For submission to: Automated Software Engineering manuscript No.

(will be inserted by the editor)

Operational Definition and Automated Inference of
Test-Driven Development with Zorro

Hongbing Kou - Philip M. Johnson -
Hakan Erdogmus

January, 2009

Abstract Test-driven development (TDD) is a style of development named
for its most visible characteristic: the design and implementation of test cases
prior to the implementation of the code required to make them pass. Many
claims have been made for TDD: that it can improve implementation as well
as design quality, that it can improve productivity, that it results in 100%
coverage, and so forth. However, research to validate these claims has yielded
mixed and sometimes contradictory results. We believe that at least part of
the reason for these results stems from differing interpretations of the TDD
development style, along with an inability to determine whether programmers
actually follow whatever definition of TDD is in use.

Zorro is a system designed to automatically determine whether a devel-
oper is complying with an operational definition of Test-Driven Development
(TDD) practices. Automated recognition of TDD can benefit the software de-
velopment community in a variety of ways, from inquiry into the “true nature”
of TDD, to pedagogical aids to support the practice of test-driven develop-
ment, to support for more rigorous empirical studies on the effectiveness of
TDD in both laboratory and real world settings.

Hongbing Kou and Philip M. Johnson
Collaborative Software Development Laboratory
Department of Information and Computer Sciences
University of Hawaii

Honolulu, HI 96822

Tel.: 808-956-3489

Fax: 808-956-3548

E-mail: hongbing@hawaii.edu

E-mail: johnson@hawaii.edu

Hakan Erdogmus

Kalemun Research Inc. 4462 Bittersweet Pl.
Ottawa, ON K1V1R9 CANADA

Tel.: 613-822-8589

E-mail: hakan.erdogmus@computer.org

This paper describes the Zorro system, its operational definition of TDD,
the analyses made possible by Zorro, two empirical evaluations of the system,
and an attempted case study. Our research shows that it is possible to define an
operational definition of TDD that is amenable to automated recognition, and
illustrates the architectural and design issues that must be addressed in order
to do so. Zorro has implications not only for the practice of TDD, but also
for software engineering “micro-process” definition and recognition through its
parent framework, Software Development Stream Analysis.

Keywords Test Driven Development - Hackystat - Process Measurement

1 Introduction

Substantial claims have been made regarding the effectiveness of test-driven
development (TDD). Evangelists claim that it naturally generates 100% cover-
age, improves refactoring, provides useful executable documentation, produces
higher code quality, and reduces defect rates (Beck, 2003). Unfortunately, the
empirical research results have been equivocal. Some results are positive: Bhat
and Nagappan (2006) found that introducing TDD at Microsoft decreased de-
fect rates significantly in two projects, and Maximilien and Williams (2003)
transitioned an IBM development team to TDD with a 50% improvement in
quality. But other results are negative: Muller and Hagner (2002) found that
TDD resulted in less reliable software than the control group. Yet other results
vary regarding the quality and productivity benefits: for exmaple, Erdogmus
et al (2005) found that software developed with TDD on average was of no
higher quality than software developed by a control group, although a produc-
tivity advantage was observed with TDD.

Why might the research results on TDD be so mixed? We believe that part
of the reason stems from two methodological issues that impede both progress
on understanding TDD’s current effectiveness and future improvements to the
technique.

First, TDD is often defined in a relatively simplistic and ambiguous manner
using toy examples. This can mislead developers into thinking that TDD does
not apply to their more complex development situations. It can also lead to
different organizations defining the practice of TDD in very different ways.

Second, research on TDD suffers from the “process compliance problem”.
In other words, the experimental designs do not have mechanisms in place to
verify that subjects who are supposed to be using TDD practices are, indeed,
using them. The lack of control over process compliance in these experiments
means that differences in outcomes may be due, at least in part, to variance in
understanding what it means to do TDD, as opposed to differences between the
control and experimental groups. If compliance can be measured, meaningful
reference points that represent acceptable or idealized patterns can be defined,
and deviations, or distance, from these patterns can be correlated with pro-
ductivity and quality outcomes. Erdogmus et al (2005) stress the importance
of gauging process compliance in empirical studies of TDD.

From a pedagogical point of view, Mishali et al (2008) suggest that tool
guidance is helpful while learning or mastering TDD. Thus process compliance
information, abstracted at the right level and presented unobtrusively, may
provide useful feedback to developers and that feedback could allow them
better leverage the benefits of TDD.

To address compliance assessment in both laboratory and real-world set-
tings, we believe that the software research and development community needs
to agree upon standard, operational definitions of TDD. The definitions must
be robust enough to allow for a wide variety of behaviors, rather than strive
to enforce a strict, narrowly defined process. If consensus is not possible, at
least in research settings it should be clear exactly how TDD is defined and it
should be possible to measure objectively to what extent those definitions are
adhered to.

In this paper, we present Zorro (Kou, 2007), a system for automated recog-
nition of TDD practices. In essence, Zorro gathers a stream of low-level devel-
oper behaviors (such as invoking a unit test, editing production code, invoking
a refactoring operation) while programming in an IDE, partitions this event
stream into a sequence of development “episodes”. Then it applies a rule-
based system to determine the type of an episode from a set representing a
wide variety of behaviors, whether or not the episode constitutes an instance
of TDD practice according to the operational definitions encoded in the rules,
and finally the extent of compliance with these definitions through adherence
metrics and summary charts. The need for robustness in accomodating vari-
ant behaviors is demonstrated empirically in a prior study by Mishali et al
(2008). The study evaluates a tool for guiding TDD activities, where many
participants express disagreement with the behavior definitions that are too
restrictive or narrow. Zorro overcomes this hurdle by providing a fine-grained
categorization of possible behaviors and providing adherence metrics that rep-
resent a continuum.

Zorro illustrates one approach to addressing the issues that hinder the
research and practice of TDD today. Automatic collection and analysis of data
make Zorro practical for use in both laboratory and real-world settings: once
installed, overhead on the developer with respect to data collection is minimal.
Zorro is unobtrusive: it works in the background listening on the events of
interest in the environment in which it is installed. It does not require input
from the developer. However it incurs a small performance penalty, which
depends on the environment.

Second, Zorro can be used to develop a variety of operational definitions of
TDD. A Zorro “TDD definition” consists of the set of developer behaviors that
must be recorded, the manner in which this timestamped stream of events are
partitioned into episodes, and the rules used to classify an episode according
to TDD terminology and determine whether the episode is compliant with
idealized TDD patterns. By providing a way to define an operational definition
of TDD, Zorro addresses the compliance problem by enabling researchers and
practitioners to precisely characterize the extent to which the given definition
of TDD was applied (or not) in any given development scenario. Furthermore,

Zorro’s episode-based approach to TDD recognition provides a more nuanced
approach to characterizing the use of TDD by developers: rather than a binary,
“all-or-nothing” approach, Zorro enables TDD usage characterizations based
on percentages, such as “Developer A used TDD 73% of the time”.

Zorro has undergone initial empirical evaluation through classroom and
industry-based case studies. The results from classroom studies indicate that
Zorro is a viable approach to automated TDD recognition. The industrial case
study was inconclusive.

This paper is organized as follows. The next section briefly introduces
the practice of TDD. Section 3 presents work related to Zorro. Section 4
presents the architecture and implementation of Zorro with examples. Sec-
tion 5 presents two empirical evaluation experiments we performed to validate
the Zorro inference mechanism and gain insight into its strengths and weak-
nesses, as well as an attempted industrial case study. Section 6 summarizes
the contributions and future directions for this research.

2 The practice of TDD

Test-Driven Development (Beck, 2003) is a software development best prac-
tice popularized by Extreme Programming (Jeffries, 2000; Beck, 2000). It is
normally introduced as a very simple practice consisting of only two rules:

1. Write new code only if an automated test has failed.
2. Eliminate duplication.

An equally simple but more process-oriented description is the the “stop
light” metaphor (Beck, 2003):

1. Red - Write a little test that does not work, and perhaps does not even
compile at first.

2. Green - Make the test work quickly, committing whatever sins are necessary
in the process.

3. Yellow (Refactor) - Eliminate all the duplication created by merely getting
the test to work.

Important characteristics of TDD practice, according to Beck (2001, 2003),
include the following.

Write the test first. This is the key characteristic of TDD. Some developers
using TDD advocate that if you are using TDD, you should “never write a
line of production code without a broken test case.” Although adherence to
this extent is not always practiced, the principle captures the essence of TDD.

Short iterations. Quickly adding production code to make test pass is im-
portant to TDD. An iteration should last a few seconds to several minutes
only. If hours of work are needed to make a test pass, then this is a sign that
the developer should have divided the programming task into smaller subtasks
that could be solved in a shorter period of time.

Frequent refactoring. Code is consistently refactored in TDD to create the
simplest possible design. The existence of a suite of unit tests gives developers
the “courage” to refactor the code

Rapid feedback. Unit testing is usually supported by the XUnit framework
that is now available for most languages. After new production code is added,
developers should invoke the unit tests to test it right away. This feedback
should be available within seconds or minutes.

One ball in the air at a time. In typical software development, the devel-
oper tries to simultaneously balance several requirements, including system
structure design, algorithm choice, code efficiency, readability, communication
with other code, and so forth. Martin Fowler is quoted as describing that pro-
cess as being like “keeping several balls in the air at once”. In contrast, it is
claimed that in TDD, the developer only keeps “one ball in the air at once”
and concentrates only on that ball. For example, in the development step, the
developer only needs to make the test pass without worrying about whether
it is a good or bad design. In the refactoring step, the developer only worries
about what makes a good design.

The code should always work. In TDD, developers should run all tests at
the end of each iteration. If any test has failed, the developer should fix it
right away. The fix should be easy because only a small amount of code is
written in each iteration. If running all tests after an iteration is not feasible,
the continuous integration can be set up to run them all once a day or several
times a day.

