-
cause it lacks process conformance. They developed a ypetotlled “TestFirstGauge” to study
the process conformance of TDD by mining the in-process kig dollected by Hackystat. Test-
FirstGauge aggregates software development data callbgtélackystat to derive programming
cycles of TDD. They used T/P ratio (lines of test code versesliof production code), testing effort
against production effort and cycle time distribution asitidicator of TDD process conformance.
This project precedes the Zorro software system[45], arfddnit stimulated our research interest
in studying low-level software process conformance. Untike prototype implementation of Test-
FirstGauge in VBA using an Excel spreadsheet, Zorro is mategl into the Hackystat system for
automation, reuse, and flexibility using rule-based syg&ih

Similarly, Wege [75] also focused on automated support oDTpocess assessment, but his
work has a limitation in that it uses the CVS history of codevBlopers will not commit on-going
project data at the granularity of seconds, minutes or hahen they develop the software system,
making this data collection technique problematic for thieppse of TDD inference. Collecting
rapid low-level development activities is a must in ordeinfer the low-level software process such
as TDD automatically.

2.4 Chapter Summary

In this chapter, | introduced Test-Driven Development (TID®widely adopted core practice
of Extreme Programming. The key characteristic of TDD is ¢wadop software by writing tests
first. The software industry has widely adopted TDD and sicgmt efforts have been put into
it by practitioners (see Section 2.1). Often, it is claimbdttTDD can greatly help to improve
software quality and developer productivity. The othelimoked benefits of TDD include simple
design, programmer confidence, and time saving on mainten@cause less time is needed for
bug hunting and debugging (see Section 2.1). Much reseanck fnas been conducted on TDD
about software quality and developer productivity (seetiBe@.2), but the research findings are
divided. Interestingly, the research results are condistben the experiment settings were similar.
A possible explanation for this phenomenon is process cor#nce, which is a construct validity

threat for the research findings (see Section 2.3).

37

To address these problems and produce greater consistenegearch results, | propose the
automated process conformance inference with support&rame-based system. In this chapter, |
compared my research to Cook’s automated process discandmyalidation, Jansen’s simulation of
open source software project process, Wang'’s and ErdogriiastFirstGauge project, and Wege’s

automated support for process assessment in TDD (see 15830

38

Chapter 3

Software Development Stream Analysis
(SDSA)

SDSA is a Hackystat extension that provides a generic framefor organizing various kinds
of software metrics received by Hackystat into a form appabe as input to a rule-based, time-
series analysis (Figure 1.1). SDSA supports (1) constmaif software development streams, (2)
partition of software development streams, and (3) infegasf development behaviors.

The SDSA framework supports completely automated analgsise configured. First, the
data collection is automated because SDSA uses softwacegzranetrics collected by Hackystat
sensors. The sensors collect in-process software metriomatically and unobtrusively. Second,
the construction and partitioning of the software develeptrstream is automated. SDSA reduces
software process metrics into development activities forstruction of a software development
stream, which is then partitioned into episodes. Once aldegwent stream has been partitioned
into a sequence of episodes, SDSA can analyze the develbfr@leaviors in these episodes and
classify them according to whatever process is under asalymally, the inference process is also
automated because SDSA uses JESS[22], a rule-based syslamai Developers can specify part

or all of the studied process as a set of rules.

The SDSA framework is designed to be customized for a spestftevare process of interest.
Developers can selectively choose the event streams tcenrethe software development stream

construction phase (see Section 3.2.1). For a softwaregspdevelopers can use different tokeniz-

39

ers to partition the development streams (see Section)3.2I80, different rules can be supplied

for development behaviors inference (see Section 3.2.3).

This chapter begins with an introduction to the Hackystmnfework on which the SDSA frame-
work is built, followed by a description of the SDSA framewkatself.

3.1 Hackystat

Hackystat is an open source framework for automated caleeind analysis of software engi-
neering process and product metrics. Hackystat suppootstusive data collection via specialized
“sensors” that are attached to development environmetlg.tdbese sensors send structured “sensor
data type” instances via SOAP to a web server for analysisarneer-side Hackystat “applications”.
Over two dozen sensors are currently available, includergesrs for IDEs (Emacs, Eclipse, Vim,
VisualStudio, Idea), configuration management (CVS, Stdior), bug tracking (Jira, Bugzilla),
testing and coverage (JUnit, CppUnit, Emma, JBlankettesyduilds and packaging (Ant), static
analysis (Checkstyle, PMD, FindBugs, LOCC, SCLC), and sthfo

Hackystat is tool, environment, and process independedbels not presume a specific operat-
ing system platform, a specific integrated developmentrenwent, or a specific software process.
It is designed to be extensible. It provides not only genseiwvices such as software metrics col-
lection, persistence and retrieval, and project definititemagement for conglomerating discrete
software metrics from both an individual and other projeetmbers, but also an extension mech-
anism where new modules (sensors or applications) can lexladspplications of the Hackystat
framework in addition to SDSA include in-process projectnagement [40], high performance
computing [41], and software engineering education [39].

3.1.1 Software Metrics Collection, Persistence, and Retval

When developers are programming in a development envirottoel with its sensor installed
and enabled, the sensor will collect both the process artliptanetrics unobtrusively. The sensors
then send them via SOAP to a web server that hosts Hackysktet.aichitecture of Hackystat is
client-server. Théclients” can be development environment such as Emacs, Eclipse, ienosigit
Visual Studio. Thée'server” is the framework itself and its extended applications. Gngérver-

40

side Hackystat handles metrics data persistence autaiatitt stores them in XML formats and

implements a self-managed caching mechanism to retrieve tvhen requested by the applications.

3.1.2 Extension Mechanism

The Hackystat system provides an extension mechanism pmgupew functionalities includ-
ing sensor data types (metrics), sensors, applicatiorgngentation, and so forth. Each function-
ality needs to specify a configuration file in XML saying whasiabout and what part of Hackystat
it will extend. For instance, if you are developing a new serier the Java development environ-
ment tool NetBeans, you will specify a sensor definition filelfsas netbeans.sensor.def.xml. It will
include the sensor name and what metrics it collects. Thedumformation on how to implement

an extended functionality can be found at the Hackystat hosgehttp://www.hackystat.org

3.2 SDSA Framework

SDSA is an application extending the Hackystat framewarkrdanizes various kinds of pro-
cess metrics data into a time-series software developrireains and conducts rule-based analyses.

SDSA is data oriented. Figure 3.1 illustrates its data maddlwork flow.

Software Software

Process
Metrics

Development
Stream

Episodes

Development
Behaviors

3. Recognize

Figure 3.1. Data Model and Work Flow of the SDSA Framework

SDSA models a software development process as a softwastogevent stream, which is
a time-series data structure consisting of continuousveoé development activities collected by
Hackystat sensors. The development stream is then paditimto episodes delimited by boundary

41

conditions. Each episode is a data model that representsmiicacomponents of the software pro-

cess of interest. Eventually, the goal of SDSA is to recogjtiie development behaviors embodied
within each episode.

The data model breaks down the SDSA framework into three coemis(Figure 3.1): (1) a
software development stream construction subsystem, f@lt@are development stream partition
subsystem, and (3) a development behavior inference sebsys

3.2.1 Software Development Stream Construction

SDSA begins with the development stream construction stiésythat translates variety kinds

of software process and product metrics into a developntesara. Figure 3.2 illustrates the process
of software development stream construction.

Metrics Action Stream

/ Read
(T oo *sneam
/ Read / Merge Compress
- NN
W IIIIII Merge,Compress
<A / Read ® Act!v!ty 1
IIIIIIII / Merge,Compress —> ﬁgz:z:gg
o WW
l\ .D_eb_ng /) / Merge@pres Activity n

/ Merge Compress

< >
W IIIIIIII / Merge Compress

/ Read

w |||||||

"W~ /Read

Figure 3.2. Software Development Stream Construction

Hackystat sensors collect the software process and praodetics and abstract them as the
structured “sensor data type”. A sensor data entry reptesatevelopment activity or an in-process
product metric change that has been caused by a developuititlyaBecause sensor data mixes

42

software process and product metrics, SDSA must resteittem as development actions in order
to infer the development behaviors. The development acdi@DSA's internal representation of
the software development activities that are collected agiistat sensors.

Development Action

Figure 3.3 is the class diagram of variety of developmenibastSDSA abstracted. All the
development actions are subtypes of the “Action” type. Eaation has a clock attribute indicating
when it occurs and a duration attribute indicating how mucte it takes.

AntUnitTestCommand BufferTransAction UnitTestEditAction
-numOfTests -leavingBuffer -numOfTestMethods
R —— _numOfErrors — -numOfTestAssertions
| -numOfFailures - -testMethodIncrease
| +isSuccessful() Action -testAssertionincrease
D -clock - .
v -duration CommitAction
«mterfeﬁei BuildCommand +compareTo(in anotherAction) -linesAdded %7
C -linesDeleted
| target — -log ProductionEditAction
77777) |-failureMessage
Z; isSuccessful() -numOfMethods
‘ +isSu -numOfStatements
i FileAction -methodincrease
| CliCommand e <} EditAction -statementlncrease
| —
[I -fileSize
-fileSizelncrease
DocumentEditAction
- - CompilationAction
DebugAction UnitTestAction
-errorMessage
-operator -testCase -
-location -success +isSuccessful()
-failureMessage

+isSuccessful()

Figure 3.3. Class Diagram of Development Actions

After reading the software metrics of a sensor data type,/AS@&hsforms them into develop-
ment actions, and then forms a time-series action stream.

Action Stream

Figure 3.4 illustrates the class diagram of action strearhe. “DataStream” is the super class

of all action stream classes. Each action stream has théitgpaf transforming a type of sensor
data into a time-series action stream.

In addition to converting sensor data into developmenbastian action stream can implement
a callback function to compress itself. This function caougr a set of continuous sensor data that

43

EditStream RefactoringStream CompilationStream DebugStream
+transform() +transform() +transform() +transform()
+compress() +compress() +compress() +compress()

DataStream Action
-actions ¢ -clock
+iransform() . ., |duration
+compress()
AntUnitTestStream CommmitStream BuildStream BuffTransStream
+transform() +transform() +transform() +transform()
+compress() +compress() +compress() +compress()

Figure 3.4. Class Diagram of Action Streams

represents a single development action. Using unit testation in the Eclipse IDE as an example,
the Eclipse sensor collects and sends 3 “UnitTest” sendaraldries if the invoked unit test has
3 test cases. Because they are the consequence of a unitvtegsition, the UnitTestStream can

implement a compress function to group them into a singleitTést” development action.

Development Stream

Many kinds of action streams from a developer over a timeogetan merge together to form
a software development stream as illustrated in FigureTh2.“DevelopmentStream” is an object
representing a software development stream. It is the ic@mtaf action streams. The following
code demonstrates the usage of “DevelopmentStream” clagde 3.1 is an example that shows a

software development stream’s internal representations.

Devel opnent St ream stream =

new Devel oprent Strean{ proj ect, user, start Day,
st ream addSubst r ean{ new Edi t Strean{user));
st ream addSubst ream new Buf f TransSt ream(user));
st ream addSubst r ean{ new Ref act ori ngStrean{user));
st ream addSubst ream(new Uni t Test St rean{user));
st ream addSubst r ean{ new Conpi | ati onStrean{user));

endDay) ;

44

stream assenbl e();

Table 3.1. An Excerpt of a Software Development Stream

Time File Event Metrics

12:35:29 TestBowlingGame.java ADD METHOD void TestGameegion()

12:37:47 TestBowlingGame.java TEST EDIT 120sec MI=+BB)+1(4),TI=+1(3),Al=0(1)
12:38:07 BowlingGame.java ADD CLASS BowlingGame.java

12:38:08 BowlingGame.java BUFFTRANS FROM TestBowlingGeajava
12:38:13 TestBowlingGame.java BUFFTRANS FROM BowlingGajava

12:39:17 TestBowlingGame.java TEST EDIT Osec MI=0(3);%(3),TI=0(3),Al=0(1)
12:39:17 TestBowlingGame.java COMPILE The constructamfe() is undefined
12:39:28 BowlingGame.java ADD METHOD BowlingGame(Frame)

12:39:30 BowlingGame.java BUFFTRANS FROM TestBowlingGeajava
12:39:35 TestBowlingGame.java BUFFTRANS FROM BowlingGajava

12:39:48 BowlingGame.java PRODUCT EDIT 0Osec MI=+1(1) &B3),FI=+124(124)
12:39:50 BowlingGame.java BUFFTRANS FROM TestBowlingGajava

3.2.2 Software Development Stream Partition

The second component of SDSA is the software developmesaratpartition subsystem. The
software development stream is a time-series data steuttat may have hundreds to thousands
development activities. Though applying machine learmilyprithm is plausible [11], | proposed
a mechanism to partition the development streams into épssasing the boundary conditions
(Figure 3.5).

Larman and Basili[46] claim that the software developmaeritarative and incremental. Thus,
tokenizing development streams not only simplifies minargé volumes of data, but also provides
an approach to comparing actual software development gsesdo software process theories. Fig-
ure 3.5 illustrates the design of the software developmieaasn partition algorithm. Tokenizers,
which partition software development streams using bogndanditions, can be chained together.
Currently, four tokenizers have been developed in SDSAurEI@.6 illustrates their class diagram.

Of course, developers can implement and add new tokenizeeséssary.

e Commit Tokenizer partitions development streams by source code repositmmynat ac-

tions.

e Command Tokenizer partitions development streams by commands invoked in lavsime

dow.

45

[1]2]a]a]s5]e].-[N] Development Stream

Tokenizer Chain

«uses»

El Action
Commit

wuses» Unclassmable Episode
_________________ Classified Episode
buildAll
«uses»
[TostPass] g -~~~

o oo

«uses»

EACTIY S

END

Figure 3.5. Partition of Development Stream

e Test Pass Tokenizepartitions development streams by successful unit testamions.

e Buffer Transition Tokenizer partitions development streams by buffer changes in an IDE.

EpisodeTokenizer
TokenizerChain :
i _chain -ruleFile
-chain +tokenize()
+addTokenizer() +isEpisodeRecognizable()
+loadRules() 1 * |+recognize()
+apply() +getRestActions|()
+getCharacteristicActions()
TestPassTokenizer CommitTokenizer CommandTokenizer BuffTransTokenizer
+tokenize() +tokenize() +tokenize() +tokenize()

Figure 3.6. Class Structure of SDSA Tokenizers

Although it is possible, it is not necessary to have multileenizers in a single run. In my
dissertation research, | found that the “test pass” toleniz sufficient for the inference of Test-

Driven Development behaviors.

46

3.2.3 Development Behaviors Inference

SDSA infers development behaviors using JESS [22], a rateth system. Figure 3.7 illustrates
how SDSA interacts with JESS to infer development behaviians development actions in an
episode.

Rules of Process
Knowledge

Load

Development JESS Rule «-Classity— o |eQuery .
e —Feed—> .
Activities e Engine ——Return—p> Classifier —Return Analysis

Actions Ret|urn Rules

v

Working Memory

Figure 3.7. Developer Behavior Inference

The inference process is a mix of top-down and bottom-up austhFor the process of interest,
developers can convert the process knowledge into a setesf, mrhich are then fed into JESS’s
working memory. JESS can infer development behavior afteleselopment actions in an episode
are asserted in JESS as facts. Inferred results can be djiigrigpplications via a classifier, the
interface between JESS and SDSA.

3.2.4 An Example

Now that we have shown how SDSA uses software process andgirotktrics for develop-
ment behavior inference, | will use an example to demoresitafFigure 3.8 illustrates the usage of
SDSA for inferring development behaviors. From 15:51:21601:10, a developer implemented
two user stories of the bowling game in Test-Driven DeveleptnWe used Hackystat to instrument
the development process and collected software procesgsiatluding refactoring, editing, com-
pilation and test invocations. Following the developmdregam construction method described in
Section 3.2.1, they were read and converted into developawtions for construction of the devel-

opment stream. Part 1 of Figure 3.8 illustrates the intestratcture of the development stream that

47

1. Stream Construction

2. Tokenization

Test-pass Episode

Development Stream

15:51:21 TestBowlingGame.java REFACTOR ADD IMPORT
15:51:49 TestBowlingGame.java REFACTOR ADD METHOD
15:52:55 TestBowlingGame.java EDIT 64s TEST

15:52:55 TestBowlingGame.java COMPILE

15:53:06 BowlingGame.java REFACTOR ADD

15:53:06 TestBowlingGame.java COMPILE

15:53:50 BowlingGame.java EDIT 3s PRODUCTION
15:53:55 BowlingGame.java REFACTOR ADD METHOD
15:54:26 BowlingGame.java EDIT 21s PRODUCTION

15:55:10 TestBowlingGame.java REFACTOR ADD METHOD
15:57:05 TestBowlingGame.java EDIT 104s TEST

15:57:05 TestBowlingGame.java COMPILE

15:57:12 Frame.java REFACTOR ADD CLASS

15:57:12 TestBowlingGame.java COMPILE

15:58:31 Frame.java REFACTOR ADD METHOD

15:59:20 Frame.java EDIT 38s PRODUCTION

16:00:29 BowlingGame.java REFACTOR ADD METHOD
16:00:58 BowlingGame.java EDIT 7s PRODUCTION

15:51:21 TestBowlingGame.java REFACTOR ADD IMPORT
15:51:49 TestBowlingGame.java REFACTOR ADD METHOD
15:52:55 TestBowlingGame.java EDIT 64s TEST

15:52:55 TestBowlingGame.java COMPILE

15:53:06 BowlingGame.java REFACTOR ADD

15:53:06 TestBowlingGame.java COMPILE

15:53:50 BowlingGame.java EDIT 3s PRODUCTION
15:53:55 BowlingGame.java REFACTOR ADD METHOD
15:54:26 BowlingGame.java EDIT 21s PRODUCTION

Test-pass Episode

S

3. Behavior Recognition

16:51:21 TestBowlingGame.java REFACTOR ADD IMPORT

<)

15:51:49 TestBowlingGame.java REFACTOR ADD METHOD

15:52:55 TestBowlingGame.java EDIT 64s TEST

C 15:52:55 TestBowlingGame.java COMPILE

15:53:06 BowlingGame.java REFACTOR ADD

15:53:06 TestBowlingGame.java COMPILE

15:53:50 BowlingGame.java EDIT 3s PRODUCTION

@ 15:53:55 BowlingGame.java REFACTOR ADD METHOD

15:54:26 BowlingGame.java EDIT 21s PRODUCTION

15:55:10 TestBowlingGame.java REFACTOR ADD METHOD

15:57:05 TestBowlingGame.java EDIT 104s TEST

@ Test Creation

15:55:10 TestBowlingGame.java REFACTOR ADD METHOD
15:57:05 TestBowlingGame.java EDIT 104s TEST

15:57:05 TestBowlingGame.java COMPILE

15:57:12 Frame.java REFACTOR ADD CLASS

15:57:12 TestBowlingGame.java COMPILE

15:58:31 Frame.java REFACTOR ADD METHOD

15:59:20 Frame.java EDIT 38s PRODUCTION

16:00:29 BowlingGame.java REFACTOR ADD METHOD
16:00:58 BowlingGame.java EDIT 7s PRODUCTION

@ Compilation Error

@@ Method Stub

15:57:05 TestBowlingGame.java COMPILE

15:57:12 Frame.java REFACTOR ADD CLASS

&
:> 15:57:12 TestBowlingGame.java COMPILE

15:58:31 Frame.java REFACTOR ADD METHOD

(@) 15:59:20 Frame java EDIT 29s PRODUCTION

@ Production Editing

16:00:29 BowlingGame.java REFACTOR ADD METHOD

16:00:58 BowlingGame.java EDIT 7s PRODUCTION

[T

@& Tests Pass

Figure 3.8. An SDSA Example

48

TF

TF

has 21 development actions. Among them, two are successfuiniocations that are painted in
green background. Then, in part 2 of Figure 3.8, SDSA's “Rasts Tokenizer” (See Section 3.2.2)
was used to partition the development stream into two epsoéurther, development actions in
the first episode were fed into JESS to evaluate using arfanteprovided by SDSA. In part 3 of

Figure 3.8, the inference rules detected a sequence ofapereht activities that were in the order
of (1) test creation, (2) compilation failures on test co®,method stub of production code, (4)
production code editing, and (5) successful test invonatithus the development behavior in the
first episode was recognized as “TF”, a short name of Test-Faimilarly, the second episode was

also recognized as “TF” by the inference rules.

3.3 Chapter Summary

In this chapter, | first introduced Hackystat, a generic feamork for software metrics collection
and analyses, which makes it possible to design the SDSAeframk for studying low-level soft-
ware processes. SDSA has three sub-processes: (1) softexa®pment stream construction, (2)
software development stream partition, and (3) developroehavior inference. SDSA is config-
urable and extensible. | concluded this chapter with an @kam Section 3.2.4 using a portion of

a development stream developed in TDD.

49

Chapter 4

Zorro Implementation

With the capabilities provided by Hackystat and SDSA, as pamy dissertation research,
| implemented the Zorro software system for the automatiohest-Driven Development (TDD)
behavior inference. As illustrated in Figure 1.1, Zorro isp&cialization of the SDSA framework
for TDD, supported by Hackystat. Zorro not only uses Hacktysgeneric services such as sensor
data collection and persistence, but also contributes naatibnalities to Hackystat. Zorro defines
several analyses and telemetry streams to study TDD usiivifias collected in development envi-
ronment tools. This chapter starts with Zorro's extenstorthe Hackystat and SDSA framewaorks,
followed by a collection of Zorro's TDD analyses.

4.1 Extensions to Hackystat's Data Collection

Zorro has special requirements for Hackystat sensors thaesponsible for collecting software
metrics. In order to partition development streams andgeiee TDD development behaviors,
certain software development activities must be collecable 4.1 contains a list of the required
development activities including edit, compile, test,tsWifile, and refactor. The “DevEvent” is a
sensor data type defined in Hackystat to represent thess &fndievelopment activities using the
combination of “Type” and “Subtype” attributes. In additiodDevEvent defines a special attribute
named “PropertyMap” to hold the required metrics, which lgs&d in the “Product or Process
Metrics” column of Table 4.1. Note that DevEvent does notehtine “Kind” attribute as you can
see in Table 4.1. ltis for the sake of clarification for sertmrelopers to determine what metrics are
mandatory. For instance, if a test is edited, the “currest-inethod” and “current-test-assertion”

50

metrics must be collected in addition to other metrics nexlifor editing activities on production

nt-

nt-

pSt-

code.
Table 4.1. Sensor Data Types Required by Zorro
Development DevEvent Product or Process Metrics
Activity Type | Subtype Kind Names
Edit Edit | StateChange Document | current-size
and Save
Production| current-size, class-name, currel
methods, current-statements
Test current-size, class-name, currel
methods, current-statements, curre
test-methods, current-test-assertions
Compile Build | Compile success, error
Test Test | UnitTest test-name, success, test-count, te
indice, elapsed-time, run-time
Switch File | Edit | BufferTransition from-buff-name, to-buff-name
Refactor Edit | ProgramUnit Unary op (add or remove), unit-name, un
type, language
Binary op (rename or move), unit-type, fron
unit-name, to-unit-name, language

N

These development activities are language and IDE indgmend wrote a sensor for Eclipse

to gather these activities and more recently wrote a sira@asor for Visual Studio .NET. It should

be possible to enhance a wide range of IDEs to collect negedesaelopment activities for Zorro’s

automated TDD behavior inference.

4.2 Extensions to SDSA

Zorro is a specialization of SDSA for automated inferenceafelopment behaviors of TDD.

Figure 4.1 illustrates how Zorro specializes SDSA. Firstyrd requires certain types of devel-

opment activities, as described in Section 4.1. Thus, theldpment stream in Zorro is a spe-

cial type of software development stream, which collececs development activities useful for

TDD recognition. Second, Zorro uses the “test pass” tolenilefined in the SDSA framework

to partition the development stream. Last, a special satle§rare defined in Zorro to infer TDD

development behaviors. In this section, | will describerdisrspecialization of SDSA in detail.

51

ftware

Ui lopment
Sensor Data |, . Development regm
in an IDE Stream
TDD lopment Test-Pass

aviors

Behaviors Episodes

Figure 4.1. Zorro's Extensions to the SDSA Framework

4.2.1 Zorro Development Stream

Edit, compile, test, switch file, and refactor are five typedavelopment activities required by
Zorro. Though other development activities such as comntiaadnvocations can be conducted by
developers, Zorro does not include them in the developniegdra because they are not useful for
recognition of TDD. The following code shows how Zorro caonsts a development stream using
SDSA.

Devel opnent St ream stream =
new Devel oprment Strean{ proj ect, user, startDay, endDay);
st ream addSubst ream(new Edi t St rean{user));
st ream addSubst ream new Buf f TransSt ream(user));
st ream addSubst rean(new Ref act ori ngSt rean(user));
stream addSubst reanm(new Uni t Test St rean(user));
stream addSubst rean(new Conpi |l ati onStrean(user));
stream assenbl e();

This piece of code instantiates a “DevelopmentStream” fgivan project, a project member, and
a specified time period indicated by the start day and the agdltdassembles five action streams

together to create the TDD development stream.

52

4.2.2 TDD Development Stream Partition

Zorro uses the “test pass” tokenizer defined in the SDSA freorie (see Section 3.2.1). As a
result, a development stream is partitioned into a sequehfttest pass” episodes all of which end

with successful unit test invocations. Figure 3.8 illussathis process.

Before we move on, let's pause a while and think about the odsthive are using. The devel-
opment stream in Zorro contains five types of developmentites that occur in an IDE when a
developer is programming. These activities are not TDD ifipedvoreover, the “test pass” tok-
enizer is used to divide the TDD development stream intot ‘pass” episodes. Again, the “test
pass” tokenizer is not TDD specific and a developer mightkevests no matter what development
methods he/she is using. Given this, how can we recognizelaf@nent behaviors in TDD? Can

we use a dedicated tokenizer for TDD such as a “TDD Iterattok&nizer?

Recall that the order of programming in TDD is “Red/Greeti#e®r”. If a developer programs
in TDD, tests should be invoked one or more times. Given aftask the To-Do list (see Section
2.1), a developer quickly writes a test and then invokes . drfdshe will get a red bar if the test
fails. After implementing functional code for the task, hresbe will invoke the test again to see
it pass. Therefore, when the “test pass” tokenizer is usedwil get an episode containing the
“Red/Green” development portion of a TDD cycle. If there is/aedundancy in the code, the
developer will refactor it and then invoke the test again. aA®sult, we will get another episode
containing the “Refactoring” portion of a TDD cycle. If wercauccessfully recognize the “test
first” behavior in the first episode and the “refactoring” beior in the second episode, then we will
be able to recognize TDD development behavior using theleigonquer method. This shows that
the “test pass” tokenizer is sufficient for recognition of/elepment behaviors in TDD. The first

guestion is answered.

Can we have a “TDD lteration” tokenizer? The answer is prgbab. First, detecting refac-
toring development behaviors is hard. It is hard to tell vabeta developer is adding new code or
refactoring for simpleness and clarification. Second, abawe discussed in Chapter 1, developers
may or may not conform to TDD, the Red/Green/Refactor cycs mot exist sometimes. Fortu-
nately, the test pass tokenizer is sufficient for us to fincbtiendary of TDD’s Red/Green/Refactor

cycles as we just showed in last paragraph.

53

4.2.3 Inference of TDD Development Behavior

Zorro also extends SDSA with a set of rules that enable iosgf test pass episodes to be
classified as one of 22 episode types. Table 4.2 lists thesedeptypes, their definition in terms of
their internal patterns of development activities, andratication of their TDD conformance.

Zorro organizes the 22 episode types into eight categofiest First (TF), Refactoring (RF),
Test Last (TL), Test Addition (TA), Regression (RG), Codedriction (CP), Long (LN), and Un-
known (UN). All of these episode types (except UN-2) alwagd with a “Test Pass” event, since
that is the episode boundary condition. UN-2 is providedasto classify a development stream
where there is no unit testing at all.

Test First

“Test First” can be seen as the Red/Green portion of a TDDecyld a “Test First” episode, a
test method or assertion statement is created first, fotldvyeproduction code editing. Depending
on compilation and test invocation results, an episode eaare of the four types: TF-1, TF-2,
TF-3, or TF-4, as illustrated in Table 4.2.

Refactoring

Refactoring behaviors in reality are a bit complicated toogmize automatically because de-
velopers can refactor code in many different ways. A simpenario of refactoring is to change a
method implementation without changing its input and outgw accomplish this, the developer
can edit code directly or abstract a new method from it foseeuDirectly matching the patterns
of refactoring behaviors is hard, but we can observe themeaity. First of all, there should be
no test created. Second, code being refactored should ecrebise in size. If it does, the increase
should be relatively small. With these two principles in thimwe can define rules to infer refactor-
ing behaviors. Table 4.2 lists five kinds of refactoring episs: RF-1, RF-2, RF-3, RF-4, and RF-5.
Among them, RF-1 and RF-2 are refactoring on test, RF-3 and Rfe refactoring on production
code, and RF-5 defines mixed refactoring on both test anduptioth code.

54

GG

Table 4.2. Zorro episode types, definitions, and TDD con&oroe

ID | Definition | TDD Conformant
Test First

TF-1 | Test creation— Test compilation error~» Code editing— Test failure— Code editing— Test pass Yes

TF-2 | Test creation— Test compilation error~» Code editing— Test pass Yes

TF-3 | Test creation— Code editing— Test failure— Code editing— Test pass Yes

TF-4 | Test creation— Code editing— Test pass Yes

Refactoring

RF-1 | Test editing— Test pass Context sensitive
RF-2 | Test refactoring operation> Test pass Context sensitive
RF-3 | Code editing (humber of methods or statements decreasB)st pass Context sensitive
RF-4 | Code refactoring operation> Test pass Context sensitive
RF-5 | [Test Editing && Code editing (humber of methods or stateteatecrease)]+> Test pass Context sensitive

Test Addition

TA-1 | Test creation— Test pass Context sensitive
TA-2 | Test creation— Test failure— Test editing— Test pass Context sensitive
Regression

RG-1 | Non-editing activities— Test pass Context sensitive
RG-2 | Test failure— Non-editing activities— Test pass Context sensitive

Code Production

CP-1 | Code editing (number methods unchanged, statements $jrealest pass Context sensitive
CP-2 | Code editing (number methods /statements increase §ligfutirce code size increasel00 bytes)— Test pass Context sensitive
CP-3 | Code editing (number methods /statements increase smgmifjc(source code size increasel00 bytes)— Test pass | No

Test Last

TL-1 | Code editing— Test editing— Test pass No

TL-2 | Code editing— Test editing— Test failure— Test editing— Test pass No

Long

LN-1 | Episode with many activities{ 200) — Test pass No

LN-2 | Episode with a long duratiorn>(30 minutes)— Test pass No

Unknown

UN-1 | None of the above+ Test pass No

UN-2 | None of the above No

Test Addition

If you are a TDD developer, you probably have never heard ektTAddition” since Beck
did not explicitly define it in [6]. However, you may occasidly add a test that does not drive
implementation of new production code, thus “Test Additierists even if you do not realize it.

