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Abstract 

 
The objective of creating a simulation toolkit 

SimSWE is to provide means for gaining confidence 
in the empirical analysis (automated or otherwise) 
of software micro-processes and methods for 
validating or obtaining evidence to support 
software engineering hypotheses and theory.  
 
1. Introduction 
 

Trying to analyze and understand the behavior 
of the system or the process is a very challenging 
task especially if it consists of multiple sub-systems 
or sub-processes. In order to do that, it is essential 
to see the cause-effect relationships between the 
parts. Knowledge of these relationships can be 
gained in by means of empirical studies and 
experiments. However, if we are dealing with 
processes that require a lot of resources (time, cost, 
labor), running the experiment all over until we see 
the connection, can be difficult, and, often, 
unrealistic. For the situations like that, a simulation 
can be a solution. The simulation toolkit SimSWE 
is designed to provide the means for simulation of 
the software development process, as a mix of 
various sub-processes in order to model the 
different trends of development. 

Having a tool for simulation of software 
development will help the developers and project 
mangers in two ways: first, it can help better 
understand the effect of certain values of various 
parameters of development (late project start, often 
builds, inexperienced personnel etc.); second, the 
SimSWE can help view the project in terms of 
GQM (Goal Question Metrics) paradigm, which 
can change the way the process is measured, by 
reducing the number of metrics to those, that are 
only relevant for specific business goals. 
 
2. GQM Paradigm 
 

The main role of a project manager is a rigorous 
control of the processes and environments, and 

control is always defined in terms of continuous 
software measurement (“You cannot control what 
you cannot measure”, T. DeMarco). Software 
measurement is an essential part of Software 
Engineering, whose scope of activities includes 
planning, design, cost estimation, planning, testing, 
etc., and is assisting a project manager by making 
characteristics and relationships more clear and 
assessing various problems, giving the information 
on the current status of a project, process or 
resources. 

One of the main mechanisms of measurement is 
by collecting and analyzing various metrics of the 
project. Metrics can give information on multiple 
aspects of the project or a process and can be 
implemented in many ways. However, no matter 
how the metrics are being collected, it has been a 
ubiquitous problem when too much effort gets 
wasted on gathering and analyzing metrics that are 
not important for specific business goal, and do not 
provide any relevant information. In order to be 
confident whether the effort is spent purposefully, 
the intuitive, but rather powerful Goal Question 
Metric (GQM) approach was introduced.  

The purpose of GQM is to measure something 
meaningful rather than the random assortment of 
metrics that is frequently considered. GQM makes 
people think about the reasons behind and 
information they would like to get out of metrics – 
before collecting metric data. This approach leads 
to direct relationships between low level metrics 
and high level goals within the appropriate context, 
and also helps avoid the situation when the metrics 
are being collected simply because they can be 
collected, without any connection to the business 
goal. 

In essence, GQM approach requires three steps 
made by the managers or designers: 

1. Set goals specific to needs in terms of 
purpose, perspective and environment 

2.  Refine the goals into quantifiable 
questions that are tractable 

3.  Deduce the metrics and data to be 
collected (and the means for collecting 
them) to answer the questions 



So, the panning of data collection always comes 
from thinking of the goals first, and the other way 
around – when the data is collected, it is already 
known which goal it is related to through a set of 
questions linked to these goals. Figure 1 
demonstrates the top-down approach of planning, 
and bottom-up process of analyzing the collected 
data. The level of satisfaction of goal G1 is done by 
answering the questions Q1 and Q2, which are done 
by analyzing the metric data M1 and M2. 

 

 
Figure 1. GWM Model for collecting and 
analyzing the data 

Obviously, using this approach eliminates the 
situation when metrics are not related to any goals 
and are just being collected. 

Even though having a GQM approach can help 
plan the measurement and control process, it can 
still be a challenging task to understand which 
metrics need to be collected and how they should 
be analyzed. 