3 Related work
3.1 Claims about TDD

TDD advocates claim that adherence to this approach can simultaneously im-
prove both quality and productivity (Beck, 2001; Janzen and Saiedian, 2005).
Because software quality is sometimes hard to quantify in a universal manner,
TDD practitioners and researchers often use code coverage as a proxy or pre-
cursor for software quality. The code developed in TDD should have very high
coverage since in theory no production code is created without a correspond-
ing unit test. Some advocates encourage 100% coverage, however this level
may be hard or impossible to achieve in practice depending on the coverage
criterion (method coverage is easy to achieve at 100%, but near perfect branch
and path coverage are much more elusive).

The claimed rationale for why TDD improves productivity is a bit more
complicated and controversial. Production code and test code are both soft-
ware. Writing tests in advance is considered as part of the design process, and
it often does not take a long time to write a small test once certain low-level
design decisions are made. If developers need to write same amount of test
code, TDD should save development time because less time is spent on tests
than in the traditional test-last or ad-hoc development methods. Tests also

make progress visible, which may in turn affect motivation. Small tests writ-
ten incrementally encourage finer task decomposition and better task focus.
Regressing tests frequently allows production errors to be discovered early,
thereby reducing costly snowball effects. In addition, TDD users claim that
the method reduces the overall amount of time spent on debugging, rework
and bug fixes following post-release failure, with a resulting increase in overall
long-term productivity (Williams et al, 2003).

3.2 Empirical evaluation of TDD

Much research has been conducted on studying outcomes of TDD such as
software quality and developer productivity in recent years. In addition to
case studies and anecdotal experience reports (George and Williams, 2004;
Maximilien and Williams, 2003; Williams et al, 2003; Kaufmann and Janzen,
2003; Edwards, 2004; Bhat and Nagappan, 2006; Damm and Lundberg, 2006;
Sanchez et al, 2007; Janzen and Saiedian, 2008), researchers have run con-
trolled and quasi-controlled experiments (Muller and Hagner, 2002; Pan¢ur
et al, 2003; Erdogmus et al, 2005; Janzen and Saiedian, 2008; Madeyski and
Szala, 2007; Siniaalto and Abrahamsson, 2007; Gupta and Jalote, 2007) to
compare TDD against other development methods such as test last and ad
hoc. We categorize the research as “academic” or “industrial” depending upon
whether the study subjects were students or professional developers.

3.2.1 Empirical evaluation in academic settings

Muller and Hagner (2002) conducted a study in an XP class in Germany to test
TDD against traditional programming. The acceptance tests were provided to
both the TDD group and the control group. Interestingly, students in the TDD
group spent more time but their programs were less reliable than the control
group.

Edwards (2004) adopted TDD in a junior-level class to compare whether
students got more reliable code after the use of TDD and WEB-CAT, an
assignment submission system. It turned out that the students using TDD re-
duced their defect rate dramatically (45% fewer defects/KSLOC using a proxy
metric) after adopting TDD, and a posttest survey found that TDD students
were more confident of the correctness and robustness of their programs.

Similarly, Kaufmann and Janzen (2003) conducted a pilot study on impli-
cations of TDD in an advanced project-oriented software engineering course.
They also reported that TDD helped to improve software quality and pro-
grammers’ confidence.

Pancur et al (2003) designed a controlled experiment involving 38 students
to compare TDD with Iterative Test-Last approach (ITL), which is a slightly
modified TDD development process in the order of “code-test-refactor”. This
study found no notable difference betweewn the two approaches.

Erdogmus et al (2005) used the well-defined test-last and TDD approaches
as in Pancur et al (2003) to study the effectiveness of TDD through a con-
trolled experiment. This study concluded that TDD programmers wrote more
tests per unit of programming effort than test-last programmers. They found
that test code tends to increase minimum software quality, but there was no
difference between the average quality of the programs produced by the TDD
and test-last groups. The TDD group achieved overall better productivity,
although the difference was not statistically significant.

Madeyski and Szala (2007) conducted a single-subject experiment in which
the subject used successively TDD and traditional development in a Java/AspectJ
project to build a web-based conference management system. The subject
spent 112 hours to develop the system. Subject’s productivity initially im-
proved 87 to 177% with TDD, but when TDD was withdrawn, productivity
did not regress to its previous levels.

Siniaalto and Abrahamsson (2007) conducted an experiment with 13 stu-
dents. The students had prior development experience in the industry. They
were asked to develop a small mobicle stock market browser application in
Java. The researchers evaluated the effect of TDD based on test coverage and
design quality. Test coverage was improved with TDD. As for design quality,
cohesion appeared to improve, but the result was weak. The effect on coupling
was inconclusive.

The experiment by Gupta and Jalote (2007) involved 22 students. The sub-
jects developed small registration and ATM applications using Java, spending
20-55 hours to complete the task. The researchers observed that overall pro-
ductivity was improved with TDD, but quality results were inconclusive.

Janzen and Saiedian (2008)’s two experiments with graduate and under-
graduate students yielded consistent results on software quality. One experi-
ment used two teams of three students with 0-5 years of prior development
experience and the other used a single team of three novices. The subjects
developed programs of 800 to 1300 lines of Java code. TDD improved test cov-
erage and resulted in programs with smaller modules, methods, and methods
per class. The complexity of the programs measured by two different metrics
were also higher. The difference was more dramatic so with the undergraduate
students. Coupling and cohesion results were inconclusive.

3.2.2 Empirical evaluation in industrial settings

Several attempts have been made by researchers to study software quality and
developer productivity improvements of TDD in industrial settings.

George and Williams (2004) ran a set of structured experiments with 24
professional pair programmers in three companies. Each pair was randomly
assigned to a TDD group or a control group to develop a bowling game ap-
plication. The final projects were assessed at the end of the experiment. They
found that TDD practice appears to yield code with superior external code
quality as measured by a set of blackbox test cases, and TDD group passed

18% more test cases. However, the TDD group spent 16% more time on de-
velopment, which could have indicated that achieving higher quality requires
some additional investment of time. Interestingly, and in the contrast to the
empirical findings, 78% of the subjects indicated that TDD practice would
improve programmers’ productivity.

Maximilien and Williams (2003) transitioned a software team from an ad-
hoc approach to testing to TDD unit testing practice at IBM, and this team
improved software quality by 50% as measured by Functional Verification Tests
(FVT).

Williams et al (2003) conducted another case study in IBM to study TDD.
Compared to a baseline project developed in a traditional fashion, the defect
density of the project developed in TDD was reduced by 40% as measured by
functional verification and regression tests. The productivity was not impacted
by the additional focus on producing test code.

Geras et al (2004) isolated TDD from other XP practices, and investigated
the impact of TDD on developer productivity and software quality. In their
research, TDD does not require more time but developers in TDD group wrote
more tests and executed them more frequently, which may have led to future
time savings on debugging and development.

Another study of TDD at Microsoft (Bhat and Nagappan, 2006) reported
remarkable software quality improvement as measured in number of defects per
KLOC. After introduction of TDD, project A (Windows) reduced its defects
rate by 2.6 times, and project B (MSN) reduced its defect rate by 4.2 times,
compared to the organizational average. Reportedly, developers in project A
spent 35% more development time, and developers in project B spent 15%
more development time, than the developers in non-TDD projects spent.

Damm and Lundberg (2006) conducted longitudinal case studies lasting up
to 1.5 years with 100 professionals at Ericsson. The professionals developed
components for mobile applications using C++ and Java. The researchers
observed that TDD reduced total project costs by 5-6%, fault slip-through by
5-30%, and avoidable fault costs by 55%.

Sanchez et al (2007)’s longer, single case study at IBM lasted 5 years and
involved 9-17 developers working on a medium-size device driver with legacy
components. Over this period of time, the researchers noted a 19% increase in
development effort with TDD in return for a 40% increase in internal defect
rates.

Janzen and Saiedian (2008)’s suite of three industrial experiments and
one case study involved overlapping teams and individuals of three subjects.
The studies yielded moderately favorable results for TDD for test coverage
and some size metrics, but were not consistent for complexity, coupling and
cohesion measures. In all of the studies, the participants developed real-world
J2EE applications ranging from 800 to 50,000 lines of code. Test coverage was
improved with TDD in all studies but one. TDD also consistently resulted in
smaller modules and methods per class (the latter except in one study), but
not necessarily in smaller methods.

3.3 A comparative analysis of TDD studies

The research findings regarding the effect of TDD practices on software quality
and developer productivity are mixed, as shown in Tables 1 (Controlled Stud-
ies) and 2 (Case Studies). The study conducted at Microsoft (Bhat and Na-
gappan, 2006) and the study conducted at the University of Karlsruhe (Muller
and Hagner, 2002) are two extreme cases. In Bhat and Nagappan (2006), the
developers improved software quality up to four times after adopting TDD. In
comparison, the TDD group in Muller and Hagner (2002) yielded less reliable
programs than the control group.

