
Results from the 2008 Classroom Evaluation of Hackystat

Shaoxuan Zhang

Philip M. Johnson

Collaborative Software Development Laboratory

Department of Information and Computer Sciences

University of Hawai’i

Honolulu, HI 96822

sz@hawaii.edu

October 13, 2009

Contents

1 Methodology 2

2 Results form Questionnaire 5

3 Interpretation of the 2008 data 18
3.1 Experimental Limitations . 18
3.2 Conclusions regarding Installation/Configuration . 19
3.3 Conclusions regarding overhead of use . 19
3.4 Conclusions regarding sharing development data with other members 19
3.5 Conclusions regarding usage and utility . 19
3.6 Feasibility in a professional software development context 22

4 Comparison to the results of 2003 and 2006 23
4.1 Hackystat in 2008 vs. 2003 and 2006 . 23
4.2 Comparison of the empirical results . 25

4.2.1 Installation/Configuration . 25
4.2.2 Overhead of Use . 26
4.2.3 Future Feasibility . 27

5 Future Directions 28
5.1 Installer . 28
5.2 Performance of Ant Build Tasks . 28
5.3 Performance of Analysis . 28
5.4 Data Accuracy . 28
5.5 Data Presentation in SICU . 29

1

Abstract

This report presents the results from a classroom evaluation of Hackystat by ICS 413 stu-
dents at the end of Fall, 2008. The students had used Hackystat v8 for approximately four
weeks at the time of the evaluation. The survey requests their feedback regarding the installa-
tion, configuration, overhead of use, usability, utility, and future use of the Hackystat (Version
8)1. This classroom evaluation is a semi-replication of the evaluations performed on Hackystat
(Version 5) in Fall 2003[1] and Hackystat (Version 7) in Fall 2006[2]. As Hackystat changed
significantly between 2003 and 2006 and from 2006 to 2008, some of the evaluation questions
changed as well.

The data from this evaluation, in combination with the data from the 2003 and 2006 evalua-
tions, provides an interesting perspective on the past, present, and possible future of Hackystat.
Hackystat is an completely rebuilt version, which is organized as a collection of loosely coupled
software services such as SensorBase, DailyProjectData and Telemetry, which together provide
better extensibility and flexibility compared to the old versions. The result shows that, though
there are some regressions on installation and overhead of use, Hackystat did successfully ac-
complish its utility to facilitating development.

1 Methodology

At the end of the Fall 2008 semester, the students in ICS 413 were contacted by email and asked to
respond to the following questionnaire soliciting their opinions regarding Hackystat. The graduate
student researcher on this project (Shaoxuan Zhang, sz@hawaii.edu) provided each of the students
a “secret” code. The correspondence between the secret codes and the students are only known
by the graduate student, but not the instructor of the class, in order to avoid the potential for
bias to “please” the instructor/designer who would presumably be gratified by positive responses
to the questionnaire. Response was optional, but the students were offered extra credit points for
providing their opinions. The list of names who should be awarded extra credit was sent to the
class instructor without identifying individual responses. The students were asked to reply within
a week. Eighteen out of the nineteen students contacted provided responses.

In addition, we log students’ usage of the system, which is not aware by students, and we
compare the logging data with the feedbacks from the survey.

The complete questionnaire follows:

Hackystat Evaluation

Hackystat is a long term research project concerned with improving the effectiveness
and efficiency of software engineering metrics collection and analysis. Since 2003, we
have periodically conducted a survey of students in ICS software engineering classes to
assess the current strengths and weaknesses of the system.

To preserve anonymity, while also ensuring that only ICS students respond and respond
only once, we ask you to provide the “secret code” that you randomly selected in class.
To enable credit for completing this evaluation, only the graduate student researcher
on this project (Shaoxuan Zhang) will know which code corresponds to you. He will
provide a list of names who should be awarded credit to the class instructor without

1All future references to “Hackystat” implies Version 8; other versions of Hackystat will be referred explicit such
as Version 7 and Version 6

2

identifying individual responses. You can also contact Shaoxuan if you want your data
deleted from analysis after you’ve submitted it.