It is fundamentally different from the refactoring behavam test code because test methods and
assertion statements are added. Zorro defines two typesest Addition” behaviors: TA-1 and
TA-2.

Regression

It is always a good habit to run existing tests before addimg reew code into the system,
especially at the beginning. This development behavioalied the regression test. The tests may
fail due to problems such as incorrect environment settisgsthe regression behavior has two
categories: RG-1 and RG-2.

Code Production

Recall that developers might not develop software follaptime pattern of Red/Green/Refactor
all the time, as we discussed in Chapter 1. Also, some dessapay use other software devel-
opment methods, such as Test Last Programming. For exainfdeyossible that a big chunk of
production code can be inserted into the system withouesponding tests. Although tests are
invoked in the end, the development behavior is actuallyutilbwiting production code. Zorro
therefore defines “Code Production” to classify this variet development behaviors. Depend-
ing on the size increase of production code, “Code Produittias three types: CP-1 (statement
increase only), CP-2 (small code increase), and CP-3 (biguation code increase).

Test Last

“Test Last” is not a development behavior of TDD, but it isfuséo define it. Researchers have
compared TDD to Test Last Programming or lterative Test [t 53]. If Zorro differentiates

TDD from “Test Last”, it can greatly help empirical reseagchto study TDD in practice. “Test

56

First” is opposed to “Test Last” where a test is created giteduction code implementation. “Test
Last” has two types: TL-1 and TL-2, however, the differeneén®een the two types is very small.

Long

Development behaviors in long episodes such as ones witméoy development activities or
ones that last a very long time (over 30 minutes) are very twrdcognize. Therefore, Zorro does
not infer development behaviors of long episodes. This tepiable because iterations of TDD
should be just seconds or minutes in duration[5]. If an ej#ss very long, it is very likely not to

be TDD conformant.

Unknown

The last type of development behavior is “Unknown”. UN-2 éided to classify development
streams that do not have any successful unit test invocalit-1 is defined to incorporate the

situation that the rule set is insufficient, which is veryerbut we can not exclude it.

4.2.4 TDD Conformance

Once each episode instance has been assigned an episodbdyiieal step in the Zorro clas-
sification process is to determine the TDD conformance df ithgtance. Table 4.2 shows that
instances of some of the episode types are easy to charact&wr example, every instance of a
“Test First” episode type is automatically TDD conformaatd every instance of a “Test Last”,
“Long” and “Unknown” episode type is automatically not TDDrdormant.

Interestingly, several of the episode types, such as “Rafag”, “Test Addition”, “Regres-
sion”, and certain “Code Production” are ambiguous: inaiarcontexts, they could be TDD
conformant, while in others they could be TDD non-confortanhis is because, for example,
“Refactoring” can legitimately occur while a developer igher doing TDD or some different de-
velopment approach, such as Test Last Programming. In toadaissify instances of these episode
types, Zorro applies the following heuristic: if a sequentene or more ambiguous episodes are
bounded on both sides by TDD non-conformant episodes, temetambiguous episodes types are

classified as TDD non-conformant.

57

To make this clear, let's consider some examples, such aspisede sequence [TF-1, RF-1,
CP-1, TF-2]. In this sequence, Zorro classifies the ambigwepisodes (RF-1 and CP-1) as TDD
conformant, since they are surrounded by TDD conformarsioela types (TF-1 and TF-2). Figure
4.2 illustrates this scenario. In Figure 4.2, a rectanglih Wetters represents an episode, and it is

painted with green background if it is TDD conformant acoogdo the heuristic.

TF-1 TF-1 TF-1
RF-1 RF-1 RF-1
1) i) [e
TF-2 TF-2 TF-2

Figure 4.2. Episode Sequence Example A

Now consider the sequence: [TL-1, RF-1, CP-1, TL-2]. In g8guence, Zorro classifies the
same two ambiguous episodes (RF-1 and CP-1) as TDD non+ooafid, since they are surrounded
by TDD non-conformant episode types (TL-1 and TL-2). Thisr&rio is illustrated in Figure 4.3
where an episode is painted with red background if it is TDDB-nonformant.

TL-1 H

RF-1 RF-1

o1 | =
TL-2

CP-1

Figure 4.3. Episode Sequence Example B

Now consider a sequence like: [TL-1, RF-1, CP-1, TF-1] tlated in Figure 4.4. Here, the two
ambiguous episodes (RF-1 and CP-1) are surrounded on anbysah unambiguously TDD con-
formant episode (TL-1) and on the other side by an unambigyoLDD non-conformant episode
(TF-1). In this case, Zorro’s rules could implement an “opstic” classification, and assign the
ambiguous episodes as TDD, or a “pessimistic” classifinatmd assign the ambiguous episodes
as TDD non-conformant. Figure 4.4 illustrates both of h&ig$. Again, an episode is painted with
green background if it is TDD conformant, otherwise it isngad with red background. Both of
heuristics are supported by Zorro. In default, the optimishe is used, but Zorro allows developers

to switch to the pessimistic heuristic.

58

TL-1
RF-1
CP-1
TF-1

Figure 4.4. Optimistic and Pessimistic Heuristic Algomith

4.2.5 Zorro’s TDD Episode Inference

With episode categorization and TDD conformance heusisboth of which are supported by
the rule-based system, Zorro can automate the recognitiobb. | conducted the “TDD Episode
Inference” analysis using a real TDD development streanmetoahstrate the Zorro’s inference re-
sult. An experienced developer solved the Roman numerakecsion problem (see Appendix C)

TDD Epizode Inference Demo - Mozilla Firefox

Fie Edit Wew Hstory Bookmarks Tools Help
= - - @ (% [4 Rt/ Aocalhost: 8080 hackystatjcontraller [=]B] [E] 50l [&]
Time File Event Type Raw Event Zorra's Inference &
1| (1)07:20:53 TestIntegerToRoman.jawa ADD METHOD TestIntegerToRaman(String) This portion of development
(23 07;20:54 TestIntegerToRoman java ADD CLASS TestlntegerToRoman.java lappears 1o be TDD conformant
(3) 07:20:54 TestIntegerToRoman java BUFFTRANS FROM TestStack.java P
(4) 07:21:05 TestIntegerToRoman java ADD METHOD void testZeroReturnsEmpty() R
(5) 07:24:44 TestIntegerToRoman jawa TEST EDIT 212sec Ml=+2(2), S1=+3(3), Tl=+1(1), Al=+1(1), F1=+307(307) Aenks BEtE srobhonlciore
(6) 07:24:44 TestintegerToRoman,java COMPILE Rotnan cannot be resolved to a type s
(7)07:25:08 Roman java ADD CLASS Roman.java
Ea; 07,2509 Roman java BUFFTRANS FROM Ies§lntegerTDRuman.]ava This episode looks like an
9) 07:25:23 Roman java ADD METHOD Roman(int 4 iy 3
(103 07:25:38 Roman.java ADD FIELD int intyalue (atypical test-first apisode
(11) 07:26:19 Roman.java PRODUCTION EDIT 36sec MI=+1{1), SI=+1({1}, F1=+158(158) because:
(12) 07:26:19 Roman java COMPILE integervalue cannot be resolved dome tests were added
(13) 07:26:42 Roman java PRODUCTION EDIT Osec MI=0(1), SI=0(1), FI=+16(174) {2). Then & compilation
(143 07,26:48 Roman java ADD METHOD String tostring() error ocpurred [hf Thed
(15) 07:27:09 Roman java PRODUCTION EDIT Osec MI=+1(2), S1=0({1), FI=+25(199) production code was added
(16) 07:27:09 Roman java COMPILE This method must return a result of type String {13] . However, tests ran
(17) 07:27:16 Roman java PRODUCTION EDIT 4sec MI=0(2), SI=+1(2), FI=+10(203) vithout failure.
(18) 07:27:35 TestintegerToRoman,java [N TEST FAILED
(19) 07:27:39 TestIntegerToRoman java BUFFTRANS FROM Roman.java
(20) 07:28:05 TestIntegerToRoman java COMPILE The method toStingt) is undefined for the type Roman
(21) 07:28:08 TestIntegerToRoman java NS TEST OK
2 | (1)07:28:12 TestlntegerToRoman java TEST EDIT Osec MI=0(2), S1=0(3), TI=0(1), A1=0(1), FI=+1{308) This portion of development
(2) 07:28:22 TestIntegerToRoman java ADD METHOD void testOneReturnsI() lappears to be TDD conformant
(3) 07:28:46 TestIntegerToRoman jawa TEST EDIT dsec MI=+1(3), S1=0(3), TI=+1(2), AI=0(1), FI=+111(413) e
(4) 07:28:46 TestIntegerToRoman java COMPILE Syntax error, insert ;" to complete Statement et s -t
(5) 07:28:49 TestIntegerToRoman java TEST EDIT Osec MI=0(3), SI=+2(5), TI=0(2), Al=+1(2), FI=+1{420} TeskeuerE s ILtendhatnse;
(6) 07:28:56 TestintegerTaRoman java NS TE=T FAILED BEodusETon cocen H
(7) 07:23:05 TestIntegerToRoman jawa BUFFTRANS FROM TestStack.java
EE; 07:29:13 Roman.java BUFFTRANS FROM Test]?t)egerTuRo(m)an.Java e This episode looks like a typical
9) 07:31:15 Roman java PRODUCTION EDIT 62sec MI=0(2), SI=+1{3), Fl=+44(253 gt . 4
(10) 07:31:19 TestintegerToRoman java TEST FAILED [fest-first episode, becausa:
(11) 07:32:04 Roman.java PRODUCTION EDIT 2isec MI=0(2), Sl=0(3}, FI=0(253) Home: Lests were gdad
(12) 07:32:06 TestintegerToRoman java INGEE TEST Ok {21 Then & compilation
error occurred (4). Then
production code was
edited (3). Then tests
were run with failures
(&) . Then production cods
was again edited (9).
3| (1)07:32:09 TestIntegerToRoman jawa BUFFTRANS FROM Roman.java This portion of development
(2) 07:32:12 TestIntegerToRoman jawa TEST EDIT Osec MI=0(3), SI=0(5), TI=0(2), Al=0(2), FI=+6{426) lappears 4o be TDD conformant
(3) 07:32:16 TestlntegerToRoman java ADD FIELD void times because;
(4)07:32:18 TestIntegerToRoman java REMOVE FIELD times .
(5)07:32:22 TestIntegerTaRoman java ADD METHOD void testoneNumeral(y e T T e i
(B) 07:34:20 TestIntegerToRoman jawa TEST EDIT 98sec MI=+1(4), SI=+1(6), TI=+1{3), Al=+1{3), FI=+B9(515) precibeion ceded i
(73 07:34:20 TestintegerToRoman java COMPILE The method multinumeral(String, int) is undefined for the type Roman
(8) 07:34:37 Roman java ADD METHOD static String toMultiNumeral{String, int} This episode looks like an
(9) 07:34:37 Roman java BUFFTRANS FROM TestIntegerToRoman.java . 5 .
(10} 07:34:42 Roman java PRODUCTION EDIT Osec MI=+1(3), S1=+1(4), FI=+120(373) typleal. fust-firat aplsade
(113 07:35:15 TestintegerToRoman,java BUFFTRANS FROM Roman.java because:
(12) 07:35:20 TestIntegerToRoman java COMPILE The method toMultiNumeral(String, int) is undefined for the type Roman dome tests were added
(13) 07:35:23 Roman java BUFFTRANS FROM TestIntegerToRoman java 16). Then = compilacion |
(141 07:35: Roman java PRONUCTION ENIT_fsac MI=0(3). SI=074). FI=+11(3R4) error accurred (7). Then :
Done

Figure 4.5. Demo of TDD Conformance Inference

59

using TDD in the Eclipse IDE. The Hackystat Eclipse sensos imatalled to instrument the de-
velopment process for collecting development activitiésrro partitioned his development stream
into 16 episodes, and inferred his development behavidrs.s€reen-shot in Figure 4.5 shows the
first three episodes with inferred development behaviorkeyTare all types of “Test First” and
conformant to TDD according to Zorro’s inference.

This analysis is useful at demonstrating to new users howonfers development behaviors.
Another use of this analysis is to validate the correctnégoao’s inference results. | will show
how | enhanced this analysis for Zorro’s validation in Cleapt. Next, | will introduce Zorro’s

extensions to Hackystat’s functionalities.

4.3 Extensions to Hackystat’'s Functionalities

TDD conformance is very important according to the diseussf related work in Chapter
2, and therefore | implemented the Zorro software systenrdwigle explicit support for process
conformance. Besides TDD conformance, with the capahifitgutomated inference of TDD be-
haviors, more useful analyses that once were very hard caortmhicted now. In the course of my
research, | implemented TDD analyses including “Episodm&graphy”, “T/P Effort Ratio”, and
“Episode Duration Distribution” etc., for studying TDD €sé&ection 4.3.1). Moreover, with the
aid of Software project telemetry infrastructure, | impksmed TDD telemetry reducers to assist
research and management of software development in TDS@eteon 4.3.2).

4.3.1 TDD Analyses

The following Zorro analyses have been developed to stuftware development in TDD and

other development methods that include unit testing.

Episode Demography

The episode demography analysis provides an overview aigrgmming session as shown in
Figure 4.6. In Figure 4.6, each small box with a two-letteroagm represents an episode. The

legend explains the links between two-letter episode gtngrand episode types. The background

60

TDD Episode Demography

(69% of the epizodes in this session are TDD-conformant.)
TE TF PR TE T& RE TL RE RE RE TF T& RE TL RF ER

Episode Category Acronym

TF=test-first:4 RF=refactoring:6 TA=test-addition:2 RG=regression:0 PR=production:2 TlL=test-last:2
LG=long:0 UnN=unknown: 0

Figure 4.6. Episode Demography Analysis

color of an episode tells its TDD conformance. If the epis@dEDD conformant, the background
is green; otherwise it is transparent. Episodes are cliekialthe actual analysis. Clicking on an
episode takes users to another analysis that is similaetorik illustrated in Figure 4.5.

Some useful information can be obtained using the episoa®deaphy analysis. For instance,
the example presented in Figure 4.6 shows that this prognagsession has 17 episodes, of which
69% are TDD conformant. Four episodes are “Test First”, sX‘Refactoring”, and two are “Test
Last”. This information can be used to improve TDD conforeen If a higher degree of TDD
conformance is wanted, developers can study what are tht@riage TDD episodes to improve
their compliance with TDD. Moreover, this analysis can dsaised to find development patterns.
For instance, in Figure 4.6, we can observe two patterns(TAP) and (TA)(RF)+. The pattern
(TF)(TA)+ means that a “Test First” episode is followed byear more “Test Addition” episodes.
The (TA)(RF)+ means that a “Test Addition” episode is folevby one or more “Refactoring”
episodes.

T/P Effort Ratio

Unlike “Episode Demography”, the “T/P Effort Ratio” analyds not directly derived from
Zorro’s inference. In Section 4.1, we discussed that Zaxterals Hackystat's data collection. One
extension is that it requires numbers of test methods amutassstatements. With this information,
we can easily tell if a developer is working on test code awargtime. The T/P Effort Ratio stands
for the effort a developer spent on test code, compared teftb spent on production code. Figure
4.7 shows an example of the T/P Effort Ratio analysis usiegsdtme TDD programming session
used in Figure 4.6. In Figure 4.7, the horizontal axis is tlapsed development time in minutes,
and the vertical axis is the ratio of effort spent on test dodeffort spent on production code. The

61

Ratio of Effort on Test Code (T) to Effort on Production Code(P)

1.20
1.15 F‘
1.10 {
1.08 f \
I' hY

1.00]
|

0.05 | \
/
f

0.80 | n —— 1
sl I I

0.80] \J’h.
| e
0.75 | &
|
0.70 |
|

0.65
0.60
0.55
0.50 4
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Effort TIP Ratio

—————————————————

Elapsed Development Time (minutes)

Figure 4.7. Test Effort vs. Production Effort

T/P ratio over 1.0 indicates more effort on writing test cdla@n on writing production code. The

vertical bars are episode borders, thus, the span betwegdrarepresent episode durations.

The example illustrated in Figure 4.7 shows that the effpeing on testing code is consistent
over the course of this TDD development session. Approxéiabn average, effort on testing code
is about 80% of effort on production code. This analysis camplied to not only TDD but also
other development methods that include unit testing. Aaredting use of it would be to compare

T/P effort ratio differences between TDD and Test Last Rapgning.

T/P Size Ratio

Same as the T/P Effort Ratio analysis, the T/P Size Ratioyaisais also based upon Zorro’s
extension to Hackystat’s data collection. In Table 4.1, \weehshown that the Zorro compatible
sensor collects size information (current-size, mostig lof code) for both of test and production
code. With this information, we can compute the incremectiainges of test code size, production
code size, and the ratio of the two. Figure 4.8 shows an exaaiphe T/P Size Ratio analysis using

the same TDD programing session. The interpretation tcatiedysis is exactly the same to Figure

62

Ratio of Test Code Size(T) to Production Code Size (P)

375 P

Size TIP Ratio
™
8
Vs

—————————————————

Elapsed Development Time (minutes)

Figure 4.8. Test Size vs. Production Size

4.7, except that each value in Figure 4.8 is the ratio of edésize to production code size.

The example illustrated in Figure 4.8 shows that test codi&nays more than production code.

Again, this analysis is applicable to any development naghwehere unit testing is practiced.

Episode Duration

The Episode Duration analysis is inspired by TDD’s charstieally short durations that |
discussed in Section 2.1. How frequently unit tests arekieglds an alternative indicator of TDD
conformance [74]. Figure 4.9 shows an example of the Epifndation analysis. The interpre-
tation of this analysis is very straightforward. The hontad axis has the two-letter acronym for
each episode. The vertical axis is the episode duration mutes. As we can see in Figure 4.9,
with a little hill climbing at the beginning, tests were ikaml frequently in this TDD programming

session.

Similarly, this analysis is applicable to any developmestimds where unit testing is practiced.
The durations in Figure 4.9 are mostly short, which supptihiésshort duration claim made about

TDD iterations. In practice, | rarely observed episodeswee longer than 30 minutes in duration.

63

Episode Duration in Minutes

(Total development time is 25.9 minutes in this session.)

7

w - o

Development Time (minutes)

[

TF TF PR TF TA RF TL RF RF RF

Episode Category

TF TA RF TL RF PR

| Duration — Duration Averagel

Episode Category Abbreviation

TF=test-first{4) RF=refactoring{t) TA=test-addition(2) RG=regression{0) PR=production(2)
TL=test-last(2) LG=long(0) UN=unknown(0)

Figure 4.9. Episode Duration

In that case, the conformance to TDD is likely not stringemt mnore. A tabular report (Table 4.3)

is also available for comparing episode duration diffeesne@mong episode categories.

Table 4.3. Duration Average by Episode Category

Category| Average Duration (minutes
TF 3.2

RF 1.3

TA 0.2

RG 0

PR 1.3

TL 1

LG 0

UN 0

Episode Duration Bin

The Episode Duration analysis lines up episodes with themttbns, which is useful at display-
ing progressive changes. An alternative presentationdgrémge episodes with close durations into

64

a bin. Figure 4.10 is an example showing the Episode Durd@iaranalysis. In Figure 4.10, the

Episode Duration in Minutes
(Total development time is 25.9 minutes in this session. Average episade duration is 1.6 minutes.)

1"

10

[}

El

4

3 I

2

1 .
ol —

<2 min 2~5 min 5~10 min 10~20 min 20~30 min > 30 min

@ ~

Mumber of Episodes
o

Episode Duration

Figure 4.10. Episode Duration Bin

horizontal axis has a set of bins of episode durations, amddttical axis is the number of episodes.

Similar to the Episode Duration analysis, this analysistmamnised to verify TDD’s short dura-
tion characteristic. An ideal TDD development session kEhbave many short episodes with no
or very few long episodes. If too many long episodes are sbsgeperhaps developers should take
actions to develop and run tests more frequently. An epislgation distribution table (see Table
4.4) is attached to this analysis.

Table 4.4. Episode Duration Distribution by Category
Category <2min 25min 5710 min 10720 min 20 "30 min>30 min Total

TF 2 1 1 4
RF 4 2 6
TA 2 2
RG 0
PR 1 1 2
TL 2 2
LG 0
UN 0
Total 11 4 1 0 0 0 16

65

4.3.2 TDD Telemetry Streams

The analyses in Section 4.3.1 leverage Zorro's recognitibDD development behaviors.
They can be used to understand and improve TDD developmemdividuals. In order to sup-
port project management and improvement, | implementedapgof TDD telemetry streams in
my research. Because Zorro abstracts software metricsonmttevel development behaviors, the
synergy of Zorro and Software telemetry allows better manant of software projects developed

in TDD. In this section, | will introduce Software telemetand present TDD telemetry analyses.

Software Project Telemetry and TDD Telemtry Reducers

The Software project telemetry [40, 79] was developed byZpiang in the Collaborative Soft-
ware Development Lab at the University of Hawaii. It is arrd@structure to aggregate metrics data
together to perform daily, weekly, or monthly analyses fopgurt in-process software project man-
agement and decision makings. Software telemetry abstsaftiware metrics into streams, charts
and reports. The telemetry stream contains a series ofgiamaped events in the daily, weekly, or
monthly granularity. The telemetry charts and reports jgl@wisualization of telemetry streams.
Detecting changes and covariance in the trend of telemirgiras enables an incremental, visible,

and experimental approach to manage software projects [79]

The telemetry reducer is the extension point of Softwaentetry, which can be used to extend

the existing telemetry stream base. The following lists TiBBmetry reducers supplied in Zorro.

e TDDPercent Reducer
Computes a single telemetry stream for percentage of TDBIdpment time to overall de-
velopment time. Alternatively, the percentage can alsohieenumber of TDD compliant
episodes to the number of total episodes.

e TDDProductionDevTime Reducer
Computes a single telemetry stream of development time odugtion code. Though its
name suggests that this reducer is for TDD, it can actuallgdpdied to other development

methods as well.

e TDDTestDevTime Reducer
Computes a single telemetry stream of development time sinctele. Same as TDDPro-

66

ductionDevTime, it can be applied to development methodsrahan TDD if unit testing is
used.

TDDDevTime Reducer

Computes a single telemetry stream of total developmerd. tote that Software telemetry
already defines a DevTime, which is different from TDDDev&inthe TDDDevTime can be
thought as the summation of development time on productést, and others such as XML

configuration files.

EpisodeAverageDuration Reducer
Computes a single telemetry stream of average episodeaturdt can be applied to TDD
and other development methods. It indicates how frequemtiytest is invoked.

TDDMemberProductionDevTime Reducer
Computes multiple telemetry streams for development timgroduction code, one telemetry
stream for each project member.

TDDMemberTestDevTime Reducer
Computes multiple telemetry streams for development timgest code, one telemetry stream

for each project member.

TDDMemberDevTime Reducer
Computes multiple telemetry streams for total developntiem¢, one telemetry stream for
each project member.

MemberEpisodeAverageDuration Reducer
Computes multiple telemetry streams for average episod#idns, one telemetry stream for

each project member.

TDD Telemetry Analyses

The availability of TDD telemetry reducers enables devetepto invoke telemetry analyses

using Zorro’s recognized low-level development behaviors

Recall that a benefit of TDD is that the code developed in TDaukhbe 100% covered because

no functional code is created without a unit test (see Se@id). So it would be interesting to

study this claim. Since Zorro has the TDDPercent Reducercavedefine a telemetry stream

67

reporting percentages of TDD development and correlatétlit the test coverage stream that is
already included in Software telemetry(Page 59 [79]). Téiowing code is a definition of the
telemetry stream and chart for this investigation.

streans TDDPercent (type) = {
"Percentage of Test-Driven Devel opnment”,
TDDPercent (type) * 100

b

chart TDD- Cover age- Percentage-Chart() = {
"Percentage of TDD Epi sodes (tine) and Coverage",
(TDDPercent ("time"), percentageYAxis("TDD\%)),
(Cover age- Percentage("**", "line"),
per cent ageYAxi s(" Coverage \ %))
b

Figure 4.11 is a weekly telemetry chart showing percentdd®® development and test cov-
erage. From the week of Sep 30, 2006 to the week of Nov 18, 20@ftked on the Zorro software

Percentage of TDD Episodes (time) and Coverage

100
m L] g5
o0
25
- 80
\ 75
5 70
. 80
% \ 0
@ | \ % g
= \ P 50 O
[~
= 4 F
o
\ 0
\ - u i e
5 35
a :] 30
fl
\\. / i
4 / 20
X (]
: | S ™ 10
; o /
| g A S = 5
eSS T . a
o] £ = @ o &
o & oF & Py F o o
K1 e e X & =y A 3
= AF o & o 5F o g
g & N 7 % o N W

24-5ep-2006 10 12-Mov-2006 (Weelks)

|-m- Coverage-Percentage=**, line= -a TDDOPercentstime=:

Figure 4.11. TDD Percentage and Testing Coverage

68

system and implemented Zorro’s web validation interfacee b the fact that testing web inter-
faces requires a lot of additional effort, my conformanc&b®d dropped down significantly in that

period. As a result, the test coverage dropped from 90% towb@&D% over the course of eight

weeks software development. Though we can not directlyfywére claim of 100% test coverage

characteristic of TDD, indeed the analysis shows that diegdrom TDD caused decrease of test
coverage. In turn, this indicates that TDD can help to imprist coverage.

4.4 Chapter Summary

In this chapter, | introduced Zorro’s implementation witle support of the Hackystat and SDSA
frameworks. Zorro extends Hackystat's data collectioecsgizes SDSA's low-level development
behaviors inference for TDD, and supplies new functiorito Hackystat. Zorro’s development
behaviors and conformance of TDD were detailed in this @ragiong with an introduction to

TDD analyses and telemetry reducers implemented in Zorro.

69

Chapter 5

Research Questions and Methodology

The long-term goal of my research is to improve the conststehempirical evaluation research
on low-level software processes. As a step in this directidesigned and developed the Software
Development Stream Analysis (SDSA) framework (Chapten&) ¢an infer development behaviors
using automatically collected in-process software metriaused the SDSA framework to specify
a low-level software process called Test-Driven Developm@&DD) and implemented Zorro, a
software system that can recognize development behavimlsreeasure the developer’'s process
conformance to TDD. If Zorro, a specification of the SDSA feamork, can be experimentally
validated, | will have provided evidence that SDSA is an dingtiechnique for recognizing at least

certain types of low-level development activities.

In order to validate Zorro, | designed a series of case sudiduding a pilot study,a class-
room case study and an industrial case study. The purpod$e gfilbt and classroom validation
studies was to validate Zorro’s data collection and TDD bial inference in controlled environ-
ments. The purpose of the industrial case study was to explow Zorro can be used by external
researchers. Section 5.1 introduces the central reseaestions of my thesis research. Section 5.2

presents my research methods including participant oagery interview and survey.

5.1 Research Questions

The central research questions of the Zorro validationiassudere:

70

e Q1: Can Zorro automate the recognition of TDD behaviors gisintomatically collected
software metrics?

This question can be further divided into three sub-questio

— Can Zorro collect software metrics correctly?
— Does Zorro collect the necessary software metrics?

— Can Zorro infer TDD behaviors correctly based upon autorahyi collected software

metrics?

e Q2: How useful is Zorro?

This question is hard to answer but it can be divided intogtseb-questions based upon
users’ roles.

— For beginners, can Zorro help them improve their complianCEDD?

— For experienced TDD practitioners, will Zorro help them none their TDD practice
by providing them with new insight into their TDD developméehaviors?

— For researchers, can Zorro help them reach legitimate n@seanclusions on TDD

experiments by providing them with TDD process conformanéarmation?

5.2 Research Methodology

Answering the above research questions requires a “mixdtiau&’ research methodology
according to [12]. Question Q1 can be investigated usingpHrécipant observation. In order to

investigate the research question Q2, we need to collect’dsedback or interview them.

To use the participant observation method, we can obsemtigipants in the field, take notes
about their development activities and behaviors to pedd independent data source for val-
idating Zorro’s data collection and TDD behaviors inferendHowever, this manual participant
observation method [12] does not work for studying low-lesaftware development activities that
could occur in seconds and minutes. It is simply too demanftinthe observer to record all of the
necessary information about a low level software procebkgravsignificant events can occur every
few seconds. Thus, | developed a recording tool called [IseliScreen Recorder” (ESR) to assist

participant observation. ESR is an Eclipse plugin that aamegate a QuickTime movie containing

71

time-stamped screen shots of the Eclipse window at regut@nals. With ESR, observers will not
need to worry about missing rapid development activities.

Figure 5.1 illustrates the Eclipse window with ESR instlldhe two pictured buttons on the
toolbar menu are defined by ESR. Pressing the green buttostagrnhe recording process and
make the red button become enabled. The recorder will stephi&r the red button is pressed or
Eclipse is closed. Figure 1.7 in Chapter 1 illustrates thended movie being played by QuickTime.

