
Using Simulation to Investigate IT Micro-processes

Alexey Olkov, Daniel Port
University of Hawaii at Manoa

olkov@hawaii.edu, dport@hawaii.edu

Abstract

The objective of creating a simulation toolkit

SimSWE is to provide means for gaining confidence
in the empirical analysis (automated or otherwise)
of software micro-processes and methods for
validating or obtaining evidence to support
software engineering hypotheses and theory.

1. Introduction

Trying to analyze and understand the behavior
of the system or the process is a very challenging
task especially if it consists of multiple sub-systems
or sub-processes. In order to do that, it is essential
to see the cause-effect relationships between the
parts. Knowledge of these relationships can be
gained in by means of empirical studies and
experiments. However, if we are dealing with
processes that require a lot of resources (time, cost,
labor), running the experiment all over until we see
the connection, can be difficult, and, often,
unrealistic. For the situations like that, a simulation
can be a solution. The simulation toolkit SimSWE
is designed to provide the means for simulation of
the software development process, as a mix of
various sub-processes in order to model the
different trends of development.

Having a tool for simulation of software
development will help the developers and project
mangers in two ways: first, it can help better
understand the effect of certain values of various
parameters of development (late project start, often
builds, inexperienced personnel etc.); second, the
SimSWE can help view the project in terms of
GQM (Goal Question Metrics) paradigm, which
can change the way the process is measured, by
reducing the number of metrics to those, that are
only relevant for specific business goals.

2. GQM Paradigm

The main role of a project manager is a rigorous
control of the processes and environments, and

control is always defined in terms of continuous
software measurement (“You cannot control what
you cannot measure”, T. DeMarco). Software
measurement is an essential part of Software
Engineering, whose scope of activities includes
planning, design, cost estimation, planning, testing,
etc., and is assisting a project manager by making
characteristics and relationships more clear and
assessing various problems, giving the information
on the current status of a project, process or
resources.

One of the main mechanisms of measurement is
by collecting and analyzing various metrics of the
project. Metrics can give information on multiple
aspects of the project or a process and can be
implemented in many ways. However, no matter
how the metrics are being collected, it has been a
ubiquitous problem when too much effort gets
wasted on gathering and analyzing metrics that are
not important for specific business goal, and do not
provide any relevant information. In order to be
confident whether the effort is spent purposefully,
the intuitive, but rather powerful Goal Question
Metric (GQM) approach was introduced.

The purpose of GQM is to measure something
meaningful rather than the random assortment of
metrics that is frequently considered. GQM makes
people think about the reasons behind and
information they would like to get out of metrics –
before collecting metric data. This approach leads
to direct relationships between low level metrics
and high level goals within the appropriate context,
and also helps avoid the situation when the metrics
are being collected simply because they can be
collected, without any connection to the business
goal.

In essence, GQM approach requires three steps
made by the managers or designers:

1. Set goals specific to needs in terms of
purpose, perspective and environment

2. Refine the goals into quantifiable
questions that are tractable

3. Deduce the metrics and data to be
collected (and the means for collecting
them) to answer the questions

So, the panning of data collection always comes
from thinking of the goals first, and the other way
around – when the data is collected, it is already
known which goal it is related to through a set of
questions linked to these goals. Figure 1
demonstrates the top-down approach of planning,
and bottom-up process of analyzing the collected
data. The level of satisfaction of goal G1 is done by
answering the questions Q1 and Q2, which are done
by analyzing the metric data M1 and M2.

Figure 1. GWM Model for collecting and
analyzing the data

Obviously, using this approach eliminates the
situation when metrics are not related to any goals
and are just being collected.

Even though having a GQM approach can help
plan the measurement and control process, it can
still be a challenging task to understand which
metrics need to be collected and how they should
be analyzed.

3. GQM and SimSWE

One of the applications of SimSWE is to test
GQM metrics before using them on a real project in
order to ensure they are measuring something
meaningful from a managerial point of view, rather
than a set of multiple parameters that do not give
any valuable information; also, it will help us
observe if the system in fact behaves the way we
expect it to behave for given settings. The toolkit is
not intended to fully simulate an actual process, but
rather give us an opportunity to look at outcomes
resulting from various parameters’ setting.