 
3. GQM and SimSWE 
 

One of the applications of SimSWE is to test 
GQM metrics before using them on a real project in 
order to ensure they are measuring something 
meaningful from a managerial point of view, rather 
than a set of multiple parameters that do not give 
any valuable information; also, it will help us 
observe if the system in fact behaves the way we 
expect it to behave for given settings. The toolkit is 
not intended to fully simulate an actual process, but 
rather give us an opportunity to look at outcomes 
resulting from various parameters’ setting. 

The GQM paradigm will serve as the language 
for defining the simulation. SimSWE will simulate 
various metrics based on adjustable behavior 
models that can then be output to “Question” 
components, which, in turn, can output to “Goal” 
components. Alternatively, simulated data can be 
output as sensor data into automated metrics 
collection tools such as Hackystat for analysis 
there. 

Defining all the simulated data in terms of GQM 
will help to focus only on relevant data. 

 
3.1 Example of GQM application for 
simulation design: requirements 
prioritization 

 
The need for the requirement prioritization is 

described in more details in the following sections. 
This part describes how to view the solution of this 
problem from the point of GQM. 

 
Define goal 

G1: Analyze various strategy prioritization 
strategies in order to find the one that produces the 
most effective outcome in the environment of high 
volatility, from the point of view of a project 
manager. 
Establish questions 

Q1: Over 1000 of simulation runs, which 
strategy returns the highest value (on average) at 
random point of project termination? 

Q2: Over 1000 of simulation runs, which 
strategy returns the lowest cost (on average) at a 
random point of project termination? 

Q3: Over 1000 of simulation runs, which 
strategy returns the largest area under the cost-value 
curve (see example below)? 
Define metrics 

M1: List of requirement costs 
M2: List of requirement values 
 
Note, that we are replacing the gathered metrics 

with the generated data; by this we are expanding 
our experiments to the variety of data, that can be 
hardly controlled and collected during the actual 
measurement process. 

 
4. SimSWE usage examples 
 

Obviously, the simulated data is only useful 
when applied in a certain context for making a 
certain decision. A collection of simulated data, just 
as a collection of gathered data does not have any 



value, if analyzing it does not help us better achieve 
specific business goals. 

Analysis of the data always needs to be specific 
(in terms of GQM, it should satisfy the stated goals 
goals, otherwise it should not even be collected or 
simulated). Each analyser needs to be designed and 
coded separately with specific goals in mind, and 
can be highly flexible and adjustable. The examples 
of analyzers and how they use the simulated data, 
are described below. 
 
4.1 Requirement prioritization 
 

All development efforts take great care in 
choosing what is implemented. A great deal of 
research and debate is directed on implementation 
approaches. In particular agile vs. plan-based 
development approaches, less attention is focused 
on what should be implemented when, yet this is 
no less important in today’s complex and risky 
software development efforts. In this, prioritization 
of requirements is recognized as an essential micro-
process within any development process. With 
high customer expectations, tight schedules, and 
limited resources, prioritization is used to limit the 
scope and deliver the most essential functionality as 
early as possible. It is an accepted fact that for most 
development efforts that not all identified 
requirements will be implemented. Prioritization is 
needed, not just so as to be able to ignore the least 
important requirements, but also to help the project 
manager to resolve conflicts, plan for staged 
deliveries, and make the necessary trade-offs 
throughout the development lifecycle. 

Both plan-based and agile development 
approaches view prioritization as a fundamental 
activity but they differ in their basic strategy. A 
requirements prioritization strategy determines what 
requirements are implemented and in what sequence 
with respect to a strategic goal such as “minimize 
cost.” There are many different strategies. For 
example, “implement the lowest cost requirements 
first” or “implement the highest value requirements 
first” and some strategies are more effective than 
others. The primary question of interest here is in 
finding an effective strategy for a given development 
effort.  