Table 1 Controlled and Quasi-Controlled Empirical Experiments on TDD

Investigator A/I | Subjects Software Quality Developer Produc-
tivity
Janzen and | I teams of 1-3 TDD had bet- | N/A
Saiedian (2008) ter coverage and
smaller modules
Janzen and | A 1-2 teams of 3 | TDD had better | N/A
Saiedian (2008) coverage, smaller
methods and
modules, and less
complexity
Madeyski and Szala | A 1 N/A TDD had 87-177%

(2007) better productivity
initially
Siniaalto and Abra- | A 13 TDD improved cov- | N/A
hamsson (2007) erage
Gupta and Jalote | A 22 Inconclusive Improved overall
(2007) productivity
George and | I 24 TDD improved test | N/A
Williams (2004) coverage, possibly
reduced cohesion
Geras et al (2004) I 14 TDD had better | No impact
quality
Kaufmann and | A 8 N/A 50% improvement
Janzen (2003)
Erdogmus et al | A 35 No change Improved produc-
(2005) tivity
Muller and Hagner | A 19 Less reliable, but | No change
(2002) better reuse
Pancur et al (2003) | A 38 No change No change

3.4 Research on automated inference of software process

Automated software process research systems are often top-down in nature:
they take a high-level description of a system process and use it to constrain,
control, or understand the actual development behaviors. Process program-
ming (Sutton et al, 1995), modeling (Bill Curtis and Over, 1992) and simula-

10

Table 2 Empirical Case Studies on TDD

Investigator A/I | Subjects Software Quality Developer Produc-
tivity
Janzen and | I team of 3 | TDD had bet- | N/A
Saiedian (2008) ter coverage and
smaller ~ methods
and modules
Sanchez et al | I 9-17 30% reduction in | Increased effort
(2007) defect density 19%
Damm and Lund- | I 100 5-30% reduction in | Project cost in-
berg (2006) fault slip-through, | creased by 5-6%
55% reduction in
fault costs
Maximilien and | I 9 50% reduction in | Minimal impact
Williams (2003) defect density
Williams et al | I 9 40% reduction in | No change
(2003) defect density
Bhat and Nagap- | A 11 2-4 times reduction | 35% and 15% more
pan (2006) in defect density time
Edwards (2004) A 59 54% fewer defects N/A

tion (Turnu et al, 2004; Jensen and Scacchi, 2005) are typical research methods
for studying software processes. Process conformance, at least as performed
by Zorro, is a bottom-up process in which the actual development behaviors
are the input to, as opposed to the output from, the system.

Cook and Wolf (Cook and Wolf, 1995; Cook, 1996) developed a client-server
system named Balboa to automate the process discovery using finite state
machine (FSM). Balboa collects developers’ invocations of Unix commands
and CVS commits to construct event streams. It then uses a neural network, a
MARKOV chain, and data mining algorithms to discover the FSM of software
processes. With Balboa, Cook and Wolf were able to reproduce the ISPW 6/7
process (Kellner et al, 1991) in their research.

Jensen and Scacchi (2004, 2005) simulated an automated approach to dis-
cover and model the open source software development processes. They took
advantage of prior knowledge to discover the software development processes
by modeling the process fragments using a PML description. Their prototype
simulation found that they could detect unusually long activities and problem-
atic cycles of activities. They suggested that a bottom-up strategy, together
with a top-down process meta-modeling is suitable for automated process dis-
covery.

For this research, we chose a rule-based system to study process confor-
mance of low-level software processes. Instead of asking experts to inspect the
FSM of the executed process as in Cook and Wolf (1995), we converted the
process knowledge into a set of rules and used them to infer the software de-
velopment behaviors. Our method is very close to Jensen and Scacchi (2004)
except that we used rules rather than PML for process descriptions.

Wang and Erdogmus (2004) argued that empirical research on TDD suffers
from the construct validity problem (as is also the case in some other empirical

11

software engineering research) because the experimental designs lack mecha-
nisms to verify process conformance. They developed a prototype called “Test-
FirstGauge” to study process conformance in TDD by mining the in-process
log data collected by Hackystat (Johnson et al, 2005; Johnson and Paulding,
2005; Johnson et al, 2004).

TestFirstGauge aggregates software development data collected by Hacky-
stat to derive programming cycles of TDD. They used T/P ratio (lines of test
code verse lines of production code), testing effort against production effort,
and cycle time distribution as indicators of TDD process conformance. This
project precedes the Zorro software system (Kou and Johnson, 2006), and in
fact it stimulated our interest in studying low-level software process confor-
mance. Unlike the prototype implementation of TestFirstGauge, which uses
an Excel spreadsheet, Zorro is integrated into the Hackystat system and uses
the JESS rule-based system (Friedman-Hill, 2003).

Similarly, Wege (2004) also focused on automated support of TDD process
assessment, but his work has a limitation in that it uses the CVS history of
code. Developers typically do not commit on-going project data at the gran-
ularity of seconds, minutes or hours, making this data collection technique
problematic for the purpose of TDD inference. At least for the operational
definition of TDD developed in this research, collecting rapid low-level devel-
opment activities is crucial to correctly identifying its occurrence.

In their evaluation of TDD vs. test-last development, Madeyski and Szala
(2007) used a plugin for Eclipse in order to assess the subjects’ compliance
with the assigned development processes. Their plug-in is similar to TestFirst-
Gauge and Zorro in that it records low-level developer activity data from the
IDE, and caches the data in the local project directory. Then it makes au-
tomated commits to the project repository. Also like Zorro, this tool offers
basic off-line reports to developers as well as to the organizations for assessing
activities involved in each commit. The plugin appears to achieve Zorro’s and
TestFirstGauge’s reporting capabilities locally, without connecting to a Hack-
yStat server. Development of this tool appears to have been discontinued, and
further details about it are unavailable.

TDDGuide by Mishali et al (2008) is another process compliance tool that
is integrated into the Eclipse IDE. The main motivation behind TDDGuide is
not assessment, but guidance, particularly when learning TDD. Unlike Zorro
and TestFirstGauge, TDDGuide operates in real time to instantly detect and
report compliant and non-compliant patterns to respectively encourage and
discourage the developer. It also has a logging capability for off-line analysis.
Similar to Zorro, TDDGuide is rule-based, however it operates at a higher level
of granularity than Zorro, hence its classification scheme for identifying pat-
terns is coarser and less diverse than Zorro’s. The tool reports any deviations
from pre-defined TDD patterns to the developer and proposes activities for
conformance. In empirical evaluations, users reported that TDDGuide helped
them adhere to TDD behaviors, however nearly half of them found the tool to
be intrusive. TDDGuide, unlike Zorro and TestFirstGauge, does not produce

12

adherence metrics or telemetry information for visualizing developers’ patterns
over time in order to understand trends in TDD behavior.

4 Zorro
4.1 Architectural components

As illustrated in Figure 1, the Zorro architecture consists of three subsystems:
(1) Hackystat, which collects low-level developer behaviors; (2) SDSA (Soft-
ware Development Stream Analysis), a Hackystat application that supports
generic analysis of development event streams; and (3) Zorro, an SDSA appli-
cation, which defines the specific rules and analyses necessary for recognition
and interpretation of the TDD behavior of a developer.

Z5RRO| @

L L
Epizoda 1 Epizode 2 Episnde n
‘ilirite Test Edt n
Create Object Compik Wikite Test

o] i Compile
Dewvelopment = L

obkeal unll Tl

Fig. 1 The Zorro Architecture

Hackystat. Hackystat (Johnson et al, 2005; Johnson and Paulding, 2005;
Johnson et al, 2004) is an open source framework for automated collection
and analysis of software engineering process and product data that we have
been developing since 2001. Hackystat supports unobtrusive data collection via
specialized “sensors” that are attached to development environment tools and
that send structured “sensor data type” instances to a web-based Hackystat
service for subsequent analysis. Over two dozen sensors are currently available,

13

including sensors for IDEs (Emacs, Eclipse, Vim, VisualStudio, Idea), config-
uration management (CVS, Subversion), bug tracking (Jira, Bugzilla), testing
and coverage (JUnit, CppUnit, Emma, JBlanket), system builds and packag-
ing (Ant), static analysis (Checkstyle, PMD, FindBugs, LOCC, SCLC), and
so forth. Applications of the Hackystat Framework in addition to our work
on SDSA and Zorro include in-process project management (Johnson et al,
2005), high performance computing (Johnson and Paulding, 2005), and soft-
ware engineering education (Johnson et al, 2004).

Zorro requires the developer’s IDE to be instrumented with a Hackystat
sensor that can collect at least the following kinds of events: unit test invo-
cations (and their results), compilation events (and their results), refactoring
events (such as renaming, moving), and editing (or code production) events
(such as whether the file has changed in state during the previous 30 seconds,
and what the resulting size of the file is in statements, methods, and/or test
case assertions).

We have implemented a Hackystat sensor for the Eclipse IDE to collect
these events for the Java language, and a Hackystat sensor for the Visual
Studio IDE to collect these events for the C# language.

SDSA. Software Development Stream Analysis (SDSA) is a Hackystat-
based application that provides a generic framework for organizing and ana-
lyzing the various kinds of data received by Hackystat as input to a rule-based,
time-series analysis.

SDSA begins by merging the events collected by various sensors into a sin-
gle sequence, ordered by time-stamp, called the “development stream”. This is
followed by a process called tokenizing, which results in a sequence of higher-
level “episodes”. These constitute the atomic building blocks for whatever
process is being recognized. For any given application of the SDSA frame-
work, tokenization involving defining the specific events to be combined to
generate the development stream, as well as the boundary condition that sep-
arates the final event in one episode from the initial event in the next. For
example, development events could include things like a unit test invocation,
a file compilation, a configuration management commit, or a refactoring opera-
tion. Example boundary conditions could include a configuration management
system checkin, test pass event, or a buffer transition.

Once the development stream has been abstracted into a sequence of
episodes, the next step in SDSA is to classify each episode according to what-
ever process is under analysis. SDSA provides an interface to the JESS rule-
based system engine to enable developers to specify part or all of the classifi-
cation process as a set of rules.

Zorro. The Zorro architectural layer provides extensions to Hackystat and
SDSA necessary for the automated recognition of Test Driven Development
behaviors. Let’s now examine Zorro’s inferencing mechanism in more detail.