If you want to go back and change your responses, simply fill out the entire form again.
We will discard all but the most recently submitted entry for a given code.

This survey contains 17 questions and we expect that you will need about 10 minutes
to complete it.

Thank you very much for your help! We take your views very seriously: prior responses
to this survey have led to far-reaching changes in Hackystat.

Before filling out this questionnaire, you might want to take a look at the following
image for the Software ICU to refresh your memory:

http://csdl.ics.hawaii.edu/~johnson/portfolio.gif

* Required

1. Installing the Eclipse IDE sensor was: *

• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

2. Installing the Ant sensors (JUnit, SCLC, Emma, etc.) was: *

• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

3. Please provide any feedback you can on the problems you experienced during sensor
installation and server configuration, as well as any suggestions you have to make
this easier in future.

4. The amount of overhead required to collect Hackystat data (after successful instal-
lation and configuration of sensors) was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

5. The amount of overhead required to run Hackystat analyses was: *

• Very Low

• Low

• Neither low nor high

• High

3

http://csdl.ics.hawaii.edu/~johnson/portfolio.gif

• Very High

6. Please provide any feedback you can on Hackystat overhead, as well as any sug-
gestions you have to reduce the overhead in future.

7. Did you encounter any problems while collecting data? Was there any kind of data
that you failed to collect? If yes, please explain.

8. How did you feel about sharing your software development data with other mem-
bers of the class? *

9. How frequently did you use the telemetry page? *

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

10. If you used the Telemetry page, what were you trying to find out?

11. How frequently did you use the Software ICU? *

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

12. If you used the Software ICU, please check the vital signs that were useful to you.
*

• Coverage

• Complexity

• Coupling

• Churn

• Size

• DevTime

• Commit

• Build

• Test

• None of the above

13. Did you feel the Software ICU colors accurately reflected the “health” of your
project? If not, why not? *

14. Were you able to use the Software ICU to improve your software’s quality and/or
your team’s process? If so, in what ways? If not, why not? *

15. Please provide any other feedback you would like regarding Telemetry and the
Software ICU, as well as any suggestions you have on how we can improve the
system.

4

16. If I was a professional software developer, using Hackystat at my job would be: *

• Very feasible

• Somewhat feasible

• Neither feasible nor infeasible

• Somewhat infeasible

• Very infeasible

17. Please provide any other feedback you can on the feasibility of Hackystat in a
professional setting, as well as any suggestions you have on how its feasibility
could be improved.

2 Results form Questionnaire

This section presents the responses from the respondents to each of the questions. For the “short
answer” questions, I corrected misspellings and minor grammatical errors to improve readability.

Question Response

1. Installing the Eclipse IDE sensor was:
• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

2. Installing the Ant sensors (JUnit, SCLC,
Emma, etc.) was:

• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

5

3. Please provide any feedback you can on the problems you experienced during sensor instal-
lation and server conguration, as well as any suggestions you have to make this easier in future.

• I could not figure out what step makes a .hackystat directory. My .hackystat directory
automatically generated in my Documents and Settings directory which has a blank space in
directory name. I am still not sure how to move this folder to other. The installation of all
sensors was pretty well described at the project homepage and there was no problems I have
met during the installation.

• Both the installation and sending sensor data was easy. However, tracking down whenever
there is a problem with the sensor is not so easy. A troubleshooting page in the near future?

• Installing the sensors was pretty straightforward. I didn’t have any problems.

• Case sensitivity was one problem between user and Hackystat, but it was fixed.

If it is possible to have a .EXE that will automatically create environment variables and also
install files into a local directory will be awesome.

• I did have one small hang up when installing the Ant sensors: If I remember correctly I was
getting a NoClassDefinition error whenever a sensor ran. I was running java 1.5. I fixed it by
downloading the jaxb libraries since the errors were referring to that. It could be not related
to jaxb at all, but it worked after that. Otherwise, I had no problems whatsoever installing
the sensors.