While there is a great deal of literature on 
requirements prioritization, little of this addresses 
the issue of strategy effectiveness. Perhaps one 
reason for this is that, with the exception of naïve 
strategies (e.g. implement the requirements as they 
appear) all strategies rely on difficult assessments 
such as cost estimation, value assessment, 
dependency analysis, and so forth. While 

estimating the cost of a task is generally 
straightforward, it is difficult to estimate the cost of 
a particular requirement (cost here typically is 
interpreted as “effort” here, not money).  

Value is generally an “intangible” not easily 
attributed to a particular requirement. Generally it is 
overall value, or the value for completed groups of 
requirements that represent a complete set of 
functionality is all that is considered. So-called 
“earned value” is not actual value is not reliable for 
prioritization purposes. Furthermore, requirements 
prioritization is difficult to monitor and measure 
“in-vitro” within actual practice. Given the above 
issues, and many others that we have left out, the 
research question we are interested in is what is a 
practical means for investigating the effectiveness 
of requirements prioritization? Controlled 
experiments are impractical, as is common with 
assessing software engineering methods (e.g. how 
to set up exact replications with different strategies, 
how to prescribe requirements volatility, etc.). 

In addition to the above stated challenges in 
dealing with intangibles and collecting data in-
vitro, experiments would require a large number 
data points to get convergence of effectiveness 
measures due to the highly variable (and 
uncontrollable) conditions and circumstances 
within any given project. Comprehensive 
simulation is an attractive option for investigating 
and providing empirical support and justification of 
new software engineering methods whose 
effectiveness measures are intangible and 
unobservable. Such simulations are common and 
accepted as evidence within the management and 
operations research literature where the evaluation 
challenges are analogous to those in software 
engineering.  

In this work we create a simulation based on 
requirements theory and a detailed empirical study 
of requirements practices. We verify that the 
simulation is consistent with the theory for basic 
agile and plan-based requirements prioritization 
methods. The simulation is then used to explore 
properties of requirements prioritization strategies 
and investigate two new methods suggested by 
application of this theory. Strategies are compared 
graphically and with respect to six strategy 
effectiveness measures under various requirements 
volatility scenarios. The home-ground theory states 
that agile methods are most effective when 
requirements volatility is very high, while plan-
based methods are most effective when there is 
relatively little requirements volatility. The theory 
suggests that a mixture of the two methods will 



generally be more effective than either alone for 
typical development efforts. This study seeks to 
answer the question “what would a mixed agile and 
plan-based requirements prioritization strategy look 
like and how effective is it?  

The simulated data and analysis of different 
strategies are done separately. In other words, the 
requirements are simulated on their own (whether 
the volatility is realistic or not). 

Result of a single run of simulation and analysis 
of the different prioritization is shown in Figure 1. 
The winning strategy is represented by the curve 
above the other ones. In order to make a claim that 
this or that strategy is the most effective for a given 
set of parameters (volatility rate), it is important to 
run the analysis for exactly the same settings 
multiple times. This can give us confidence that the 
obtained result is, in fact, an average outcome of 
this or that strategy. 

 
 

 
Figure 2. A sample of medium volatility run 

 
The designing and implementing of the analyzer 

not only helped us to confirm our expectations 
regarding the strategies, but also helped understand 
the prioritization processes and the way the 
volatility affects the final outcome. 

 
4.2 Continuous integration 
 

Continuous Integration analyzer has not yet 
been implemented; however, the ways the 
simulation can assist in development of the 
analyzer is rather clear. 

Continuous integration approach is a way of 
looking at the collected data in real-time, paying 

close attention to the “vital signs” of the process in 
order to determine if the project is “healthy”.  

Continuous integration concepts describe 
several ways of applying the analyzer, which 
include but are not limited to: 

- An understanding of "natural variation" in 
healthy project vital signs for a given project, and 
across all projects  

 - An early warning system for projects in 
trouble.  