The GQM paradigm will serve as the language
for defining the simulation. SimSWE will simulate
various metrics based on adjustable behavior
models that can then be output to “Question”
components, which, in turn, can output to “Goal”
components. Alternatively, simulated data can be
output as sensor data into automated metrics
collection tools such as Hackystat for analysis
there.

Defining all the simulated data in terms of GQM
will help to focus only on relevant data.

3.1 Example of GQM application for
simulation design: requirements
prioritization

The need for the requirement prioritization is

described in more details in the following sections.
This part describes how to view the solution of this
problem from the point of GQM.

Define goal

G1: Analyze various strategy prioritization
strategies in order to find the one that produces the
most effective outcome in the environment of high
volatility, from the point of view of a project
manager.
Establish questions

Q1: Over 1000 of simulation runs, which
strategy returns the highest value (on average) at
random point of project termination?

Q2: Over 1000 of simulation runs, which
strategy returns the lowest cost (on average) at a
random point of project termination?

Q3: Over 1000 of simulation runs, which
strategy returns the largest area under the cost-value
curve (see example below)?
Define metrics

M1: List of requirement costs
M2: List of requirement values

Note, that we are replacing the gathered metrics

with the generated data; by this we are expanding
our experiments to the variety of data, that can be
hardly controlled and collected during the actual
measurement process.

4. SimSWE usage examples

Obviously, the simulated data is only useful
when applied in a certain context for making a
certain decision. A collection of simulated data, just
as a collection of gathered data does not have any

value, if analyzing it does not help us better achieve
specific business goals.

Analysis of the data always needs to be specific
(in terms of GQM, it should satisfy the stated goals
goals, otherwise it should not even be collected or
simulated). Each analyser needs to be designed and
coded separately with specific goals in mind, and
can be highly flexible and adjustable. The examples
of analyzers and how they use the simulated data,
are described below.

4.1 Requirement prioritization

All development efforts take great care in
choosing what is implemented. A great deal of
research and debate is directed on implementation
approaches. In particular agile vs. plan-based
development approaches, less attention is focused
on what should be implemented when, yet this is
no less important in today’s complex and risky
software development efforts. In this, prioritization
of requirements is recognized as an essential micro-
process within any development process. With
high customer expectations, tight schedules, and
limited resources, prioritization is used to limit the
scope and deliver the most essential functionality as
early as possible. It is an accepted fact that for most
development efforts that not all identified
requirements will be implemented. Prioritization is
needed, not just so as to be able to ignore the least
important requirements, but also to help the project
manager to resolve conflicts, plan for staged
deliveries, and make the necessary trade-offs
throughout the development lifecycle.

Both plan-based and agile development
approaches view prioritization as a fundamental
activity but they differ in their basic strategy. A
requirements prioritization strategy determines what
requirements are implemented and in what sequence
with respect to a strategic goal such as “minimize
cost.” There are many different strategies. For
example, “implement the lowest cost requirements
first” or “implement the highest value requirements
first” and some strategies are more effective than
others. The primary question of interest here is in
finding an effective strategy for a given development
effort.

While there is a great deal of literature on
requirements prioritization, little of this addresses
the issue of strategy effectiveness. Perhaps one
reason for this is that, with the exception of naïve
strategies (e.g. implement the requirements as they
appear) all strategies rely on difficult assessments
such as cost estimation, value assessment,
dependency analysis, and so forth. While

estimating the cost of a task is generally
straightforward, it is difficult to estimate the cost of
a particular requirement (cost here typically is
interpreted as “effort” here, not money).

Value is generally an “intangible” not easily
attributed to a particular requirement. Generally it is
overall value, or the value for completed groups of
requirements that represent a complete set of
functionality is all that is considered. So-called
“earned value” is not actual value is not reliable for
prioritization purposes. Furthermore, requirements
prioritization is difficult to monitor and measure
“in-vitro” within actual practice. Given the above
issues, and many others that we have left out, the
research question we are interested in is what is a
practical means for investigating the effectiveness
of requirements prioritization? Controlled
experiments are impractical, as is common with
assessing software engineering methods (e.g. how
to set up exact replications with different strategies,
how to prescribe requirements volatility, etc.).