& Java - SimpleSdL. java - Eclipss SDK =]
Fds Edt Source Refactor Menigate Search Projsct Run Window Hel
-ie(er]s-0-a- BEC- @4 [I8 o oo G
TR T R T
Hopacage . B M T O | (IRSREVEEES (1) anchsdchelicom.. | = 00| 8 ouine 2 =
e =g T package org.hackystat.doc.simplesdsc: 2 lag Bow enT
ol Ant 1.6.5 - H erghackestet doc simplesdt
L7 bl Fimport java.util. AerayLise;[]| W %o mnport declarabons
L hackydpn_ Sudandysis =@ Simplesct
15T hadkyipn _Cggm A/ & " Smplesch(Map, Sensce
5 hedwyipn_Cocomo # Provides the wrapper eclass for Simple3dr sens & getFliame}
LT hadkyaon Corss ¥ @ petfiapsedTined)
L hackuion_Expenment *= gouthor Phalzp dobnzon & . getEmrorsl)
[0 hadkyign_Hoce ¢ Oversion $Id: SimpleSde.java.y 1,1.1.1 Z005/1 &% gellrheger(Sring)
L hackyigp s u @ o otFikPaths)
L] hackydon P public class Simpledde extends SenscorlscaEnecy | & gettefaukFlansedTine
=] heckwdpp_Prisize

] hackyign_Seview
1=t hadyagn St
0 hadaion_TelemstryContr

* Imvoked implicicly by the Sgnscrlata mEchany

€ ¥ € »

T hadeyiton_Zomo
ol = = _
o Lqr*"""‘“’“—*"” [£] Problems 51 . lavador |Dedarstion | Frogress | Contoks | Search
+ == hadeyCore_Conrmon
" i
w1 gt hackyCare_nstalior Dﬁlm‘ Dwamings, 0 rfos . .
1 hadkyCare_Kenrel | Desoriprion | Resture
o L hadvCore_Peport
7 L2 hackyCare_Tabissics
1= hackytore_Telemetry

15 hackyDavite
1 hadyDoc_Simpksd W
< 2 < >

Hackyrekat Sensor 2 Open File SimpleSdt, java Wit able Siark Insert LG |

Figure 5.1. Eclipse Screen Recorder

The embedded timeline at bottom of videos (See Figure 1rvpeaised to synchronize videos with
development activities collected by Zorro for validatioBSR allows customization of recording
rate (0.5-2 frames per second), picture quality, and résoluOne frame/second was found to be
sufficient for validation, generating file sizes of approately 7-8MB per hour of video.

The development of Zorro was iterative and incremental. 8o the validation of Zorro. | have
conducted three case studies — a pilot study, a classrooenstiady, and an industrial case study.
Next, | will introduce the research methods | used in these studies.

72

5.2.1 Pilot Study

| designed and implemented the Zorro software system basmu descriptions in books [6, 3,
51, 47, 30] and my observation of TDD in practice. By Sprin@20 had enhanced the Hackys-
tat Eclipse sensor to collect necessary development @esivdesigned the SDSA framework and
implemented the Zorro software system to infer TDD develepnbehaviors automatically. In the

following Fall semester, | conducted a pilot Zorro validaticase study.

The purpose of the pilot study was to test ESR as a tool to geovidependent evidence for
validating Zorro, as well as to validate Zorro’s data cdil@e and TDD behavior inference. The
research method was participant observation using ESRaksth collection tool. | played recorded
QuickTime videos to observe participants’ TDD developmectivities and behaviors for Zorro

validation.

5.2.2 Classroom Case Study

The pilot study showed that participant observation wittRES a suitable research method
for conducting Zorro validation study. Though Zorro was petfect at collecting necessary soft-
ware metrics and inferring TDD behaviors, the pilot demmatsd that it was promising. Based
on research results from the pilot study, | improved Zordai$a collection, enhanced Zorro’s TDD
behaviors inference, added heuristics on process confaenef TDD, and provided many TDD
analyses and telemetry reducers (See Chapter 4). With timgsevements, | conducted an ex-
tended validation study on Zorro in the software enginggdiasses at the University of Hawaii in
Fall 2006.

The purpose of the classroom case study was to validate Zmmocontrolled environment
and investigate its usefulness for TDD beginners. The rekeaethod of the validation was also
participant observation. Participants developed softweming TDD in Eclipse with instrumenta-
tion including the Hackystat Eclipse sensor and ESR. ESRRedeas the data collection tool for

participant observation and the recorded videos were aedlio validate Zorro.

A caveat with the pilot study was that I, the author of the daoftware system, analyzed the
recorded videos for Zorro validation. This creates a “camtstvalidity” threat with regard to this

experiment design because ESR was the only source of eeiderttmy analysis could be biased.

73

Therefore, in order to increase the construct validity assfoom case study, multiple sources of
evidence were used according to suggestions from Yin in (P8be 34). Participants’ comments
were the third source of information | used to cross-vaéidatleo analysis results. Prior to the

study, | developed a Zorro validation wizard in web pagegt@éarticipants comment.

To explore whether Zorro can help TDD beginners, | intenddwparticipants on their TDD
development experiences. After the interview, each ppatit used the Zorro validation wizard to
analyze his/her TDD development behaviors. Meanwhile,rabeglded survey was conducted to
evaluate Zorro's usefulness. To improve quality of the eyr¥ asked participants to justify their

answers verbally.

5.2.3 Industry Case Study

In Spring 2007, | conducted an industry case study to tesbZansefulness to TDD researchers.
Using Zorro as a tool to assess TDD process conformance,&rHanssen and Dr. Tor Erlend Fae-
gri from SINTEF ICT of Norway conducted a TDD vs. non-TDD caanigon study in a Norwegian

software company.

The purpose of this study was to explore how Zorro can be ugeddearchers to increase
quality of TDD's evaluation research. | deployed Zorro ia Hoftware company, assisted the project
manager and the researcher on analyzing process confagrdate, and conducted a survey at the
end of the study.

5.3 Chapter Summary

This chapter introduced my research statement and Zoratidation case studies. The central
research questions were: (1) Can Zorro automate the ramogof TDD behaviors using automat-
ically collected software metrics? and (2) How useful Zag® To address these questions, | have
conducted a pilot study, a classroom case study and an igdizste study in which | used research
methods such as participant observation, interviews angkgst In order to improve the quality of
data collection for participant observation, | develop&REa tool that can record the Eclipse win-
dow in high fidelity. Both the pilot study and the classrooreecatudy used ESR as a data collection
tool for Zorro validation.

74

Chapter 6

Pilot Study

| employed the case study research strategy [78] to emihrigtady Zorro’s TDD development
behaviors inference. In order to validate Zorro, | conddetgilot study at the University of Hawalii
in Fall 2005. This study shows that the participant obsé@wmatesearch method using ESR is an ac-
ceptable research method for Zorro validation and it alesvstthat Zorro can accurately recognize

development behaviors of TDD in a simple project developrsetting.

6.1 Purpose of the Study

The pilot study served as a dry-run test to the chosen cagg itsearch strategy. As mentioned
in Chapter 5, the purpose of the pilot study was to test ESRyadlsas to validate Zorro’s data

collection and behaviors inference of TDD.

6.2 Research Questions

The specific research questions for the pilot study were:

e Qla: Is ESR a suitable tool for Zorro validation study?

e Q1b: Does Zorro collect enough low-level development & to infer developer's TDD

behaviors?

e Qlc: Does Zorro's inference of TDD agree with analyses baped participant observation?

75

Note that these specific research questions correspontteglittain research questions @an

Zorro automate the recognition of TDD behaviors using awbeoally collected software metrics?

6.3 Experiment Design

The pilot study was largely a one-shot case study in whictigigants were exposed to TDD.
Creswell [12] suggests the following notation for it:

Group A X—0

where group A represents a group of participants, X reptesmm exposure of a group to an
experimental variable or event, and O represents an oligsm@ measurement on an instrument.

In this study, TDD was the treatment and Zorro was the instnimn

6.3.1 Participants

In this study, | recruited seven experienced Java devedopko were familiar with unit testing.

6.3.2 Materials

The programming problem was the stack data structure. | gasvealevelopers user stories
which described the activities they were to perform in ofdeimplement the stack.. Eclipse was
the development tool. In addition, | also provided DoshiBOOX Rhythm [16] and TDD Quick
Reference Guide [15] as supporting materials. In order forawve participants’ commitment to

TDD, a To-Do list was supplied as the reference.

6.3.3 Instrument

| instrumented participants’ TDD development processes thie Hackystat Eclipse sensor
and ESR. Participants were required to install the Hackystipse sensor and send the collected
development activities to a remote Hackystat server. Thayiastalled ESR which recorded their

Eclipse windows as they participated in this study.

76

6.3.4 Procedure

Since the pilot study configuration was very simple, pgrtaits were given the option to either
work on a lab computer or on their own computers at home. Fasethivho opted to work at home,

| provided detailed step-by-step instructions to them.

1. Setup

Prior to the study | confirmed that the lab computer had tHeviehg software installed:

e JDK
e Eclipse IDE
e Hackystat Eclipse Sensor [26]
e Eclipse Screen Recorder [17]
When patrticipants chose to work at home on their own computersked them to configure
these software before participating in this study.
2. Introduction to TDD
When participants did not have prior knowledge of TDD, | fiyientroduced TDD to them
using Beck’s simple abstraction of TDD: Red/Green/Refacto
3. Development in TDD

Stack is a well-known data structure that works accordinth&olLast-In-First-Out (LIFO)
principle. The participants developed a program to implantiee Stack data structure using
TDD. | provided them with three documents: the graphic fiaon of TDD rhythm, the
TDD reference guide, and the user stories of stack with a ddi€d. They are available at
Appendix A. In this step, both the Hackystat Eclipse sensdriaSR were turned on.

4. Data Collection

The Hackystat Eclipse sensor collected and sent develdpactwities to a remote Hacky-
stat server. | asked participants’ permissions to access data for this study. For videos

recorded by ESR, | asked participants to send them to me \ad attachments.

77

6.4 Threats to Validity

There were several threats to construct validity. One ahthvas that some participants did not
know TDD prior to the study. For these participants, | gaventha brief tutorial at the beginning
of the study, and provided a graphic illustration of the hmyt[16] and the reference guide [15]
of TDD. Another threat was the process conformance of TDDniinimize its effects, | used
Stack, a simple and well-known data structure, and providest stories with a To-Do list to help

participants comply with TDD.

With regard to validity of data collection, | used unobtigstata collection utilities: Hackystat
Eclipse Sensor and ESR. Both tools required a little ovetHeam participants [39, 35] at the
beginning and at the end of the study.

There were two external validity threats in this study. Thetfone was the simplicity and
stringency of TDD. In the pilot study, | interpreted TDD adddty as Beck suggested in [5, 6] and
Doshi recommended in [16, 15]. The second one was that onkvélopers participated in this
study. To address both of them, | conducted an extendedatialidstudy and an industrial case

study in my thesis research following this pilot study.

6.5 Data Analyses

| collected two sources of data about TDD development inghisly. The Hackystat Eclipse
sensor collected low-level development activities thatenesed by Zorro to recognize participants’
TDD development behaviors. The development process vidmmsded by ESR were the second
source of data that served as participant observation. d teeobservational results from videos
recorded by ESR to validate Zorro in data analyses.

6.5.1 Infer Development Behaviors with Zorro

To use Zorro, | defined a Hackystat project for each partitigad then conducted the “TDD
Development Stream” analysis provided by Zorro. Figureilustrates the inferred results using
my own data. Recall that Zorro partitions development stieasing the “Test-Pass” tokenizer as
described in Chapter 4, which yielded a sequence of “Test"Rgpisodes as shown in Figure 6.1.

78

gﬂackysm

Alicia

Development Stream: Displays Development stream and episode classification. (more...)

hongbing@hawail.edu Development Stream Episode

admin | analyses | preferences | alerts | extras | help | home

Analyze

Project: StackWithTDD -~

StartDay: [or =1 oo =] 2006 =]

Endoay: [o2 =1 ey =1 05 =]

Episode Episode Actions

Classification

(tdd, 2) 01/01/2006 23:29:20 TestStack.java ADD IMPORT import junit.framework.TestCase
01/01/2006 23:29:21 TestStack.java MOVE CLASS edu.hawaii.hongbing.tddstack --> TestStack.java
01/01/2006 23:30:03 TestStack.java ADD METHOD void testEmpty()
01/01/2006 23:30:54 TestStack.java TEST EDIT 34sec MI=+1, SI=+2, TI=+1, Al=+1
01/01/2006 23:30:54 TestStack.java COMPILE Stack cannot be resolved to a type
01/01/2006 23:31:03 Stack.java ADD CLASS Stack.java
01/01/2006 23:31:03 TestStack.java COMPILE The method isEmpty() is undefined for the type Stack
01/01/2006 23:31:07 Stack.java BUFFTRANS FROM TestStack.java
01/01/2006 23:31:22 TestStack.java BUFFTRANS FROM Stack.java
01/01/2006 23:31:35 Stack.java ADD METHOD Object isEmpty()
01/01/2006 23:31:37 Stack.java BUFFTRANS FROM TestStack.java
01/01/2006 23:32:21 Stack.java PRODUCTION EDIT 31sec MI=+1, SI=+1
01/01/2006 23:32:31 TestStack.java TEST OK

(tdd, 1) 01/01/2006 23:32:49 TestStack.java ADD METHOD void testPushOne()
01/01/2006 23:34:23 TestStack.java TEST EDIT 63sec MI=+1, SI=+3, TI=+1, Al=+1
01/01/2006 23:34:23 TestStack.java COMPILE The method push(Object) is undefined for the type Stack
01/01/2006 23:34:29 Stack.java ADD METHOD void push(Object)
01/01/2006 23:35:02 Stack.java PRODUCTION EDIT Osec MI=+1, SI=0
01/01/2006 23:35:13 TestStack.java TEST FAILED
01/01/2006 23:35:55 Stack.java ADD FIELD boolean emptyFlag
01/01/2006 23:36:19 Stack.java PRODUCTION EDIT Osec MI=0, SI=+1
01/01/2006 23:36:34 TestStack.java TEST OK

Figure 6.1. TDD Development Stream Analysis

The “Episode Actions” column on the right displays episodeternal structures. Corresponding
to the Red/Green/Refactor metaphor of TDD, Zorro highlghkst failures in red and test passes in
green backgrounds. In addition, compilation errors weghlighted in a yellow background. The
“Episode Classification” column on the right presents dgpelent behaviors inferred by Zorro.

The inferred results were summarized in Table 6.1. For eaditgpant, it lists the development
duration and number of total, TDD, Refactoring, Test-Lamt binclassified episodes. According to

Table 6.1. Zorro’s Inference Results for Pilot Study

Duration | Episode| TDD | Refactoring| Test-Last| Unclassified
44:53 15 1 7 1
28:17 13
48:00 14
66:32 14
43:14 16
45:57 11

7 32:40 9

\ Total | \ 92 |

Subject ID

OO WIN -

AW 0o
W ||| Ul

AP ORI OO
[elifellellé | elielle]

w
»
5
(¢1

Table 6.1, participants spent 28-45 minutes to implemeatiQising TDD and yielded 92 episodes.

79

Zorro recognized 86 of them, which accounts for 93.6% of pibedes. Interestingly, among 6
unrecognizable episodes, 5 of them were from one partitipaly. It was also notable that par-
ticipants almost never refactored, and they did “Test-Lhalf of the time (in the unit of episode
number). Here “Test-Last” means that participants wrist t®@de after production code has been

implemented, which is the opposite side of TDD.

In the pilot study Zorro inferred TDD behaviors as “TDD”, “Retoring” or “Test-Last”. This
development behaviors classification reflected Beck’s iipte abstraction of TDD. Further re-
search found that this classification can not represenah&D developments, and thus a more
sophisticated TDD development behaviors classificatidres@ was developed as described in
Chapter 4.

6.5.2 Participant Observation

An ESR video contains time-stamped Eclipse windows thatveaptured at the rate of one
frame per second. | played and watched the recorded videagaam of participant observation.
Figure 6.2 is a screen-shot showing an ESR video that | plaged) QuickTime[58]. At the time
when Figure 6.2 was captured, the participant who producedvideo had just finished a TDD
iteration ending with a successful unit test invocation.e Mideo also includes a time-line at the
bottom indicating the time when the window was captured.eNMbéat the comment at the top-right

corner in Figure 6.2 was not part of the video. | added thisarrin my observation analysis.

When | observed a TDD-realted activity in the ESR videoscbrded it into an Excel spread-
sheet for bookkeeping (See Figure 6.3). Each activity haaratsne, an end time, an abstract, and
additional annotations. As seen in Figure 6.3, activitieshsas compilations, failed test invocations
and successful test invocations were highlighted in ceht@Zorro’s TDD Development Stream
analysis results as shown in Figure 6.1.

6.5.3 Validation of Zorro’s Data Collection

| used activities observed from the ESR videos to validatedodata collection. The compar-
ison between activities recorded by ESR and activitiesect#d by Zorro allowed me to perform a

partial validation of Zorro by determining which activisievere missed by Zorro and which activ-

80

File Edit ‘iew ‘Window Hslp

T

Package Exctorer -~
= shech T
=l g
= e hams stack
3 Stack Ja-s
TeestStack, Java
Testanack,

BT

& testsEmob)
i, TRE Syfatem Librace fidkn 5.0 4]
L3 il

=

BE outhim 53

ST Amw e w-O

Fhe Edk Source Refackor Navesb: Search Prapct Pun windoe beip

|- @ I3 [-0-Q- |é_;‘_&?f§'~

ipackame edu. bewsl .ok

S bmport Swmit. frmnework . TestOase;
%

CY Y ETETS

B4 fautbur dnron L. Kagave
o =

i0public class Tesc3teck extends Testlase @

fFE Tests the fseSopiy metuod of stack.
pulitic vold teabTafmpog() (
Grack mtack = pew Stack():
a356PtTrus | "hecking that nhe stack 15 srpry”, scack. LaBmpny ()]s

o

ec hasnl stk
® et datkeeations
= @ Testaach

e estlsEmpn

Start with Green

|22 Probkems 2

T e O

| Resomrce | iy Forder | wock|

|

|

= == == - |
Vet Smark Treest Launiching: (80%) LG

20:57:34:00

Figure 6.2. ESR Video

81

B Microsoft Excel - Summary.xls

@ File Edit Wiew Insert Format Tools Data Window Help Adobe PDF A._j_ﬁj_il{]
DEE SRV s o-0- @2 A @G0 -EG. T B 2
Al _j_] =| From
5 Y s i c — B i
1 |From __ITo Abstract Annotation E—
2 | 145157 14:51:88 Create project TDDStack Create a new project
3 | 14:82:21) 14:52:48 Create Test class |Create TestStack java which extends TestCase
4 | 14:52:48 14:53:30 Add testcase testStackEmptinessi) Add and implement testStackEmptiness()
5 | 14:53:31 14:53:31 Compilation error Stack cannot be resolved to a type
B | 14:63.45 14:54:12 Create object Stack Create object Stack with empty constructor
7| 14:54:13 145416 Read code on TestStack |There is still one compilation error.
B 14E417 145431 Add method isEmpty() and it returns true
9 | 14:54:38 14:54:50 TestS
10 | |
11| 14:55:05 14:56:08 Add testcase testPushOne() Add and edit testPushOner)
12| 14:56:10 14:56:10 Compilation error The method push(String) is undefined far the type Stacl
13| 14:56:13) 14:56:20 Read Stack() Read and get ready to implement Stack
4| 14:86:21) 14:56:21 Switch back to TestStack() |Switch back to TestStack
16 | 14:86:22 14:56:46 Head TestStack |Read code in TestStack
16| 14:56:48 14:58:2_8:Refactor implermnentation |Refer to javadoc and use java.util. Stack as object cont:
17 | 145827 14:58:45 Create method push{String Create and implement method push(String)
18| 14:58:52 14:58:55 e o
19 _ | _
20 | 14:59:05 14:59:52 Create testcase testPop() Create testPop to check whether stack is empty after ¢
21| 14:69:63 14:58:53 Compilation errar The method pop() is undefined for the type Stack
22| 145955 i () which returns null and does nothin
23| 18:00:16
24| i
CIRIDICIS
Ready

Figure 6.3. Observation Results in Excel

ities were not correctly collected by Zorro. This sectiotroduces the analysis method, followed
by analysis results.

Validation Analysis Method

After watching each participant’s video, | compared thevi@s observed by me to activities
collected by Zorro and presented by the TDD Developmena8tranalysis. Figure 6.4 illustrates
the comparison for a participant. The sub-figure on the $e# screen-shot showing activities col-
lected by Zorro and the sub-figure on the right is the Excedaggheet with development activities
| observed for a programming period. Using this comparisethod, | validated Zorro's data col-
lection for all of the development streams produced by ptatly participants. The next section
presents this analysis result.

82

Ed Microsoft Excel - Summary.xls E@

@ Fle Edt View Insert Format Tools Data Window Help Adobe POF ==
hongbinghawai.edu . DEEHE GRY LBARC v- Q= A @S W0n - @[8m A »
Development Stream Episode
s | -
admin | analyses | prstersnces | alerts | sxteas | help | home B B = E =
|) 4 (tdd, 2) 23:28:32| 23:28:43 New project Create new project Stackit#|
) 23:28:45| 23:29:21 New TestStack Create test class TestStack w
6 23:29:25 23:29:55 Edit class javadoc Edit javadoc for TestStack ja
7 23:20:55 23:30:08 Add testEmpty Add skeleton code of testeas:
8 23:30:08| 23:30:56 Edit testEmpty Create Stack instance and in,
9 23:30:57| 23:30:57 Build error Compilation error because Sf
10 23:30:59 23:31.04 Create Stack Add class Stack with Eclipse
1 23:31:04 233104 Build error isEmpty(} is not defined
12 23:31:04 23:31:31 Edit Stack Add javadoc for class Stack |
13 23:31:32| 23:31:36 Add test method isEmpty() Use auto add function to add
14 23:31:36 23:32:20 Edit isEmpty() isEmpty() just returns true an
15 23:32:26| 23:32:32 |RUNISSISIEOR Testpasses.
17 (tdd, 1) 23:32:40| 23:32:55 Add testcase testPushOner Add skeleton code for testca:
18 23:32:55 23:34:24 Edit testease testPushOne{ Instantiate stack and invoke
19 23:34:24 23:34.24 Build error Compilcation error because
93:34° 507 Edi el pyishiOhiact | A [h
GRIBER® P Ja—st =i il e e
Ready

Figure 6.4. Comparison of Development Activities betweenrd and ESR

Validation Results

Overall Zorro was capable of capturing development a@wit Compared to activities ob-
served from ESR videos, Zorro collected almost all of thend #hus it was pointless to literally
report number of missed and incorrectly collected acésitiinstead, | decided to summarize types
of missed and incorrectly collected activities that akecZorro’s inference. The following is a
summary of problems | found with regard to Zorro’s data aziltn:

e Problem 1: Insignificant editing work.

Severity: High

Reason: Editing work did not change object metrics such as statesnantl
methods. Or developers quickly edited code, which resiritede state
change event only.

Result: Episodes were misclassified since editing activities weteaptured.

Resolution: Change the implementation of file edit sub stream in SDSAato flar
file size change as well.

Affected: 6 episodes.

e Problem 2. Missed compilation errors to test code.
Severity: Medium

Reason: Changes to production code caused compilation errors tatina test
code.
Results: Episode were misclassified.

Resolution: Fix the Hackystat Eclipse sensor to report compilation esron inac-
tive files as well.

Affected: 2 episodes

e Problem 3. Two unit test invocations were grouped together or one tesitinvocation was
divided into two continuous episodes.

83

Severity: Medium
Reason: Eclipse sensor collected multiple data entries for oneitagication.

Results: Two or more episodes were grouped together or divided rieguthat
they were not classified correctly.

Resolution: Tag unit tests with run time to group multiple unit test eegrbelong to
one test invocation together.

Affected: 3 episodes

Of the three problems listed above, one was high and the ttloawvere medium in severity. In

total, they affected 11 out of 92 episodes.

6.5.4 Validation of Zorro’s TDD Behaviors Inference

As seen in Figure 6.4 and Table 6.1, Zorro inferred develaprbehaviors as “TDD”, “Refac-
toring” or “Test-Last”. For each behavior category, Zortsoadefined sub-types as seen in Figure
6.4, but | will not discuss them in this analysis becausetgpbs are for Zorro’s internal uses
only. In this analysis, | compared development behaviotsskoved in ESR videos to development

behaviors inferred by Zorro.

Validation Analysis Method

In Section 6.5.2, | introduced how | did participant obsénrmusing videos. After observing
low-level development activities, | played the videos adaiderive development behaviors of TDD.
The remark in a yellow background at the top-right cornerigfiFe 6.2 was a visual presentation of
my derivation of development behaviors. In this data ansy|ygsmilar to what | have done in Section
6.5.3, | compared the development behaviors derived froiR #8eos to development behaviors

inferred by Zorro for validation.

Validation Results

Table 6.2 is a summary of the validation results. For eachiggaant, it lists number of to-
tal, classified and wrongly classified episodes along withghrcentage of classification errors.
According to Table 6.2, 11.6% of episodes were wrongly di@ss On the other hand, it indicated
that Zorro inferred TDD behaviors correctly for 88.4% ofspes.

84

Table 6.2. TDD Development Behavior Validation

Subject ID | Episode| Classified| Wrongly Classified| Percentage
1 15 14 2 13.3%
2 13 13 3 23.3%
3 14 14 1 7.1%
4 14 14 1 7.1%
5 16 11 1 9.1%
6 11 11 1 9.1%
7 9 9 1 12.5%
\ Total | 92 | 86 | 10 11.6%]|

In addition, the validation analysis helped me to discoveinderence problem for very long
episodes that occurred when developers did not invoke esii$ frequently. It is described in the

following:

e Problem 4: An episode had too many activities.
Severity: Low

Reason: Participants did not invoke unit testing frequently enough

Results: Episodes were misclassified.

Resolution: Introduce long episode type and avoid inferring episodé wib many
activities.

Affected: 2 episodes

This behavior is clearly a violation to TDD's short-duratioharacteristic, but Zorro did not have
an episode behavior category for it when | conducted the gilaly. Later | included this behavior
in the new development behavior classification schema irentiversion of Zorro (See Chapter 4).

6.6 Research Conclusions

The above analyses show that the one-shot case study testetegy is useful for Zorro
validation. ESR, an Eclipse screen recording tool, is cipaftrecording incremental small changes
made by participants for the purpose of participant obsenvaAlthough ESR caused a small delay
when it was initialized, participants did not notice muclegidn the pilot study. With ESR videos,
| was able to validate both Zorro's data collection and TDDdeors inference. Thus, ESR is

suitable for Zorro validation studies and the researchtque®la is answered.

85

Using videos recorded by ESR for participant observatidiouhd that Zorro had 3 types of
solvable data collection problems. The validation analydiZorro’s data collection shows that
Zorro can collect sufficient low-level development actest accurately for the purpose of TDD

development behavior inference. This supports the relseprestion Q1b.

Only two out of 93 episodes were incorrectly inferred by Bobecause they had too many
activities in them. Other than this, Zorro’s inference sutecognized TDD development behaviors
correctly when low-level development activities were sudfint. Thus this pilot study provides the

supporting evidence to research question Q1c.

6.7 Discussion and Zorro Improvements

In a simple environment setting, | validated that Zorro vearkvell at collecting low-level de-
velopment activities and inferring developer’s TDD beloasi However, as described above, this
pilot study also identified several areas that could be ivguto

6.7.1 Data Collection

Section 6.5.3 addressed three data collection problerhpragented Zorro from inferring TDD
behaviors correctly. Following the pilot study, | fixed thémthe current version of Zorro.

6.7.2 TDD Behaviors Classification

The validation analysis in Section 6.5.4 showed that apglynference rules on episodes that
had too many development activities caused inference srrbtore interestingly, about 50% of
episodes were “Test-Last” in the pilot study. There are sd\@ossibilities that could explain this
phenomenon. One possibility could be that the programmiodlem (Stack) is too simple and
developers did not need to fail tests first to have the coimptementation. Another possibility
could be that Beck’s concise summary of TDD is just too simplbile real TDD development
is much more complicated than what he described. For instamcleveloper can add a new test
that does not fail initially because the functional code kgowell even without any change. This
development behaviors is none of “TDD”, “Refactoring” arist-Last”. Therefore, after the pilot

86

study, | developed a much sophisticated TDD behaviors ifilzeton schema as seen in Table 4.2

that can best describe real development behaviors. Theelgisgde behavior is part of this schema.

6.7.3 Process Conformance Inference

In the pilot study, | did not directly calculate process arniance of TDD. Instead, | used
development behaviors to describe process conformanéeD®and “Refactoring” behaviors were
TDD conformant automatically while “Test-Last” was not. dseding to this simple measurement
and Table 6.1, in the pilot study, only less than 50% (40 o@2épisodes) of episodes were TDD
conformant, which was very contrary to what | had anticigabefore the study. Further research

indicated that this simple measurement was very limited.

With the introduction of the new episode classification sechgl defined a more sophisticated
two-step model for process conformance of TDD (See Figusk using heuristics. The first step
is to infer development behaviors in episodes and then Igo&pisode context to determine their

process conformance. There are three lists in Figure 6.&l8itimost one is a list of development

Episode One-way Two-way

NO NO
Refactoring NO YES
Refactoring NO YES
Refactoring NO YES
Test-addition NO YES
Test-addition NO YES
Refactoring NO YES
Test-first YES YES
Refactoring YES YES
Refactoring YES < YES

Figure 6.5. Heuristic Algorithms of TDD Conformance
behaviors recognized by Zorro’s inference rules. As themaes indicate, the episodes can be “test-

87

first”, “test-addition”, “refactoring”, or “test-last” € The one-way and two-way TDD heuristic
algorithms are on the right side of Figure 6.5. The one-wggrithm uses look-forward approach to
determine whether an episode is TDD conformant, while tieeway heuristic algorithm uses both
look-forward and look-backward approaches. Figure 6.5catds this difference using a single-
head arrow and a double-head arrow. | implemented thesésteuules with the support of JESS
[22]. Section 4.2.4 in Chapter 4 has a detailed descripticinis heuristic. Our preliminary work

suggests that the two-way heuristic algorithm can undedstaeal world situations better than the
one-way algorithm.

6.8 Chapter Summary

This chapter introduced the pilot study, a test to investideow to validate Zorro using par-
ticipant observation supported by ESR. The study showedzbao’s data collection and TDD
behaviors inference can be validated by analyzing devetoprideos recorded by ESR. This study
also identified several problems that helped to improve &Zolvith these improvements, | con-
ducted an extended classroom case study following the siiloty in my thesis research.

88

Chapter 7

Classroom Case Study

Following the pilot study and collaborative research with Blakan Erdogmus | improved
Zorro and conducted an extended validation study in theveot engineering classes at the Univer-
sity of Hawaii in Fall 2006. This study shows that Zorro caliemi low-level development activities
and infer TDD development behaviors accurately. This sialdg provides evidence that Zorro is

helpful for beginners who do not have much prior experienith the TDD practice.