 - Additional data for project post-mortems. If 
the vital signs indicated health but the project died, 
what went wrong? What additional vital signs could 
have saved the patient, or did it die due to "natural 
causes"? 

In order to be confident that the performed 
analysis and given recommendations are reliable, 
the system needs to be exhaustively tested under 
various circumstances. Besides, the concepts of the 
“healthy” project need to be strictly defined. 

While “health” can be described in terms of tens 
of factors, for the simplicity’s sake, I will give an 
example of simulation use for health indication 
from the point of view of build rate. 

As the example indicates, the build analysis 
includes the following dimensions: 
  

-  Total number of builds  
-  Number of successful builds  
-  Number of failing builds  
-  Percentage successful builds  

  
 Indicators of health:  

-  Frequency of builds over a period of 
time should be reasonable  

-  Frequency of build failures should be 
low  

  
 Potential symptoms of problems:  

-  An abnormal number of build events  
-  A project with a baseline number of 

builds that are abnormally low or 
abnormally high compared to other 
projects  

-  An abnormally high number of build 
failures 

Given these definitions, we expect that when, 
for example, the build rate is reasonable and failure 
frequency is low, the analyzer should give a “green 
flag” (“healthy” project). Having a simulation 
toolkit can help us demonstrate or test it. The data 
that needs to be simulated (modules) are the 



number of builds, number of build failures, and the 
parameters for these modules should be set to low. 

As mentioned before, it is not important if the 
parameters for, let’s say, build failures does not 
reflect the real-life failure rate. What we want to see 
is that when these values are “low”, the system in 
fact tells that the project is healthy. 

The same way we can test whether the system 
reflects “unhealthiness” of the project appropriately 
– what we want to observe is that under these give 
high settings, the system will give a “red-flag”. 

Gathering the real-life data for such tests is not 
easily achievable, because it can require time and 
runs of the projects under the same parameters. 

The Continuous Integration analysis consists of 
multiple parameters and having the simulation 
toolkit can help “play” with the parameters in any 
possible way. Other than testing of the analyzer, 
playing with the data parameters can assist a 
designer in better understanding of what a real 
project consists of, and how dnerdvanaifferent 
parameters are related to each other. 
 
5. SimSWE structure 
 

This section provides description of the ways the 
modules interact with each other, and the way the 
simulation runs and is controlled. 

The way many of the existing simulation tools 
work, and manage the data flows, includes the 
existence of a controlling module (“Director”), and 
the sink of modules, possibly connected with each 
other. The role of the Director is to provide the way 
the information flow is initiated, and maintained. 
The Directors types differ depending on the type of 
simulation the user is creating.  
 

 
Figure 3. PTOLEMY II Graphical Tool for 
simulation design. Example of a simple 
simulation controlled by an SDF Director 

 
Since software development process can roughly 

be viewed as a discrete event process, the main 
operation of the director would be the “time ticks” 
that indicate process iterations or other time 
intervals, at which the data is generated. The other 
function of the Director is to set the parameters of 
the environment, as opposed to the parameters of 
the individual activity. Such parameters may 
include: cost volatility, user expertise level, 
teamwork efficiency, IDE parameters, development 
language and others. 

 

 
Figure 4. Example of the Director Settings 

 
The data generated by the module can be sent to 

the other module as an input by setting a link 
between the modules, or can be redirected into an 
“external flow“ (print out, store in the database or 
measurement sensor). For this purpose each link 
can be split into two and more lines, which 
duplicate the flow (i.e. such split serves as a 
broadcasting hub) 

 

 
Figure 5. PTOLEMY II Graphical Tool for 
simulation Design. Example of splitting the data 
generated by the Ramp module into two output 
devices 

 



For the SimSWE project, the toolkit will be 
designed and implemented using the means of 
Matlab/Simulink tools. One of the main reasons of 
using Matlab-based tools is the ease and wide range 
of generating the random and probabilistic data. 
Besides, the Matlab syntax and paradigm is very 
widely known and used in the academia. The ease 
of changing the modules and recoding parts of the 
subroutines due to the scripted nature of it, makes it 
easy to adjust and re-tailor the relationships 
between the modules “on the fly”. 