14

4.2 TDD Inference using Zorro: A simple example

As introduced above, TDD inference in Zorro consists of the following steps: (a)
collection of low-level developer sensor data using Hackystat; (b) abstraction
of the sensor data into a developer event stream; (c¢) partitioning of the event
stream into episodes; and finally (d) classification of the resulting episodes
as either TDD-conformant or TDD non-conformant. Figure 2 illustrates an
example of the last three steps in this process.

3. Behavior Recognition

15:51:21 TestBowlingGame java REFACTOR ADD IMPORT @
2. Tokenization 15:51:49 TestBowlingGame.java REFACTOR ADD METHOD
15:52:55 i java EDIT 64s TEST
Test-pass Episode C
i 2) 15:52:55 i java COMPILE
1. Stream Construction 15:51:21 TestBowlingGame java REFACTOR ADD IMPORT
15:51:49 TestBowlingGame.java REFACTOR ADD METHOD 15:53:06 BowlingGame.java REFACTOR ADD
Development Stream 15:52:55 TestBowlingGame.java EDIT 64s TEST TF
- 15:52:55 TestBowlingGame.java COMPILE 15:53:06 TestBowlingGame.java COMPILE @
15:51:21 TestBowlingGame java REFACTOR ADD IMPORT 15:53:06 BowingGame java REFACTOR ADD
15:51:49 TestBowlingGame.java REFACTOR ADD METHOD 15:53:06 TestBowlingGame.java COMPILE 15:53:50 BowlingGame.java EDIT 3s PRODUCTION
15:52:55 TestBowlingGame java EDIT 64s TEST e
B gGame.java EDIT 3s PRODUCTION y
15:52:55 ges‘lgo\.gngeame J:,;F igrgﬁw e e o (@) 15525 BowlingGams.ava REFACTOR ADD METHOD
15:53:06 BowlingGame java 15:54:26 BowlingGame java EDIT 21s PRODUCTION
15:53:06 TestBowlingGame java COMPILE — 15:54:26 BowlingGame.java EDIT 21s PRODUCTION
15:53:50 BowlingGame java EDIT 3s PRODUCTION
15:53:55 BowiingGame java REFACTOR ADD METHOD. ©)
15:54:26 BowlingGame java EDIT 21s PRODUCTION
15:55:10 TestBowlingGame.java REFACTOR ADD METHOD
15:57:05 TestBowlingGame.java EDIT 104s TEST 15:55:10 TestBowlingGame.java REFACTOR ADD METHOD D
115:57:05 TestBowlingGame java COMPILE
15:57:12 Frame.java REFACTOR ADD CLASS Tes(—pass Episode 15:57:05 TestBowlingGame.java EDIT 104s TEST
15:57:12 TestBowlingGame.java COMPILE
:::gg:z“) E"‘”“’-Ja"a EE\FTA;TOPF:RAQ%BQAﬁ;:OD 15:55:10 TestBowlingGame java REFACTOR ADD METHOD @) 155705 TestBowingGame java COMPILE
:99:20 Framejava s 15:57:05 TestBowlingGame.java EDIT 104s TEST
16:00:29 BowlingGame.java REFACTOR ADD METHOD |:“> 15:57:05 TestBowlingGame.java COMPILE 15:57:12 Frame.java REFACTOR ADD CLASS @
16:00:58 BowiingGame java EDIT 7s PRODUCTION 15:57:12 Frame java REFACTOR ADD CLASS D e
15:57:12 TestBowlingGame java COMPILE TF
15:58:31 Frame java REFACTOR ADD METHOD 15:58:31 Frame.java REFACTOR ADD METHOD
15:59:20 Frame java EDIT 38s PRODUCTION
16:00:29 BowlingGame java REFACTOR ADD METHOD @ 15:59:20 Frame.java EDIT 29s PRODUCTION
16:00:58 BowiingGame java EDIT 7s PRODUCTION
16:00:29 BowlingGame java REFACTOR ADD METHOD
16:00:58 BowlingGame.java EDIT 7s PRODUCTION

@ Test Creation @ Compilation Error @ Method Stub @ Production Editing @ Tests Pass

Fig. 2 Collecting, partitioning, and classifying developer behaviors

From 15:51:21 to 16:01:10, a developer implemented two user stories of
an application for calculating the players’ scores in a bowling game applying
Test-Driven Development. We used Hackystat to instrument the development
process and collect sensor data regarding refactoring, editing, compilation and
test invocation activities. The “Stream Construction” phase results in the
consolidation of the raw Hackystat sensor data into a sequence of 21 elementary
developer actions. Each action includes a timestamp (such as 15:51:21), a file
(such as “TestBowlingGame.java”), and an action type (such as “EDIT 64s
TEST”).

The actions are also augmented with static analysis metrics associated with
the file on which the action was performed. The metrics contain information on
production classes, test classes, production methods, test methods, assertions
within test methods, statements within methods, and modified, added and
deleted lines of code. The metrics help in determining the type of an elementary
action.

15

For example, if an action increases the number of test methods, the number
of assertions, and the size of a file containing a test class, the action is labelled
as a test creation action. This way, Zorro can identify superfluous actions and
discount them: for example if a new test has been added, but the number
of assertions has not increased, the new test is “empty” and would not be
counted as a test creation action.

Among the 21 developer actions in this example are two successful test
invocation actions (“TEST OK”). Zorro partitions the stream of developer
actions into episodes based upon the occurrence of a successful test invocation
action, so this sequence of 21 actions is partitioned into two episodes, both end-
ing with a successful test invocation action. Thus, successful test invocations
delimit episodes composed of elmentary actions.

The next step is to determine which, if any, of these two episodes cor-
responds to a valid TDD development practice. To do this, Zorro applies a
rule-based recognition system. In this example, both episodes contain the fol-
lowing sequence of actions: (a) a test method is created; (b) a compilation
error results; (¢) a method stub is created in production code which results
in a successful compile; (d) more production code is edited; and (e) all tests
pass. These actions correspond to the classic style of TDD development, and
Zorro’s rules will classify both of these episodes as instances of TDD, or as
valid TDD behavior. Certain combinations of actions are indicative of non-
TDD behavior, and similarly these can be recognized as such. For example in
the episode on the bottom right of Figure 2, if test creation actions (1) follow
production editing actions (4) rather than precede them, the episode would
have been recognized as non-conformant to TDD.

In the case where a developer follows the canonical TDD approach involving
a few episode types, identifying TDD behavior is relatively easy. The more
important issue is how to deal with the complexities of real world software
development behaviors. An example of variant TDD behavior that is difficult
to recognize is test addition followed by successful test invocation, but with
no production code editing. This behavior may happen both in the context of
applying TDD and outside TDD. To be able to recognize it as TDD behavior,
Zorro looks for neighoring episodes that are easily identified as typical TDD.
If such an ambiguous episode occurs in the context of other episodes easily
identified as TDD, they are considered to be part of TDD behavior. Otherwise,
they are classified as non-TDD-conformant. Thus Zorro is capable of context-
sensitive episode classification.

In the next section, we explain how Zorro handles more diverse and am-
biguous episode types to recognize a wide range of behaviors.

4.3 Episode classification

The heart of Zorro is its episode classification algorithm, implemented as a
set of 32 JESS rules along with additional templates and classifier definitions.
JESS rules are applied on a raw development stream recorded by the Hackystat

16

sensor installed in the developer environment to infer elementary action types
first. Once action types are assigned, higher level rules are used to infer episode
types from streams of actions and classify episodes that can be identified as
TDD-conformant or not in isolation. Finally, additional rules are applied to
classify uncategorized episodes from the episode stream in which they occur
using contextual information. Zorro is open source and the rules can be found
online at http://hackystat-analysis-sdsa.googlecode.com/.

Figure 3 summarizes the effect of these rules, which is to classify any
episode as belonging to one of 22 episode types.

ID [Definition TDD Conformant
Test First

TF-1 |Test creation -* Test compilation error -* Code editing -» Test failure -» Code editing -> Test pass Tes

TF-2 |Test creation -* Test compilation error -> Code editing - Test pass Tes

TF-3 |Test creation -> Code editing -> Test failure -> Code editing -> Test pass Tes

TF-4 |Test creation -> Code ediing -> Test pass Tes

Refactoring

RF-1 |Test editing -> Test pass Context sensitive
RF-2 |Test refactonng operation -> Test pass Context sensifive
RF-3 |Code editing (number of methods or statements decrease) -» Test pass Context sensitive
RF-4 |Code refactoring operation -> Test pass Contesxt sensitive
RF-3 |[Test Editing && Code editing (number of methods or statements decrease)]+ -> Test pass Context sensitive
Test Addition

Td-1 [Test creation -> Test pass [Context sensitive
TA-2 [Test creation -» Test failure -> Test editing -> Test pass |Context sensitive
Regression

RG-1 |Nnn—edﬂ:mg actiwities -> Test pass |Cnntext sensitive
ROG-2 |Test failure -> Non-editing activities -> Test pass |Context sensitive
Code Production

CP-1 |Code editing (number methods unchanged, statements increase) -> Test pass Context sensitive
CP-2 |Code editing (number methods /statements increase slightly (source code size increase <= 100 bytes) -> Test pass Context sensitive
CP-3 |Code editing {(number methads fstatements increase significantly (source code size increase > 100 bytes) -> Test pass HNo

Test Last

TL-1 |Cude editing - Test editing -* Test pass |NU

TL-2 |C0de editing -> Test editing -> Test failure -> Test pass |N0

Long

LN-1 |Eplsnde with many activities (> 200) -> Test pass |Nn

LN-Z |Eplsude with a long duration > 30 munutes) -> Test pass |NU

Unlnown

UH-1[Hone of the above -> Test pass [Ho

UN-2 |Nnne of the ahove |Nn

Fig. 3 Zorro episode types, definitions, and TDD conformance

Zorro organizes the 22 episode types into eight categories: Test First (TF),
Refactoring (RF), Test Last (TL), Test Addition (TA), Regression (RG), Code
Production (CP), Long (LN), and Unknown (UN). All of these episode types
(except UN-2) always ends with a “Test pass” event, since that is the episode
boundary condition. (UN-2 is provided as a way to classify a development
session where there is no unit testing at all.)