7.1 Purpose of the Study

The purpose of this study was to validate Zorro using the sagly research method tested by
the pilot study (Chapter 6) and investigate how useful Zafor TDD beginners.

7.2 Research Questions

The specific research questions for the classroom case weerdy

e Q2a: Does Zorro collect software development activitiesueately enough for episode par-
titioning and TDD behavioral inference?

1Dr. Hakan Erdogmus is a Senior Research Officer in the NRCSBifiware Engineering Group (http://iit-iti.nrc-
cnrc.gc.ca/personnel/erdogmiakane.html). He has interests in Software Economics, Agile\8arfé Development,
and Software Process Measurement and Awareness.

89

e Q2b: Does Zorro’s inference of TDD behaviors agree with ysed based upon participant
observation?

e Q2c: Does Zorro’s inference of TDD behaviors agree with wiaaticipants believe to be
their TDD behaviors?

e Q2d: Does Zorro provide useful information for beginnersitalerstand TDD and improve

their TDD development?

Research questions Q2a, Q2b, and Q2c are three specificatesgeestions for the thesis re-
search question Q1Can Zorro automate the recognition of TDD behaviors usingpeatically
collected software metrics?The research question Q2d corresponds to the thesigchsgaestion
Q2, “How useful is Zorro?

7.3 Experiment Design

To address the above research questions, | used the oneasleostudy research method as in
the pilot study. TDD was the treatment. We taught TDD to pgrtints and asked them to develop

software using TDD in this study.

7.3.1 Participants

TDD beginners were the targeted population. | recruitediggpants from a senior-level soft-
ware engineering class and a graduate-level software esgigy class, both of which were taught
by Professor Philip Johnson in Fall 2006 at the Universitida#vaii. There were 16 students in two

classes and 11 of them agreed to participate in this study.

7.3.2 Materials

I conducted this study in the Collaborative Software Depeient Laboratory (CSDL) at the
University of Hawaii. Three Windows-based lab computersemgsed, one of them acted as a
Hackystat server and the other two were used by particigardsvelop software for this study. |

90

configured two development computers with necessary sadtimaluding JDK, Eclipse, the Hack-
ystat Eclipse Sensor, QuickTime and ESR. Bowling Score Keepfamous problem that has been
widely used in empirical evaluation research of TDD[23,, s the programming task. Since
participants were TDD beginners, | designed user storigsaim text (Appendix E) to help them
develop the program without needing prior experience wighdame. Since user stories are or-
dered from the easiest one to the hardest one, they can alsgebeas the “To Do” list for TDD

development.

7.3.3 Instruments

| instrumented the development processes with the Hadkigstgpse sensor and ESR. Prior to
the study, | created a Hackystat key for each participantcanfigured the Hackystat Eclipse sen-
sor for him/her. At the beginning of the study, | asked pgtots to enable ESR so that it would
record their development processes. Participants vatidabrro’s TDD behavioral inference using
the “TDD Episode Validation” (Figure 7.2) analysis. The “BWalidation Wizard” was another
instrumentation tool that | used to collect participantslaation. Additionally | interviewed par-

ticipants in the study and recorded the interviews usingyaalivoice recorder.

7.3.4 Procedure

This experiment included a TDD lecture and a 2-hour lab eassi

1. TDD Lecture
In both software engineering classes, Professor Philipslwingave the same TDD lecture to
students. The lecture included following contents:
¢ Introduction to TDD

— Two principles of TDD from [6]

— Red/green/refactor pattern of TDD
— TDD Rhythm [16]

— TDD vs. Unit Testing

— A TDD example: implementing stack by writing test first

91

e Why TDD?
— Developer gets quick feedback.
— TDD improves software quality.
— TDD promotes simple design.
— Microsoft has successful story on TDD [7]
— Test-Driven Development proves useful at Google[72]

e About TDD

— TDD may not be appropriate for everybody.

— TDD is about design.

— Some studies show that TDD improves software quality.
— TDD may reduce productivity.

— TDD references including testdriven.com, mailing list drajs.
¢ Reading and programming assignments

— Page 1-20 of Beck’s book “Test-Driven Development by Exah[$]
— TDD Quick Reference [15]

— Practice TDD on Roman Numeral Problem (Appendix C)

After the lecture, students practiced TDD by working on aglass assignment, the Roman
Numeral Conversion (Appendix C). Then they were asked tantakily participate in this
study. The study was conducted in CSDL under my supervisitime 2-hour lab session
included 90-minute of development using TDD, Episode \#lwh, Participant Interview
and Zorro Usefulness Evaluation.

At the beginning of the study, | introduced the purpose anutert of this research study
to participants, followed by the consent form signing. Theave them user stories of the
Bowling Score Keeper problem (Appendix E) and explained tiwy only needed to spend
90 minutes on the programming task. Following a five minuteogtuction, | asked them to
start up Eclipse, enable the ESR recorder and begin progirsgnm

. TDD Development (90 minutes)

Each participant developed a program to compute bowlingegseares in TDD following the
provided user stories. | suggested that they use the us@ssas a To-Do list to help them

92

develop in TDD. The time limit was 90 minutes. It was accelgtabthey did not finish all

user stories by the end within the 90 minutes.

. Validating Zorro’s Inference about Their TDD Behaviot$ (ninutes)

After 90 minutes of development in TDD, participants exitedipse, which forced the
Eclipse sensor to send all remaining development actviti¢he Hackystat server and stopped
the ESR recorder. Following a five minutes coffee break, h ttieected them to login into
the Hackystat server and asked them to invoke the “TDD Epiddadidation” (Figure 7.2)
analysis in which they provided their feedback to Zorroference results. As seen in Figure
7.2, they commented on Zorro’s inference of developmenatiels and compliance to TDD.

. Interview (5 minutes)

| conducted an interview with each participant after hefsished reviewing Zorro’s infer-
ence of their development behaviors. The interview lasteirites. In the interview, | asked
participants questions regarding their development éspees on software engineering best

practices, unit testing, TDD and software quality.

. Zorro Usefulness Evaluation (10 minutes)

At the end of the lab session, participants conducted seaeedyses using the “Evalua-
tion Wizard” (Figure 7.1) provided by Zorro to evaluate ietulness. Participants used the
wizard to review five analyses that were created based oZadnference: Episode Demog-
raphy, T/P Effort Ratio, T/P Size Ratio, Episode Duratiod &pisode Duration Bin.

7.3.5 Data Collection

Similarly to the pilot study, I collected development aities using the Hackystat Eclipse sensor

and development process videos using ESR. Developmenitiastiwere saved on the Hackystat

server, and ESR videos were saved on the lab PCs. To colldidipants’ validation comments,

Zorro provides the “TDD Episode Validation” analysis (Figu/.2), which is an extension to the

“TDD Development Stream” analysis (Figure 6.1) discussefiaction 6.5. In addition to present-

ing inference results, this analysis also supplies Zomeesoning process and allows participants

to give feedback, which was saved to the Hackystat serveiicipants conducted Zorro usefulness

evaluation using the “Evaluation Wizard” analysis (Figir&) that saved the evaluation results to

the Hackystat server too.

93

Zorro Evaluation Home - Mo:

Fle Edt View Hstory Bockmarks Tocls Hep
- - @ (2% [£ hitp:/fackystat.ics hawail.edu/hackystat/controller - — Iel@d <
M Gmail - Inbox (3165) €t Hackystat - Zorro Eval...& e

hongbing@hawaii.edu

{:mkysm Zorro Evaluation Home ~

u

ersity of Hawail analyses | preferences | alerts | extras | help | home

Introduction

Z5RRO is a software system that we developed in order ta improve understanding of Test-Driven Development.

Zorro monitors develapers whils they use the Eclipss 1DE, and collects svents representing low-level behaviars such as editing productisn code, running unit tests,
invoking the compiler, and so forth. These low-level behaviors are then analyzed to determine whether the developer is conforming to Zorro's ruls-based definition of TOD,

at a high level, Zorro lets us investigate two primary research issues. First, can we develop a set of rules that will accurately recognize *real world" instances of
test-driven development? Second, can we use this recognition capability to provide insight to developers regarding their TDD practices as well as better understand the
impact of TOD on metrics such as guality and productivity?
This wizard will help you navigate Zorro's analysis. You can also validate the analysis results using this wizard,
Defining TDD
4 very popular and simple definition of TOD is based upon a “stap light" metaphor:

1. Red - Write a little test that doesn't work, and perhaps doesr't even compile at first

2, G

reen - Make the test work quickly, committing whatever sins ars necessary in the process,
3 tor - Eliminate the duplication created all the while keeping the test running 100% in the green

However, this characterization is nat sufficient to recognize all variant behaviors of Test-Driven Development in practice. Through our research, we have developed a
mars sophisticated definition of TDD, which captures not only the idealized "test-first" and 'refactoring” behaviors, but also deviations from them that may or may not be
recogized as legitimate TDD behaviors depending on the context in which they occur, For example, we are able to recognize patterns that indicate pure test suite
fortification {without adding new functionality), different types of refactoring, addition of new functionality (without adding new tests), pure regression (simply running
tests), and test-last behavior (adding tests after production code). Depending how they are interlesved with other behaviors, we recognize such deviations as being
either TDD-conformant or not,

Navigating the Wizard
To see the analysis results, first please choose a TDD programming session using the follawing selection boses

Project; 2orra Devalapmant

StartDay: [15 (%[March

EndDay

Then you can use the "Previous”, "Evaluation Home', and "Nest" links at the top and bottom of sach page. Other links, such as the Hackystat page links in the gray
nawigation bar, will take you away from this wizard

Previous Evaluation Home | Next S

Done

Evaluation Wizard

Figure 7.1. Zorro

Eile Edit Yiew Go Bookmarks Tools Help
<:E| s = - % 18a¥ T‘a {3 https/fhackystat.ics,hawaii.edufhackystat /controller V @ G0 @, |
2 This portion of development appears pg you feel that this (1) 11/01/2006 10:14:50 TestFrame java TEST EDIT 33sec MI=0{1) ke
to be TBD conformant becouse: portion of developmentis || (2) 11/01/2006 10114155 TestFrame . java ADD METHOD void testlrregu
?
ssts wers written bafors T('%D- O O [3) 11/01/2006 10:15:27 TestFrame java TEST EDIT Brec MI=+1(2] =
R oo Dyes Uno den'tknow | o4y 11/01/2006 1011527 TestFrame.java COMPILE The attribute v
Thiz cpisode looks like o typical This episode is about: (5) 11/01/2006 10:15:51 TestFrame.java TEST EDIT Osec MI=0(Z),
test-firct cpimode becouze: [sdding new functionality (6) 11/01/2006 10016:03 TestFrame java TEST FAILED
Some tests were added (L. | [T co oo (7) 11/01/2006 10:16:11 Frame java BUFFTRANS FROM TestFran
Fhens ;D";l::h;;n“ SEEAT [—— [8) 11/01/2006 10:17:27 Frame java PRODUCTION EDIT G6sec MI=0(1)
soourre . Then
e R Djust RiRaRa (9 11/01/2006 10:17:30 TestFrame.java TEST OK
128). Then tests were run I:l el
with failures (6. Then e
production code was again Cother
edited (8).
c, e
< ¥
Dane

Figure 7.2. TDD Episode Validation

94

7.4 Threats to Validty

A construct validity problem existed in the pilot study. hetauthor of Zorro, compared the
recorded movies with Zorro’s inference to validate Zornwistrics collection and TDD develop-
ment behavioral inference. | could be biased both at judgihgt software metrics are necessary,
as well as at inferring development behaviors from the alggskactivities in the recorded movies.
One person’s subjective judgment, especially the one flwratthor, perhaps is not a valid mea-
sure in case studies [78]. Therefore, | employed the adwitievidence of participant comments
to improve the construct validity. The participant comnsewere analyzed to cross-validate my
video analysis. Compared to the pilot study, this additi@marce of evidence helped to solidify
research conclusions, but note that a caveat did exist bedhe student participants could have

given feedback that favored Zorro’s behavioral inference.

It is challenging to validate Zorro because participantghtinot want to be instrumented by the
sensors, not to mention having their development processesded with ESR. In my study, | used
two lab PCs and carefully stated that participants werevaltiated based upon their performances,
and they gained extra credit as long as they participatedhinstudy. Moreover, participants’
identities were not disclosed in any written documents. ddvesent form | used is available at the

Appendix D.

In term of external validity, only 11 students participatedthis study. The sample size is
small, which makes it difficult for me to generalize theseegsh findings. Also, students in the
software engineering classes at the University of Hawagjihinnhot be representative of all TDD
beginners since professional developers can also be TDibrierg. To improve external validity,
replication studies need to be conducted in other orgaaimt For this purpose, | made all my

research materials available to public.

7.5 Data Analysis Methods for An Individual Participant

| processed every participant’'s data and drew researchusios by putting analysis results of
all participants together. This section introduces thdyaismethods for an individual participant

using the first participant’s data.

95

7.5.1 Participant Observation and Validation of Data Collection

The first step was to observe the first participant by playisglavelopment video recorded by

ESR. This observation helped to validate Zorro’s softwaetrits collection for him.

Analysis Method

Similarly to the pilot study, | observed low-level developnt activities by playing the recorded
ESR video from the first participant. Then | logged what | oleed into an Excel spreadsheet for
bookkeeping (See Figure 6.3 in Chapter 6). Recall that SD@teucts the development stream
using software metrics collected by sensors (Section 3.2lwe can also construct another devel-
opment stream using development activities that occurrélde participant's development process
and that | observed in the recorded development video. Tdatal Zorro’s data collection, | simply

compared two development streams that were illustratedgur& 6.4 in Chapter 6.

Analysis Result

The first participant finished 7 of the 13 user stories in 90uta@s. | observed that he conducted
153 development activities, which were then divided inteep®odes. For each episode, Table 7.1
lists both the number of activities collected by Zorro anel ttumber of activities | observed. The
difference between the two numbers is in the “Differencdupnm. Descriptive analysis results are
available at the bottom of this table.

Note that ESR captures the Eclipse window once per seconidsisould capture almost every-
thing that happens in a programming session. However, dicgpto Table 7.1, activities collected
by Zorro outnumbered activities | observed in the recorddda of the same development process
conducted by the first participant. Moreover, the diffeesin activity numbers were significant
according to the descriptive analysis. Zorro collected Etivities per episode, which were 4.5

more than the number of activities per episode | observelaideo.

96

Table 7.1. Number of Development Activities

Episode| Activities (Zorro) | Activities (Video) | Difference
1 4 4 0

2 6 5 +1
3 13 11 +2
4 19 15 +4
5 23 19 +4
6 14 9 +5
7 46 35 +11
8 22 15 +7
9 5 5 0
10 46 35 +11
Total 198 153

Mean 4.5
Median 4
STDEV 4.1

7.5.2 Validation of TDD Behaviors and TDD Compliance Inferace

The second step was to validate Zorro’s inference of TDD ldgweent behaviors and TDD

compliance.

Analysis Method

In Section 7.5.1, | introduced how | observed developmetitities in the recorded video. In
this step, | played the video again to observe TDD developroehaviors of the first participant.
Following this observation, | analyzed the TDD complianéeach episode. Similarly to what |
did in Section 7.5.1, | validated Zorro's inference resolftS' DD behaviors and TDD compliance

by comparing what Zorro inferred to what | observed.

Analysis Result

| list the analysis result in Table 7.2 in which Zorro’s irdace results are on the left and my
observation analysis results are on the right. Recall tlataZinfers development behaviors in
episodes first, and then infers TDD compliance based upoal@@went context using heuristic
algorithms (Section 4.2.4). Therefore, | present Zorroferience results in two columns in Table

97

7.2: one is for TDD development behaviors and the other ofier iSDD compliance. In order to
compare Zorro’s inference results to my observation resb#tiso list the observation results in two
columns: one is for development behaviors and the othersofoe TDD compliance.

Table 7.2. Comparison between Zorro Inference and Vide@@ason

Index Zorro Observation
Behavior Is TDD? | Behavior Is TDD?
1 test-addition | Yes test-addition | Yes
2 refactoring | Yes refactoring | Yes
3 refactoring | Yes refactoring | Yes
4 test-first Yes test-first Yes
5 test-first Yes test-first Yes
6 test-first Yes test-first Yes
7 test-first Yes test-first Yes
8 test-first Yes test-first Yes
9 test-addition | Yes test-addition | Yes
10 unknown No test-first Yes

From Table 7.2, we can see that participant observatiortseme identical to Zorro’s inference
results except for the last episode. Due to the 90-minute giomstraint, the first participant did not
finish the last user story he worked on. Thus the last epis@iaad end with any successful unit
test invocation, which prevented Zorro from inferring thevelopment behavior in it. In Chapter 4,
we introduced that Zorro classifies an episode as “Unknotvit’does not end with a successful
unit test invocation. This is often the situation at the ehd programming session.

7.5.3 Cross-validation of TDD Behaviors and TDD Compliancénference

As the author of Zorro, my observation of development badravcould be biased (Section
7.4). This bias would decrease construct validity [78] iftiggpant observation were the only data
analysis method. To improve construct validity, | used agitaahal source of data — participants’
validation comments that were acquired through the “TDDsEgé Validation” analysis (Section
7.3.5).

98

Analysis Method

Similarly to the participant observation analysis in theyious step, | compared the first partic-

ipant’s validation comments episode by episode to Zorrdsrence results for cross-validation.

Analysis Result

In Table 7.3, | listed the first participant’'s comments alevith both Zorro’s inference and my
video observation results. Note that the participant’s memts on development behaviors are differ-
ent from what Zorro inferred and what | observed in the ESReildlecause participants described
their development behaviors by selecting them from thefalg list:

¢ adding new functionality,

refactoring,

adding test,

just running tests,

can't tell,

other

for each episode. Because of this, it is impossible to dirextmpare what the participant agreed
upon to be his development behaviors to what Zorro inferretivehat | observed. Thus, | will in-
troduce a mapping schema to make them comparable in Sedii@aft@r processing all participants’
data.

In term of TDD compliance, the first participant believedtthes development process was
100% TDD compliant, which is slightly different from what #o inferred but conformant to what
| observed in the video. As | discusssed in Section 7.5.3, difference is caused by Zorro’s

stringent requirement that an episode must end with suittesst test invocations.

99

00T

Index

Zorro Inference

Video Observation

Participant Comment

Behavior Is TDD? | Behavior Is TDD? | Behavior Is TDD?
1 test-addition | Yes test-addition | Yes adding test Yes
2 refactoring | Yes test-first Yes refactoring Yes
3 refactoring | Yes refactoring | Yes refactoring Yes
4 test-first Yes test-first Yes adding new functionality, adding test Yes
5 test-first Yes test-first Yes refactoring Yes
6 test-first Yes test-first Yes adding new functionality, adding test Yes
7 test-first Yes test-first Yes adding new functionality, refactoring, adding tes¥es
8 test-first Yes test-first Yes adding new functionality, adding test Yes
9 test-addition | Yes test-addition | Yes adding test Yes
10 unknown No test-first Yes adding new functionality, refactoring, adding tes¥es

Table 7.3. Participants’ Comments on their DevelopmentaBigins

7.5.4 Participant Interview Analysis using the Coding Metlod

| analyzed the first participant’s interview data to study @pinions on unit testing and TDD

using the coding analysis method.

Analysis Method

Coding is a data analysis method that can generate a déstrgdtsetting or people as well
as categories or themes[12, 13]. For interview conductethigstudy, | coded participants into

different categories according to their opinions on sofeagevelopment, unit testing, and TDD.

Analysis Result

Table 7.4 summarizes the interview questions and answarstfre first participant.

Table 7.4. List of Interview Questions and Answers

Interview Question Participant's Response

Unit testing experience Several years.

Prior unit testing strategy | Write test after production iteratively.
How much unit testing Not all the time.

TDD's impact on unit testing TDD is messy and leads to wrong design. TDD
better if there is good design first.
Comfortableness of TDD Hard, especially when a refactoring activity caused
previous tests failed (regression test failure).
Full-scale use of TDD Do not want to do so until | get accustomed tol|it.
Likes the idea of TDD.

S

In the interview, the first participant stated that unititggtiwas a practice that was required in
his prior software development. In his opinion, iteratwighplementing test cases afterward makes
more sense than writing test first. Additionally, TDD maydeda wrong design and messy code if
there is no good design first. Therefore, implementing sarféwn TDD is hard and it takes time
to get accustomed to it. With these answers, | coded a categoned“somewhat in favor of unit

testing but not in favor of TDD”.

101

7.5.5 Reporting Usefulness of Zorro’s Analyses

With the navigation of the “Zorro Evaluation Wizard”, paipants conducted five Zorro's anal-
yses on their own TDD development conducted in this studyerAkviewing each analysis, they

evaluated its usefulness. | generated the usefulnessaigauesults in this step.

Analysis Method

The evaluation of usefulness varies from “Strongly Disajte “Strongly Agree”, which are

quantified into values from 1 to 5 (Table 7.5). In addition lhe scale of usefulness, participants

Table 7.5. Table of Usefulness Scale

Strengthen Scale
Strongly Disagre€d
Disagree

Neutral

Agree

Strongly Agree

W NP

also checked areas that were helpful after reviewing eaalysin. Table 7.6 lists all possible useful
areas that are encoded to UA-1, UA-2, and UA-3 etc.

Table 7.6. Table of Useful Areas

Code | Useful Area

UA-1 | Acquiring awareness of my programming patterns
UA-2 | Learning TDD

UA-3 | Mastering TDD

UA-4 | Monitoring my pace

UA-5 | Improving my programming skills

UA-6 | Discovering the situations in which TDD is useful
UA-7 | Discovering the situations in which TDD is applicaljle
UA-8 | Gauging how much testing | am doing
UA-9 | Other

102

Analysis Result

Table 7.7 is a summary of the first participant’'s evaluatiarZorro’s usefulness. Note that he

only evaluated 4 of 5 analyses because the “Effort T/P Raitiailysis had a bug at that time, which

was fixed after he finished participating in this study.

Table 7.7. The First Participant’s Usefulness Evaluation

. Areas
Analysis Name Scale AT TUAZ [UA3 [UA4 [UA5 | UAG | UA7 | UAS | UAD
Demography Analysis 3 X X X
Effort T/P Ratio N/A
Size T/P Ratio 2 X
Duration 3 X
Duration Histogram | 2 X

The first participant thought that Zorro’s analyses wereeaghat useful to him. According to

his evaluation, the “TDD Episode Demography” analysis wastuseful for learning TDD whereas

other analyses were only good at showing his developmemt pac

7.6 Classroom Study Data Analysis Results

In the data analysis, | assigned letters ‘A, ‘K’, ‘L', ‘M',N’, ‘O, '‘P’, ‘Q’, ‘R’, ‘'S’, and ‘T’ to

11 participants as their identifications. Using the datdyasmamethods introduced in the previous

section (Section 7.5), | analyzed data collected from attigipants and presented results in the

following.

7.6.1 An unexpected phenomenon and participant grouping

First, | will introduce an unexpected phenomenon | disceslén the data analysis. In Chapter
2, we have discussed that TDD is iterative and incrementag. ritythm of TDD is[6]:

1. Quickly add a test.

2. Run all the tests and see the new one fail.

3. Make a little change.

103

4. Run all tests and see them all succeed.

5. Refactor to remove duplication.

Based upon the rhythm of TDD, | designed Zorro to partitionzdDIdevelopment stream over
a time period into episodes using successful test invatats tokens (Chapter 4). Also in Chapter
4, 1 have shown that the “Test-Pass” tokenizer is sufficientdentifying TDD iterations. However,
in this study, | found an unexpected phenomenon that madedttgioning of several episodes
problematic. The cause is that in the step 2 of the TDD rhytlhom all the tests and see the new
one fail” does not occur as expected when compilation emgist. Although Eclipse, the IDE |
used in this study, prompted a warning message in this caballmwved developers to cancel test
invocations, some developers opted not to. As a result, toree test invocations succeeded unex-
pectedly regardless of compilation errors. In consequedoeo failed to partition some episodes,
which led to development stream partitioning and behaliiofarence errors.

To investigate how this phenomenon affected Zorro, | didigarticipants into groups G1 and

G2 based upon their test invocation behaviors.

e G1 Participants who canceled a test invocation when compilairor(s) existed.

e G2 Participants who continued a test invocation regardlegbafexistence of compilation

error(s).

Among 11 participants, 4 of them are in group G1 and 7 of thezriragroup G2 (see Table 7.8).
Because development stream partitioning and behavidiedeince errors only occurred to partici-

Table 7.8. Participant Groups
Group | Participants
G1: K,L,O,and R
G2: A, M,N,P,Q,S,and T

pants in group G2, | will term this phenomenon as G2-DevBinam the rest of this document. |

will also discuss how Zorro can be improved if we can avoid firoblem.

104

7.6.2 \Validation of Data Collection

Using the participant observation research method discuigsSection 7.5.1, | validated Zorro’s

data collection for all participants.

Analysis Result

Table 7.9 presents numbers of development activities foh garticipant. The first column
includes participant IDs. The second column has numbergigbdes that were partitioned by
Zorro. For each participant, | listed his/her developmetitvdies per episode in columns 3 and 4.
The number of activities collected by Zorro is in column 3 déimel number of activities | observed

is in column 4. The rest two columns have mean and median vafiepisode activity number

differences.

Table 7.9. Summary of Development Activities

. < Activities per Episode | Activity Difference
D Episodes Zorro | Video Observation Mean Median
A 19| 12.7 11.9 0.8 0
K 10| 19.8 15.3 4.5 4
L 8| 325 30.4 2.1 2
N 9| 204 18.2 2.2 3
o 16| 15.3 13.6 1.7 0.5
P 18| 13.7 11.7 2.1 15
Q 21 9.8 9.6 0.5 0
R 14| 12.6 11.2 14 0
S 9| 16.3 12.7 3.7 2
T 13| 15.3 13.2 2.1 1
Mean 13.8| 16.8 14.8 2.1 14

Note that | excluded data from participant ‘M’ in Table 7.%&tthelped me find a bug in the
Eclipse sensor. The bug was caused by the G2-DevBehaviaclisied in the previous section
(Section 7.6.1). At the time when G2-DevBehavior occureedn time exception was thrown but
the Eclipse sensor did not handle it gracefully such thaesgevelopment activities from participant
‘M’ were missing. Though | improved the Eclipse sensor afteding this bug, some data from
participant ‘M’ were permanently lost. So in the rest of th@ument, | will not include his data,

which reduced the number of effective participants to 10.

105

Discussion

According to analysis results presented in Table 7.9, Zrrwapable of collecting develop-
ment activities. On average, Zorro collected more develmypnactivities (16.8 per episode) than
what | observed (14.8 per episode). Both the mean and medlars/of episode activity number
differences are positive.

In addition to computing differences of development atiggi, | also did further investigation

to find what caused them by comparing development activitilected by Zorro to development
activities | observed.

B Microsoft Excel - K-Validation.xls |E@ D@
@ File Edit Wiew Insert Formab Tools Data Window Help Adobe FDF - = _x_j
el SRV &S - Rz A S DEGE 2o B| DALY
Al L] = | Observation
A . B 7=
1 |Observation Zorro

2 1 12:18:13-12:19:31Create TestBowlingGame (-1) 12/07/2006 12:19:56 TestBowlingGame. java ADD METHOD void TestFra
3 |(2)12:19:37-12:20:03 Create test case TestFrame() (2) 12/07/2006 12:20:13 TestBowlingGame. java ADD IMPORT import org.jun
12:20:12-12:20:14 Add import org junit Test 12/07/2006 12:20:49 TestBowlingGame.java TEST EDIT 33sec Mi=+1(1

~i| o

o

B (1) 12:21:01-12:21:33 Edit test to instantiate BowlingGamel (17 12/07/2008 12:21:33 TestBowlingGarme. java TEST EDIT 17sec MI=0(1),

9 (21 12:21:35-12:21:35 Compilation error: BowlingGarme can (2 12072006 12:21:33 TestBowlingGame.java COMPILE BowlingGame ca
A0 |i3) |(3) 120072006 12:21:57 BowlingGame.java ADD CLASS BowlingGame. java
11 i (41 12/07,/2006 12:21:59 BowlingGame. java BUFFTRANS FROM TestBowlin
12 L (8) 12072006 12:22:05 TestBowlingGame. java BUFFTRANS FROM Bawlin
13
14

[4]» [WF, developerk { Data Collection f interview { Usefulness evaluation ,Cor | 4
Ready | | IR

Figure 7.3. Validation of Zorro’s Development Activities

With side by side comparison (Figure 7.3), | found two categgoof situations that were re-
sponsible for Zorro’s excessive data collection in thediwihg. First, Zorro sometimes reported
two or more activities while 1 only observed one developmactivity as what | described in the
item of “Kill two birds with one stone”. Second, though tedtally ESR should capture everything
that happens in the Eclipse IDE, it did not in situations thiate described in items of “Invisible
editing activities” and “Problems view of Eclipse could hdden”.

1. Kill two birds with one stone

106

When a developer changed statements that were associdtedbjéct components such as
import, package declaration, attributes, method namehodeeturn type, or method parame-
ters, the Eclipse sensor collected two types of developmaivities: editing and refactoring.

Similarly the Eclipse sensor would also collect both typési@velopment activities when

a developer used refactoring commands supplied in Eclipséoth cases, Zorro doubled
development activities.

2. The problems view of Eclipse was hidden

In videos of participants ‘K’, ‘M’, and ‘T’, the problems we of Eclipse was overlapped by
other views for a while (see Figure 7.4). | cannot observegtation errors in this situation
because Eclipse reports them in the problems view. Forrinstan Figure 7.4, the JavaDoc
view overlapped the problems view. Since the title of thebfgms view was highlighted,
it probably meant that there should have had compilatioargribut | could not tell it by
watching the ESR video.

Problems | & Javadoc 5 Decleralbion
it framasonre - Boslhaaame. g

Figure 7.4. Invisible Problems View in Eclipse

3. Invisible editing activities

A developer could input a few blank spaces while programmiSgice ESR captured the
screen of Eclipse, | would not be able to observe this kindewktbpment activities because

there is no visible changes.

The above three items can answer why Zorro collected morea@went activities than what |
observed in recorded videos. However, there were also adeasdn which Zorro missed develop-
ment activities (see items “Quick editing” and “Quick buffeansition”).