 
6. Simulation modules 
 

As mentioned in the previous section, the tool 
will be able to simulate both micro-processes of the 
development system, such as builds, tests coding 
etc., as well as the environment parameters such as 
development team expertise, budget etc. 

The picture below demonstrates the simplistic 
format of a simulation module. The parameters of 
the environment are set within the Director, and the 
main module configuration parameters include the 
type of data generated (number, string, percentage, 
Boolean, array of values etc.), the ways the it is 
generated (triggered by the input, randomly or in 
timely manner), and the probability of each way. 

 

 
Figure 6 UnitTest module example. 

 
Input can be the output from the previous 

module or modules, environment setting, or the self 
generated data.  

For example, the commit event can be generated 
after the module of build return a successful result, 
or just generated after every interval of time (which 
can reflect a certain methodology or merely 

developer’s habit). Sometimes evens can happen 
spontaneously without anything triggering them 
(random cost change, random build, etc). As shown 
on the picture, a simulation designer will define the 
probability of each way of triggering an event, as 
one of the parameters of the module. Each module 
can have several inputs that can be processed inside 
the module. 

Output can be a number (number of build 
failures), Boolean value (result of the unit test), text 
(generated code), or a list of values (results of all 
unit tests). As it is implemented in other simulation 
tools, the module can have multiple outputs. For 
example, output of the unit test simulation module 
can return the result of each test (a list of Boolean 
‘pass/fail’ values) as well as, the total test time, a 
number of procedures covered by the test, etc. 

 
6.1 Examples of the modules 

 
This section gives examples of the basic 

modules that will be present in the toolkit, 
including the input and output types and 
relationships to other modules. Obviously, some 
modules would use the data previously generated 
by them. 

 
Code churn (CodeChurn) 

Description: number of lines of code added, 
changed, or deleted 

Input parameters: 
- number_of_modules(number) 
- LOC(number) 

Settings:  
- average_code_added(number) 
- average_code_deleted(number), 
- average_code_changed(number) 

Output parameters: 
- code_added (number) 
- code_deleted(number) 
- code_changed(number) 

Data flows from (simulation modules):  
- Modules 
- TotalLoc 

 
Builds (Builds) 

Description: rate of builds including the results. 
The usual practice is to start building after the 
successful unit test, or update 

Input parameters: 
- code_churn(number) 
- modules(number) 
- LOC(number) 



- previous_build_results(array of Boolean) 
Settings:  

- average_build_rate(number) 
- average_failure_rate(number) 

Output parameters: 
- num_of_builds (number) 
- build_results(array of Boolean) 
- build_time (number) 

Data flows from (simulation modules):  
- UnitTest 
- TotalLoc 
- Modules 
- CodeChurn 
- Builds 

 
Unit test (UntiTest) 

Description: unit tests performed 
Input parameters: 

- number_of_modules(number) 
- LOC(number) 

Settings:  
- average_test_coverage_per_unit 

(number) 
- average_failure_rate (number) 
- average_code_changed(number) 

Output parameters: 
- number_of_tests (number) 
- test_coverage(number) 
- test_results(array of Booleans) 
- test_time(number) 

Data flows from (simulation modules):  
- Modules 
- TotalLoc 
- CodeChurn 

 
System or project components (Modules) 

Description: total number of components of the 
project. Can be objects, modules, procedures. 