The definition column only gives a typical instance for each episode cat-
egory. The implementation allows repetitions of certain sub-patterns inside
each episode category as prescribed by that category. For example, the “Pro-
duction editing -> Test failure” subpattern can be repeated one or more times
inside an episode of category TF-1 although the instance in Figure 3 under
the definition column shows a single occurrence of this sub-pattern.

17

Zorro uses several heuristics based on the file metrics assoicated with ele-
mentary actions. For example, in episode types CP-2 and CP-3, the underlying
heuristic checks whether the production code editing action increases the size
of the source file by more or less than a preset threshold (currently set to 100
bytes). The threshold determines whether the editing action involves signifi-
cant amount of production code activity in a single chunk without running the
tests. If so, the behavior is counter to TDD and classified as non-conformant. A
small amount of production code editing would be indicative of minor tweaks
or the addition of a small amount of functionality, such as the addition of
getter and setter methods, that do not always warrant the addition of a corre-
sponding test depending on the developer’s personal style or the development
team’s standard practice. This latter behavior is permissible and expected in
TDD. Similarly, the long-episode thresholds used in the episode types LN-
1 and LN-2 are indicative of behaviors that are too coarse grained, or not
sufficiently incremental, for TDD. TDD, being an inherently fine-grained in-
cremental process, discourages large amounts of source or test code editing
without running and passing tests. The significant activity threshold and the
long-episode thresholds used in episode types LN-1 and LN-2 are arbitrary, but
can be changed depending on the expected granularity of the applied process
and the tolerance level for deviating from the expected granularity.

Once each episode instance has been assigned an episode type, the final
step in the Zorro classification process is to determine the TDD conformance
of that instance. Figure 3 shows that exactly half of the 22 episode types
can be unambiguously characterized as either TDD conformant or TDD non-
conformant. For example, all four Test First episode types are automatically
TDD conformant, just the seven Test Last, Long and Unknown episode types
are automatically TDD non-conformant.

An interesting discovery from our research is that only half of the episode
types we designed could be unambiguously characterized with respect to TDD
compliance. The remaining episode types, including Refactoring, Test Addi-
tion, Regression, and certain Code Productions are ambiguous: in certain con-
texts, they could be TDD conformant, while in other contexts they could be
TDD non-conformant. For example, consider the “Refactoring” episode type.
Code refactoring can occur when a developer is doing Test Driven Design, but
it can just as easily occur when a developer is doing some other style of devel-
opment, such as Test Last programming. In order to classify instances of these
ambiguous episode types, Zorro applies the following heuristic: if a sequence
of one or more ambiguous episodes are bounded on both sides by non-TDD
conformant episodes, then the ambigous episode(s) are classified as non-TDD
conformant. Otherwise, they are classified as TDD conformant.

To make this clear, let’s consider some examples. For the episode sequence
[TF-1, RF-1, CP-1, TF-2], Zorro classifies the interior two ambiguous episodes
(RF-1 and CP-1) as TDD conformant, since they are surrounded by TDD
conformant episode types (TF-1 and TF-2). Now consider the sequence [TL-
1, RF-1, CP-1, TL-2]. In this sequence, Zorro classifies the same two interior

18

episodes as TDD non-conformant, since they are surrounded by non-TDD
episode types (TL-1 and TL-2).

Now consider a sequence like: [TF-1, RF-1, CP-1, TL-1]. Here, the two
interior ambiguous episodes (RF-1 and CP-1) are surrounded on one side by
an unambiguous TDD conformant episode (TF-1) and on the other side by
an unambiguous non-TDD episode (TL-1). In this case, Zorro’s rules could
implement an “optimistic” classification, and assign the interior ambiguous
episodes as TDD conformant, or a “pessimistic” classification, and assign the
interior ambiguous episodes as non-TDD. The current Zorro definition of TDD
implements the “optimistic” classification for this situation.

Note that all refactoring episode types are context sensitive. This is because
refactoring may occur both in TDD and non-TDD contexts. Refactoring may
also involve refactoring test code, whether written in a TDD sytle or after the
fact. RF-1 and RF-2 episode types represent test refactorings.

The Zorro classification system illustrates two important advances in our
approach to TDD. First, it replaces the simplistic “red-green-yellow” three
episode type approach to TDD developer behavior with a much more sophis-
ticated classification scheme based upon 22 distinct episode types. Second, it
reveals that the mapping from developer behaviors to TDD is not straight-
forward. One can reasonably question whether the “optimistic” classification
scheme currently chosen for Zorro is “correct” or reflects standard or rec-
ommended practice. The resolution to this question, and indeed to questions
regarding any chosen operational definition of TDD, is validation: the process
of gathering evidence to determine whether the chosen definition matches rea-
sonable expectations for what constitutes TDD and what doesn’t. (Mishali
et al, 2008)’s evaluation of their TDD guiding tool suggests that reaching con-
sensus among developer about what consitutes valid TDD behavior may be
difficult. We will return to this issue in Section 5.

4.4 The user interface

No matter how effective the classification mechanism, the usefulness of Zorro
still depends upon a user interface that can help people understand how Zorro
is performing its classification, and what the implications of TDD practice
might be. This section overviews a few of the analyses provided by Zorro to
provide a flavor for what is possible with this approach. For more details, see
Kou (2007) and Wang and Erdogmus (2004).

The first analysis, illustrated in Figure 4, is designed to provide trans-
parency regarding the Zorro data collection and classification process.

Figure 4 displays two episodes, the first containing 19 development stream
events and the second containing 10 development stream events. The display
of each event includes its time-stamp, its associated file (if applicable), and
some additional information about the associated sensor data. The final col-
umn provides information about how Zorro classified the episode (as either
TDD conformant, or TDD non-conformant), as well as why Zorro classified

) Hackystat - TDD Episode Inferance Demo - Mozilla Firefox

Fle Edt UVew Go Eookmorks Took Help celicous
Time File Event Type Raw Event Zorro's Inference ~
1 (1)07:20:53 TestintegerToRoman.java ADD METHOD TestintegerToRoman(String) This portion of development
(2) 07:20:54 TestintegerToRoman java ADD CLASS TestintegerToRoman java lappears fo be TOD conformant
(3) 07:20i54 TestintegerToRoman java BUFFTRANS FROM TestStack java besouse:
(4) 07:21:05 TestIntegerToRoman java ADD METHOD void testZeroReturnsEmpty()
(5) 07:24:44 TestintsgerToRomanjava TEST EDIT 212s8c MI=+2(2), SI=+3(1), TI=+1(1), Al=+1(0), F1=+307¢307) e TS TR R
(6) 07:24:44 TestintegerToRoman.java COMPILE Roman cannot be resolved to a type PECducTiongcodet
(7) 07:25:08 Roman.java ADD CLASS Roman java
EZ; 012509 Roman.java srraae From Zai;[ntEgErTuRDman Jjava This episode locks like an
125 orman.jaua orman(in . o N
(10) 07:25:38 Roman.java DD FIELD int intvalue atypical test-first episode
(11) 07:26:19 Roman.java PRODUCTION EDIT 36sec MI=+1(1), Sl=+1(1), FI=+158(158) bacause:
(12) 07:26:19 Roman.java COMPILE integervalue cannot be resolved Some tests were added
(13) 07:26:42 Roman.java PRODUCTION EDIT Osec MI=0(1), SI=0(1), FI=+16(174) (2). Then a compilation
(14) 07:26:48 Roman.java ADD METHOD String toString() error ocourred (6). Then
(15) 07:27:09 Roman.java PRODUCTION EDIT Osec MI=+1(2), SI=0(1), Fl=+25(199) production code vas added,
(16) 07:27:09 Roman.java COMPILE This method must return a result of type String (17) . However, tests ran
(17) 07:27:16 Roman.java PRODUCTION EDIT 4sec MI=0(2), SI=+1(2), FI=+10(208) without failure.
(18) 07:27:39 TestIntegerToRoman. java BUFFTRANS FROM Roman.java
(19) 07:28:08 TestintegerToRoman.java (NS 1551 Ok
2 (1)07:28:12 TestintegerToRaman java TEST EDIT Osec MI=0(2), SI=0(1), TI=0(1), Al=0(0), FI=+1(308) This portion of development
(2) 07:28:22 TestintegerToRoman java ADD METHOD void testOneReturnsi() appears to be TOO conformant
(3) 07:28:46 TestintegerToRoman java TEST EDIT 4sec MI=+1(3), SI=0(1), TI=+1(2), A1=0(0), FI=+111(413) because:
(4) 07:28:46 TestintegerToRoman java COMPILE Syntax error, insert ";" to complete Statement =
(5)07:28:49 TestlntegerToRoman.java TEST EDIT Osec MI=0(3), SI=+2(2), TI=0{2), Al=+1(0}, FI=+1(420)) TR TR R
(6) 07:28:56 TestintegerToRoman java [NENESI TEST FAILED [productTongcods
(7) 07:28:05 TestintegerToRoman java BUFFTRANS FROM TestStack java
(8) 07:29:13 Roman.java BUFFTRANS FROM TestIntegerToRoman, java This episode looks like a typical
(9) 07:31:15 Roman.java PRODUCTION EDIT _62sec MI=0(2), 51=+1(3), Fl=+44(253) ezt first apizede because
(10) 07:31:19 TestIntegerToRoman.java e
(2). Then a compilation
error occurred (4). Then
production code was
edited (9). Then tests
vere run with failures
(6). Then production code
vas again edited (2). g
Dane

Fig. 4 Zorro Classification Analysis

the episode that way (via a textual summary of the episode’s structural char-
acteristics used in the classification). For example, the second case in the figure
represents a TF-1 type episode. The summary enclosed in the dashed box lists
a sequence of activities that match the TF-1 pattern in 3.