In addition to the above stated challenges in
dealing with intangibles and collecting data in-
vitro, experiments would require a large number
data points to get convergence of effectiveness
measures due to the highly variable (and
uncontrollable) conditions and circumstances
within any given project. Comprehensive
simulation is an attractive option for investigating
and providing empirical support and justification of
new software engineering methods whose
effectiveness measures are intangible and
unobservable. Such simulations are common and
accepted as evidence within the management and
operations research literature where the evaluation
challenges are analogous to those in software
engineering.

In this work we create a simulation based on
requirements theory and a detailed empirical study
of requirements practices. We verify that the
simulation is consistent with the theory for basic
agile and plan-based requirements prioritization
methods. The simulation is then used to explore
properties of requirements prioritization strategies
and investigate two new methods suggested by
application of this theory. Strategies are compared
graphically and with respect to six strategy
effectiveness measures under various requirements
volatility scenarios. The home-ground theory states
that agile methods are most effective when
requirements volatility is very high, while plan-
based methods are most effective when there is
relatively little requirements volatility. The theory
suggests that a mixture of the two methods will

generally be more effective than either alone for
typical development efforts. This study seeks to
answer the question “what would a mixed agile and
plan-based requirements prioritization strategy look
like and how effective is it?

The simulated data and analysis of different
strategies are done separately. In other words, the
requirements are simulated on their own (whether
the volatility is realistic or not).

Result of a single run of simulation and analysis
of the different prioritization is shown in Figure 1.
The winning strategy is represented by the curve
above the other ones. In order to make a claim that
this or that strategy is the most effective for a given
set of parameters (volatility rate), it is important to
run the analysis for exactly the same settings
multiple times. This can give us confidence that the
obtained result is, in fact, an average outcome of
this or that strategy.

Figure 2. A sample of medium volatility run

The designing and implementing of the analyzer

not only helped us to confirm our expectations
regarding the strategies, but also helped understand
the prioritization processes and the way the
volatility affects the final outcome.

4.2 Continuous integration

Continuous Integration analyzer has not yet
been implemented; however, the ways the
simulation can assist in development of the
analyzer is rather clear.

Continuous integration approach is a way of
looking at the collected data in real-time, paying

close attention to the “vital signs” of the process in
order to determine if the project is “healthy”.

Continuous integration concepts describe
several ways of applying the analyzer, which
include but are not limited to:

- An understanding of "natural variation" in
healthy project vital signs for a given project, and
across all projects

 - An early warning system for projects in
trouble.

 - Additional data for project post-mortems. If
the vital signs indicated health but the project died,
what went wrong? What additional vital signs could
have saved the patient, or did it die due to "natural
causes"?

In order to be confident that the performed
analysis and given recommendations are reliable,
the system needs to be exhaustively tested under
various circumstances. Besides, the concepts of the
“healthy” project need to be strictly defined.

While “health” can be described in terms of tens
of factors, for the simplicity’s sake, I will give an
example of simulation use for health indication
from the point of view of build rate.

As the example indicates, the build analysis
includes the following dimensions:

- Total number of builds
- Number of successful builds
- Number of failing builds
- Percentage successful builds

 Indicators of health:

- Frequency of builds over a period of
time should be reasonable

- Frequency of build failures should be
low

 Potential symptoms of problems:

- An abnormal number of build events
- A project with a baseline number of

builds that are abnormally low or
abnormally high compared to other
projects

- An abnormally high number of build
failures

Given these definitions, we expect that when,
for example, the build rate is reasonable and failure
frequency is low, the analyzer should give a “green
flag” (“healthy” project). Having a simulation
toolkit can help us demonstrate or test it. The data
that needs to be simulated (modules) are the

number of builds, number of build failures, and the
parameters for these modules should be set to low.

As mentioned before, it is not important if the
parameters for, let’s say, build failures does not
reflect the real-life failure rate. What we want to see
is that when these values are “low”, the system in
fact tells that the project is healthy.

The same way we can test whether the system
reflects “unhealthiness” of the project appropriately
– what we want to observe is that under these give
high settings, the system will give a “red-flag”.

Gathering the real-life data for such tests is not
easily achievable, because it can require time and
runs of the projects under the same parameters.