Input parameters: 
- current_modules (number) 

Settings:  
- average_modules_added(number) 

Output parameters: 
- modules(number) 

Data flows from (simulation modules):  
- Modules 
 

Total number of lines of code (TotalLoc) 
Description: total number of lines of code in the 

project 
Input parameters: 

- number_of_modules(number) 
- development_time(number) 
- current_loc(number) 

Settings:  

- average_code_added(number) 
Output parameters: 

- loc(number) 
Data flows from (simulation modules):  

- Modules 
- TotalLoc 
- CodeChurn 

 
Commits (Commits) 

Description: commits to the repository 
Input parameters: 

- code_churn (number) 
Settings:  

- probability_random_commit(number) 
Output parameters: 

- loc(number) 
- commit_results(array of Booleans) 
- commit_time(number) 

Data flows from (simulation modules):  
- TotalLoc 
- CodeChurn 
- Build 
- UnitTest 
 

Issues (Issues) 
Description: project issues, as they appear or get 

closed 
Input parameters: 

- code_churn (number) 
- modules(number) 
- current_issues(number) 

Settings:  
- average_issues_open(number) 
- average_issues_closed(number) 
- average_priority(number) 

Output parameters: 
- issues_open(array of strings (IDs) and 

numbers (priority levels)) 
- issues_closed(Array of strings (IDs)) 

Data flows from (simulation modules):  
- TotalLoc 
- CodeChurn 
- Issues 

 
Implemented requirements (ReqImplemented) 

Description: client satisfaction as measured by 
the implemented requirements 

Input parameters: 
- current_reqs (number) 

Settings:  
- average_requirements(number) 

Output parameters: 
- requirements(number) 

Data flows from (simulation modules):  
- ReqImplemented 



 
The list of these modules is incomplete, and the 

modules will be designed as the project is being 
developed. However, the terms in which the 
modules will be defined, are consisted with the 
given examples, and (more importantly) the GQM 
paradigm. 

The laws of data genertion can be obtained from 
the specific  

 
7. Applications of simulation 
 

The most common question that arises regarding 
the use of simulation toolkit has to do with the 
simulation value. The argument is that the 
simulation has no value unless it reflects the real-
life behaviors and trends. In other words, the 
outcome of the simulation is “pre-programmed” 
and hence, gives us no information, especially if the 
programmed behavior is based on the “theoretical” 
or random values. This argument is only valid, if 
we assume that the main use of the simulation is 
prediction of the real-life data. However, prediction 
is not the only and maybe one of the least uses of 
simulation toolkit. 

The other applications of the toolkit described in 
this section are: 

- Investigation of behavior and 
characteristics in controlled environment 

- Investigation of macro behavior 
- Understanding the impact and sensitivity 

of parameters 
- Investigation of the methods, and 

processes under exact same conditions 
- Design of more focused experiments 
- Enhancement of causal analysis 
- Test of the measurement tools 

These points are described in the following sections 
 
7.1 Investigation of behavior and 
characteristics in controlled environment 
 

In order to discover a certain trend or find a 
relationship between the parameters, it is often 
required to look at the process from different 
viewpoints under different circumstances. For 
example, in order to claim that higher build rate 
leads to less build failures, we need to go through 
the process having several build rate settings (e.g. 
low, medium, high and extremely high), and look at 
the outcome. While running the process in real life 
under different circumstances might be very 
challenging, in the simulation, it will merely be 

achieved by altering the build rate parameters. After 
discovering the best parameters for a certain 
hypothesis support, they can be applied to a real-
life project. 

Running the projects with the multiple 
parameters, tuning them “on the go” can be a very 
challenging and costly task. 
 
7.2 Investigation of macro behavior 
 

Every developer, or every team has very unique 
characteristics that, though may vary from project 
to project, are, in general, consistent. In order to 
discover a certain trend under any given 
circumstances, it is required to look at several runs 
of the project to make sure that the behavior is as 
expected. The information given by the single run 
of the project with given parameters is not reliable 
enough, because as it varies within a certain range 
of outcomes, it can still give an extreme and highly 
improbable result. In order to eliminate “outliers” 
the project needs to be run multiple times under the 
same parameters. This allows us to investigate the 
average behavior, or average outcome. 