The analysis in Figure 4 is useful for those wishing to understand Zorro’s
operational definition of TDD in the context of actual development, either for
learning or validation purposes. Figure 5 provides a higher level perspective,
by showing only the sequence of episode types, with each TDD conformant
episode shaded in green. Clicking on an episode type drills down to a more
detailed description similar to that shown in Figure 4. Under the column titled
Zorro’s Inference, the episode classifications are always presented with uncer-
tainty (with wording such as ”this portion of developmetn appears to be...”
and ”this episode looks like...”) because no “provably correct” classification ex-
ists. Zorro’s episode classification, like in other similar tools, is heuristic-based
and captures our best current understanding of the TDD process.

TDD Episode Demography
{72% of the episodes in this session are TOD-conformant.)
IE TF REG PR TE TA RE RE TL RE RE RE TE TA RE TL EF PR

Episode Category Acronym

TF=test-first:4 RF=refactoring:7 Ta=test-addition:2 RG=regression:1
PR=production:2 TlL=test-last:2 LG=long:0 UN=unknown:0

Fig. 5 Zorro Episode Demography

20

Zorro provides a number of additional analyses that enable the developer to
understand the impact of TDD practices on their software product and process.
Figure 6 shows how the ratio of test code to non-test (production) code changes
during the course of a development session. The horizontal bar at 1.0 represents
equal amounts of test and production code. This figure illustrates a scenario of
initial module development in which there was significantly more production
code than test code at the beginning of the session, but the proportion of test
code rose until it doubled the amount of production code, before returning to
1.5 times the production code at the end of the session.

23

22 -/ll

2.1 |
20 / I|
18 y '
18 / \
1.7 |

1.6 |

15 L

1.4
1.3 (

12 /
|I |l|
- / .
1.0 : it —
oa I
os
o7
o i
0& / e o
05 rf/ S
0.4
0.3
0.z
0.1
oo

Size T/IP Ratio

50
Ta

Elapsed Development Time (minutes)

Fig. 6 Zorro Test/Production Size Ratio

The final example analysis illustrated in Figure 7 support a different level
of abstraction by using Software Project Telemetry, a capability of Hackystat
that enables the visualization of trends in process and product data over days,
weeks, or months. In this example of actual development data from the de-
velopment of the Zorro system itself, two trends are displayed over the course
of eight weeks: the percentage of TDD conforming episodes, and the test case
coverage of the system under development. One of the claims made for TDD is
that consistent use of TDD results in high test coverage (Janzen and Saiedian,
2008). Figure 7 provides anecdotal evidence for an even stronger hypothesis:
that test case coverage might co-vary with the consistency of TDD practiced

21

by the developer. In other words, not only might consistent use of TDD result
in high test coverage, but that moving from consistent to inconsistent use of
TDD might actually lead to decreasing levels of test coverage.

Percentage of TDD Episodes (time) and Coverage

84 \ 70

Coverage %
%
% 001

& " Lo o o W "

24-5ep-2006 to 12-MNov-2006 (Weeks)

|-.- Coverage-Percentage<* line> -e- TDDPercent=times: |

Fig. 7 Zorro TDD Episode Telemetry

5 Empirical validation and evaluation

In order to feel confident in Zorro as an appropriate tool to investigate TDD,
we must address two basic validation questions: (1) Does Zorro collect the
behaviors necessary to determine when TDD is occurring, and (2) Does Zorro
correctly recognize test-driven development when it is occurring?

The first validation issue addresses the use of automated, unobtrusive,
sensor-based data collection, and whether this approach can actually acquire
the data necessary to determine when TDD is taking place.

The second validation issue addresses our operational definition of TDD
based upon episode-based classification, and whether it provides a robust,
useful, and acceptable definition of TDD.

22

An important experimental design issue in the validation of Zorro is the
need to obtain an independent source of data regarding developer behaviors
apart from the Hackystat sensor data itself. Without this independent source
of data, we could not verify that the sensor data was capturing all relevent
aspects of developer behavior, or even verify that the sensor implementation
was correct.

One approach to independent data collection is to have an observer watch-
ing the developers as the program, and take notes as to whether they are
performing TDD or not. We considered this approach but discarded it as un-
workable: given the rapidity with which TDD cycles can occur, it would be
quite hard for an observer to note all of the TDD-related events that can occur
literally within seconds of each other. We would effectively need to validate
our validation technique!

Instead, we developed a plugin to Eclipse called ESR, the “Eclipse Screen
Recorder” (Kou, 2006). This system generates a Quicktime movie containing
time-stamped screen shots of the Eclipse window at regular intervals. One
frame/second was found to be sufficient for validation, generating file sizes
of approximately 7-8 MB per hour of video. The Quicktime movie created
by ESR provides an independent, fine-grained, accurate, and visual record of
developer behavior that can be manually compared to the Zorro analysis using
the timestamps and used to address validation questions.

The following sections summarize the two validation experiments we per-
formed; full details are available in Kou (2007).

5.1 Experiment 1: Classroom pilot study

Goals. To obtain initial validation data on Zorro, we conducted a short pilot
study in Spring of 2006. The goal of this study was to ensure that our data
collection and analysis methodology was appropriate and effective.

Procedure. We obtained agreement from seven volunteer student subjects
to participate in the pilot study. These subjects were experienced with both
Java development and the Eclipse IDE, but not necessarily with test-driven
development.

We then provided them with a short description of test-driven design, and
a sample problem to implement in a test-driven design style. The problem was
to develop a Stack abstract data type using test-driven design, and we supplied
them with an ordered list of tests to write and some sample test methods to
get them started. Finally, they carried out the task using Eclipse with both
ESR and Zorro data collection enabled.

To analyze the data, we created a spreadsheet in which we recorded the
results of watching the Quicktime movie and manually encoding the developer
activities that occurred. Then, we ran the Zorro analyses and added their re-
sults to the spreadsheet. Figure 8 illustrates a portion of such a spreadsheet for
one subject: the first column contains the Zorro inferences, while the remaining
columns contain manually analyzed data from the ESR video.

23

E3 Microsoft Excel - Summary. xls Q@g|

@Eile Edit Wiew Insert Format Tools Data Window Help Adobe PDF - |E|X|
DeEds LY 2R T - &= LR 0w » 3, W A
G35 | =
B D E F A
4 |{tdd, 2) 23:28:32 23:28:43 Mew project Create new project StacklVitFee
5 23:28:45 23:29:21 New TestStack Create test class TestStack w
8 23:29:25 23:29.55 Edit class javadoc Edit javadoc for TestStack ja
7 23:29:55 23:30:08 Add testEmpty Add skeleton code of testca
8 23:30:08 23:30:56 Edit testEmpty Create Stack instance and i

] 23:30:57 23:30:57 Build error Compilation error because S
10 23:30:59 23:31.04 Create Stack Add class Stack with Eclipse
11 23:31:04 23:31:.04 Build error isEmpty() is not defined

12 23:31:04 23:31:31 Edit Stack Add Javadoc for class Stack

13 23:31:32 23:31.36 Add test method isEmptyi) Use auto add function to add
14 23:31:36 23:32:20 Edit isEmptyt) isEmpty() just returns true a

15 23:32:26 23:32:32 |Run TestStack Test passes

16

17 |(tdd, 1) 23:32:40 23:32.55 Add testcase testPushOnerAdd skeleton code for testca
18 23:32:55 23:34.24 Edit testcase testPushOnel Instantiate stack and invoke

19 23:34:24 23:34:24 Build error Compilcation error because

2324951 2335 N7 Fdit mathnrd r‘l\ 15 it A

] 4]p M T /| — T P | 1

Eeady

Fig. 8 Validation data in Excel

We then checked for consistency: that the inferences made by Zorro matched
the behaviors we saw in the video, and whether there were TDD behaviors in
the video that Zorro did not capture.

Results. The participants spent between 28 and 66 minutes to complete
the task. Zorro partitioned the overall development effort into 92 distinct
episodes, out of which 86 were classified as either Test-Driven, Refactoring,
or Test-Last; the remainder were “unclassified”, which normally corresponded
to startup or shutdown activities. Note that the version of Zorro used in Spring
2006 used a somewhat less sophisticated classification ruleset than the current
version. Table 3 provides a summary of these validation results. For each sub-
ject (ID), the table shows the total number of episodes inferred by Zorro, the
number of correctly classified episodes based upon ESR validation, and the
resulting percentage correctly classified, ordered from highest to lowest.

Table 3 Case Study 1: TDD Development Behavior Validation

ID | Episodes | Correct | Percentage
5 16 15 94%
3 14 13 93%
4 14 13 93%
6 11 10 91%
7 9 8 89%
1 15 13 87%
2 13 10 7%
[Total [92 [82 [89%]

24

Out of the 92 episodes under study, 82 were validated as correctly classified,
for an overall accuracy rate of 89%. The range in percentage correctness ranged
from 94% to 77%. Analysis of the differences between Zorro inferences and the
ESR data analyses indicated that some editing work and test case invocations
were not captured correctly by Zorro. These fixes were made prior to the
second case study.

Limitations. The most significant threats to validity of this study were the
sample size, the sample population, and the nature of the problem. The study
had only seven participants, some of whom were not experienced with TDD.
Perhaps the most significant threat was the toy nature of the programming
problem, which raised the possibility that we would not be observing “real
world” software development behaviors with their attendent complexities.