• Everything went smooth with the instructions given and the verification after each step.

• Personally I didn’t run into any problems but some of the other students did. The sensors
aren’t difficult to install per se, but there are a lot of steps involved and it’s easy to get lost
while installing them. Maybe an automated installer can be created that searches for the
Ant tools (maybe the user can provide a search directory) and will configure and install the
sensors for the user.

• What made it hard was that all the instructions were not in one page. I had to go from one
page to another and then to another. There should be instructions from STEP 1 to the end
and provide proper links to the step by step process.

• First of all, the manual is too long. I do like your goal to analyze the software project, but if
it wasn’t required by this class, maybe I wouldn’t think I want to use it, because it looks too
complicated.

Also there are too many things that we need to download and install. If you want to encourage
people to use this more, maybe you should provide a package of all the tools somehow.

For example, before it took a long time to install Apache, MySQL, PHP, and Perl, but now
somebody offers a package called XAMPP, which is a combination of all of those, and entire
installation finishes in 3 minutes. Something like that should be given.

• There is a lot of documentation in a lot of different places. It was confusing trying to figure
out what to read in what order, and whether or not it was relevant to me.

6

• Some the installation instructions could benefit from “write once, use many times” as they’re
repetitive, which causes some people to start glossing over the instructions and then there’s
a couple that are slightly different and people (like me) won’t notice the difference.

• The walkthrough was great, which made the installation easy.

• The only problem I had was the installation of the Ant sensor. I mean configuring it on
Eclipse was easy especially when I try to run Emma, JUnit, FindBugs and all that from
Eclipse it is sending stuff to Hackystat but when I checked my software ICU I didn’t have
any data on Build (all it says was N/A). And little did I know that when you run the ant
sensors on Eclipse it only registers all the data to Hackystat JUnit, Emma, Checkstyle and
such except BUILD. And I was told that running the BUILD on the command line works
but not on Eclipse. So I tried that and YES that works. So is there a way to make it work
on Eclipse when you run all the Ant sensors and it sends all the data to Hackystat including
the BUILD data?

• When we ran the svn sensor, the build would fail if there are any commits from members not
identified in our local Usermap.xml. Instead of looking for all commit records from all users
within 24 hours, perhaps it could filter out and only look for records inside our UserMap.xml.

• The installation documentation must be read carefully. It may be easier to create a hackys-
tat.build.xml with all the build targets, then import that file into each *.build.xml and call
the sensor from the tasks.

• The most challenging sensor to get up and running was the SVN sensor. Other than that,
the others seemed fairly easy to install.

Question Response

4. The amount of overhead required to col-
lect Hackystat data (after successful installa-
tion and configuration of sensors) was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

7

Question Response

5. The amount of overhead required to run
Hackystat analyses was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

6. Please provide any feedback you can on Hackystat overhead, as well as any suggestions you
have to reduce the overhead in future.

• Since the verify command runs all the tests, I’d think that it should send data for all tests
run. Rather, in the portfolio analysis, the Unit Test portion only retrieved data for any JUnit
builds that were run. It doesn’t really make sense why we’d have to run it separately when
verify does it anyway.

• If I am correct, overhead - the processing time required by a device prior to the execution of
a command. Then it all depends on what computer the user is using, I am using a single-core
processor laptop it did not take long.

• Since Dr. Johnson provided us with Ant sensor examples, it was quite easy to set up every-
thing to send data to the sensorbase. I did the hackystat tutorial and everything worked fine.
However, I missed the part about creating a usermap.xml file for the svn sensors through
Ant. That confused me a bit later on but I figured it out.

What made getting data quite easy as well was having Hudson installed on a dedicated
continuous integration server. Daily builds would auto-send data to Hackystat and this made
it super easy to get daily info.

• The sensors ran automatically and it was fast with sending the data.