1. Quick editing

The Eclipse sensor uses “state change” as the foundatiatdotcediting development activ-

ities. A timer thread in the sensor wakes up every 10 secandbdck the active buffer. If

107

there are any changes made to the active buffer, the senkdireva “state change” event.
Zorro reduces a series of consecutive “state change” eiréntan editing activity when pro-
cessing development streams. This mechanism works welssiial developer edits a file for
less than 10 seconds and then switches to another buffes, tifie Eclipse sensor will miss

an editing development activity.

2. Quick buffer transition

The Eclipse sensor collects “buff trans” activities by dtirg the active buffer. Atimer thread
wakes up every 5 seconds to detect whether there is a budfesition activity. Five-second
is a small time period, but it is long enough for a developechange the active buffers two
or more times. If two or more consecutive buffer transitiativities occur in less than 5

seconds, the Eclipse sensor might fail to capture some of t#ilkem.

Conclusion

In this section, | summarized Zorro’s data collection vatidn results (see Table 7.9). It turned
out that Zorro collected more development activities pesage than | observed for every partic-
ipant. Further investigation indicated that Zorro only seid a few development activities when
participants quickly edited code or switched buffers. AlBorro collected development activities
that were invisible in recorded videos. The analysis in$kistion indicates that there is partial sup-
porting evidence for the research questions Q2a because Zam collect development activities
more precisely than ESR, a recorder that can capture almeist development activity that occurs
in the Eclipse IDE.

7.6.3 Validation of TDD Behaviors and TDD Compliance Inferace

Zorro recognizes TDD development through two steps (Chapte(1) inferring development
behaviors by matching development activities in episodes $et of predefined development be-
haviors; (2) and then deducing TDD compliance using intkepisode behaviors. Thus, in this
study, the validation analysis also had two steps: episetiaoral inference validation and TDD
compliance inference validation, both of which were introgld in Section 7.5.2 for an individ-
ual participant. After validating Zorro for all participes) | summarized validation results in this
section.

108

Validation of Development Behavioral Inference

For an individual participant | created a table similar abl@& .2 after validating Zorro’s infer-
ence of his/her development behaviors. | then assignedadlbe 1 to an episode if the development
behavior | observed in the video agrees with the developinelnavior Zorro inferred. In the end,
| counted the number of 1's episodes and presented resulabie 7.10 in which the last column
is the percentage of 1's episodes to total episodes. Thieptge could be an indicator of Zorro's

development behavioral inference accuracy.

Table 7.10. Video observation validation of developmertayéors

ID Episodes| 1's Episodes| Percentage
A 19 15 78.9%
K 10 8 80.0%
L 8 7 87.5%
N 9 4 44.4%
O 16 15 93.8%
P 18 12 66.7%
Q 21 11 52.4%
R 14 13 92.9%
S 9 2 22.2%
T 13 9 69.2%
Total 137 96 70.1%

In total, the participant observation analysis agreed Zimato correctly inferred development
behaviors in 96 episodes resulting in 70.1% inference acgurBut the inference accuracy is in-
consistent from participant to participant. The lowest 25226 and the highest is 93.8% (Table
7.10).

To address this inconsistency, one thing we can do is to ghelympact of G2-DevBehavior
by separating Table 7.10 into two sub-tables: one for groligTable 7.11), and the other one for
group G2 (Table 7.12). Clearly, Zorro performed much baitemferring development behaviors
for group G1 than for group G2. For G1, the average inferemoeiracy was 89.6%, which is
much higher than the average accuracy for G2. It indicatas@®2-DevBehavior, which affected
24 out of 89 episodes, had a substantial impact on the agcaf&@orro’s inference of development

behaviors.

109

Table 7.11. Video observation validation of developmerttavéors for G1

ID Episodes| 1's Episodes Percent
K 10 8| 80.0%
L 8 7| 87.5%
O 16 15| 93.8%
R 14 13| 92.9%
Total 48 43| 89.6%

Table 7.12. Video observation validation of developmerttavéors for G2

ID Episodes| 1's Episodes| Percent| Episodes with G2-DevBehaviar
A 19 15| 78.9% 3
N 9 4| 44.4% 3
P 18 12| 66.7% 4
Q 21 11| 52.4% 9
S 9 2| 22.2% 2
T 13 9| 69.2% 3
Total 89 53| 59.6% 24

Validation of TDD Compliance Inference

Table 7.2 lists not only development behaviors | observedliso TDD compliance for an indi-

vidual participant. An episode is TDD compliant if its demginent behavior is either a portion of

a TDD iteration such as refactoring or a complete TDD iteratiAfter observing TDD compliance

for all participants, | summarized results in Table 7.13validation.

In Table 7.13, the “TDD Compliant Episodes” column has nuraeloé TDD compliant episodes.

It is divided into three sub-columns: “By Zorro”, “By Videoralysis” and “Difference”. With

values in Table 7.13, we can compute percentages of TDD ¢ami@pisodes in the following:

CompliantEpisodes(Zorro)

TDD(Z = 100
(Zorro)% Total Episodes *
113
= —x1
137* 00
= 82.5,
liant Episod ideoAnalysi
TDD(VideoAnalysis)% = CompliantEpiso 68,(‘/2 coAnalysis) * 100
Total Episodes
128 100
= — %
137
= 934.

110

Table 7.13. Video observation validation of TDD compliance
TDD Compliant Episodes

D Episodes By Zorro | By Video Analysis| Difference
A 19 10 12 -2
K 10 9 10 -1
L 8 7 7 0
N 9 6 8 -2
@] 16 15 16 -1
P 18 16 18 -2
Q 21 21 21 0
R 14 13 14 -1
S 9 3 9 -6
T 13 13 13 0
Total 137 113 128 -15
Mean -1.5
Median -1
STDEV 1.78

Using episode numbers as the measurement, Zorro is someersdrvative on inferring TDD
compliance compared to the participant observation amsalyihe latter found that participants in
this study complied to TDD in 93.4% of episodes, while Zonfeired that 82.5% of episodes were
TDD compliant. In Table 7.13, | computed the episode numiférdnce for all participants. The
mean value is -1.5 and the standard deviation is 1.78, bathimh are very small.

However, the above evidence was not sufficient because tnglsaize was too small. Eleven
students participated in this study and | can only analyta clallected from 10 of them. In order to
generalize research conclusions, it is necessary to iachute participants. But the resource was

limited in this study since the two software engineeringsés only had 16 students (Section 7.3).

Next, | will discuss whether and how G2-DevBehavior affdc®rro’s TDD inference by sep-

arating participants into groups G1 and G2.

Discussion of G2-DevBehavior's Impact on TDD Compliance Iference

Using G2-DevBehavior we can separate Table 7.13 into twealiles: one for group G1 (Table
7.14) and the other one for group G2 (Table 7.15).

111

Table 7.14. Validation of TDD Compliance Inference for Goabl

D Episodes TDD Cqmpliant Ep?sode_s

By Zorro | By Video Analysis| Difference
K 10 9 10 -1
L 8 7 7 0
@] 16 15 16 -1
R 14 13 14 -1
Total 49 45 48 -3
Mean -0.75
Median -1
STDEV 0.5

Table 7.15. Validation of TDD Compliance Inference for Grdb2

D Episodes _ TDD Com_plian'_[Episodes _
By Zorro | By Video Analysis| Difference | G2-DevBehavior

A 19 10 12 -2 1
N 9 6 8 -2 1
P 18 16 18 -2 1
Q 21 21 21 0 0
S 9 3 9 -6 2
T 13 13 13 0 0
Total 89 69 81 -12 5
Mean -2

Median -2

STDEV 2.2

There is noticeable difference between Table 7.14 and Talile. Using participant obser-
vation analysis results as the benchmark, Zorro inferredynfiewer episodes as TDD compliant
for group G2 than for group G1. Zorro’s inference has a widefidence interval because of the
G2-DevBehavior. The standard deviation was 0.5 for groupn&bntrast to 2.2 for group G2.

Next, | will discuss the inference errors that were unreldtethe G2-DevBehavior.

Discussion of Zorro’s Inference Errors

Out of 137 total episodes, Zorro inferred that 113 were TDBpliant, whereas the participant
observation analysis validated that 128 were TDD complise¢ data in Table 7.13). So the par-

ticipant observation did not agree with Zorro’s inference X5 episodes. In Table 7.15, we learned

112

that the G2-DevBehavior caused the inference error for $oggis. In this section, | will investigate

what happened to the remaining 10 episodes.

It turned out that both Zorro’s inference rules and partioig’ development behaviors played
important roles for the inference errors. To make it simplell term all of these errors as “In-
ference Error”. In Table 7.16, for each participant, | irdgd episodes that are affected by both
G2-DevBehavior and Inference-Error. We can see that eatitipant, except for participant ‘S’,

Table 7.16. Zorro's TDD Compliance Inference Error

D Episodes TDD Compliant Episodes

By Zorro | By Video Analysis| Difference | G2-DevBehavior| Inference-Error
A 19 10 12 -2 1 1
K 10 9 10 -1 0 1
L 8 7 7 0 0 0
N 9 6 8 -2 1 1
o 16 15 16 -1 0 1
P 18 16 18 -2 1 1
Q 21 21 21 0 0 0
R 14 13 14 -1 0 1
S 9 3 9 -6 2 4
T 13 13 13 0 0 0
Total 137 113 128 -15 5 10

had at most one episode affected by G2-DevBehavior and asedepaffected by Inference-Error.

By carefully comparing development activities collected &ehaviors inferred by Zorro (Fig-

ure 7.3), | identified several causes for Inference-Error.

1. Additional production code editing before the next TDOsegde

Data Source 1 episode from participant ‘A’ and 1 episode from participdr’

Description: After implementing a new feature, the TDD process typicediquires a devel-
oper to refactor. Then the developer should rerun all thte tesnake sure that the refactoring
does not break anything. Should the developer rerun alkeis if the changes made to pro-
duction code turn out to be very trivial? Strictly speakitige answer for TDD is “Yes”.
Despite this, participants ‘A and ‘R’ refactored producticode a small amount but opted
not to run all tests. As a result, editing activities on prctthn code fell into the following
TDD episode. So the following episode began with producéditing activity, which is in-

113

ferred as a “test-last” episode. For example, the 9th epifmuin participant ‘A’ was inferred
as “test-last” because he refactored following code

int first;
i nt second;

to

int first = 0;
int second = O;

but did not rerun all tests.

. No successful test invocations at the end

Data Source 1 episode from participant ‘K’

Description: Successful test invocations are characteristic adivithat mark the completion
of a TDD iteration. An episode that does not end with succésst invocation is “unknown”
to Zorro, and as a consequence, it is not TDD compliant. I shidy, participant ‘K’ did
not finish the last user story; therefore, he ended with akrfawn” episode although he was
doing TDD.

. Insufficient Inference Rules

Data Source 1 episode from participant ‘N’, 1 episode from participadt, and 1 episode
from participant ‘P’

Description: The design of Zorro’'s TDD inference rules was rooted fromRed/Green/Refactor
model in which tests should always have been created firser\tst creations spread out
in a TDD iteration, Zorro gets confused. For example, in thie épisode from participant
‘N’, he added the test method “TestGameScore()” first, tihhgplémented the functionality to
compute the score of a bowling game, and then added assetditaments. So the test was

created in two steps. As a result, this episode was wronfgyred as “test-last”.

. Unit tests were not properly structured

Data Source 4 episodes from participant ‘'S’
Description: Zorro recognizes the unit test class based upon the egestdriest methods and
assertion statements. A unit test could be wrongly receghiés production code, particularly

at the beginning of a programming session when there arenydieat methods or assertion

114

statements. In this situation, Zorro infers the developnibehavior as “test-last”, not “test-
first”. For example, test code in the first episode from pgodiot ‘'S’ did not have any test
method and assertion statement at the beginning. As a,rémufirst episode was inferred as
“test-last” although participant ‘S’ thought that he wasndpTDD. In turn, due to the chain

effect, following three refactoring episodes were alselirdd as TDD noncompliant.

Conclusion

In this section, using participant observation, | valideZ®rro’s inference of TDD development
behaviors and TDD compliance. The validation indicatesZloaro inferred development behaviors
with 70.1% accuracy. Regarding TDD compliance, Zorro irddithat particpants in this study com-
plied to TDD in 80.4% of episodes, while participant obsé@oraindicates that 93.9% of epsidoes
were TDD compliant. The further discussion on G2-DevBetrawidicated that Zorro’s inference

accuracy and consistency would be improved if Zorro couldemtly interpret G2-DevBehavior.

In addition, to investigate causes for Zorro’s inferengers; | compared development activities
collected and behaviors inferred by Zorro to what | obselivelSR videos. Interestingly, most of
the inference errors were caused by participants’ nomgnnhexecution of TDD. Also, some of

them were caused by insufficiently precise rules in Zorro.

e The culprit of G2-DevBehavior

| discovered the G2-DevBehavior in this study, the develepirbehavior to invoke tests
regardless of compilation errors. When it occurs, the tegbdation may succeed, which

leads to episode partitioning and development behavierénice errors.

e Research question Q2a: Does Zorro collect software develognt activities accurately

enough for episode partition and TDD behavior inference?

This study provides evidence that Zorro collects a sufftaiember of development activities
accurately. Compared to participant observation using,E=iR0 actually collected more
development activities. A bug in the Eclipse sensor causpteglata loss for one participant
but | fixed it for the remaining 10 participants. The partaip observation analysis validated
that Zorro inferred development behaviors with 70.1% aacyand TDD compliance with
more than 80.4% accuracy. Both of these numbers would iserg&orro could correctly

115

interpret G2-DevBehavior. So the validation analysis iis $ection supports the research

question Q2a.

e Research question Q2b: Does Zorro’s inference of TDD behawis agree with analyses

based upon participant observation?

According to participant observation, Zorro infers depshent behaviors correctly for 70.1%
of episodes. It infers that 80.4% of episodes were TDD camphwhile the particpant ob-
servation validated that 93.9% of episodes were TDD complidurther discussion indi-
cates that Zorro can perform better if there were not G2-[e&aBior, and only 3 out of 128
episodes have inference errors. All these conclusionsigedvsupporting evidence to the

research question Q2b.

7.6.4 Cross-validation of Zorro using participant commens

In the previous section, we have shown that participantreatien agreed with Zorro’s infer-
ence on development behaviors and TDD compliance. In tloisose | will analyze participants’

comments to cross-validate the research conclusions veedrawn above.

In Section 7.5.3, | demonstrated how | conducted crossiatdin analysis for one participant.
Following the same method described in Section 7.5.3, lyaedl all participants’ comments and

described validation results in the following.

Cross-validation of TDD Compliance Inference

Table 7.17 is a summary of cross-validation results for pis@des produced by participants

in this study. An episode could be “compliant”, “honcomptia or “don’t know”. Interestingly,

Table 7.17. TDD Compliance Comparison

Method Episodes Compliant| Noncompliant| Don’t know
Zorro 110 27
Video Analysis 128 9
Participant Comment 111 11 15

based upon numbers in Table 7.17, participant comments @ ddnpliance were much closer to

116

Zorro's inference results than to participant observatioalysis results. Participants commented

that 111 episodes were TDD compliant, which is just 1 epistffierent from what Zorro inferred.

There are two possible explanations to this phenomenon. e®planation is that Zorro was
really good at inferring TDD compliance. The other explamats that participants simply went
along with Zorro’s perspective on their behaviors due té lafcexperience with TDD. After review-
ing Zorro’s reasoning process and inference results,gigatits commented on their development
behaviors. Therefore, in order to improve validity of pegants’ comments, | explained to them
that their comments would help to improve Zorro's infereace encouraged them to read aloud

while commenting. Also, | used a digital voice recorder toore their verbal comments.

| listed detailed cross-validation results for all pagnts in Table 7.18. Zorro inferred that 110
of 137 episodes were compliant and 27 were noncompliantoritrast, the participant observation
analysis validated that 128 were compliant and only 9 werecompliant. Finally, participants
commented that 111 were compliant, 11 were noncompliaxt,1&nwere neither of them. Most of
the time, participants agreed that Zorro inferred their T€&dhpliance very well. When they were
not sure to the TDD compliance of an episode, they declaras iDon't know”. Fifteen episodes

are in this category.

Discussion of G2-DevBehavior

| broke Table 7.18 into Table 7.19 and Table 7.20 by sepayatarticipants according to G2-
DevBehavior. Participants in group G1 commented that Zalmwost perfectly inferred their TDD
compliance (Table 7.19). It also showed that the partidigdiservation analysis was not biased
because these two analyses reached the same conclusiausBet G2-DevBehavior, participants
in group G2 did not completely agree with what Zorro inferedxbut their compliance to TDD, but

the difference was not big (Table 7.20).

Cross-validation of Episode Behavior Inference

Participants used the web page illustrated in Figure 7.2vi® their feedback after reviewing
their development activities and remembering what theyeldone in an episode. Meanwhile, in

order to get as much feedback as possible, | also recorded/énbal comments.

117

8TT

ID | Episode Compliant Episodes Noncompliant Episodes Don’'t know
Zorro Video Analysis Participant CommentZorro Video Analysis Participant CommentParticipant Commen

A 19 10 12 9 9 7 7 3
K 10 9 10 9 1 0 0 1
L 8 7 7 7 1 1 1 0
N 9 6 8 7 3 1 0 2
O 16 15 16 16 1 0 0 0
P 18 16 18 18 2 0 0 0
Q 21 19 21 17 2 0 0 4
R 14 13 14 12 1 0 0 2
S 9 3 9 7 6 0 2 0
T 13 12 13 9 1 0 1 3
Total 137 | 110 128 111 27 9 11 15

Table 7.18. Participant Comments on TDD Compliance

Table 7.19. Group G1's comments on TDD Compliance

ID | Episode Compliant Noncompliant
Zorro Video Analysis Participant Zorro Video Analysis Participant
K 10 9 10 9 1 0 0
L 8 7 7 7 1 1 1
o 16 15 16 16 1 0 0
R 14 13 14 12 1 0 0
Total 48 44 47 44 4 1 1
Table 7.20. Group G2's comments on TDD Compliance
ID | Episode _ Compliar_1t _ _ Noncompli_ant _
Zorro Video Analysis Participant Zorro Video Analysis Participant
A 19 10 12 9 9 7 7
N 9 6 8 7 3 1 0
P 18 16 18 18 2 0 0
Q 21 19 21 17 2 0 0
S 9 3 9 7 6 0 2
T 13 12 13 9 1 0 1
Total 89 66 81 67 23 8 10

Participants commented on their episode behaviors bytseleitom a set of development be-
haviors including “adding new functionality”, “adding t&sand “just running tests” etc. Therefore,
in order to compare their comments with episode behavidesriad by Zorro and that | observed
in recorded videos, it is necessary to code their commemtdaid a mapping schema to connect
them. Table 7.21 defines a mapping schema | used in this daligsen In the participant comments

Table 7.21. Mapping schema from participant’'s comment to&wideo Analysis inference

Participant Comments Relation | Zorro/Video Analysis
adding new functionality + adding test + [more] + TDD| = test-first
adding new functionality + adding test + [morep+TDD | = test-last
adding new functionality + [more] + TDD = test-first
adding new functionality + [more] +~TDD = production
adding test + [just running tests] = test-addition
adding test + [just running tests] + TDD = test-first
refactoring + [just running tests] = refactoring
just running tests = regression
no comment ? anything
other * anything

column, '+ means combination of development behaviorss\etbpment behavior is optional if it

is embraced by a pair of closed brackets; sign stands for negation, and “[more]” matches any

119

development behavior. In the relation colums; stands for the equivalent relationshigs”stands

for the nonequivalent relationship, and the question marktands for the unsure relationship.

Using this mapping schema, | compared development belsavidicated by participant com-
ments to development behaviors inferred by Zorro. | markeém@sode as “agreed” if | can map
the participant’s comment to the development behavioriateby Zorro, “disagreed” if the two
are not equivalent using the schema in Table 7.21, or “uis$utiee participant did not comment
or no mapping exists. Comparison results are available lileTa22. In addition, | also appended

comparison results between participant observation amebZio the same table. This table makes

Table 7.22. Participant’s Validation of Episode Behaviors

ID | Episode Particip_ant V.S. Zorro Video Analysis V.S. Zorrg
Agreed Disagreed UnsureAgreed Disagreeq
A 19 12 5 2 15 4
K 10 8 2 0 8 2
L 8 6 2 0 7 1
N 9 6 2 1 4 5
0] 16 14 2 0 15 1
P 18 14 4 0 11 7
Q 21 12 5 4 11 10
R 14 12 1 1 13 1
S 9 6 3 0 2 7
T 13 10 2 1 9 4
Total 137 100 28 9 95 42

it clear that the participant comment analysis yielded wboge findings to the participant observa-
tion analysis. With regard to agreed episodes, one is 10@hanother is 95. Numbers of disagreed
episodes are also very close. So, on the episode levelgipartt comments agree with participant
observation results. This provides strong evidence treavitleo analysis method is not biased in
this study.

Regarding G2-DevBehavior, participants in group G2 wereenfikely to disagree with Zorro’s
inference of their development behaviors. For exampleeld@er ‘N’ noticed that “one episode
goes into two because | ran the test before adding [the ptiotucode].” Developer ‘P’ commented
that “[when there is compilation error], JUnit does telltt&slures if the method is not found. It
is a JUnit problem not Eclipse.” Participant ‘Q’ also pouhteut that one of his episodes was
not partitioned correctly. Participant ‘T’ even brought the G2-DevBehavior problem before
validating Zorro.

120

Conclusion

In this section, | analyzed participant comments to cradilate Zorro's inference on TDD

compliance and development behaviors.

With regard to TDD compliance, participants agreed withrdsrinference results and the par-
ticipant observation analysis results (see Table 7.17)sTthe cross-validation provides evidence
that participant observation is a viable method for validaZorro. By separating participants into
groups G1 and G2, we found that participants almost conipleigreed with Zorro’s inference

results and participant observation analysis resultsdatigipants in group G1.

Though participant comments provided strong evidencedeareh question Q2c, we must be
cautious because the conclusion could be influenced by atcprablem — the participant’s knowl-
edge of Zorro’s inference. | advised participants use Zeirderence results as reference only and
encourage them to read aloud to give us feedback for Zorroawement. The cross-validation
analysis in this section provides some evidence that fzatits were able to comment indepen-
dently. They commented 15 episodes as “don’t know” to exptiesir disagreements with Zorro’s

inference.

With regard to episode behaviors, | built a development tiehanapping schema to map par-
ticipant comments to development behaviors Zorro infeamed to those that | observed in recorded
videos. According to Table 7.22, participants agreed tlwtZinferred development behaviors in
73.0% (100 of 137) of episodes correctly. In comparison,piugicipant observation analysis val-
idated that Zorro inferred development behaviors in 69.9%dqf 137) of episodes correctly. Both
validation analyses concluded that Zorro is capable ofiimfg development behaviors, but there is

still room for improvements.

7.6.5 Participant interview analysis

Before this study, the instructor of the software engimeedlasses introduced TDD to students
after they finished the semester-long course projects. tgsiiing was a required practice in their
course projects. The students also practiced what theydaaddd in the TDD lecture using the

Roman numeral conversion problem (see Appendix C).

121

Following the interview guideline in Appendix F, | interwed participants on unit testing and
TDD at the end of this study. Then | processed the intervigypisgsing the coding research method
[12, 13] to categorize the participants.

Unit Testing Survey

Among the participants, only one has used unit testing fong time at work, one had practiced
unit testing for a while, and the others had just started aonleinit testing since the beginning of
the software engineering classes. Since most participeens new to unit testing, | decided not to

differentiate them based on unit testing experience in ¢ioing process.

The participants unanimously agreed that unit testing dgor software development, but
they had a diversity of opinions on how helpful unit testisgiowever, some of them pointed that

unit testing was hard sometimes, especially when they waotachieve 100% test coverage.

In the open coding stage, | wrote down the values of proeinigluding unit testing assessment,
experience, testing behavior, testing effort and test remea | categorized participants based on
these properties. Using coding and memoing methods, | @ateg the participants and listed the

core categories in Table 7.23 based upon the property values

Table 7.23. Participant Categories on Unit Testing

Category Description Participant
Good-but-Small-Effort Test is good for quality but | do A, L, O, P, R, S,and T
not write test often and | hav
excuses.

Must-and-Test-Last All code must have unit test. TheK
work flow is design, think, code
and test.
VeryGood-and-Much-Effort Test is very good and | spentN and Q
quite some effort on it

1]

The majority of the students acknowledged that unit testingood for improving software

quality but they did not devote enough effort on it.

122

TDD Survey

TDD is very different from unit testing. It not only reverstie order of production and test
developments, but also advocates unit tests as the drivirng for software design. | coded the
interview data using properties including TDD’s impactsuit testing and software quality, and

how hard it is to develop software in TDD. Table 7.24 lists tee categories.

Table 7.24. Participant Categories on Perception of TDD

Category Description Participant

Negative Messy design. Straight TDD isKand S
weird.

No-Change No guarantee for quality. May A and L
take longer such that yields bet-
ter quality.

Positive-With-Condition| More time on testing and betterN, O, P, Q, R, and T
testing. Hard if there is no good
to-do list. Helpful when from
scratch up. Eclipse discourages
TDD because of compilation er-
ror warning.

A common misunderstanding of the participants is that agesls should create the complete
To-Do list prior to implementation, which is not true for TDIstead, developers should dynami-
cally maintain the To-Do list by themselves. It is reasoadhht they had this impression given the
experiment settings of this study. | provided the user etotd help participants develop solutions
for the bowling game problem (Appendix E) without spendirigtaf time to ensure that they un-
derstood the bowling game scoring methods. This is a tréfdeehad to take because previous
studies found that it could take participants up to 48 hoaradcomplish the same programming
problem [19]. Based on lessons learned from others, pmogitlie user stories that are easy to un-
derstand is necessary for this study’s experimental desifith required a reasonable number of
TDD iterations to be completed within 90 minutes. Given tingtresearch interest is on validating
Zorro’s automated inference, providing user stories i®ptable. In the interview, | explained to

participants that they should dynamically maintain theDkilist by themselves in real situations.

123

TDD Acceptance Survey

Last, | asked participants how they would respond if thedjgmt managers required everybody
to use TDD. Two developers would be against the use of TDD ily daftware development.
Three developers would accept it if good design documemtatnd To-Do lists are in place. The
remaining five participants would be very willing to use TDIable 7.25 listed the participant

categories.

Table 7.25. Participant Categories on Acceptance of TDD

Category | Description Participant
Against | Don’'t know why TDD benefits| S and A

Nobody can tell whether | am
doing it.
Ok Will do. Good design and To-Do K, P, and T
list are necessary. Need time o
get used to it. May get stressed
out.
Welcome| Like it. Don’t mind. L,N,O,Q,and R

7.6.6 Usefulness analysis

In the following, | will report participant’s survey resalbn Zorro’s TDD analysis usefulness,

and then summarize the useful areas.

Survey of Usefulness

Table 7.26 is a pivot table of the TDD analysis usefulnesgesurOverall, the usefulness scores

Table 7.26. Survey on TDD Analysis Usefulness

. Participant) , 1 L [N|o|P|Q|R|sS|T
Analysis
Episode Demography 34 |5|4|4|5/4 4|44
T/P Effort Ratio 4 5|4 |4|5/3|4(|4|4
T/P Size Ratio 4 |3|5|4|4|5/4 |3 |44
Episode Duration 414|5/5|4|5{4|3|4|3
Duration Distribution 4 |3 |5|3(4|4/4|4|3]3

to Zorro’s TDD analyses ranged from 3 to 5 according to Taki¥.7The “Duration Distribution”

124

is the least useful analysis. One reasonable explanatiahifocould be that the episode numbers

were too small to be used for distribution analysis.

Useful Areas

The Appendix G has the participants’ selections of areasabao’s TDD analyses could be
used for. Table 7.27 is a summary of their selections. Theegain Table 7.27 are the numbers of

useful areas.

Table 7.27. Summary of Useful Areas of TDD analyses

. Participant) \ | | L IN|o|P|Q|R|s| T/ Total
Analysis
Episode Demography 113|343 |6|/4|3|2|6]35
T/P Effort Ratio 3 2144|532 |4|6]33
T/P Size Ratio 4112|2261 |2|3|3]|26
Episode Duration 31113133223 21
Duration Distribution 314|114 2(2|2]|2]|6]|27

In order to compare number of areas on both analysis wise artitipant wise, | plotted the
3-D Chart (Figure 7.5) with the data in Table 7.27. With Feat5, we can easily compare the
differences on usefulness among these 5 analyses. TheottepBemography” and “T/P Effort
Ratio” are the two most useful analyses. Although participajave the least usefulness score to

the “Duration Distribution” analysis, it has the potentialbe useful basing upon its useful areas

Conclusion

The analysis in this section provided supporting evidendhé research question Q2d. Partic-
ipants generally agreed that the Zorro is useful and it camsked to understand and improve their

TDD practices.

7.7 Chapter Summary

In this chapter, | validated Zorro’s sensor data collecfjsections 7.6.2) and TDD behavior
inference (7.6.3). Based upon the participant observati@lysis, these results provide supporting

evidence to research questions Q2a and Q2b (See Chapter 5).

125

Number of Useful Areas

\e]
(&)
\

N
o
\

—
(6}
|

—
o
|

(6}
|

o
|

Episode T/P Effort T/P Size Episode Duration
Demography Ratio Ratio Duration Distribution

Figure 7.5. Useful Areas of TDD Analyses

126

ET
ES
OR
EQ
apP
EO
ON
oL
EK
OA

In this study, | used participant comments to cross-vadidatrro’s inference of development
behaviors and TDD compliance. The analysis of their comséction 7.6.4) provided support-
ing evidence to the research question Q2c. Participants-amidated that Zorro inferred TDD
development behaviors accurately and that participargrghton is a reasonable research method

for validating Zorro.

As part of this study, | interviewed participants to surviegit opinions on unit testing and TDD.
The survey found that participants had a variety of opinionshow useful unit testing and TDD
are (Section 7.6.5). Most of them believed that unit teséind TDD can help to improve software

quality.

Participants also evaluated the usefulness of five TDD aralyprovided by Zorro. The use-
fulness evaluation analysis (Section 7.6.6) found suppmpevidence to the research question Q2d
(See Chapter 5).