The Continuous Integration analysis consists of
multiple parameters and having the simulation
toolkit can help “play” with the parameters in any
possible way. Other than testing of the analyzer,
playing with the data parameters can assist a
designer in better understanding of what a real
project consists of, and how dnerdvanaifferent
parameters are related to each other.

5. SimSWE structure

This section provides description of the ways the
modules interact with each other, and the way the
simulation runs and is controlled.

The way many of the existing simulation tools
work, and manage the data flows, includes the
existence of a controlling module (“Director”), and
the sink of modules, possibly connected with each
other. The role of the Director is to provide the way
the information flow is initiated, and maintained.
The Directors types differ depending on the type of
simulation the user is creating.

Figure 3. PTOLEMY II Graphical Tool for
simulation design. Example of a simple
simulation controlled by an SDF Director

Since software development process can roughly

be viewed as a discrete event process, the main
operation of the director would be the “time ticks”
that indicate process iterations or other time
intervals, at which the data is generated. The other
function of the Director is to set the parameters of
the environment, as opposed to the parameters of
the individual activity. Such parameters may
include: cost volatility, user expertise level,
teamwork efficiency, IDE parameters, development
language and others.

Figure 4. Example of the Director Settings

The data generated by the module can be sent to

the other module as an input by setting a link
between the modules, or can be redirected into an
“external flow“ (print out, store in the database or
measurement sensor). For this purpose each link
can be split into two and more lines, which
duplicate the flow (i.e. such split serves as a
broadcasting hub)

Figure 5. PTOLEMY II Graphical Tool for
simulation Design. Example of splitting the data
generated by the Ramp module into two output
devices

For the SimSWE project, the toolkit will be
designed and implemented using the means of
Matlab/Simulink tools. One of the main reasons of
using Matlab-based tools is the ease and wide range
of generating the random and probabilistic data.
Besides, the Matlab syntax and paradigm is very
widely known and used in the academia. The ease
of changing the modules and recoding parts of the
subroutines due to the scripted nature of it, makes it
easy to adjust and re-tailor the relationships
between the modules “on the fly”.

6. Simulation modules

As mentioned in the previous section, the tool
will be able to simulate both micro-processes of the
development system, such as builds, tests coding
etc., as well as the environment parameters such as
development team expertise, budget etc.

The picture below demonstrates the simplistic
format of a simulation module. The parameters of
the environment are set within the Director, and the
main module configuration parameters include the
type of data generated (number, string, percentage,
Boolean, array of values etc.), the ways the it is
generated (triggered by the input, randomly or in
timely manner), and the probability of each way.

Figure 6 UnitTest module example.

Input can be the output from the previous

module or modules, environment setting, or the self
generated data.

For example, the commit event can be generated
after the module of build return a successful result,
or just generated after every interval of time (which
can reflect a certain methodology or merely

developer’s habit). Sometimes evens can happen
spontaneously without anything triggering them
(random cost change, random build, etc). As shown
on the picture, a simulation designer will define the
probability of each way of triggering an event, as
one of the parameters of the module. Each module
can have several inputs that can be processed inside
the module.

Output can be a number (number of build
failures), Boolean value (result of the unit test), text
(generated code), or a list of values (results of all
unit tests). As it is implemented in other simulation
tools, the module can have multiple outputs. For
example, output of the unit test simulation module
can return the result of each test (a list of Boolean
‘pass/fail’ values) as well as, the total test time, a
number of procedures covered by the test, etc.

6.1 Examples of the modules

This section gives examples of the basic

modules that will be present in the toolkit,
including the input and output types and
relationships to other modules. Obviously, some
modules would use the data previously generated
by them.

Code churn (CodeChurn)

Description: number of lines of code added,
changed, or deleted

Input parameters:
- number_of_modules(number)
- LOC(number)

Settings:
- average_code_added(number)
- average_code_deleted(number),
- average_code_changed(number)

Output parameters:
- code_added (number)
- code_deleted(number)
- code_changed(number)

Data flows from (simulation modules):
- Modules
- TotalLoc

Builds (Builds)

Description: rate of builds including the results.
The usual practice is to start building after the
successful unit test, or update

Input parameters:
- code_churn(number)
- modules(number)
- LOC(number)

- previous_build_results(array of Boolean)
Settings:

- average_build_rate(number)
- average_failure_rate(number)