• Maybe there can be a link on http://dasha.ics.hawaii.edu to both the Hudson and Hackystat
server, that way we don’t have to memorize the port numbers. Also, allowing us to create
an account and password would go a long way towards usability. I had to put the Hackystat
login information in a text file because I can’t remember a randomly-generated string for the
password.

• Sending sensor data was often quite slow. Generating reports in the web application was
sometimes also slow – the page wouldn’t load until you refreshed it.

• The overhead to collect data was generally small, however long enough that would generally
run multiple (DOS) terminals so that I could continue working while it was sending data.
Analysis was no overhead since that was just pulling up a browser page.

8

• When sending hackystat data, it was fairly quick on my computer, MacBook Pro. Tho, there
were some students I saw which had a LONG wait time on the same laptop.

• I love Hackystat! It is a very great tool especially for a developer like me.

• Since Ant takes care of running Hackystat sensors, this made it very easy to accomplish.

7. Did you encounter any problems while collecting data? Was there any kind of data that you
failed to collect? If yes, please explain.

• I had a problem with sending commit data to hackystat when I worked on a group project.
That was because I did not update my sensors to newer version.

• At first during the implementation of DueDates 2.0, it was not collecting commit data from
my account. It was due to the account on hackystat, it included the @gmail.com part of my
gmail account. So it was not matching up with each other, the hackystat account and my
gmail account.

• Running an analyses on my machine was slow, it would take over 3 minutes to run a build.
I am not sure why it took so long to send the build data so I can’t make a suggestion.

• Only JUnit data as mentioned previously.

• Case sensitivity was an issue at first, but it was corrected so I did not get problems after
that. Hudson did not send to Hackystat number of commits, but that was fixed after a little
modification with build.xml file.

• I was lucky. I rarely had any problems collecting data during all the time I worked with
Hackystat. The one time something got screwed up was with my development time for one
day. It said 0 when I checked and I had put in a bunch of time that day so it should have
said otherwise.

I don’t remember exactly but, that night I believe had worked in eclipse till after 12 at night,
so it went to the next day before I closed the program. That could possibly be a reason for
the missing data initially. The next day I just cleared the cache and it was all fine.

• There was a small issue when I first started collecting data, but it was quickly corrected when
checking the xml files.

• Personally I ran into no problems collecting data.

• Sometimes it didn’t collect build data for some reason.

• Occasional problems with SVN collection, I think, was a bit hard to tell.

• Everything was great except collecting data for my BUILD (please refer to above statement
for more detailed problem regarding this). Thank you.

• I did with commit records but it was my fault. I wish subversion with Google Project Hosting
would be more strict. I was able to check out the project with or without the “@gmail.com”
suffix (i.e. “test” and “test@gmail.com”). Thus making me two different authors.

9

• Yes, the build data. I needed to set more environmental variables.

• For some unknown reason, my user name picked up the @gmail.com, so both my user name
with and without @gmail.com needed to be added to the projects.

8. How did you feel about sharing your software development data with other members of the
class?

• We could see how other groups were doing by sharing our software development data with
other people. We also could find out what kinds of problems with our project by comparing
graphs with other groups and this helped a lot.

• I was not offended if it was low, and I was quite intrigued with others data.

• I did not have a problem with sharing data with other people in class. I thought it was needed
tool to keep tabs on everyone to assure they’re doing their fair share.

• It felt good if your data was better than others. And if it wasn’t, then you felt bad.

• Did not really like it because it is showing my programming habits, like starting on a project
on the last couple of days.

• I felt alright about sharing my data with the class. It was interesting for me to see how other
people worked on stuff. Some were consistent and others were not. Some people spend a lot
of time working on stuff yet do not commit as much as others that work half the time. I think
its good to see this data.

• I am okay with sharing my data.

• I didn’t think it was a particularly good idea because it then forces group members to become
competitive with each other, especially if one person is able to put in more time than all the
others. Also, the data doesn’t reflect the amount of work put in, maybe someone spent 5
hours doing research and only 1 hour programming, but the sensor data will only show 1
hour of development time and a minor code commit, versus someone who, say, just changes
around the package structure for 3 hours and has a huge commit amount.