In addition, | discovered an unexpected phenomenon (Sec¢ttl) in the data analysis. Some
participants sometimes forced Eclipse, the IDE | used ia #iidy, to continue test invocations
regardless of compilation errors. This behavior impactedd@s development stream partitioning
and development behavioral inference. In this chaptertta daalysis, | termed this development
behavior as G2-DevBehavior, and divided participants gmups G1 and G2 for comparison. The
validation analyses showed that Zorro’s inference acguaad consistency would improve signifi-
cantly if Zorro could correctly interpret G2-DevBehavidihus it is necessary to let Zorro to allow

this development behaviors in the future.

127

Chapter 8

Industrial Case Study

The pilot study and the classroom case study show that Zeamdrder TDD when it occurs
in the educational and controlled environments. After ¢htego studies, | turned my focus into
evaluating Zorro's usefulness for researchers. In ordachieve this goal, | collaborated with Dr.
Geir Hanssen, a researcher from SINTEF ICT of Norway on anstnl case study in which Zorro
was adopted. My role in this study was the technique suppoftgorro. | assisted Dr. Hanssen in
deploying Zorro to the site and helped him to analyze theect#d data. In the end, | interviewed
him with regard to Zorro's usefulness.

8.1 Purpose of the Study

The purpose was to test Zorro's usefulness for researchgasdiess of the accuracy of Zorro’s
data collection and correctness of Zorro’s inference of Tdeelopment behaviors.

8.2 Research Questions

The specific research question of this studyi@a: How can researchers use Zorro to as-
sist empirical evaluation of TDD? It supports the overall research question Q2ow useful is

Zorro?”

128

8.3 Case Study Journal

In Fall 2006, Dr. Hanssen planned to conducted an evaluatiadly of TDD against an ex-
isting Test-Last practice in an European software compamyen Foosball LLC. According to
Dr. Hanssen, a barrier facing this study was that harvestavglopment data was very hard. The
Foosball LLC agreed to participate in this study but did nahtto engage into any research activ-
ities that do not add much direct value. So Dr. Hanssen relgsdor the possibility to use Zorro
in his study, which leads to this collaborative industriabe study. As a facilitator, | provided the
technique support of Zorro, assisted the project manageagiag sensor installation, and analyzed
the development process using the data Zorro collects. Jodesscribe this research, | will use a

journal to highlight the collaborative research actidtleconducted.

8.3.1 The Prelude of this study

After implementing Zorro, | revamped its data collectiordanference rules according to re-
search results of the pilot study (Chapter 6). In Summer 2D@6rked as an intern at the NRC-IIT
2 where | collaborated with Dr. Erdogmdson classification of TDD development behaviors and
inference of TDD compliance. In Fall 2006, under directifnosn Professor Philip Johnson — my
thesis advisor, and Dr. Erdogmus, | implemented the “ZoraD” to illustrate Zorro’s capabilities

for the purpose of recruiting participants.

2006-10-30: Zorro Demo

| applied some TDD analyses Zorro provides to a real TDD @nogning session and created
the “Zorro Demo”. The demo was implemented in web pages dictpa start page, six analysis
pages and a feedback page. Figure 8.1 illustrates the attthat has a brief introduction to Zorro,
how it works based upon the “stop light” metaphor of TDD, amel havigation buttons “Previous”,

“Demo Home” and “Next”.

1The company is real but its name is faked.

2NRC-IIT stands for Institute for Information Technology ational Research Council Canada.

3Dr. Hakan Erdogmus is a Senior Research Officer in the NRCSbftware Engineering Group (http:/fiit-iti.nrc-
cnrc.gc.ca/personnel/erdogmiakane.html). He has interests in Software Economics, Agile8arfé Development,
and Software Process Measurement and Awareness.

129

3 Hackystat - Zorro Dema Home - Mozilla Firefox

Fle Edit view Hstory Bookmarks Tools Help

4@ - - @ it |48 htp: f/nackystat.ics hawall edufhackystatfcontroller =l] [T 500gle

7 Lacal U http: //pirate.shu.eduf~... R Bootstrap 3 Learning £ Blogs 7 Soup £ Google T JAVA 77 Projects 2 Daniel ©7 Norway £ JAVA
MGrail - RFC: Zorro Demo | & Hackystat - Zorro De... &

—

University of Hawaii analyses | preferences | alerts | extras | help | home

Previous Demo Home

zorro@hackystat.org

Zorro Demo Home

Introduction

bRRO is a software system that we developed in order to improve understanding of Test-Driven Development.

Zorra monitors developers while they use the Eclipse IDE, and collects events representing low-level behaviors such as editing production code, running unit tests,
invoking the compiler, and so forth. These low-level behaviors are then analyzed to determine whether the developer is conforming to Zorra's rule-based definition
of TDD.

At a high level, Zorro lets us investigate two primary research issues. First, can we develop a set of rules that will accurately recognize "real world" instances of
test-driven development? Second, can we use this recognition capability to provide insight to developers regarding their TDD practices as well as better understand
the impact of TDD on metrics such as quality and productivity?

This demo shows you Zorro analyses based upon real data collected from an experienced "test-infected" developer. During this 38 minute excerpt, he worked on a
program called Roman Numeral. (We actually modified his data slightly so that a broader sample of nen-TDD behaviors would be illustrated in the analyses.)

Defining TDD
Avery popular and simple definition of TDD is based upon a "stop light" metaphor:

1. Red - Write a little test that doesn't work, and perhaps doesn't even compile at first.
2, Green - Make the test work quickly, committing whatewver sins are necessary in the process.
3. Ref i - Eliminate the duplication created all the while keeping the test running 100% in the green.

However, this characterization is not sufficient to recognize all variant behaviors of Test-Driven Development in practice, Through our ressarch, we have developed
a more sophisticated definition of TDD, which captures not only the idealized "test-first" and "refactoring” behaviors, but also dewviations from them that may or
may not be recogized as legitimate TDD behaviors depending on the context in which they occur. For example, we are able to recognize patterns that indicate pure
test suite fortification {without adding new functionality], different types of refactaring, addition of new functionality (without adding new tests), pure regression
(=imply running tests), and test-last behavior {adding tests after production code). Depending how they are interleaved with other behaviors, we recognize such
deviations as being either TDD-conformant or not.

Navigating the Demo

To see the pages in this demo, use the "Previous”, "Demao Home", and "Next" links at the top and bottom of each page. Other links, such as the Hackystat page
links in the gray navigation bar, will take you away from this demo,

Previous Demo Home j
- —

Figure 8.1. Zorro Demo Wizard

130

1. TDD Episode Inference

Clicking the “Next” button in the start page will lead usesghe first analysis, “TDD Episode
Inference” (Figure 8.2). It provides a view for end users twlerstand how Zorro infers
compliance to TDD using collected development activiti>h this analysis, beginners can
learn how to program in TDD; experienced practitioners calidate the inference rules and
improve their compliance to TDD; and researchers can imgralidity of their empirical

studies by knowing participants’ compliance to TDD.

Fle Edt view Hstory Bookmarks Tools Help

< = @“ ’u’f | €8 hitp: //hackystat. ics hawail edu/hackystat/controller -\

| IGl-| &)

15 Local [hitp: f/pirate.shu.edufe ... B Bootstrap 1 Learning 77 Blogs £ Soup 7 Google 5 JAVA [Projects £ Daniel £ Norway £ JAVA
rMGmail - Inbox (3234) 3 Hackystat - TDD Episo... & | [ISERN Material *

QB Hadysiat
University of Hawaii analyses | preferences | alerts | extras | help | home

zorraQhackystatiorg TDD Episode Inference Demo

Introduction

This analysis shaws how Zorro infers developer's TDD behaviars using low-level Software development activitiss. Zorro creates a "software development stream’ from these lov-level softwars
development activities, then partitions this stream into "episodes’ delimited by successful unit test invacations. Finally, Zarro decides whether each episode conforms to its rule-based definition
of TDD.

The table below is a Zoro analysis representing the 38 minute programming session by our experienced TOD developer. Zarro collected several hundred "raw events” (low-level development
activities) during this time, and partitionsd this stream into 16 episodes. The table shows sach episods, the file the developer was working on, the events that wers collected, and Zorro's
decision regarding whether or not the episode represented TDD. Zorro provides both the decision and an explanation of how the rules were used ta make it

What's interesting about this analysis?

* Thers wers 11 TDD eonformant episodes and 5 hon-conformant episodes, ilustrating a varisty of development pattarns,

o Zorro classifies each episode as *test-first!, refactoring”, ' test-last!, " production’, " test-sddition’, or *regression’. This classification is mentioned in the explanation of the
infarence

Zotro can use context-—the episodes before and after-—to decide whether an episode is TDD-canformant or ot

This analysis table can aid in validating Zorro's inferencing mechanism by asking developers whether or not they agree with Zorro's inferences

.o

Time File Event Type Raw Event Zorro's Inference
1 (1)07:20:53 TestintegerToRoman.java ADD METHOD TestIntegerToRoman(string) This portion of development

(2)07:20:54 TestntegerToRoman.java ADD CLASS TestintegerToRoman java lappears o be TDD conformant
(3)07:20:5¢ TestintegerToRoman.java BUFFTRANS FROM TestStack java R i
(4) 07:21:08 TestintegerToRoman.java ADD METHOD void testZeroReturnsEmpty() 3 : ¢
(530721112 TestintegerToRoman.java — TEST EDIT 21258 MI=+2(2), S1=+3(3), TI=+1(1), Al=+1(1), FI=+307{307) festainere wrloreniberoee
(6) 07:24:44 TestntegerToRoman.java COMPILE Roman cannot be resolved to 5 type RratuCtabiodas,
(73 07:25:08 Roman java ADD CLASS Roman java
(8)07:25:00 Romanjava BUFFTRANS FROM TestIntegerToroman.java This episode looks like an
9)07:25:23 Roman java ADD METHOD Roman(int . : i

(ing 07:25:38 Reman]‘ava ADD FIELD int mt\/(a\u)s jatyploaltest firs picode

(11) 07:25:42 Roman.java PRODUCTION EDIT 36sec MI=+1(1), SI=+1{1), FI=+158(158) because:

(123 07:26:19 Roman.java COMPILE integervalue cannot be resolved Some tests were added

(13} 07:26:42 Roman.java PRODUCTION EDIT Osec MI=0¢1), SI=0(1), FI=+16(174) (2). Then a compilation

{14) 07:26:48 Roman java ADD METHOD String toString() error occurred (6). Then

{15) 07:27:09 Rarman java PRODUCTIOM EDIT Osec MI=+1(2), SI=0(1), FI=+25(199) production code vas added

(16) 07:27:09 Roman java COMPILE This method must return a result of type String (15) . However, tests ran

{17y 07:27:12 Roman java PRODUCTIOM EDIT dsec MI=0({2), SI=+1(2), FI=+10(200) without failure.

(18) 07:27:35 TestintegerToRoman.java TEST FAILED

(19)07:27:39 TestntegerToRoman.java BUFFTRANS FROM Romanjava

(203 07:28:08 TestIntegerToRoman.java [HNEESENN TEST OK M

Dore

Figure 8.2. TDD Episode Inference Demo

131

2. TDD Episode Demography

Following “TDD Episode Inference” is “TDD Episode Demogtaf) that is an overview of
a programming session (Figure 8.3). It lines up all the ef@sqartitioned from the devel-
opment stream, each of which is a box with a two-letter aamomgpresenting the episode

development behavior. With this analysis, users can inspeb programming sessions and
look for TDD development patterns for improvement.

%) Hackystat - TDD Episode Demography - Mozilla Firefox

Fle Edt View Hstory Bookmarks Tools Help

@ - = wg:}‘ u’j‘ €8 http: //hackystat.ics.hawaii edu/hackystat/controller

- [=[#&] & =
2 Local LI http: ffpirate shu.eduy/~... B Bootstrap [Learning 12 Blogs 7 Soup 5 Google £ JAVA 10 Projects (2 Danlel 5 Norway £ JAVA

MGmail - Inbox (3234) €2 Hackystat - TDD Episo...3 | [ISERN Material

{zl“'ﬁ‘k&ﬁ'ﬁ' zorro@hackystat.org TDD Episode Demography

University of Hawaii analyses | preferences | alerts | extras | help | home

Introduction

This analysis provides an overview of the 16 episodes in our example TOD development session, Please note the following:

 Each small box with a two-letter acronyms represents a single TDD episade.

« TDD-conformant episodes are shown in green. Nam TDD-confarmant episodes are transparent,
* Hover the cursar over an episode to see a summary

o Clicking on an episode takes you to a page with more details

What's interesting about this analysis?

© The analysis reveals the overall conformance to TOD. In this case, most episodes were indeed recognized as TOD-conformant
o The analysis also reveals the relative frequency of episode types. In this case, the developer performed a lot of refactoring.
o The developer appears to repeat the episode patterns (TE)(TA)+ and (TA)(RF)+.

* The last RF episode was not TDD-conformant but other RF episodes were TDD-conformant. What makes the last RF episode special is that it takes place after a broken TDD pattern.

TDD Episode Demography

(6990 of the episodes in this session are TDD-confarmant.)
TE OF PR OF 08 RE TL BE EE BF OF 08 BE IL RF PR

Episode Category Acronym

TF=test-firsti4 RF=refactoring:6 TA=test-addition:2 RG=regression:0 PR=production:2 TL=test-lasti2 LG=longi0 UM=unknown:o

Done

Figure 8.3. TDD Episode Demography

In addition to showing overall development behaviors antmliance to TDD, this analysis
can interact with the “TDD Episode Inference” analysis. Wheers move mouse over a box
in this analysis, a tooltip of episode synopsis will appeaatiee screen next to the mouse cur-
sor (Figure 8.4), and border of the box will change to bluechlimndicates that it is clickable.
Clicking a box will direct users to “TDD Episode Inferencé&de Figure 8.5).

132

TDD Episode Demography
(69% of the episodes in this session are TDD-conformant.)

IE TE PR IE TA RE TL RE RE TE IA RE TIL EF PR

Episode Category Acronym Start Time: 07:49 AM, Duration: 10 seconds, TBD Conformant because "This portion ..

TF=test-first:4 RF=refactoringi6 TA=test-addition;2 RG=regression;0 PR=production:2 Tl=test-last:2 LG=long:0 UN=unknown:0

Figure 8.4. Tooltip of Episode Synopsis

%9 Hackystat - TDD Episode Information - Mozilla Firefox

File Edit Y¥iew Hgtory Bookmarks Tools Help

@ - -@ (3 [48 it //nackystat ics hawail.eduhackystat/contral ler 7Key =zorrademouser&Command=TDDEpIsodelnform [« | b+ [[Gl] =Y

15 Local Ui hitp: /fpirate shu.eduf~... 7 Bootstrap 7 Learning 2 Blogs 7 Soup 19 Google £ JAVA 2 Projects £ Daniel 7 Norway £7 JAVA

tahle. il ~
------------ B T

This portion of development w (1) 08/15/2006 07:51: 14 Roman java BUFFTRANS FROM TestIntegerToRoman. java I
oppears to be TDD conformant | (2) 08/15/2006 07:51:38 TestintegerToRoman.java BUFFTRANS FROM Roman java h

g |1(3) 08/15/2006 07:51:42 TestntegerToRomanjava TEST EDIT Osec MI=0(7), SI=0(10), T1=0(8), Al=0(6), FI=-17(826) Y

i Tests were written 1(4) 08/15/2006 07:51:44 TestintegerToRoman.java ADD METHOD woid testThreeReturnsIII{} 1

i hetore production code. I, c) gs/15/2006 07:51:52 Roman java PRODUCTION EDIT 4sec MI=0(3), SI=0(6), FI=-10¢650) 1

£ " (6) 08/15/2006 07:51:57 TestintegerToroman.jsva | NSSIN TEST OK !

£ 'This episode looks like an o l

' atypical test-first episode n '

| causa: 0 !

& Some tests were added % 1

! (). Then prouetion Y &

i code was edited [5). i il

& Howewver, neither s 1

| compilation error !

(] occurred nor tests ran 1

& with failure. n Z

Done

Figure 8.5. Episode Details with Back Button

133

3. TDD Episode T/P Ratio of Development Time

The third analysis is “TDD Episode T/P Ratio of Developmeimh@’ (Figure 8.6). This

ratio is a good indicator of TDD compliance according to [7#he drop of T/P ratio could
be a warning signal indicating that developers might sligyfrom TDD. If users are not
confident in Zorro’s automated inference of TDD complianitey can inspect their unit
testing development activities using this analysis. Fbert who do not practice TDD but

unit testing, this analysis can provide their dynamic uesting behaviors.

&) Hackystat - TDD Episode T/P Effort Ratio Demo - Mozilla Firefox

Fle Edit Miew History Bookmarks Tools Help

@@ (G [Bhi:hackyststics hewai edufhatkystatjconiroller [-[»] [IGF[Coodle
1 Local U hitp:/fpirate shu.eduf~... B Bootstrap [Learning 5 Blogs £ Soup 1 Google 1 JAVA £ Projects £ Daniel £ Norway £ JAVA
-
{’mckyﬂm Zerra@hnckystatorg TDD Episode T/P Effort Ratio Demo
University of Havaii analyses | preferences | alerts | extras | help | home

[Frevion]

Introduction
This analysis shows the cumulative ratio of programming effort on test code ve. production code over time,

* T/P Ratin walues over 1.0 indicates more effort an writing tests than on writing production code ta date,

+ The vertical bars represent episode borders, Therefore, the span between bars represents episode durations,

+ Effort or duration is expressed in development time, net of idle time

 clicking on a vertical bar takes you to a page with details on the episode preceding the bar.,

+ There ars twa blus horizontal lines. One indicates the average T/P effort ratio for this programming session, The other provides a *henchmark”, where equal sffort has bsen
put into test code and production code.

What's interesting about this analysis?

« after an initial spike of production code effort, the cumulative ratio indicates that mare time was consistently spent on testing than production code devslopment over the
course of the session,

+ The longest episade is near the beginning and its duration is about 7 minutes

* Test effort increased gradually,

+ 4t the conclusion of the session, the cumulative T/P ratio indicates that approximately the same amount of time was spent on testing and production code overall,

Ratio of Effort on Test Code (T) to Effort on Production Code(P)

24

20 '\
191 |\
18 \

17 \

i
s

s

. X
w2 X,

AN

10
as e

=
as T h\"
o7

08

Effort TP Ratio

98511 L ek L s x il L | e e el 3 i
Done

Figure 8.6. TDD Episode T/P Ratio of Development Time

134

4. TDD Episode T/P Ratio of Code Size

The fourth analysis is “TDD Episode T/P Ratio of Code Sizely(Fe 8.7). Similarly. it
provides another metric for measuring TDD compliance. Tle&imof T/P ratio of code size

measures the cumulative net increase of test code and pi@uaode relatives. This analysis

can easily tell whether test code is written incrementally.

&3 Hackystat - TDD Episode Size T/P Ral

Fle Edit Miew History Bookmarks Tools Help

@ - = \5}‘ L’ﬂ €8 hittp: f/hackystat ics. hawail edu/hackystat/controller B ‘«‘
12 Lozal Ll hitp:/fpirate shu.eduf~... B Bootstrap [Learning - Blogs £ Soup) Google 1 JAVA 9 Projects £ Daniel £ Norway £ JAVA
ZonR@huckistatorg TDD Episode Size T/P Ratio Demo

Lo

University of Hawaii analyses | preferences | alerts | extras | help | home

[Frevion]

Introduction
This analysis displays the ratic of test code size vs. production code size over the course of the sessian,

T/P Ratio values over 1.0 indicates there is more test code than production code to date.

The vertical bars represent episode borders. Therefare, the spans between bars represent episade duration,

Size is expressed as the number of statements

Clicking on a vertical bar takes you to a page with datails on the episode preceding the bar.

There are twa blue horizontal lines. One shows the averall T/P code size ratio for this programming session, The other providss a "benchmark”, where test code size equals

production code size.

R}

What's interesting about this analysis?
& Test code size grew steadily,
* During the first half of the session, there was consistently more production code than test code, During the second half of the session, there was consistently more test
cade than production code
* There was a sudden drop in the T/P size ratio near the end of the session. The episode details reveal that the number of statements of production code * " Roman.java"
dropped in this episade,
+ Most episodes lasted sbout 1~3 minutes

Ratio of Test Code Size(T) to Production Code Size (P)

250

w
®

Size TIP Ratio
- n

& 8

&

T

3
7

7
[
]

Done

Figure 8.7. TDD Episode T/P Ratio of Code Size

135

5. TDD Episode Duration

The fifth analysis is “TDD Episode Duration”. How often shdudevelopers invoke unit
testing is a grey area of TDD. A general consensus is thateaativn of TDD should not
last more than ten minutes; otherwise, the process is nig dgiZorro, | provide the “TDD

Episode Duration” analysis as a validation tool to obsemweation of TDD iterations. It is

reasonable that most episodes in TDD are short in lengthratida.

¥ Hackystat - TDD Episode Duration Dema - Mozilla Firefox

Fle Edit “ew Hitory Bockmarks Tools Help

E- - @‘ L/L'T | €8 http: //hackystat.ics hawail edu/hackystat/controller

[=[») [GF[Google
2 Local LI hitp: /fpirate shu.eduf~... R Bootstrap [Learning 7 Blogs £ Soup =7 Google 3 JAVA £ Projects 1 Daniel 3 Norway (2 JAVA
PS
{:mckysm zetfa@hackystatiorg TDD Episode Duration Demo

University of Hawaii analyses | preferences | alerts | extras | help | home

[Previ]

Introduction

This analysis displays the duration of episodes in minutes using a bar chart

+ Each bar corrssponds to an spisade

+ Episodes are ordered in time

* Each spisode is labeled by its category.

+ Hover over the episode bar to see the episode summary.

+ Clicking on an episode bar takes you to the details on that episade
* The blue lins marks the average episode duration,

What's interesting about this analysis?
+ Most episode durations were short. The average episode duration was 1.5 minutes

 Test-first spisodes were longer on averags than all other kinds of episodes in this session.
+ This developer ran tests frequently.

Episode Duration in Minutes

(Tatal development time is 34.7 minutes in this session.)

@

o

Development Time (minutes)
@ s

N

Cone

Figure 8.8. TDD Episode Duration

136

. TDD Episode Duration Bins

The last analysis is “TDD Episode Duration Bins”. Simply &siame indicates, this analysis
puts episodes into a set of bins according to their duratiBach bin defines a range of

duration. In Figure 8.9, the vertical axis is for numbersgitedes that fall into each bin.

&) Hackystat - TDD Episode Duration Demo - Mezilla Firefox

Fle Edit Miew History Bookmarks Tools Help

e - - & 1} (€ hitp:/fhackystat ics hawail edu/hackystatjconroller B @v Soogle &)
1 Local U http: ffpirate shu.eduf~... B Bootstrap [Learning [Blogs £ Soup 7 Google £ JAVA 3 Projects 1 Daniel £ Norway [JAVA

-

{’mw Zerra@hnckystatorg TDD Episode Duration Demo

University of Hawaii analyses | preferences | alerts | extras | help | home

Introduction
The analysis provides the distribution of episade durations,

 The bars represent predetermined episode duration ranges, with heights indicating the frequency of episodes falling in that range.
+ The literature suggests that TDD iterations last no mare than 10 minutes. This analysis helps determine whether the developer is conforming to that recommended practice.

What's interesting about this analysis?

+ 11 out of 16 episodes lasted shorter than 2 minutes.
+ Only 1 episode was in the range 5-10 minutes.
+ This developer ran tests frequently and there were no episodes longer than 10 minutes

Episode Duration in Minutes

(Total development time is 34.7 minutes in this session. Average episode duration is 2.2 minutes.)

10
g ‘
8
4
| I
2 I
v

Figure 8.9. TDD Episode Duration Bins

Done

To the TDD programming session analyzed in this demo, masbdes fell into bins of short
durations according to Figure 8.9.

137

7. Zorro Demo Feedback

The last page of the “Zorro Demo” is “Zorro Demo Feedback' thaites readers to collab-

orate on studying TDD. With this demo, we targeted at thredkiof users: TDD beginners,
experienced TDD practitioners, and TDD researchers. A#&ading information about col-

laborative research opportunity with us, readers can geofeedback to us using the box
included in this page (Figure 8.10).

Hackystat - Zorro Demo Feedback -

Fle Edt View Hstory Bookmaks Took Help

@ - o-& (&} & hitp: //hackystat ics hawall eduhackystaticontroller +[] [Er]Goog &)
) Local LI hitp://fpirate shuedu/~... B Bootstrap [Learning £ Blogs (1 Soup [Google [JAVA 1 Projects |2 Daniel £ Morway (1 JAVA

ﬁﬂackyﬁim

University of Haveaii analyses | preferences | alerts | extras | help | home

zomaghackystatiorg Zorro Demo Feedback

Getting involved

Thank you for looking at this demo of the Zorro system for Test-Driven Development, We hope that you enjoyed looking at the analyses. We would now like ta invite you to participate
in this research project. There are a varisty of ways to becoms involved, dspending upon your situstion, The following paragraphs provids a brief overview of three ways to become
involved.

If you are learning TOD and Eclipse is your chosen IDE, then the Zorro system can provide you with useful feedback on whether or not you are adhering to standard TOD practices
You will need to install the Hackystat Eclipse sensor and send data on your development to a Hackystat server, Once you have installed the System, you can also use Hackystat's
software project telemetry features to determine if your TDD compliance is increasing or decreasing over time,

If you are an experienced TDD practitioner, then we would like to salicit your help in validating our rules for recognizing TDD behavior. You will need to install the Hackystat Eclipse
sensor and send data to a Hackystat server. To validate our rules, you will employ 2 special Zorro analysis that allows you to provide feedback on the episodes and categarizations
made by Zorro. We are very interested in seeing if experienced TDD practitioners exhibit development behaviors that Zorro classifies incorrectly.

Finally, if you are a TDD researcher, then Zorro can provide experimental infrastructure that can help you better understand the development behaviors of your participants while they
carry out your experimental protocols, Vou will need to install 3 Hackystat server, and also ensure that your participants use Eclipse with the Hackystat sensor installed to carry out
their development during the experiment. The data you collect this way can provide you with an additional way to verify that participants are using TDD during your experiment, and
also deeper insight into the ways in which they carry out TOD

Let us know what you think
We would appreciate any comments yau have on this demo and the Zorro system. Please let us know what you think using the form belaw, Pressing "send” will send your comments as

an email to Philip Johnson . If you do not include amy contact infarmation in your form, then your comments will be anonymaus. If you would like to participate in this research, then
please include contact information in your message so we can get back to you.

Done

Figure 8.10. Zorro Demo Feedback

138

2006-11-07: Feedback from ISERN

As the first step to find collaborative opportunity with resbers of TDD, we sent an RFC of
Zorro Demo to the ISERN mailing list that contains researslfimm worldwide who are interested
in empirical software engineering research. On the samewasent this collaboration solicitation
email, Dr. Geir Hanssen and Dr. Tor Erlend Faegri from SINTETF bf Norway gave very positive
feedback on Zorro, and expressed that they were very imnégerés using Zorro in a comparative

study between TDD and an existing Test-Last practice.

They planned to conduct this study under the assistance drofuropean software company
by harvesting data such as time spent for testing/codirgy,ctede size/production code size etc.
They were also interested in finding ways of validating arigafthat the TDD-practice may have
on product quality, speed of production, and also potdntal code quality (maintainability, code
design-style and others). However, doing these was veny imapractice because the software
company did not want to be disturbed when developers put magi pressure on reaching the
release deadline. As a result, collecting data became &gpndh this already planned study. Thus,
automated data collection became tempting and Zorro isatmdl that can bring immediate values

to them.

Although Zorro was a good fit to this study, the software conypased Visual Studio .NET
rather than Eclipse, and the programming language was Gérrtdtan Java. A minimum set of
sensor data types (See Table 4.1) are required in order fvo Zo function. Unfortunately, the
Visual Studio .NET senor was very premature and it can onliecioa few of them. Thus, if we
wanted to engage in this study, the most imperative taskowdevelop a Visual Studio .NET sensor
that can collects necessary sensor data types. Moreogesgtisor had to be implemented and tested

in a very short time frame since the software company plammesthrt the project in January 2007.

8.3.2 Preparation

With confidence in Zorro and our software development skille decided to participate in
this collaborative industrial case study. The preparati@ks include implementation of the Visual

Studio .NET sensor and installation of Hackystat.

139

Visual Studio .Net Sensor Implementation

We exchanged several emails with Dr. Hanssen to underst@ncbimpany’s development en-
vironment in December 2006. With the help from Qin Zhang,taaoPh.D student who was also
my colleague in CSDL, | implemented the Visual Studio .NEmss® that was Zorro-compatible.
After developing the sensor, | tested that Zorro can infeDTd&velopment behaviors occurred in
the IDE of Visual Studio .NET.

Hackystat Server Installation

Zorro runs on the server-side of Hackystat. Foosball LLGrioled a dedicated server for this
study. Using Windows’ Remote Desktop application, | logg#d the server, installed and config-

ured a Hackystat server for this case study in February 2007.

8.3.3 Collaborative Research Activities

In March 2007, the company launched both the TDD project hadNion-TDD project with 20
developers, twelve of which developed in TDD. | assistedetipers installing the Visual Studio
.NET sensor, which collected development activities inthekground unobtrusively. Periodically,
| analyzed the collected data and generated techniquetsepoiDr. Hanssen and the project man-

ager regarding developers’ development behaviors.

2007-02-22: Sensor Installation Instruction

Pertaining to the least possible interruption to the dgvmlent process required by the partic-
ipated company, | wrote a script to automate the sensorllmtsda for developers. Figure 8.11
illustrates the output from this script when a developeokad this script. For each developer, |
sent an individual email to him/her with customized instiédin instructions. Only one developer
encountered difficult in installing the sensor due to hig@mmszation of the Windows user profile. |
fixed this by patching the installation script.

140

= CommandLine - setup 2RaFxXnS5YzDj

C-~download>setup 2RaFx¥nSY¥zDj
% This script is for Uisuwal Sensor .MET Installation

Setting hackystat host as http://tdd.testlab.firmnglobal.nets and you
= 2RaFx®EnSY¥zDj
Ualidating new host and key...
Hackystat hostskey wvalid.
Success
fibout to launch the visgsual studio sensor
Copying the sensorshell.jar
1 file<s? copied.
Enabling the Uisual Studio .Met Sensor

Figure 8.11. Output of Visual Studio .NET Sensor InstadlatScript

2007-02-28: #1 admin guide and sensor installation status

The admin guide is a document for Dr. Hanssen and the projaoager to use Hackystat and

Zorro. This document covers following contents:

Login as the administrator,

Login as any developer,

Check sensor installation status (days with sensor data),

Check a developer’s collected development activities,

Invoke the analyses described in the Zorro Demo.
Following this guide, they can login as the administratdreak received data, define Hackystat
projects, and invoke Zorro’s analyses.

| also summarized the sensor installation status basedtanetzeived on the server. According
to this report, two developers successfully installed #messr within a day after | sent the instruc-

tions to them.