Output parameters:
- num_of_builds (number)
- build_results(array of Boolean)
- build_time (number)

Data flows from (simulation modules):
- UnitTest
- TotalLoc
- Modules
- CodeChurn
- Builds

Unit test (UntiTest)

Description: unit tests performed
Input parameters:

- number_of_modules(number)
- LOC(number)

Settings:
- average_test_coverage_per_unit

(number)
- average_failure_rate (number)
- average_code_changed(number)

Output parameters:
- number_of_tests (number)
- test_coverage(number)
- test_results(array of Booleans)
- test_time(number)

Data flows from (simulation modules):
- Modules
- TotalLoc
- CodeChurn

System or project components (Modules)

Description: total number of components of the
project. Can be objects, modules, procedures.

Input parameters:
- current_modules (number)

Settings:
- average_modules_added(number)

Output parameters:
- modules(number)

Data flows from (simulation modules):
- Modules

Total number of lines of code (TotalLoc)
Description: total number of lines of code in the

project
Input parameters:

- number_of_modules(number)
- development_time(number)
- current_loc(number)

Settings:

- average_code_added(number)
Output parameters:

- loc(number)
Data flows from (simulation modules):

- Modules
- TotalLoc
- CodeChurn

Commits (Commits)

Description: commits to the repository
Input parameters:

- code_churn (number)
Settings:

- probability_random_commit(number)
Output parameters:

- loc(number)
- commit_results(array of Booleans)
- commit_time(number)

Data flows from (simulation modules):
- TotalLoc
- CodeChurn
- Build
- UnitTest

Issues (Issues)
Description: project issues, as they appear or get

closed
Input parameters:

- code_churn (number)
- modules(number)
- current_issues(number)

Settings:
- average_issues_open(number)
- average_issues_closed(number)
- average_priority(number)

Output parameters:
- issues_open(array of strings (IDs) and

numbers (priority levels))
- issues_closed(Array of strings (IDs))

Data flows from (simulation modules):
- TotalLoc
- CodeChurn
- Issues

Implemented requirements (ReqImplemented)

Description: client satisfaction as measured by
the implemented requirements

Input parameters:
- current_reqs (number)

Settings:
- average_requirements(number)

Output parameters:
- requirements(number)

Data flows from (simulation modules):
- ReqImplemented

The list of these modules is incomplete, and the

modules will be designed as the project is being
developed. However, the terms in which the
modules will be defined, are consisted with the
given examples, and (more importantly) the GQM
paradigm.

The laws of data genertion can be obtained from
the specific

7. Applications of simulation

The most common question that arises regarding
the use of simulation toolkit has to do with the
simulation value. The argument is that the
simulation has no value unless it reflects the real-
life behaviors and trends. In other words, the
outcome of the simulation is “pre-programmed”
and hence, gives us no information, especially if the
programmed behavior is based on the “theoretical”
or random values. This argument is only valid, if
we assume that the main use of the simulation is
prediction of the real-life data. However, prediction
is not the only and maybe one of the least uses of
simulation toolkit.

The other applications of the toolkit described in
this section are:

- Investigation of behavior and
characteristics in controlled environment

- Investigation of macro behavior
- Understanding the impact and sensitivity

of parameters
- Investigation of the methods, and

processes under exact same conditions
- Design of more focused experiments
- Enhancement of causal analysis
- Test of the measurement tools

These points are described in the following sections

7.1 Investigation of behavior and
characteristics in controlled environment

In order to discover a certain trend or find a
relationship between the parameters, it is often
required to look at the process from different
viewpoints under different circumstances. For
example, in order to claim that higher build rate
leads to less build failures, we need to go through
the process having several build rate settings (e.g.
low, medium, high and extremely high), and look at
the outcome. While running the process in real life
under different circumstances might be very
challenging, in the simulation, it will merely be

achieved by altering the build rate parameters. After
discovering the best parameters for a certain
hypothesis support, they can be applied to a real-
life project.

Running the projects with the multiple
parameters, tuning them “on the go” can be a very
challenging and costly task.