• Actually hackystat (or hacky-stalk as what my teammates and I called it) caused a lot of
arguments and trash talk. Some guys were more concerned about collecting stats on hackystat
than actually finishing the project. Some members would start competing on who had more
commits or move development time. The project turned out to be more of a competition of
stats, which wasn’t healthy for the team at all.

• It will be obvious that who worked on the project, so it is nice in terms of grading students.
At the same time I feel some pressure that I need to work on the development, so if team
leader require everybody to work well, this is good.

• Didn’t really care.

• I had no problem with this, and it encouraged me to be aware of my time management and
coding style.

10

• It was good in a sense that they can help you with test cases and coverage.

• It was fun..because you can see how everyone is doing within your group.

• Before taking this class, I didn’t think that there was a way to track software development
process. After learning about software continuous integration and working in a larger group
project, I have a better insight in sharing the development process. I feel that it is a must in
every software development environment, big or small to be able to communicate frequently
and effectively.

• I was nervous because certain individual of the class seemed able to put in ridiculous long
hours. I was concerned my amount of time (which seemed reasonable) would make me look
as though I’m not working as hard.

• Good, I can see how I and others rank with each other.

• I am fine with this. All group projects in all schools (e.g., Architecture) should be required to
use such a system. This is great for facilitating fair evaluations of students who participate,
and those who ’get the grade’ by riding on the laurels, blood, sweat, and tears of others.

Question Response

9. How frequently did you use the telemetry
page? *

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

10. If you used the Telemetry page, what were you trying to find out?

• I tried to find out how was I doing for the project by looking hackystat data.

• Seeing how much time i spent on the development of the program, and also others in my
group.

• When I used the telemetry page I was trying to find out if I was on par with other groups
members in terms of development, build, and commit numbers.

• Whether or not, my sensors were reading, and the work output of my group members (espe-
cially on days we didn’t meet together).

• If my development time was up to par with my team members.

11

• I usually used the telemetry page to evaluate how my team was working overall, and what
my part was in that data. I also checked it to make sure everyones data was being sent.

• It helps me see how I measure up with my partners.

• Member dev time mostly, to compare the amount of development time I put in vs. my group
members.

• It supposed to show us how healthy individuals are in the group. So if one person is slacking,
the members need to tell him to step it up. It wasn’t used that way in our group. One person
really wanted a good grade for the class so he just used the telemetry to watch himself; making
sure no one gets more builds/devTime/commits than him (yes he said “i need more dev time
because i need an A”). I remember we had dinner as a group and one of our group members
didn’t go to dinner. another group members then said “oh if he ups his stats more than mine,
tomorrow I’m gonna hack all day.”

Sad, but true.

• member commit, member dev time

• Curious about trends in dev time, commits.

• Usually MemberDevTime, MemberBuilds, and MemberCommits. Basically just seeing how
everyone was progressing.

• graphs, line trends of other group members

• My status and the status of our group and make sure everyone is doing their part.

• Mostly trends in individual performance, as well as overall project outlook.

• Basically if everyone was putting in the same amount of effort. Also it helped indicate if
everyone is on track. If they have regular activity, then the chances of them on track is
higher.

• Was the coverage, complexity and coupling getting bad?

• I tried to review each telemetry page daily to understand what I could do to improve the
project health and focus efforts.

Question Response

12

Question Response

11. How frequently did you use the Software
ICU? *

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

12. If you used the Software ICU, please check
the vital signs that were useful to you. *

• Coverage

• Complexity

• Coupling

• Churn

• Size

• DevTime

• Commit

• Build

• Test

• None of the above

13. Did you feel the Software ICU colors accurately reflected the health of your project? If not,
why not?

• I felt most of colors accurately reflected the health of the project. For the Coverage data,
since we can write test cases just for increasing of the rates, we cannot assume that the project
is in healthy condition even if the coverage data displayed in green color. However, I think
this is not a problem of hackystat.