5.2 Experiment 2: Classroom case study

Goals. After improving the Zorro data collection and analysis mechanisms
based upon our first case study, we conducted a second case study in the
Fall of 2006. The goal of this case study was to obtain better quality data
regarding the strengths and limitations of Zorro for TDD inference by extend-
ing our experimental design to include direct participant evaluation of Zorro
inferences.

Procedure. We obtained agreement from 11 senior and graduate-level
students in two software engineering classes at the University of Hawaii. These
students had all recently completed a unit of test driven development in their
class, and had done a sample program using TDD principles.

The experimental session lasted approximately two hours. During the first
90 minutes, the students were given a brief introduction to the goals and
purpose of the study, then asked to work on the “Bowling Score Keeper”, a
programming problem used in other empirical studies on TDD (George and
Williams, 2003; Erdogmus et al, 2005). A set of user stories were provided to
the students to avoid the need for them to know the rules of scoring in bowling,
and also to provide them with a “To Do” list for programming. The students
were stopped at the end of 90 minutes regardless of whether or not they had
completed the entire programming problem.

Once the students finished the programming part of the experiment, they
were given a five minute break and then asked to validate Zorro’s inferences.
To do this, we implemented a special Zorro analysis that would display a
representation of each episode and allow the students to provide feedback
regarding their agreement with the analysis. Figure 9 shows an example of
this wizard.

To analyze the data, we repeated the same process of comparing Zorro
analyses to the ESR video as in the first case study. In addition, we also had
the subject validation data, which provided a second independent source of
information regarding the validity of Zorro inference.

25

¥ Hackystat - TDD Episode Validation - Mozilla Firefox

fle Edit Wew Go Bockmarks Tools Help
@-op -2 @@ ics. hawail rtroller v © = [Cl
e (Thic portion of devclopment oppears Do you feel that this (1) 11/01/2006 10:14:50 TestFrame java TEST EDIT 33sec MI=0(1)
to be TBD conformant becausc: portion of developmentis | (z) 11/01/2006 10:14:55 TestFrame java ADD METHOD void testIrregu
Tests were written before | 1DD? (3) 11/01/2006 10015:27 TestFrame java TEST EDIT bsec MI=+1(2)
Frogucrion mocs. Oyess Ono Odan'tknow | (4 110072006 1011527 TestFreme java COMPILE The attribute v
Thiz cpizade lookz like a typical This episode is about: (5) 11/01/2006 10:115:51 TestFrame.java TEST EDIT sec MI=0(2),
ftezt-first cpisode becouse: [adding new (6) 11/01/2006 10:16:03 TestFrame java IS e FAlLED
Sone tests wers added 11| oo (7) 11/01/2006 10:16:11 Frame.java BUFFTRANS FROM TestFran
e o TR ST) adding test (8) 11/01/2006 10:17:27 Frame.java PRODUCTION EDIT 66sec MI=0(1}
production cods vas ediced | |[Jjust running tests (9) 11/01/2006 10:17:30 TestFrame java [
(8). Then wests were ram | (]
with fsilures (6). Then
production cods was again other
edived i8] . .
v
< >
Done

Fig. 9 TDD Episode Validation

Results. The much richer data set collected in this data set makes possible
a wide variety of analyses; for a full description, please see Kou (2007). In this
section we present only a summary of the results.

First, due to a bug in the data collection mechanism, we lost some data
from one participant. We decided to exclude this subject’s data from further
analysis, reducing our subject pool to 10.

Table 4 provides a summary of the validation results. For each subject
(ID), the table lists the number of episodes inferred by Zorro, and the number
of those episodes that were correctly classified based upon ESR video data
and participant feedback, and the percentage that were correctly classified,
ordered from highest to lowest.

Table 4 Case Study 2: TDD Development Behavior Validation

ID | Episodes | Correct | Percentage
O 16 15 94%
R 14 13 93%
L 8 7 88%
K 10 8 80%
A 19 15 79%
T 13 9 69%
P 18 12 67%
Q 21 11 52%
N 9 4 44%

S 9 2 22%
Total 137 96 70%

These results are significantly worse than the first case study: the overall
percentage of correctness has dropped from 89% to 70%, and the worst case
performance dropped from 77% to 22%)

Analysis of the ESR video data and participant feedback revealed an unex-
pected developer behavior which appears to account for much of the difference
in results between the two studies. In Eclipse, it is possible to invoke unit tests

26

even when the production code does not compile. Eclipse will issue a warning,
but the developer can choose to ignore it and run the tests anyway as long
as the non-compiling code is not actually invoked by the test cases. Invoking
tests on non-compiling code is a violation of TDD principles, and had not
occurred in our usage of Zorro prior to this experiment. Zorro’s rules were
not configured to deal with this situation, and as a result, 24 out of the 41
incorrectly classified episodes contained an occurrence of this phenomena.

There are two ways to approximate the impact of this developer behavior
on Zorro’s inference accuracy. First, if we include only those developers who
never invoked unit tests when their code did not compile (i.e. the four top sub-
jects K, L, O, R), then the average percentage correctness of episode inference
is 90%. Alternatively, if we exclude the 24 episodes in which this phenomena
was present from analysis, then the average percentage correctness is 85%.
These two approaches together provide some evidence that this single behav-
ior bears significant responsibility for the drop in overall accuracy from the
first study.

We can propose two ways to deal with this phenomena in future. First, we
could adjust Zorro’s current set of rules and/or sensors to take into account the
fact that some developers might wish to run unit tests in the presence of non-
compiling code. In this case, we would need to make a decision about whether
such a behavior would be TDD conformant or not. Alternatively, and more
simply, we could recommend that developers intending to apply TDD prin-
ciples configure Eclipse to disallow this behavior. We believe that the second
approach is both easier and more congruent with the current understanding
of TDD practice.

In addition to this source of error, our analysis of the data discovered sev-
eral more minor problems. In two episodes, developers implemented trivial
changes to production code but did not run unit tests. The subjects claimed
that their behavior was TDD conformant, but without the invocation of test
cases, Zorro could not provide the appropriate episode boundary. In four
episodes, developers defined a unit test method header, then wrote production
code, then wrote the unit test body. Zorro’s inference rules were not able to
handle a unit test whose initial definition was intermixed with production code
editing. Finally, in four episodes, Zorro initially and incorrectly classified test
code as production code since Zorro requires assertions in the method body
in order to recognize it as a test.

Limitations. As with the first study, a primary threat to the validity of
this study is the small sample size. In addition, the use of a student population
might influence the external validity of the findings, as professional develop-
ers might behave differently than these students. Another threat to external
validity is the use of the Bowling Game software problem, which is well suited
to laboratory settings but not necessarily representative of real-world software
development.

While participant-based validation of Zorro’s inferences was quite helpful
in detecting certain problems, the views of participants, particularly those
with limited experience in TDD, must be taken with care. It is possible that

27

at least some of the subjects felt that the software might know better than
they whether or not they were doing TDD.

5.3 Experiment 3: Industrial case study

One threat to the external validity of our first two case studies is the use
of students in a classroom setting. To address this threat, we attempted an
industrial case study in order to gain insight into the usefulness of Zorro in a
professional setting.

In the summer of 2006, we were contacted by Dr. Geir Hanssen from SIN-
TEF ICT of Norway. Dr. Hanssen was interested in using Zorro with an in-
dustrial client who desired to institute TDD and assess its effectiveness. We
agreed to serve as technical support for this project, which meant we would
provide help with setup and installation of Zorro sensors and analyses. Due to
time frame, complexities involved in obtaining approval from our Institutional
Research Board, and the nature of the industrial client, we were constrained
to a “hands off” approach in which we had no access to the data collected by
Zorro.

As part of the preparation for this study, we implemented sensors for the
Visual Studio .NET environment to collect the data necessary for TDD infer-
ence. Upon initiation of data collection, we were told that the developers were
using the TestDriven.NET add-in, and so we developed a sensor for that tool
as well.

Out of the 20 developers involved in this industrial case study, it appeared
that: four developers installed and activated the sensor; four developers never
installed the sensor; four developers either stopped programming or uninstalled
the sensor; four developers did not install the TestDriven.NET sensor, and four
developers either never wrote test cases or never installed the TestDriven.NET
Sensor.

According to Dr. Hanssen, the company was faced with tight deadlines and
decided that this research on TDD was a low priority for them. Thus, they
decided it was not a priority to ensure installation of the sensors, and thus
the collected data was insufficent to draw conclusions about the effectiveness
of TDD in their setting.

Although the outcome of this study is disappointing from an empirical
point of view, it provides at least one “Lessons Learned” for industrial case
studies using Zorro: it is very important to have an on-site researcher who can
aid in sensor installation and upgrades, as well as simply monitor development
to see if lack of sensor data of a particular type represents reality as opposed to
a sensor data collection problem. In this study, as neither we nor Dr. Hanssen
was provided access to the developers, we could not distinguish between lack
of sensor data as an indication that the developer was not working, and lack
of sensor data as an indication that the sensor was not installed correctly.

28

6 Contributions, limitations and future directions

This research contributes in the following ways to the research and practice of
test-driven development in particular, and automated software engineering in
general.

First, to our knowledge, Zorro is the first, and so far only, fully-automated
system capable of recognizing test-driven development practices. Such a system
can address the process compliance problem from which much current TDD
research suffers.

Second, by providing fully automated recognition, Zorro provides the first
precise, operational definition of TDD practice. Our research revealed that
this operational definition was not straightforward to implement, as certain
kinds of episode types were intrinsicially ambiguous. Resolving these episode
types required the implementation of disambiguation heuristics. Our empirical
evaluations demonstrated that these heuristics seemed satisfactory in most
situations, and that TDD episode recognition accuracy of between 85-90% is
quite feasible.