7.2 Investigation of macro behavior

Every developer, or every team has very unique
characteristics that, though may vary from project
to project, are, in general, consistent. In order to
discover a certain trend under any given
circumstances, it is required to look at several runs
of the project to make sure that the behavior is as
expected. The information given by the single run
of the project with given parameters is not reliable
enough, because as it varies within a certain range
of outcomes, it can still give an extreme and highly
improbable result. In order to eliminate “outliers”
the project needs to be run multiple times under the
same parameters. This allows us to investigate the
average behavior, or average outcome.

In the example of requirements implementation
strategy, for a given value of requirements
volatility, sometime one strategy “wins over” the
other, and sometimes the result is opposite. In order
to gain confidence in what strategy is more
effective (on average), the simulation is run
multiple times, and the numbers of “wins” for each
strategy are then compared.

7.3 Understanding the impact and
sensitivity of parameters

When looking at the processes and projects, it is
often important to know which parameters
contribute into the observed change. Since the
processes are usually quite complex, and multiple
parameters would play different roles in the
outputs, it can be crucial for a manager or designer
to determine, which ones cause the change the
most, and also, how sensitive the process is to the
change of certain parameters. This can help
organize the process in a way focusing on
“important” parameters first, and “secondary” -
after.

Using a simulation in this case would also be
preferable, since the effect of every change in the
parameter values can be almost immediately
observed, while in real life, one will have to wait

until the end of the process, project or iteration to
see the effect of the change.

7.4 Investigation of the methods and
processes under exact same conditions

In order to observe a phenomenon, or confirm a
hypothesis, it is important to see that the results of
the “runs” are consistent. In other words, running
the process under exactly the same conditions will
(on average) result in exactly the same outcome.

Real-life projects, even related and/or when
performed by the same developer or team of
developers, can differ in a multitude of ways. Some
of the differences may appear insignificant, but the
accumulated effect can change the outcome greatly.
This is why running project under exactly same
settings is very challenging and even unrealistic.

The simulation, even when based on the random
and probabilistic parameters, can be run as many
times as needed with the values for probability or
distribution remaining the same. When observing
the results of such multiple runs, we can see
whether the outcome is consistent (on average,
even with possible “outliers”).

7.5 Design of more focused experiments

Designing experiments that involve complicated
and long-term processes such as software
development process is very important for
discovering trends and relationship between certain
parameters and the outcome of the process, strategy
or method. Having empirical data about the process
can help properly design and plan it. Failure in
applying a strategy or method can have a very high
cost for the company, however, running an
experiment for discovering the effect of the strategy
or method can cost even more. In this case, running
an experiment is useless.

The ability of the simulation to have adjustable
parameters and give the “immediate” results, as
mentioned above, can show us which parameters
are more influential, and how sensitive the process
is to certain settings. This can help tremendously to
design a software development process more
precisely, gathering the data or paying a closer
attention only to the parameters that, according to
the simulation, have greater effect on the result.
This reduces the effort of gathering, storing and
analyzing the data, and makes the experiment more
focused and efficient.

7.6 Enhancement of casual analysis

When the project is run, very often we want to
focus not as much as the final outcome, but rather
on the dynamics of changes, as they occur, and how
they are related to each other. Knowing the casual
connection between parameters can help us to apply
the strategies “as we go”.

For example, if the current (or immediate) goal
of the project is to minimize the faulty executions
of the program (as opposed to the “global” one
which is, for example, to minimize the cost, finish
ahead of the schedule, etc.), one solution could be
to maximize the testing rate. This may cause in
longer project time(for a given iteration), and might
not fulfill the ultimate goal, but will satisfy the
“immediate” one – maximizing the requirement
satisfaction.

In this example, we claim to possess the
knowledge on the casual relationships between
parameters and settings, as opposed to the
relationships between the parameters and final
outcome. As discussed above, this kind of
knowledge can only be trusted, when obtained from
multiple projects, teams, strategies and runs. The
simulation can help us achieve this, without
spending as much resources as the real-life
experiments would.

7.7 Test of measurement tools

The software development measurement tools
are the systems that perform an analysis of various
dimensions of the project information. These data
can be gathered both automatically, and manually.
The analysis can include the prediction of the
outcome (cost, time, user satisfaction etc.),
indication of the project’s “health” (failure rate is
within a reasonable range, cost variation is not
crucial etc.), demonstrating of certain trends (test-
driven development, agile vs. traditions etc.) or
other analysis.