In the example of requirements implementation 
strategy, for a given value of requirements 
volatility, sometime one strategy “wins over” the 
other, and sometimes the result is opposite. In order 
to gain confidence in what strategy is more 
effective (on average), the simulation is run 
multiple times, and the numbers of “wins” for each 
strategy are then compared. 
 
7.3 Understanding the impact and 
sensitivity of parameters 
 

When looking at the processes and projects, it is 
often important to know which parameters 
contribute into the observed change. Since the 
processes are usually quite complex, and multiple 
parameters would play different roles in the 
outputs, it can be crucial for a manager or designer 
to determine, which ones cause the change the 
most, and also, how sensitive the process is to the 
change of certain parameters. This can help 
organize the process in a way focusing on 
“important” parameters first, and “secondary” - 
after. 

Using a simulation in this case would also be 
preferable, since the effect of every change in the 
parameter values can be almost immediately 
observed, while in real life, one will have to wait 



until the end of the process, project or iteration to 
see the effect of the change. 
 
7.4 Investigation of the methods and 
processes under exact same conditions 
 

In order to observe a phenomenon, or confirm a 
hypothesis, it is important to see that the results of 
the “runs” are consistent. In other words, running 
the process under exactly the same conditions will 
(on average) result in exactly the same outcome. 

Real-life projects, even related and/or when 
performed by the same developer or team of 
developers, can differ in a multitude of ways. Some 
of the differences may appear insignificant, but the 
accumulated effect can change the outcome greatly. 
This is why running project under exactly same 
settings is very challenging and even unrealistic. 

The simulation, even when based on the random 
and probabilistic parameters, can be run as many 
times as needed with the values for probability or 
distribution remaining the same. When observing 
the results of such multiple runs, we can see 
whether the outcome is consistent (on average, 
even with possible “outliers”). 
 
7.5 Design of more focused experiments 
 

Designing experiments that involve complicated 
and long-term processes such as software 
development process is very important for 
discovering trends and relationship between certain 
parameters and the outcome of the process, strategy 
or method. Having empirical data about the process 
can help properly design and plan it. Failure in 
applying a strategy or method can have a very high 
cost for the company, however, running an 
experiment for discovering the effect of the strategy 
or method can cost even more. In this case, running 
an experiment is useless. 

The ability of the simulation to have adjustable 
parameters and give the “immediate” results, as 
mentioned above, can show us which parameters 
are more influential, and how sensitive the process 
is to certain settings. This can help tremendously to 
design a software development process more 
precisely, gathering the data or paying a closer 
attention only to the parameters that, according to 
the simulation, have greater effect on the result. 
This reduces the effort of gathering, storing and 
analyzing the data, and makes the experiment more 
focused and efficient. 

 
7.6 Enhancement of casual analysis 
 

When the project is run, very often we want to 
focus not as much as the final outcome, but rather 
on the dynamics of changes, as they occur, and how 
they are related to each other. Knowing the casual 
connection between parameters can help us to apply 
the strategies “as we go”.  

For example, if the current (or immediate) goal 
of the project is to minimize the faulty executions 
of the program (as opposed to the “global” one 
which is, for example, to minimize the cost, finish 
ahead of the schedule, etc.), one solution could be 
to maximize the testing rate. This may cause in 
longer project time(for a given iteration), and might 
not fulfill the ultimate goal, but will satisfy the 
“immediate” one – maximizing the requirement 
satisfaction. 

In this example, we claim to possess the 
knowledge on the casual relationships between 
parameters and settings, as opposed to the 
relationships between the parameters and final 
outcome. As discussed above, this kind of 
knowledge can only be trusted, when obtained from 
multiple projects, teams, strategies and runs. The 
simulation can help us achieve this, without 
spending as much resources as the real-life 
experiments would. 