Third, this research results in a new approach to measuring TDD compli-
ance based upon “episodes”, or short-duration intervals of development. Using
Zorro, one can speak of a development team as having used TDD “55% of the
time during the previous week”. This much more fine-grained characterization
enables new kinds of research on TDD, such as whether there is a threshold
for TDD use. For example, perhaps productivity and quality do climb with
TDD use up to a threshold of, say, 80%, beyond which there is no discernable
improvement. As another example, perhaps there is a steep drop-off in quality
and/or productivity if TDD usage drops below, say, 30%.

The Zorro system was implemented within the Software Development Stream
Analysis (SDSA) framework. SDSA provides a generic means for recognition
of developer “micro-processes” such as TDD. In future work, we hope to write
new applications on top of SDSA in addition to Zorro, such as an application
for recognizing Continuous Integration best practices.

One limitation of Zorro is due to the fact that the development stream
is sequentially partitioned into episodes using test-pass events. This means
that Zorro is unable to represent “concurrent” TDD, in which a developer is
working on two or more TDD red-green-yellow activities simultaneously. More
research is required to determine if such concurrent forms of development occur
in practice and what would be required to implement support for automated
inference.

Acknowledgements We gratefully acknowledge the members of the Collaborative Soft-
ware Development Laboratory who supported this research, as well as the student and
industrial participants in the evaluation. The National Reseach Council of Canada sup-
ported the initial stages of this research under a cooperative agreement. Dr. Burak Turhan
of University of Oulu, Finland, provided valuable comments and information regarding tool
support for TDD adoption.

29

References

Beck K (2000) Extreme Programming Explained: Embrace Change. Addison
Wesley, Massachusetts

Beck K (2001) Aim, fire. IEEE Softw 18(5):87-89, DOT http://dx.doi.org/10.
1109/52.951502

Beck K (2003) Test-Driven Development by Example. Addison Wesley, Mas-
sachusetts

Bhat T, Nagappan N (2006) Evaluating the efficacy of test-driven devel-
opment: industrial case studies. In: ISESE ’06: Proceedings of the 2006
ACM/IEEE international symposium on International symposium on em-
pirical software engineering, ACM Press, New York, NY, USA, pp 356-363,
DOTI http://doi.acm.org/10.1145/1159733.1159787

Bill Curtis MIK, Over J (1992) Process modeling. Communications of the
ACM 35(9):75-90

Cook JE (1996) Process discovery and validation through event-data analysis.
Ph.d thesis, University of Colorado

Cook JE, Wolf AL (1995) Automating process discovery through event-data
analysis. In: ICSE '95: Proceedings of the 17th international conference on
Software engineering, ACM Press, New York, NY, USA, pp 73-82, DOI
http://doi.acm.org/10.1145,/225014.225021

Damm L, Lundberg L (2006) Results from introducing component-level test
automation and test-driven development. Journal of Systems and Software
79(7):1001-1014

Edwards SH (2004) Using software testing to move students from trial-and-
error to reflection-in-action. In: Proceedings of the 35th SIGCSE technical
symposium on Computer science education, ACM Press, pp 26-30, DOI
http://doi.acm.org/10.1145/971300.971312

Erdogmus H, Morisio M, Torchiano M (2005) On the effectiveness of the test-
first approach to programming. IEEE Trans Softw Eng 31(3):226-237, DOI
http://dx.doi.org/10.1109/TSE.2005.37

Friedman-Hill E (2003) JESS in Action. Mannig Publications Co., Greenwich,
CT

George B, Williams L (2003) An Initial Investigation of Test-Driven Develop-
ment in Industry. ACM Sympoium on Applied Computing 3(1):23

George B, Williams L (2004) A Structured Experiment of Test-Driven Devel-
opment. Information & Software Technology 46(5):337-342

Geras A, Smith M, Miller J (2004) A Prototype Empirical Evaluation of Test
Driven Development. In: Software Metrics, 10th International Symposium
on (METRICS’04), IEEE Computer Society, Chicago Illionis, USA, p 405

Gupta A, Jalote P (2007) An experimental evaluation of the effectiveness of
test-driven development. In: ESEM 2007, 1st International Symposium on
Empirical Software Engineering and Measurement, IEEE Computer Society,
pp 285294

Janzen D, Saiedian H (2005) Test-driven development:concepts, taxon-
omy, and future direction. Computer 38(9):43-50, DOI http://doi.

30

ieeecomputersociety.org/10.1109/MC.2005.314

Janzen D, Saiedian H (2008) Does test-driven development really improve
software design quality. IEEE Software pp 77-84

Jeffries R (2000) Extreme Programming Installed. Addison Wesley, Upper
Saddle River, NJ

Jensen C, Scacchi W (2004) Process modeling across the web information
infrastructure. In: Special Issue on ProSim 2004, The Fifth International
Workshop on Software Process Simulation and Modeling, Edinburgh, Scot-
land

Jensen C, Scacchi W (2005) Experience in discovering, modeling, and reen-
acting open source software development processes. In: Proceedings of the
International Software Process Workshop

Johnson PM, Paulding MG (2005) Understanding HPCS development through
automated process and product measurement with Hackystat. In: Sec-
ond Workshop on Productivity and Performance in High-End Comput-
ing (P-PHEC), URL http://csdl.ics.hawaii.edu/techreports/04-22/
04-22.pdf

Johnson PM, Kou H, Agustin JM, Zhang Q, Kagawa A, Yamashita T (2004)
Practical automated process and product metric collection and analy-
sis in a classroom setting: Lessons learned from Hackystat-UH. In: Pro-
ceedings of the 2004 International Symposium on Empirical Software En-
gineering, Los Angeles, California, URL http://csdl.ics.hawaii.edu/
techreports/03-12/03-12.pdf

Johnson PM, Kou H, Paulding MG, Zhang Q, Kagawa A, Yamashita T
(2005) Improving software development management through software
project telemetry. IEEE Software URL http://csdl.ics.hawaii.edu/
techreports/04-11/04-11.pdf

Kaufmann R, Janzen D (2003) Implications of test-driven development: a
pilot study. In: OOPSLA ’03: Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, ACM Press, New York, NY, USA, pp 298-299, DOI
http://doi.acm.org/10.1145/949344.949421

Kellner M, Feiler P, Finkelstein A, Katayama T, Osterweil L, Penedo M, Rom-
bach H (1991) Ispw-6 software process example. In: Proceedings of the First
International Conference on the Software Process, Pittsburgh, PA

Kou H (2006) Eclipse screen recorder. http://csdl.ics.hawaii.edu/Tools/
Esr/

Kou H (2007) Automated inference of software development behaviors: De-
sign, implementation and validation of zorro for test-driven development.
Ph.D. thesis, University of Hawaii, Department of Information and Com-
puter Sciences, URL http://csdl.ics.hawaii.edu/techreports/07-04/
07-04.pdf

Kou H, Johnson PM (2006) Automated recognition of low-level process: A
pilot validation study of Zorro for test-driven development. In: Proceedings
of the 2006 International Workshop on Software Process, Shanghai, China,
URL http://csdl.ics.hawaii.edu/techreports/06-02/06-02.pdf

31

Madeyski L, Szala L (2007) The impact of test-driven development on soft-
ware development productivity - an empirical study. In: Abrahamsson P,
Badoo N, Margaria T, Messanarz R (eds) Software Process Improvement,
9th International Conference on Agile Processes in Software Engineering
and Extreme Programming, Springer-Verlag, Heidelberg, Germany, Lecture
Notes in Computer Science, vol 4764, pp 200-211

Maximilien EM, Williams L (2003) Accessing Test-Driven Development at
IBM. In: Proceedings of the 25th International Conference in Software En-
gineering, IEEE Computer Society, Washington, DC, USA, p 564

Mishali O, Dubinsky Y, Katz S (2008) The tdd-guide training and guidance
tool for test-driven development. In: Abrahamsson P, Baskerville R, Con-
boy K, Fitzgerald B, Morgan L, Wang X (eds) XP 2008: 9th International
Conference on Agile Processes in Software Engineering and Extreme Pro-
gramming, Springer-Verlag, Heidelberg, Germany, Lecture Notes in Business
Information Processing, vol 9, pp 63-72

Muller MM, Hagner O (2002) Experiment about Test-first Programming. In:
Empirical Assesment in Software Engineering (EASE), IEEE Computer So-
ciety

Pancur M, Ciglaric M, Trampus M, Vidmar T (2003) Towards empirical eval-
uation of test-driven development in a university environment. In: Proceed-
ings of EUROCON 2003, IEEE

Sanchez J, Williams L, Maximillien E (2007) On the sustained use of test-
driven development practice at ibm. In: Agile 2007 Conference, pp 5-14

Siniaalto M, Abrahamsson PA (2007) Comparative case study on the impact
of test-driven development on program design and test coverage. In: ESEM
2007, 1st International Symposium on Empirical Software Engineering and
Measurement, IEEE Computer Society, pp 275284

Sutton SM, Heimbigner D, Osterwell LJ (1995) APPL/A: A language for soft-
ware process programming. ACM Transaction on Software Engineering and
Methodology 4(3):221-286

Turnu I, Melis M, Cau A (2004) Introducing tdd on a free libre open source
software project: a simulation experiment. In: QUTE-SWAP Workshop,
ACM Press, New York, NY, USA

Wang Y, Erdogmus H (2004) The role of process measurement in test-driven
development. In: XP/Agile Universe, pp 32-42

Wege C (2004) Automated support for process assessment in test-driven de-
velopment. Ph.d thesis, Eberhard-Karls-Universit at Tubingen

Williams L, Maximilien EM, Vouk M (2003) Test-driven development as a
defect-reduction practice. In: Proceedings of the 14th International Sym-
posium on Software Reliability Engineering (ISSRE03), ACM Press, New
York, NY, USA, pp 298-299