For the measurement system to be reliable, it
needs to be tested for a wide range of situations and
parameters. For example, the constructed “health”
analyzer has to always return the positive outcome
for “healthy” projects (however we define “health”)
and negative outcome for “unhealthy” ones.
“Feeding” the analyzer with the real-life data can be
very time consuming, since the data needs to be
collected over a vast period of time. Being able to

simulate the data can be extremely helpful in
situation like this, because, as mentioned, it does
not matter how we define a “healthy” project, since
the parameters of the simulation can be adjusted to
any definition of a “healthy” or “unhealthy” project.

7.8 Other notes on simulation use

One may argue that the parameters, laws and
relationships obtained during the simulation will
never be the same as the real ones. Again, such
perception of the simulation usage is limited. As
long as the simulation demonstrates the behavior
“similar” to that of the real-life (even, in simplistic
way, for example, showing a strong positive
correlation, without giving an exact actual
coefficients), it has a great value for the project
management.

Another important note on the simulation use is
that the simulated data and the analysis of these
data need to be seen separately. As in the example
with requirements prioritization strategy shows, the
data is generated (simulated) independently from
making the decision about it (strategizing). The
simulation tool does not necessarily claim to find
the best strategy or the method, but rather it gives
the means to test the discovered or hypothesized
methods or trends on a wide range of data. The
laws of data simulation should not affect the
decision made bout these data.

Also, simulation toolkit can help us run the
project for the “entire” range of the values (no
matter how you define the range of certain
parameters), and analyze the data. If the outcome is
statistically consistent for “all possible” parameters,
it gives us confidence that the result also applies to
the real-life projects, since the actual real-life
parameters are most probably within the performed
exhaustive runs.

8. Related work

One of the most interesting applications of the
simulation system, was found in the work
describing the ProSim/RA framework – a risk
assessment system - which combines software
process simulation with stochastic simulation. It
consists of the following steps.

STEP 1: Define risk factors. Risk factors are
attributes of project entities that are supposed to
cause losses of a certain amount with a certain
probability.

STEP 2: Define impact factors. Impact factors

are attributes of projects that are supposed to be
affected by variations of risk factors.

STEP 3: Define variation of risk factors. This
includes the construction of a distribution function
describing the probability of assuming a particular
value.

STEP 4: Conduct sensitivity analyses.
STEP 5: Analyze simulation results. By this,

rankings can be constructed that may serve as an
input for risk prioritization. Typically, potential
losses are associated with late product delivery
(contract penalty), lacking product quality (rework
cost), effort overrun (personnel cost).

This, seemingly simple and intuitive approach
provides a very good systemstic process for risk
analysis, as shown in the example presented in the
paper. In this example, in order to test the suggested
risk assessment framework, a simulated data from
GENSIM (GENeric SSIMulator) is used. GENSIM
is a generic prototype representing a waterfall-like
software development process. The GENSIM
model simulates the software development process
from the end of the requirement analysis step
through to the end of system testing.

Among several advatnages of using of
simulation for the risk assessment, the most
relevant is the one described in the previous
sections: high, medium, and low business-priority
defects – the task that can hardly be implemented in
the real-life projects.

9. References

[1] Pfahl D., “System Dynamics and Goal Oriented
measurement: a hybrid approach”

[2] Boehm, B W “Software Engineering Economics.”
Prentice Hall PTR, 1981

[3] D. Pfahl, K. Lebsanft “Using simulation to analyze
the impact of software requirement volatility on
project performance”

[4] Nagappan N, Ball T. “Explaining Failures Using
Software Dependences and Churn Metrics”

[5] Pfahl D (2005) ProSim/RA – Software Process
Simulation in Support of Risk Assessment

[6] Port D., Olkov A Using Simulation to Investigate
Requirements Prioritization Strategies

[7]
http://code.google.com/p/hackystat/wiki/Continuous
IntegrationICU

[8] Lee A., Neuendorffer C, Tutorial: Building
Ptolemy II Models Graphically. Technical Report No.
UCB/EECS-2007-129

[9] Noehm B. W. «Software Metrics. A Rigorous &
Practical Approah» PWS Publishing Company, 1997

[10] Biffl S, Aurum A. et al «Value-Based Software
Engineering», Springer 2006