 
7.7 Test of measurement tools 
 

The software development measurement tools 
are the systems that perform an analysis of various 
dimensions of the project information. These data 
can be gathered both automatically, and manually. 
The analysis can include the prediction of the 
outcome (cost, time, user satisfaction etc.), 
indication of the project’s “health” (failure rate is 
within a reasonable range, cost variation is not 
crucial etc.), demonstrating of certain trends (test-
driven development, agile vs. traditions etc.) or 
other analysis. 

For the measurement system to be reliable, it 
needs to be tested for a wide range of situations and 
parameters. For example, the constructed “health” 
analyzer has to always return the positive outcome 
for “healthy” projects (however we define “health”) 
and negative outcome for “unhealthy” ones. 
“Feeding” the analyzer with the real-life data can be 
very time consuming, since the data needs to be 
collected over a vast period of time. Being able to 



simulate the data can be extremely helpful in 
situation like this, because, as mentioned, it does 
not matter how we define a “healthy” project, since 
the parameters of the simulation can be adjusted to 
any definition of a “healthy” or “unhealthy” project. 

 
7.8 Other notes on simulation use 
 

One may argue that the parameters, laws and 
relationships obtained during the simulation will 
never be the same as the real ones. Again, such 
perception of the simulation usage is limited. As 
long as the simulation demonstrates the behavior 
“similar” to that of the real-life (even, in simplistic 
way, for example, showing a strong positive 
correlation, without giving an exact actual 
coefficients), it has a great value for the project 
management. 

Another important note on the simulation use is 
that the simulated data and the analysis of these 
data need to be seen separately. As in the example 
with requirements prioritization strategy shows, the 
data is generated (simulated) independently from 
making the decision about it (strategizing). The 
simulation tool does not necessarily claim to find 
the best strategy or the method, but rather it gives 
the means to test the discovered or hypothesized 
methods or trends on a wide range of data. The 
laws of data simulation should not affect the 
decision made bout these data. 

Also, simulation toolkit can help us run the 
project for the “entire” range of the values (no 
matter how you define the range of certain 
parameters), and analyze the data. If the outcome is 
statistically consistent for “all possible” parameters, 
it gives us confidence that the result also applies to 
the real-life projects, since the actual real-life 
parameters are most probably within the performed 
exhaustive runs. 
 
8. Related work 
 

One of the most interesting applications of the 
simulation system, was found in the work 
describing the ProSim/RA framework – a risk 
assessment system - which combines software 
process simulation with stochastic simulation. It 
consists of the following steps. 

STEP 1: Define risk factors. Risk factors are 
attributes of project entities that are supposed to 
cause losses of a certain amount with a certain 
probability.  

STEP 2: Define impact factors. Impact factors 

are attributes of projects that are supposed to be 
affected by variations of risk factors.  

STEP 3: Define variation of risk factors. This 
includes the construction of a distribution function 
describing the probability of assuming a particular 
value.  

STEP 4: Conduct sensitivity analyses.  
STEP 5: Analyze simulation results. By this, 

rankings can be constructed that may serve as an 
input for risk prioritization. Typically, potential 
losses are associated with late product delivery 
(contract penalty), lacking product quality (rework 
cost), effort overrun (personnel cost). 

This, seemingly simple and intuitive approach 
provides a very good systemstic process for risk 
analysis, as shown in the example presented in the 
paper. In this example, in order to test the suggested 
risk assessment framework, a simulated data from 
GENSIM (GENeric SSIMulator) is used. GENSIM 
is a generic prototype representing a waterfall-like 
software development process. The GENSIM 
model simulates the software development process 
from the end of the requirement analysis step 
through to the end of system testing. 

Among several advatnages of using of 
simulation for the risk assessment, the most 
relevant is the one described in the previous 
sections: high, medium, and low business-priority 
defects – the task that can hardly be implemented in 
the real-life projects. 
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