141

2007-03-02: #2 admin guide

| updated the admin guide on March 2, 2007. According to thisley some developers sent
data to the Hackystat server. After observing the colledstd, | registered projects for developers
who installed the sensor so that the project manager can aise © analyze their development

behaviors.

When writing the sensor installation status report, | waprgsed to find that none of developers
invoked any unit tests. The project manager noticed thiselsamd asked us whether the sensor
worked correctly with TestDriven.NET add-in. Unfortunigtenever knew that developers ran tests
with TestDriven.NET, a third-party add-in to the Visual & .NET. Later, we discovered that
some emails from the project manager sent in January 200& dvecarded by the mail server of
the University of Hawaii as SPAMs for unknown reasons. | guried my SPAM settings to allow
emails sent from the software company, but | had to enharecsethsor to support TestDriven.NET

quickly in order to continue this collaborative research.

2007-03-05: Support for TestDriven.Net and Sensor Upgrade

TestDriven.NET was an open source project initially bubéd into a proprietary Visual Studio
add-in. It is not as extensible as the JUnit plugin of Eclipsghat a third-party observer can not
listen to invocations of unit testing. Perhaps becauseddiit started a legal issue against him, the
author of TestDriven.NET did not respond to my request fdp.h&oon | discovered an approach
to capture and parse test running results from TestDriem.hy observing the console output in
Visual Studio .NET. After some extensive testing, | relebaeew Visual Studio .NET sensor for

this collaborative industrial case study.

It was a little pity that the project manager was very unhapfii this update but there was no
alternatives if we wanted to continue this research. Asaltresome developers did not install this
upgrade according to my observation of the server statusldieased this issue in the following

reports | wrote.

142

2007-03-20: #3 sensor installation status

| updated the sensor installation status report on Marct2@07. According to this report, 20

developers fell into five groups:

e Group 1: Those who are successfully using the system
Four developers are sending coding and testing data régutalicating the sensor is installed
and updated.

e Group 2: Those who need to install the sensor
Four developers have not sent any data. They appear to hairestadled the sensor at all or
are not programming.

e Group 3: Those who might have uninstalled the sensor
Four developers sent data at the beginning but have not sgrdata recently. They have
either uninstalled the sensor or are not programming.

e Group 4: Those who might need to update the sensor
Four developers are sending coding data but not testing eattaer they are not testing, or
have not updated the sensor.

e Group 5: Those who apparently need to update the sensor

Four developers are sending coding data and testing ddtéhetest data lacks path infor-

mation indicating the need to upgrade the sensor.

Because | conducted this study off-site, the above categion of developers was only based
upon my observation of data received on the Hackystat sefMee project manager generously

agreed to have developers update the sensor following ngestigns made in this report.

2007-04-14: #4 introduction to the TDD telemetry analyses

In the report | wrote on April 14, 2007, | introduced the TDDetmetry analyses (See Section
4.3.2) to Dr. Hanssen and the project manager. In additiolefihed two Hackystat projects for
them. One project was “The-TDD-Project” which includesmtigrammers who developed in TDD

143

as project members, and the other project was “The-NON-H>@ect”. With these two projects,
they can invoke TDD telemetry analyses to compare the TDepr@nd the Test-Last project. A

list of TDD telemetry analyses is in the following.

e DevTime-Chart: computes development time developers spent in the VisuaiGtNET

environment.

e DevTime-Members-Chart: computes and plots all project members’ development time
spent in the Visual Studio .NET environment.

e DevTime-TotalProductionTest-Chart: computes and illustrates total development time, the

portion on coding, and the portion on testing.
e EpisodeDurationAverage-Chart: illustrates the average episode durations.
e TDD-Percent-Chart: reports the percentage of a project’s TDD compliance.
e TDD-AIll-Members-Chart: reports and compares project members’ TDD compliance.

e TDDPercent-And-DevTime-Chart: combines the TDD compliance percentage and devel-

opment time to a given project.

Basically this report opened a door to Zorro and TelemetryCfio Hanssen and the project
manager. With the sensor data collected from developerspoZmn be used to not only infer
developers’ TDD development behaviors but also conductpewaiive study between TDD and
Non-TDD.

According to feedback received from Dr. Hanssen regardiig report, the number of pro-
grammers producing data was disappointing, and he woulthcbthe project manager directly
for possibility to improve it. However, he viewed this studyg a pilot and planned to replicate
it in another software company, which might have a bettett stad more complete data. Also,
other researchers are interested in Zorro’s automatiomtaf cbllection and development behavior

inference.

144

2007-05-04: #5 Comparison Between TDD and Test-Last Projec

| used Zorro’s TDD telemetry analyses to compare developrehaviors between the TDD
project, and the Test-Last project and wrote a techniquertem May 4, 2007. The main points

included in this reports are:

e TDD-Percent-Chart (by development time)

The “TDD-Percent-Chart” telemetry analysis computes datspercentages of development
time that developers complied to TDD based upon Zorro'srérfee. Partially due to the
imperfect sensor installation, developers did not complyDD faithfully in this study. The

compliance percentage was 5% at the best on the weekly basis.

Living far from developers who participated in this studgidl not have the capabilities to
investigate causes for the low TDD compliance rate. Perkapslopers did not have the
necessary skills to use TDD on their development tasks,eyr tiodified TDD according to
their needs.

e TPRatio-DevTime-Chart

The “TPRatio-DevTime-Chart” telemetry analysis is a ntetor measuring effort developers
devoted to testing. It was interesting to note that devetpdo were in TDD project evenly
divided their effort on testing and production code. On thet@ry, developers in the Test-
Last project did not test much at the beginning but graduadlyght up unit testing.

e DevTime-TotalProductionTest-Chart

The “DevTime-TotalProductionTest-Chart” telemetry dhamnalysis plots cumulative effort
spent on test and production code. According to this arglyke TDD project had larger

growth rate of test code while the Test-Last project hacelaggyowth rate of production code.

e DurationAverage-Chart

The “DurationAverage-Chart” telemetry analysis illustis how frequently developers in-
voked unit tests. Interestingly, the episode durationsageof the two projects are far longer
than 10 minutes.

In addition to the telemetry report, | updated the sensdallagion status with development

time and T/P ratio for each developer. After reading thiore®r. Hanssen were more concerned

145

about the legitimacy of the data rather than the hypotheségirhed regarding the development
process. Unfortunately, the project manager concentratetie software development and did not

respond to this report.

2007-05-25: #6 Comparison Between TDD and Test-Last Projec

Based on the report | wrote on May 25, 2007, developers in ésé dast project started putting
more effort on testing than effort on production code, intcast developers in the TDD project

evenly divided their effort on testing.

8.3.4 Phone Interview with the Researcher

By the time | write this chapter, developers in Foosball L€ still working on the software
to make the next release. In this research, | installed anfigtoed a Hackystat server for them,
developed the Visual Studio .NET sensor, managed the Heatksarver, and wrote six technigue
reports for the researcher and the project manager. Aftemfimnths collaboration, Professor Philip
Johnson and | interviewed the researcher on July 3, 2007le ®b lists the structure of this

interview.

Table 8.1. Structure of the Interview with the Researcher

Interviewer Hongbing Kou, Philip Johnson

Interviewee Geir Hanssen

Instrumentation| Voice Recorder

Method Phone

Time 9PM July 3, 2007

Length 45 minutes

Location Collaborative Software Development Laboratary

In the interview, we mainly focused on the experiment detaéhind the scene as well as the

researcher’s experience regarding this collaborativeares.

e Research Background

It is interesting to note that the Foosball LLC was not sdiciacruited to participate in this

comparative study of TDD. The company worked with Dr. Handsefore on studying Evo

146

Agile, an agile process that the company has adopted. Fasader reason, the company
decided to include TDD in its software process and so this sasdy was initiated. After
seeing the Zorro Demo, Dr. Hanssen suggested that they usefdodata collection in this
study. Because of the unobtrusiveness of Zorro’s dataatiie the Foosball LLC agreed to

have its process instrumented.

TDD Conformance

The TDD compliance percentage of this study was very low m@ieg to Zorro’s inference.
However, probing the development process to understanslttraion was impossible for me
and Dr. Hanssen as well at this moment. Typically, the Fdbkh& has good reputation in
complying to what they agreed to, but meeting the deadlirsetta top priority. It is worth-
while to note that Evo Agile, the software process that thamany is using, has tight and
well scheduled development activities. TDD is an extra thaldlito the process, which might
help to explain why the project manager did not respond toreguests for understanding
their software process.

Concerns on Sensor Installation

In the #3 report of “Sensor Installation Status Update”, $atibed the sensor installation
status after a month’s deployment. We were confident thavdldeers successfully installed
and updated the sensor as requested, but not sure what bdgpehe rest developers. A real
problem occurred in this study was from the TestDriven.NHIgm. | had to enhance the
Visual Studio .NET sensor rapidly, and in turn, developeaad to update the sensor shortly
after installation. Likely some developers gave up the @eakhough upgrading the sensor
was a trivial task from our perspective.

As concerned as we were on this problem, Dr. Hanssen saitiehatll call each developer
after the project is released. A questionnaire will be demigregarding the development

process, sensor installation and Zorro’s inference r&sult

Experience on Collaborative Research with Industry

Collaborative research with industry in generally is handhis research, the project manager
did not respond to Zorro’s inference regarding their dgwelent process. To the industrial
participants, meeting deadlines of project releases hawghrhigher priority than engaging

in research activities. In Dr. Hanssen’s opinion, this & filne way it is, and as researchers,
we have to adopt this. A few key points he described in thenirege were:

147

— This study is a training to use tools such as Zorro that auteth& data collection.

— What we can do better in the future is to let developers ih&@ro, make sure that it

works.

— He s interested in conducting more of this kind of study. @ttompanies are interested
in TDD too.

8.4 Conclusions

This study shows that Zorro can support empirical reseafcfD®. The automation of data
collection makes it possible for researchers to collech déthout interrupting the development
process. It provides supporting evidence to the researehtign Q3a, but it also shows that in-

stalling sensors to enable automated data collection carchallenging task to the participants.

8.5 Chapter Summary

This chapter introduces the industrial case study | coliaaly conducted with Dr. Hanssen,
a TDD researcher, and an European software company. In dlieborative study, | provided

technique support of Hackystat and Zorro.

The lessons | learned from this study are:

e Pilot

Pilot is a must for studies to be conducted in the industegtirgs. Participants are very pre-
cious resources, and if possible, all the research aetivithould be pilot tested beforehand.

Otherwise, it will be very easy to make mistakes that may hipvthe research opportunity.

e On-site

Another lesson | learned from this study is that case stustesild be conducted on-site
instead of off-site. Responding to requests from reseesdsamore or less a burden to the
participated companies. In case when the schedule is pghiicipants may ignore requests
from researchers. To effectively conduct case studiegeearchers can get maximum input

from participated companies if they can go to the field to cadesearch.

148

e Periodical Sensor Installation Status Check

With automated data collection, researchers may temptdesfon other research areas in-
stead of data collection. The lesson we learned from thesares is that periodically checking
data collection is necessary because many things can gagwion example, some unit test-
ing activities were not collected at the beginning of thidustrial case study. Also, developers

might silently decline the request to instrument their dewment processes with sensors.

e The Author’s Involvement

Finally, so far my involvement is still necessary in ordeus® Zorro in the evaluation case
studies of TDD. In this industrial case study, | deployedrddo the site, assisted developers
installing the sensor, analyzed the data, and wrote asatggiorts for the researcher. For
those who have no prior experience to Hackystat and Zoraptad) Zorro in the empirical

evaluation studies might be hard.

149

Chapter 9

Research Summary, Contributions and
Future Directions

This chapter finishes up this thesis. It begins with the mebesummary in Section 9.1, followed

by contributions in Section 9.2. Then it discusses futuredtions in Section 9.3.

9.1 Research Summary

In the software engineering field, researchers and praéits have put increasing effort on
low-level software processes [1, 46] such as PSP, TSP arle¢ Rgbcesses. Though proven to
be useful in improving software quality[21, 43, 70, 31], kevel software processes are hard to
execute correctly and repeatedly. Also, low-level sofevarocesses have the potential to require
new skills from software organizations, project managansl software developers. For example,
in Test-Driven Development (TDD), each developer is a neguénts analyst, designer, tester, and
coder. As a result, a low-level software process could bel uerently in different software
organizations. Worse yet, an organization might think theyusing a particular low-level process,
such as TDD, but in reality, they are doing something quifeedint. Thus, | put my research
effort on automated recognition of low-level software @es development behaviors. As a step in
this research area, | focused on one low-level softwaregsocalled TDD and implemented the

Zorro software system to automate the recognition of dgwvetnt behaviors of TDD. In addition,

150

| proposed the Software Development Stream Analysis (SD@#)ework to assist the research on

low-level software processes.

Test-Driven Development (TDD), a core practice of ExtremnegPamming, has been widely
adopted by software industry and studied by software eegimg researchers. So far, software
engineering researchers have focused most of their enerdiileooutcomes that applying TDD
brings to software products and software developers. Hew&ompared to the claims made by
practitioners, research findings of TDD on software quaitg developer productivity are mixed.
In fact, much of the research work on TDD suffers from the ahraf “construct validity” [74]
because of the “process conformance” problem. Janzen aedi&a[31] warn that the inability to
accurately characterize process conformance is harmfliDD research, and that it is so hard to
measure the usage of a development method such as TDD thatckgports on adoption of TDD
are not valid. Fortunately, with the development of soptased software metrics collection system

such as Hackystat [35], it is possible to study the procesfocmance of TDD.

In order to study the process conformance of TDD, | implemerthe Zorro software system
with the aids of the Hackystat and SDSA frameworks. Hackystasors instrument the develop-
ment environments to collect software process and prodettica. SDSA is a framework that |
have created for studying low-level software processesndJSDSA, Zorro abstracts a variety of
software metrics into development activities, mergesdlaggivities together to form a time-series
software development stream, and finally partitions theastrinto a group of episodes ended with
successful unit test invocations. In order to infer develept behaviors of TDD, | defined a set
of specific rules in Zorro according to Beck [5, 6] and othetwvinave described the practices of
TDD. The “test-pass” episodes are categorized as “test;firefactoring”, “test-addition”, “regres-
sion”, “code-production”, “test-last”, “long”, or “unknen”. After inferring development behaviors
in episodes and categorizing them, Zorro uses the claggificeesults as well as the context of
episodes to reason the conformance of TDD. Moreover, wéhrtferred results, Zorro implements
a handful of analyses that are grouped into two categoriée. fifst category of analyses study a
single programming session and report different aspectdi. One analysis in this category is
the “TDD Episode Demography” analysis that can be used to foothe development patterns of
TDD. The second category of analyses leverage softwaregiriglemetry [40, 79] that can support
interpersonal in-process project management and decmiings in the granularities of daily,

weekly and monthly. For instance, | compared differencedesielopers’ testing effort between

151

“The-TDD-Project” and “The-NON-TDD-Project” on the weghbasis using the telemetry stream
of “TPRatio-DevTime-Chart” in the industrial case studyhépter 8).

In order to empirically evaluate Zorro, | have conductede¢hcase studies — a pilot study
(Chapter 6), a classroom case study (Chapter 7), and antiradlusise study (Chapter 8) to inves-
tigate whether Zorro can collect sufficient software metdad how well it can infer TDD compli-

ance. | summarize the research findings of these studieg iioftbwing.

9.1.1 Data Collection

One of my primary focuses was on evaluating Zorro’s dataectibnh because collecting neces-
sary development activities is a must for Zorro to infer depment behaviors. | implemented the
Eclipse Screen Recorder (ESR [17]), an Eclipse plug-in¢hatrecord the software development
activities occurred in the Eclipse IDE. Most importantlycan be configured to record the Eclipse
screen in the frequency of one frame per second and the exteideo file size is just 5-7MB per
hour. With the help of ESR, | validated Zorro’s data collentin the pilot study and the classroom
study.

According to my research in these two studies, Zorro is dapabcollecting development
activities. In the classroom case study, | found that Zom@eerage collected more development
activities (16.8 per episode) than what | observed (14.9epéesode) in the recorded ESR videos
(See Table 7.9). Given that ESR can capture almost evemjtgaiccurs in the Eclipse IDE, Zorro

does a good job in collecting development activities.

In both the pilot and the classroom studies, | compared twoces of data side by side to dis-
cover any hidden problems in Zorro’s data collection. Ihad out that a few problems (Sections
6.5.3 and 7.6.2) existed but none of them were significastel, the G2-DevBehavior, a develop-
ment behavior that | discovered in the classroom case séighjficantly impacted Zorro’s inference
accuracy of development behaviors and compliance of TDEhdfe were not G2-DevBehavior,
Zorro could infer TDD compliance with 90+% accuracy (Seeti®6.3). Thus, correctly recogniz-
ing the G2-DevBehavior has the potential to greatly improeeo’s reliability.

152

9.1.2 Development Behavioral Inference

The other primary focus was on evaluating Zorro’s inferepicEDD development behaviors. |
evaluated the development behavioral inference with thedfeESR in both the pilot study and the
classroom study. In the data analyses, | watched the red®@8®& videos to observe participants’

development behaviors and used the observed results tat@ai orro’s inference.

Compared to participant observation, Zorro’s inferenceuescy of development behaviors is
88.4% in the pilot study (See Table 6.2). This value is 70.h%hée classroom study (See Table
7.10). However, these two values can not be directly conapsirece | revamped the classification
of development behaviors in Zorro after the pilot study. Aalde phenomenon occurred in the
classroom case study was the so called G2-DevBehaviori¢8et6.1), which diverted Zorro’s
partitioning of episodes and inference of developmentyeha Further investigation in Chapter 7
concludes that the inference accuracy is 89.6% for group Bildid not conduct G2-DevBehavior.

Allin all, it indicates that allowing Zorro to interpret GRevBehavior is necessary.

9.1.3 Usefulness

Last, | also focused on evaluating Zorro’s usefulness irciee studies. The “Episode Demog-
raphy” and “T/P Effort Ratio” are two most useful analysestfeginners to understand and improve
TDD practice based on evaluation results of the classroadystn the industrial case study, | col-
laborated with Dr. Hanssen, a researcher who conducted par@uon study between TDD and an
existing Test-Last practice in an European software compahis research supports the conclu-
sion that Zorro’s automated unobtrusive data collectiahiaference of development behaviors are

useful for researchers to collect data without interruyptime development process.

9.2 Research Contributions

This research has three main contributions:

e Software Development Stream Analysis Framework,

e Automated recognition of TDD with Zorro,

153

e Empirical evaluation of Zorro.

9.2.1 Software Development Stream Analysis (SDSA) Framewo

The SDSA framework is the most significant contribution déttesearch. A problem with
low-level software processes is that many organizatiomghtise them differently based upon their
understanding, which makes it hard to study their impactsaftware development. The SDSA
framework can automatically evaluate how well an orgaiopagxecutes software processes with

only minimum interruption to the development process.

In order to study low-level software development procesSESSA abstracts development ac-
tivities of a programming session into a software develapnsream, a linear and time-series data
structure. Corresponding to the incremental and itergiieperty of many low-level software pro-
cesses, SDSA uses tokenizers to partition a long develdpstezam into many short episodes,
another abstract data structure representing a micratierof a software process. Finally, SDSA
uses JESS, a rule-based system in Java to recognize aniflyalies®lopment behaviors of parti-

tioned episodes.

In my thesis research, | instantiated the SDSA frameworkest-Driven Development (TDD),
and the system resulting from this work is the Zorro softwsgtem. Zorro can automatically infer
the development behaviors and the compliance of TDD. Thiisareh work demonstrates that the

SDSA framework has the potential to be useful for reseagcbther low-level software processes.

9.2.2 Automated recognition of TDD with Zorro

Another significant contribution is the Zorro software gystthat was built on the top of the
Hackystat and SDSA frameworks. Zorro recognizes TDD dereknt behaviors conducted in
an IDE as long as its sensor supplies all required metritsdlish Table 4.1. In my research, |
enhanced the Eclipse sensor and evaluated its data amfieztpability in the pilot and classroom
case studies. As part of the industrial case study, | enldatieeVisual Studio .NET sensor to be
Zorro compatible.

154

Many analyses such as “Episode Demography” were develapkxyérage Zorro’s reasoning
of development behaviors of TDD. Furthermore, with the ha#lgoftware project telemetry, | de-
veloped a set of telemetry reducers of TDD to support managéeonf TDD projects.

Also, | implemented a rule set for TDD based upon the desoriptof many well-known TDD
practitioners including Beck [6], Doshi [15] and Erdogm&l], and additionally my grounded
observation of TDD in practice.

9.2.3 Empirical evaluation of Zorro

The third contribution is the empirical evaluation studiesnducted. The pilot and classroom
studies exemplify a paradigm of empirical validation of #orAll the research materials were made
public for others to validate Zorro in different environntenT he industrial case study demonstrates
how to conduct TDD research that does not suffer from thegeg®conformance problem with the

help of Zorro. In addition, the actual results of these sisdire also my contributions.

=

. The Eclipse sensors collect sufficient in-process nwetacinference of TDD;
2. Zorro can identify TDD when it occurs in the IDEs of Eclipmad Visual Studio .NET;
3. Zorro is helpful for beginners to understand and confamDD;

4. Zorro is useful for researchers to conduct TDD evaluatoiies.

9.3 Future Directions

9.3.1 TDD Evaluation Studies

First, Zorro can be used in evaluation studies of TDD to imapraalidity of research conclu-

sions. The industrial case study | conducted in my thesesareh is an attempt in this direction.

9.3.2 Unified operational definition of TDD

Second, reaching an unified operational definition of TDDeisassary. Beck uses the red/green/refactor

to describe the order of TDD programming in [6]. Followingsthbstraction, | defined three types

155

of development behaviors “test-first”, “refactoring” artest-last” in the prototype implementation
of Zorro. Then | used this prototype in the pilot study in whicsurprisingly found that half of the
episodes were “test-last”, which is very contradict to miyition. With the pilot study, | realized
that TDD in reality is quite different from in theory, and esaped Zorro’s classification of TDD
development behaviors (Section 4.2.3). Moreover, | inioedl a heuristic algorithm for inference
of TDD compliance (Section 4.2.4) to Zorro. This is an opersdl definition of TDD. It works well
according to the classroom case study conducted in my tressiarch, but the conclusion is limited
to the environment | tested. More replication studies nedsttconducted in order to reach a unified
operational definition of TDD that can be agreed upon by tmeroanity of TDD practitioners and

researchers.

9.3.3 More practical uses of Zorro’s inference results

Third, finding more practical use of Zorro is one more futumection. In my research, |
designed and implemented some typical analysis such asd&piDemography” and “Episode
Duration Distribution” and some TDD telemetry streams. Migial evaluation concludes that they
are useful for beginners and researchers of TDD. Howevendar to fully use Zorro’s potentials
in software project management and software process irapremt, finding more practical uses of

Zorro is important.

One practical use of Zorro is to study how to interpret Zariaference results. For example,
will 100% be necessary in actual software projects? Or howhuompliance of TDD is accept-
able? Another interesting use of Zorro is to compare thertiaferesults to test coverage. Beck
claims that TDD should yield 100% test coverage automdygichlt more research needs to be

done to study this claim.

Zorro can be used as a CASE (Computer Aided Software Engnggeool for software project
management. | applied Zorro to a TDD and a Non-TDD projecthénindustrial case study. With
the help of Zorro, | generated “sensor installation statusd “TDD telemetry” for the project man-
ager. These reports helped the project manager to readizpribblems existed in sensor installation
and data collection. However, this research work only usesveanalyses Zorro provides. Addi-

tional research needs to be conducted to study how to use Kwrsoftware project managements.

156

9.3.4 Other low-level software processes

Zorro was built on the top of the more generic SDSA and Haeityfsameworks, this archi-
tecture makes it easily possible to study other low-levédiwsre processes or best practices of
software development as well. For example, low-coupling desired property to objects in the
object-oriented programming. With Hackystat and SDSA, ae easily define rules to find objects
that are either excessively edited by developers, or oveflrred by other objects in the develop-

ment process.

9.3.5 Data mining

At last, applying some data mining algorithms on softwareetment streams may create
interesting applications. The SDSA framework sorts a tarié software metrics collected by
Hackystat sensors and organizes them as time-seriousaseftievelopment streams. | applied a
rule-based system on them to infer development behaviars@ampliance of TDD in my research.
The rule-based system is powerful for recognizing wellrtkedi development behaviors such as
TDD. However, in cases that expected development behaateranknown, it will be better to use
some data mining algorithms. For example, Heierman etnabduce the Episode Discovery [28]
algorithm to discover and classify naturally recurringtgats from temporal sequences of human-
generated activities. This algorithm can be used to minesdftevare development streams to find

recurring patterns of development activities.

157

Appendix A

Pilot Study Material

A.1 Introduction to TDD

Test-driven development is a new way to develop softwareth WDD developergq1) write
new code only if an automated test has failed; (2) eliminatplidation iteratively in software
development.We will be implementing a stack data structure in TDD. Pleesep this in mind
while you are patrticipating this study. | provided you withq@ck reference [15] and the rhythm of
TDD [16] to help you do TDD programming.

A.1.1 TDD Quick Reference

(Picture of Gunjan Doshi's TDD quick reference guide [15].)

A.1.2 Rhythm of TDD

(Picture of Gunjan Daoshi’'s TDD rhythm guide [16].)

158

A.2 Stack Implementation in TDD

| provide additional instructions for this pilot study. Bhéection includes description and in-
structive procedure to implement the stack data structuiddD. Stack works in Last-In-Last-Out
(LILO) principle. Its operations includush Pop Top, andisEmpty

ThePushfunction inserts an element onto the top of Stack

ThePopfunction removes the topmost element and returns it.

TheTopfunction returns the topmost element but does not removerit theStack

TheisEmptyfunction returns true when there are no elements orsthek
Note: some of this documentation are excerpted from [51].

1. Test List (or TO-DO list)

The first step is to brainstorm a list of tasks. The goal of #uBvity is to create a task list
from the requirements. Note that this list does NOT have todmapleted at beginning and
you may dynamically maintain it on the fly. Here is a task lishmple maintained by Kent
Beck in his book “Test-Driven Development by Example” [6]:

$5 + 10 CHF =$10 if rate is 2:1

$5 * 2 —_ $J 9

Make “amount” private

DBollarside-effects?

Money rounding?

equals()
hashCode()

Same as Beck did, you may work out a list of tasks for stack.

e Create &tackand verify thaisEmptyis true.
e Pusha single object on th8tackand verify thaisEmptyreturns false.
¢ Pusha single objectPopthe object, and verify thasEmptyreturns true.

e Pusha single object, remembering what it Bpp the object, and verify that the two

objects are equal.

159

e Pushthree objects, remembering what they depeach one, and verify that they are

removed in the correct order.
e Popa Stackthat has no elements.
e Pusha single object and then cdlbp. Verify thatisEmptyis false.

e Pusha single object, remembering what it is; and then Galh Verify that the object

returned is the same as the one that was pushed.

e Call Topon aStackwith no elements.

2. Choose the First Test

There is a list of tasks to start with. The philosophy of TDOdschoose the simplest test
that gets you started and solves a small piece of the probldm. simplest one in the list

is: “Create a Stack and verify that iSEmpty is true.” It iscaln option to choose a test
that describes the essence of what you are trying to acceimplising stack as an example,

functionsPushandPop are essential.

3. Test 1: Create aStack and verify that iSEmpty is true.

You start with a class called TestStack and add one asséutareck whether isEmpty returns
truth.

public void testStackEnptiness() {
Stack stack = new Stack();
assert True(" Test enptiness of Stack", stack.isEnmpty());

}

This code will not compile because there is no Stack objexdted yet. You should go ahead
to implement Stack and providsEmpty() To make it simple you can just return constant
boolean value true in body Empty()

public bool ean i SEnpty() {
return true;

}

4. Test 2: Push a single object on the stack and verify thaisEmpty is false.

Remember to start with test first NOT to create push beforesgaucompilation error or test
failure.

160

public void testPushOne() {
Stack stack = new Stack();
st ack. push("first elenment");
assert Fal se("Stack has one elenment, it is not enpty",
stack. i senpty());

5. Test 3: Push a single objectPop the object, and verify thatisEmpty is true.

This test introduces a new method called Pop, which rethmtopmost element and removes

it from the Stack.

public void testPop() {
Stack stack = new Stack();
st ack. push("first elenment");
st ack. pop();
assert True(" Stack has no el enent after pop", stack.iseEnpty());

6. Test 4: Push a single object, remembering what it isPop the object, and verify that the

two objects are equal.

public void testPushPopContent () {
Stack stack = new Stack();
String value = "9001";
st ack. push(val ue);
String result = (String) stack. pop();
assert Equal s(" The popped up val ue equals to the pushed one",
val ue, result);

Please keep in mind that you don't have to have the corredeimigntation to make test pass.

You can always add a little, run the test to see it fail, andorwuntil it passes the test.

7. Test 5: Push three objects, remembering what they arePop each one, and verify that

they are correct.

In previous implementation you can simply have one elememhake all those tests pass.
With this test you will very likely implement an array, Arraigt, or vector to hold objects

that are pushed onto the stack.

161

8.

9.

10.

11.

12.

13.

14.

15.

16.

Test 6: Pop aStack that has no elements.

As you may work on Java for a while, exception should be threviren there is illegal
operation like this one.

public void testPopEmptyStack() {

try {
st ack. pop();

fail ("Exception is expected when pop value fromenpty stack");

}
catch (Exception e) {

/1 Do nothing. Exception is expected.

}
}

Test 7: Push a single object and then callop. Verify that iSEmpty returns false.

public void testPushTop() {
Stack stack = new Stack();
st ack. push("42");
stack.top();
assertFal se("Stack is not enpty after top() is called.",
stack. i senpty());

Test 8: Push a single object, remembering what it is; and then callop.

Verify that the object returned is equal to the one that wahed.

Test 9: Push multiple objects, remembering what they are; callTop, and verify that the

last item pushed is equal to the one returned byop.

Test 10: Push one object and callTop repeatedly, comparing what is returned to what

was pushed.
Test 11: Call Top on a Stack that has no elements.

Test 12: Push null onto the Stack and verify that iSEmpty is false.

Test 13: Push null onto the Stack, Pop the Stack, and verify that the value returned is

null.

Test 14: Push null onto the Stack, call Top, and verify that the value returned is null.

162

We don’t have either instructional code in last 7 test caSésck is a simple data structure and
TDD does not have high technique requirements you shouldlesta implement it and make all
these tests pass with small amount of effort.

163

Appendix B

User Stories for Stack Data Structure

164

A Hands-on Practice of TDD: User Stories of Stack

The objective of this assignment is to practice TDD develepnwith stack problem. User stories
are provided to help you develop stack in TDD iterativelyacktis a data structure that works in
Last-In-First-Out principle. It includes four basic opgras: Push, Pop, Top, and isEmpty.

e The Push function inserts an integer element onto the topeoBtack.

e The Pop function removes the topmost integer element ancheeit.

e The Top operation returns the topmost integer element keg dot remove it from the Stack.

e The isEmpty function returns truth when there are no elementthe Stack and false other-

wise.

Please note that this assignment is not just about progragnenstack data structure. Instead, it is
a hands-on practice on Test-Driven Development. You shioyidement stack iteratively using the

following user stories.

1. Create a stack and verify that it is empty

Requirement: Be able to construct a stack which is empty initially. Vertifyat it is empty.

2. Push an integer value and verify that stack is not empty.
Requirement: Push value 1001 onto the stack, check whether stack is ndyefiprward.

3. Push an integer value, pop it, and verify that stack is gmpt

Requirement: Push value 1001 onto the stack, call pop, check to make satstdck is empty.

4. Push an integer value, remember what it is; pop a value taek, verify that it is equal to the
one pushed.
Requirement: Push value 1001 onto the stack, call pop, examine whethgoieed value is 1001.

165

5. Push three integer values, remember what they are; pbpeac and verify that they are correct.
Requirement: Push integer values 1001, 2001, 3001 onto the stack, caliep times. It should
return 3001, 2001 and 1001 respectively.

6. Pop an integer value from stack that is empty.
Requirement: Exception StackEmptyException should be thrown when ¢ryinpop a value from
an empty stack.

7. Push an integer value, call top, and verify that the retdivalue equal to the pushed value.
Requirement: Push value 1001 onto the stack, call top, the returned valoegld be 1001.

8. Push three integer values, call top three times, andyhéf returned values always equal to the
last value.

Requirement: Push 1001, 2001, 3001 onto the stack, call top three timekthemreturned values
should be 3001.

9. Push one integer value, call top repeatedly, compariraf iglreturned to what was pushed.
Requirement: Push 1001 onto the stack, call top three times, and the eduwalues should be
1001.

10. Call top on a stack with no element.
Requirement: Exception StackEmptyException should be thrown when gryotop a value from
an empty stack.

166

Appendix C

User Stories for Roman Numeral

167

A Hands-on Practice of TDD: User Stories of Roman

Numeral Conversion

Roman numerals are written as combinations of the sevesrdatt the Table C.1 (excerpted

from URL http://www.yourdictionary.com/crossword/romanms.html). If smaller numbers follow

Table C.1. Roman Numerals

=1 C=100
V=5 D=500
X=10 M=1000
L=50

larger numbers, the numbers are added. If a smaller numbeeges a larger number, the smaller

number is subtracted from the larger. For example:

e VII=5+3=8
e IX=10-1=9

e XL=50-10=40

Table C.2. Roman Numerals Conversion Table

141 11| Xl 21| XXI 31| XXXI 41| XLI

2 |1 12) Xl 22| XXl 32| XXXII 42| XLII
3|1 13| Xl 23| XXII 33| XXXII || 43| XLI
4 | IV 14| XIvV 24| XXIV 34| XXXIV || 44| XLIV
5|V 15| XV 25| XXV 35| XXXV || 45| XLV

6 | VI 16| XVI 26| XXVI 36| XXXVI || 46| XLVI
7 |V 17| XVl 27| XXVII 37| XXXVII || 47| XLVII
8 | Vi 18| XVII 28| XXVIII || 38| XXXVIII|| 48| XLVIII
9 | IX 19| XIX 29| XXIX 39| XXXIX || 49| XLIX
10| X 20| XX 30| XXX 40| XL 50| L

Please note that this assignment is not just about progragnenroman numerals conversion.
Instead, it is a hands-on practice on Test-Driven Developgm¥ou should use the provided user

stories to write test case first, and let the tests to drivediie implementation.

Roman Numeral Conversion User Stories

168

10.

11.

12.

13.

14.

15.

. The conversion program returns empty string “” to value 0.
. Roman numeral is “I” to value 1.

. Roman numeral is “II” to value 2

Roman numeral is “lllI” to value 3

. Roman numeral is “IV” to value 4, not "llII”
. Roman numeral is “V” to value 5

. Roman numeral is “VI" to value 6

. Roman numeral is “VIII” to value 8

. Roman numeral is “IX” to value 9, not VIllI

Roman numeral is “X” to value 10

Roman numeral is “XI” to value 11

Roman numeral is “XV” to value 15

Roman numeral is “XIX” to value 19

Roman numeral is “XX” to value 20

Roman numeral is “XXX" to value 30

169

Appendix D

Case Study Consent Form

170

University of Hawai‘i at Manoa

Department of Information and Computer Sciences
Collaborative Software Development Laboratory
Professor Philip Johnson, Director

POST Room 307« 1680 East-West Road * Honolulu, HI 96822
Voice: +1 808 956-3489 « Fax: 956-3548

Email: johnson@hawaii.edu

Thank you for agreeing to participate in our research on understanding test-driven development
practices using the Zorro tool. This research is being conducted by Hongbing Kou as part of his
Ph.D research in Computer Science at the University of Hawaii under the supervision of
Professor Philip Johnson.

As part of this research, you will be asked to develop or modify a program using test-driven
design practices and the Eclipse IDE using the Hackystat Eclipse sensor. While you are working
on your programming task, you will be sending data about how you program, including the
statements that you write, the test cases that you develop, the times that you invoke the tests and
their outcomes to a remote Hackystat server. You own the development activity data you send to
the server, and it shall not be used by anyone for any purpose other than the one stated in this
form without your consent.

At the beginning of the study, we are going to survey your opinions on doing test-driven
development. Then, you will do test-driven development using the instrumentation of the
Hackystat Eclipse sensor, and use the Zorro analysis package to understand your compliance of
test-driven development process. Another survey will be conducted after you use Zorro. Your
participation is voluntary, and you may decide to stop participation at any time, including after
your data has been collected.

The survey data that we collect will be treated strictly confidential, and there will be no identifying
information about you in any analysis of this data for all purposes, your data will remain anonymous.

If you have questions regarding this research, you may contact Professor Philip Johnson,
Department of Information and Computer Sciences, University of Hawaii, 1680 East-West Road,
Honolulu, HI 96822, 808-956-3489. If you have questions or concerns related to your treatment
as a research subject, you can contact the University of Hawaii Committee on Human Studies,
2540 Maile Way, Spalding Hall 253, University of Hawaii, Honolulu, HI 96822, 808-539-3955.

Please sign below to indicate that you have read and agreed to these conditions.

Thank you very much!

Y our name/signature Date

Cc: A copy of this consent form will be provided to you to keep.

171

Appendix E

User Stories for Bowling Score Keeper

172

Test-Driven Development Exercise: Bowling Score Keeper

The objective is to develop an application that can caleulaé score of a SINGLE bowling
game using TDD. There is no graphic user interface. You warklgects and JUnit test cases only
in this assignment. We divide the bowling game requiremgrttsa set of user stories, which can
serve as your to-do list. You should be able to come up withwisa without much comprehension
of the bowling game rules. We encourage you to solve thisrarogiing task using TDD as much

as possible.

1. Frame

10 pins are arranged in an equilateral triangle in bowlingrga. It is called “frame”. The goal of
a frame is to knock all 10 pins down. The player has two chareaied “throws”, to do so.
Requirement: Define frame so that it has two integer attribute values. Bedhe represents a
throw.

Example: [2, 4] is a frame with two throws. Note that you don’t have t@ck parameters.

2. Frame Score

The frame score is the sum of the first throw and second thromexample, score of frame [3,5] is
8; score of frame[0,0] is 0, which is called “gutter” in bowlg game.

Requirement; Compute score of a frame.

Example: The score of frame [2, 6] is 8. Frame [0, 9]'s score is 9.

3. Game

A single bowling game consists of 10 frames.

Requirement: Define bowling game which consists of 10 frames.

Example: A sequence of frames [1,5] [3,6] [7,2] [3,6] [4,4] [5,3] [3[&, 5] [8, 1] [2, 6] is a game.
Note that we will use this game many times from now on. We willdify only a few frames each

time to represent different bowling game scenarios.

4. Game Score
The score of a bowling game is the sum of its 10 frames.

Requirement: Compute the score of a bowling game.

173

Example: The score of above game is 81.

5. Strike

A frame is called “strike” if 10 pins are knocked down by thesffithrow. In this case, there is no
second throw. A strike frame can be written as [10,0]. Theeoba strike is 10 plus the following
two throws. Suppose there are consecutive frames such ad][4ad [3, 6], then the strike frame
score willbe 10 + 3+ 6 = 19.

Requirement: Compute the score of a bowling game with a strike frame.

Example: Let's suppose the first throw in above game is a strike. Thelibgvgame will have
frames [10,0] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8,]12, 6]. Its score will be 94.

6. Spare

A frame is called “Spare” when 10 pin are knocked down by twowts. For example, [1,9], [4,6],
[7,3] are all spares. The score of a spare frame is 10 plus t&e throw following it. If you have
two frames [1,9] and [3,6] in a row, the spare frame score Wi 10 + 3 = 13.

Requirement: Compute the score of a bowling game with a spare frame.

Example: Similarly let's assume the first frame in above game is a sga8j, then it will have

frames [1,9] [3,6] [7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1]2, 6]. Its score will be 88.

7. Strike and Spare

A strike frames is followed by a spare frame. For example, L (4,6], [7, 2] are three consecutive
frames with a strike followed by a spare. Score for the stiskE0 + 4 + 6 = 20, and score for the
spareis 10 + 7 = 17.

Requirement: Compute the score of a bowling game with a spare frame folbstsike.

Example: Similarly let's assume the first two frames are [10, 0] andglin above game. The
game will have frames [10,0] [4,6] [7,2] [3,6] [4.4] [5,3] & [4, 5] [8, 1] [2, 6]. Its score will be
103.

8. Multiple Strikes
Two strikes in a row is possible in a real bowling game. To¢hrames [10, 0], [10, O] and [7,2],
score for the first strike will be 10 + 10 + 7 = 27. The secondlstrscore will be 10 + 7 + 2 = 19.

174

Requirement: Compute the score of a bowling game with two strikes in a row.
Example: Let's assume the first two frames are both strikes, then tiditg game will look like
[10,0] [10,0][7,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, & Its score will be 112.

9. Multiple Spares

Two spares in a row is another case.

Requirement: Compute the score of a bowling game with two spares in a row.

Example: Assuming the first two frames are spares, then the bowlingegaith look like [8,2]
[5,5]117,2] [3,6] [4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 6]. The gae score will be 98.

10. Spare as the Last Frame

When the last frame is a SPARE, the player will be given a btiros.. However, this throw does
not belong to a regular frame. It is only used to calculate shere of the last spare.

Requirement: Compute the score of a bowling game when the last frame isra.spa

Example: Assuming the last frame is a spare in above game, then garhbenil,5] [3,6] [7,2]
[3,6][4,4] [5,3] [3,3] [4, 5] [8, 1] [2, 8] with bonus throw [[7 Its score will be 90.

11. Strike as the Last Frame

When the last frame is a STRIKE, the player will be given twaubdhrows. However, these two
throws do not belong to a regular frame. They are used to ¢alewscore of the last strike frame
only.

Requirement: Compute the score of a bowling game when the last frame iska str

Example: Assuming the last frame is a strike in above game, it will b&][{3,6] [7,2] [3,6] [4,4]
[5,3] [3,3] [4, 5] [8, 1] [10, O] with bonus throws [7, 2]. Theagne score will be 92.

12. Bonus is a strike

Bonus strike will not be counted as strike in a bowling game.

Requirement: Assuming the last frame is a spare and the bonus is a strikepuie the score of
this game.

Example: Assuming the last frame is a spare and the bonus is a strikmireagame, the game will
be [1,5] [3,6] [7,2] [3.,6] [4,4] [5,3] [3,3] [4,5] [8,1] [2,Bwith bonus throw [10, 0]. The game score

175

will be 93.

13. Best Score
Requirement: Compute the score of the bowling game when all frames ateestri
Example: Assuming all frames are strikes including bonus. The garoksldike [10,0] [10,0]

[10,0] [10,0] [20,0] [10,0] [10,0] [10,0] [20,0] [10,0] wit bonus throws [10,10]. It is a perfect
game and the game score is 300.

14. A Real Game

Requirement: To a game with frames [6,3] [7,1] [8,2] [7,2] [10,0] [6,2] B1,[10,0] [8,0] [7,3]
[10], its score is 135.

176

Appendix F

Participant Interview Guideline in Case
Study

Purpose

The purpose of this interview is to gather participants’aignce of TDD including how they think
about TDD, whether and how TDD affects their software dgwalent, whether can Zorro help
them, and how Zorro can be used? The protocol of the interidal@scribed here.

Interviewer
Hongbing Kou

Interviewees

Participants of the Zorro case study

Time and place
Participants will be interviewed by me in the lab after thaysh validating Zorro’s inference on

their behaviors. The interview will last from 15 to 20 minsite

177

Facility
Notepad, pen, and tape recorder. | will ask intervieweetsssion for the use of tape recorder.

Outline

e Questions from the participant

Experiences and opinions on unit testing and Test-Drivereld@ment

Opinions on TDD measurement with Zorro. In what way does teasarement tool help?

Zorro usefulness evaluation

Possible improvements of Zorro

List of interview questions

1. Questions from the participants

I will give interviewees some time at the beginning to ask mesgions. They may ask ques-
tions about TDD, Zorro or this study. Purpose of this is toplatticipants feel comfortable

before the interview starts. This may lead them to get ireland start talking.

2. Unit testing and Test-Driven Development

¢ When and where did you learn unit testing?

e How do you apply unit testing in your software development?
Do you write testing code when you are not confident about gram?
Do you write testing code after you finish a program?
Do you write testing code when you want to improve your tegstiaverage?

Did you ever write testing code first before you learned TDD?

e How much testing code do you write?

How much is the code coverage of the programs you wrote indfizare engineering
class?

Can you comment on the use of unit testing in software devedop?

178

e Can you compare TDD to the testing strategy you did before?

How do you think of TDD? Is it helpful to improve software qitg?P
How comfortable it is for you to do TDD programming? What deshs you have when

you programmed in TDD?

3. Please use scale 1 to 5 to assess the usefulness of ZdbD'alalyses (1 stands for least

useful and 5 stands for most useful). | would like you to fysgour answers.

e Episode Inference

TDD Episode Demography

TDD Episode Duration Distribution’s

Test Effort vs. Production Effort

Test Size vs. Production Size

4. What other information you wish to have about TDD develeptfd

How about an Eclipse plug-in indicating whether you are ddibD?

How about an analysis showing your TDD performance overithe?

179

Appendix G

Participant Selections of TDD Analysis
Usefulness Areas

180

Table G.1. TDD Analysis Useful Areas

TDD Analysis

Useful Areas

A

K

L

N

O

[5)

Episode Demograph

UA-1

X

X

X

X

X

UA-2

X

X

X

X| X|O

X[X|n

XX X[

UA-3

X

UA-4

x

UA-5

UA-6

XX

UA-7

UA-8

T/P Effort Ratio

UA-1

UA-2

X[X| X| X| X

UA-3

UA-4

UA-5

UA-6

XX X[XXX | X

UA-7

UA-8

T/P Size Ratio

UA-1

UA-2

X[X| X

X[X[X[X]| X

X[X| X

UA-3

UA-4

X

X X[X

UA-5

UA-6

UA-7

UA-8

Episode Duration

UA-1

UA-2

X[X| X

X| X X| X| X

X[X| X

UA-3

UA-4

X

UA-5

UA-6

UA-7

UA-8

Duration Distribution

UA-1

UA-2

x| X| X

UA-3

UA-4

UA-5

X X| X

UA-6

XXX X[X X

UA-7

UA-8

181

[1]
2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

Bibliography

Manifesto for agile software developmenrtht t p: / / www. agi | emani f est 0. or g/ >.

Extreme js — js greenwood’s web log on architecture,,.pedcess, and life ..http://
webl ogs. asp. net/j sgreenwood/ ar chi ve/ 2004/ 11/ 26/ 270503. aspx.

David Astels. Test-DrivenDevelopment: A PracticalGuide. Prentice Hall, Upper Saddle
River, NJ, 2003.

Kent Beck. ExtremeProgrammingExplained: EmbraceChange. Addison Wesley, Mas-
sachusetts, 2000.

Kent Beck. Aim, fire.IEEE Softw., 18(5):87-89, 2001.

Kent Beck. Test-DrivenDevelopmenby Example. Addison Wesley, Massachusetts, 2003.

Thirumalesh Bhat and Nachiappan Nagappan. Evaluatiagfficacy of test-driven develop-
ment: industrial case studies. IBRESE'06: Proceedingef the2006 ACM/IEEE international

symposiumon Internationalsymposiumon empirical softwareengineering, pages 356—363,
New York, NY, USA, 2006. ACM Press.

Marc I. Kellner Bill Curtis and Jim Over. Process modglinCommunication®f the ACM,
35(9):75-90, 1992.

Susan S. Brilliant and John C. Knight. Empirical reséairt software engineering: A work-
shop. SoftwareEngineeringNotesvol, 24(3):45-52, 1999.

Jonathan E. Cook.ProcessDiscovery and Validation through Event-DataAnalysis. Ph.d

thesis, University of Colorado, 1996.

182

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Jonathan E. Cook and Alexander L. Wolf. Automating msx discovery through event-

data analysis. INCSE '95: Proceedingsof the 17th internationalconferenceon Software

engineering, pages 73-82, New York, NY, USA, 1995. ACM Press

John W. CreswellResearchlesign:qualitative,quantitative andmixed methodsapproaches.

Sage Publications, Thousand Oaks, California, 2003.

Bob Dick. Grounded theory: a thumbnail sketch.http://ww. scu. edu. au/
school s/ gcnf ar/ ar p/ grounded. ht m .

Anne M. Disney and Philip M. Johnson. Investigatingadgtiality problems in the PSP. In
Sixth InternationalSymposiumon the Foundationof SoftwareEngineering(SIGSOFT'98),
Orlando, FL., November 1998.

Gunjan Doshi. Test-driven development quick refeeenguide. http://ww.
gunj andoshi . coni nt ar chi ves/ Test Dri venDevel oprent Ref er enceCGui %
de. pdf .

Gunjan Doshi. Test-driven development rhythrht t p: / / www. gunj andoshi . cont
nt ar chi ves/ TDDRhyt hnRef er ence. pdf.

Eclipse screen recordent t p: // csdl . i cs. hawai i . edu/ Tool s/ Esr/.

Stephen H. Edwards. Using software testing to move estted from trial-and-error to

reflection-in-action. IrProceeding®f the 35th SIGCSEtechnicalsymposiumon Computer

scienceeducation, pages 26—-30. ACM Press, 2004.

Hakan Erdogmus, Maurizio Morisio, and Marco Torchiar@n the effectiveness of the test-
first approach to programmindEEE Trans.Softw. Eng., 31(3):226—-237, 2005.

Extreme programming: A gentle introductiorht t p: / / www. Xpr ogr anmi ng. or g/ >.

Pat Ferguson, Watts S. Humphrey, Soheil KhajenoorgaBuMacke, and Annette Matvya.
Results of applying the personal software proc€smputer, 30(5):24-31, 1997.

Ernest Friedman-HillJESSn Action. Mannig Publications Co., Greenwich, CT, 2003.

Boby George and Laurie Williams. An Initial Investigat of Test-Driven Development in
Industry. ACM Sympoiumon Applied Computing, 3(1):23, 2003.

183

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Boby George and Laurie Williams. A Structured Expenithef Test-Driven Development.
Information& SoftwareTechnology, 46(5):337-342, 2004.

A. Geras, M. Smith, and J. Miller. A Prototype Empiridaaluation of Test Driven Devel-
opment. InSoftwareMetrics, 10th InternationalSymposiumon (METRICS’04), page 405,
Chicago lllionis, USA, 2004. IEEE Computer Society.

Client-side configuration: Tool sensor installatidmt.t p: / / hackystat.i cs. hawai i .
edu/ hackyst at / docbook/ ch02. ht i .

Geir Kjetil Hanssen and Tor Erlend Faegri. Agile customegagement: a longitudinal qualita-
tive case study. INSESE’06: Proceeding®f the 2006 ACM/IEEE internationalsymposium

on Internationalsymposiumon empirical softwareengineering, pages 356-363, New York,
NY, USA, 2006. ACM Press.

E. Heierman, G. Youngblood, and D. Cook. Mining tempeegjuences to discover interesting

patterns. InProceeding®f the 2004 InternationalConferenceon KnowledgeDiscoveryand

DataMining, Seattle, Washington, 2004.

Watts S. Humphrey. Pathways to process maturity: Thiegmeal software process and team
software processchtt p: // www. sei . cnu. edu/ news- at - sei / f eat ur es/ 1999/
j un/ Background. j un99. %pdf >.

Andy Hunt and Dave ThomasPragmaticUnit Testingin Javawith JUnit. The Pragmatic

Programmers, 2003.

David Janzen and Hossein Saiedian. Test-driven dpuedat:concepts, taxonomy, and future
direction. Computer, 38(9):43-50, 2005.

Ron Jeffries. ExtremeProgramminginstalled. Addison Wesley, Upper Saddle River, NJ,
2000.

Chris Jensen and Walt Scacchi. Process modeling attr@sgeb information infrastructure. In
Speciallssueon ProSim2004, Edinburgh, Scotland, 2004. The Fifth Internationalrkhop
on Software Process Simulation and Modeling.

Chris Jensen and Walt Scacchi. Experience in discogemodeling, and reenacting open
source software development processerioceeding®f the InternationalSoftwareProcess

Workshop, 2005.

184

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Philip M. Johnson. Hackystat Framework Home Page.:Mitprw.hackystat.org/.

Philip M. Johnson. Project hackystat: Accelerating@ttbn of empirically guided software

development through non-disruptive, developer-centriggrocess data collection and anal-
ysis. Technical report, Department of Information and Cotap Sciences, University of

Hawaii, Honolulu, Hawaii 96822, November 2001.

Philip M. Johnson. You can't even ask them to push a butimward ubiquitous, developer-

centric, empirical software engineering. The NSFWorkshopfor New Visions for Software

DesignandProductivity: ResearctandApplications, Nashville, TN, December 2001.

Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Choigsher Chan, Carleton A. Moore,
Jitender Miglani, Shenyan Zhen, and William E. Doane. Beytthre personal software pro-

cess: Metrics collection and analysis for the differentsciblined. InProceedingsfthe2003

InternationalConferenceon SoftwareEngineering, Portland, Oregon, May 2003.

Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Qin Ziga Aaron Kagawa, and Takuya
Yamashita. Practical automated process and product neettéction and analysis in a class-
room setting: Lessons learned from Hackystat-UHPtoceeding®f the 2004 International

Symposiunon Empirical SoftwareEngineering, Los Angeles, California, August 2004.

Philip M. Johnson, Hongbing Kou, Michael G. Pauldingh@hang, Aaron Kagawa, and
Takuya Yamashita. Improving software development managenmrough software project
telemetry.|[EEE Software, August 2005.

Philip M. Johnson and Michael G. Paulding. UnderstagdiiPCS development through auto-
mated process and product measurement with Hackyst8edandNorkshopon Productivity
andPerformancen High-EndComputing(P-PHEC), February 2005.

Stanley M. Sutton Jr., Dennis Heimbigner, and Leon tefsell. Appl/a: A language for
softwareprocess programmingCM Transactioron SoftwareEngineeringandMethodology,
4(3):221-286, 1995.

Jagadish Kamatar and Will Hayes. An experience reporthe personal software process.

IEEE Softw., 17(6):85-89, 2000.

Reid Kaufmann and David Janzen. Implications of testeth development: a pilot study. In
OOPSLA'03: Companionof the 18thannualACM SIGPLAN conferenceon Object-oriented

185

programming,systemsJanguagesand applications, pages 298-299, New York, NY, USA,
2003. ACM Press.

[45] Hongbing Kou and Philip M. Johnson. Automated recdgnitof low-level process: A pilot

validation study of Zorro for test-driven developmentPimceedingsf the2006International

Workshopon SoftwareProcess, Shanghai, China, May 2006.

[46] Craig Larman and Victor R. Basili. Iterative and incrental development: A brief history.
Computer, 36(6):47-56, 2003.

[47] Johannes LinkUnit Testingin Java:How TestsDrive the Code. Morgan Kaufmann Publish-

ers, San Francisco, 2003.

[48] Tddresearch findinghtt p: // webl ogs. asp. net/ mhawl ey/ ar chi ve/ 2004/ 04/
15/ 114005. aspx.

[49] E. Michael Maximilien and Laurie Williams. Accessing@3t-Driven Development at IBM. In
Proceeding®f the 25th InternationalConferencein SoftwareEngineering, page 564, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[50] M. Matthias Muller and Oliver Hagner. Experiment abolgst-first Programming. In
Empirical Assesmenin SoftwareEngineering EASE). IEEE Computer Society, 2002.

[51] James Newkirk and Alexei A. VorontsoWest-DrivenDevelopmenin Microsoft NET. Mi-
crosoft Press, Seattle, 2004.

[52] Benug workshop on test-driven developmdrttt p: / / dot net j unki es. com WebLog/
davi db/ ar chi ve/ 2004/ 09/ 05/ 24474. aspx.

[53] Mataz Pancur, Mojca Ciglari¢, Matej Trampus, arahé& Vidmar. Towards empirical evalu-
ation of test-driven development in a university environindn Proceeding®f EUROCON
2003. IEEE, 2003.

[54] Shari Lawrence PfleegeSoftwareEngineeringTheoryand Practice. Prentice Hall, Upper
Saddle River, NJ, 2001.

[55] Lutz Prechelt, Sebastian Jekutsch, and Philip M. JohnsActual process: A research pro-
gram. InSubmittedto the 2006 Workshopon SoftwareProcess, May 2006.

186

[56] Roger S. PressmaoftwareEngineering:A Practitioner'sApproach. McGraw Hill, Boston,
2005.

[57] Fastest developer in the west. htt p://m kemason. ca/ 2003/ 12/ 03/
#029Fast est WayToDevel op.

[58] Quicktime 7 for windowshtt p: // www. appl e. comi qui ckti me/w n. htmni .
[59] Beck testing frameworks<ht t p: / / www. xpr ogr amm ng. com t est f ram ht .
[60] Hackystat.htt p:// hackystat.ics. hawaii. edu.

[61] Test-driven development: Way fewer bugst t p: / / www. adapti onsoft. conitdd.
ht m .

[62] Tdd explainedhtt p: // homepage. mac. coni kei t hr ay/ bl og/ 2005/ 01/ 16/ .

[63] Test-driven development wuser group. http://groups.yahoo.coni group/

testdri vendevel opnent.

[64] Test-driven development weblogs. http://ww. testdriven. com nodul es/
nmyl i nks/ vi ewcat . php?ci d=20.

[65] Your test-driven development communityt t p: / / www. t est dri ven. cont .

[66] Test driven development workshop isa da!t p: / / webl ogs. asp. net/ rosher ove/
ar chi ve/ 2004/ 04/ 25/ 119764. aspx.

[67] Test-driven development with junit workshopht t p: // cl ar kwar e. con cour ses/
TDDW thdUnit. htm .

[68] Test-driven development workshop. http://ww. i ndustriall ogic.com
cat al ogs/ activities/000002. htm .

[69] Test infected developers anonymous. http:// dot netj unki es. com WebLog/
sei chert/archi ve/ 2003/ 12/ 03/ 4214. aspx.

[70] Microsoft’'s pilot of tsp yields dramatic results. <http://ww. sei . cru. edu/
publ i cati ons/ news- at - sei/features/ 2004/ 2/ feat ur %- 1- 2004- 2.
ht mp.

187

[71] Ivana Turnu, Marco Melis, and Alessandra Cau. Intrangiddd on a free libre open source
software project: a simulation experiment. QUTE-SWAPWorkshop, New York, NY, USA,
2004. ACM Press.

[72] Iserializable - roy osherove’'s blog. http://webl ogs. asp. net/rosherove/
ar chi ve/ 2004/ 12/ 02/ 273833. aspx.

[73] Unit testing: Can you repeat please? http://ww. net hodsandt ool s. coni
dynpol | / ol dpol I . php?Uni t Test .

[74] Yihong Wang and Hakan Erdogmus. The role of process ureaeent in test-driven develop-
ment. InXP/Agile Universe, pages 32—42, 2004.

[75] Christian Wege. AutomatedSupportfor ProcessAssessmenin Test-DrivenDevelopment.
Ph.d thesis, Eberhard-Karls-Universit at Tubingen, 2004.

[76] Laurie Williams, E. Michael Maximilien, and Mladen Vku Test-driven development as a
defect-reduction practice. IRroceeding®f the 14th InternationalSymposiumon Software
Reliability EngineeringISSREQ03), pages 298-299, New York, NY, USA, 2003. ACM Press

[77] xunit framework.ht t p: / / en. wi ki pedi a. or g/ wi ki / XUni t .

[78] Robert K. Yin. CaseStudy Research:.Designand Methods. Sage Publications, Thousand
Oaks, California, 2003.

[79] Qin Zhang. Improving Software DevelopmentProcessand Product Managementwith

SoftwareProjectTelemetry. Ph.D. thesis, University of Hawaii, Departmehtnformation

and Computer Sciences, December 2006.

[80] Zorro demo.htt p:// hackystat.ics. hawaii.edu/ hackystat/controller?

Key=zorr odenmouser &&€onmand=Zor r oDenoHore.

188