• Yes

• The only issue I had with the ICU colors was with the coupling. In both versions of DueDates
we had to add extra classes at the last minute which would cause the coupling ICU to turn
red. I am not sure how to address that because the coupling does need tracking.

• Not really, I don’t think having a high churn amount is necessarily bad. Of course, it’s a
case-by-case thing. For my group, it wasn’t about not committing frequently; we were just
rehashing code because something just didn’t work.

• Yes, reflected accurately on the health of the project. Showed how much coverage we had.

13

• I feel that the Software ICU did accurately reflect the health of my projects. For Due Dates
2.0, which was a longer project, the data was getting increasingly more meaningful as the
trends were over a larger period of time. It is good to look at things like devtime, commits,
coupling, and coverage to see the color and the past trend because i think they really say
something about the current state of the project.

To make it simpler, whenever I knew our project wasn’t doing good and people weren’t
working regularly, the software ICU would have lots of reds and yellows. When I knew the
project was doing better and people were working regularly, there were greens. It makes
sense.

• The ICU was accurate with our project because it showed drastic spikes in all signs. This
reflects our project in poor health.

• Not particularly because a project’s health cannot easily be determined by just measuring
numbers alone. For example, it’s easy to increase coverage, but if a class has nothing but
getters and setters and a toString method, does it really need to be tested? Of course not, but
someone might feel compelled to do it in order to increase coverage and get a better health,
but it’s just a waste of time in my opinion. Also, DevTime is only measured from Eclipse
but that doesn’t measure things such as someone reading a book or looking up websites for
information. It only measures active development in one program, forcing people to only use
whatever IDE’s Hackystat supports. The figures for complexity and coupling are hard to
evaluate too. We want complexity to be low but sometimes it’s unavoidable for it to be high,
and should Hackystat show an absolute cut-off point where the complexity must be below a
certain point for the project to be considered acceptable? Coupling is another one that falls
under this category, if your program relies on a lot of outside libraries, can someone really
determine an absolute value that the project’s coupling must be under?

• Yes.

• maybe

• Coverage: perhaps too sensitive to drops/bounces in coverage. Churn: while you’re working
on a project, churn is going to vary, sometimes a lot. The trend colors were not helpful.

• Yes, I felt it was a relatively healthy project, and this generally showed, in the end. In the
first half the colors reflected not as health of a project, which I’d agree as well. I’m not sure
rising coupling was entirely a bad sign as things went along and functionality was added, as
it was a slow steady rise.

• Sometimes. Hard to determine what will fall into green, red, or yellow.

• Yes definitely.

• It somewhat reflected the quality of our project. Maybe in some dark corner something is not
thoroughly being depicted through the colors. Perhaps a suggestion is to use different color
hues.

• Yes it was pretty accurately reflected.

14

• No, since I did not correctly configure the sensors.

• This is subjective... Usually the colors were spot on, however, they are quick to turn one way
or the other depending on events that are being managed by the team (e.g., large code churns
due to removal of unused code/imported code, etc.).

14. Were you able to use the Software ICU to improve your software’s quality and/or your
team’s process? If so, in what ways? If not, why not?

• We can check how other members are doing for the project through the Software ICU and
this helps a lot especially when we are working on the team project.

• Yes, for tracking if members were working on their tasks. Also how complex the program is
increasing or decreasing.

• In my opinion, it is not clear if the ICU improved our system. Because other tools such as
junit, findbugs, and pmd was easier to use to improve the application.

• If anything, keeping an eye on coverage helped us look out for what was being tested and
what wasn’t. Yes, showed how much coverage we had, and improve on that.

• I think for sure the Software ICU improves team process. More than just keeping people “in
check” when grades are at stake, it provides an accurate way to assess what’s being done and
by whom. Our team got a lot out of checking up on the software ICU and assessing our team
process. It seemed to get better over time.

As far as the software’s quality, I think the Software ICU could be very useful in improving
this. If my project for instance was in the red for complexity and coupling, and there were
some code issues, I could see all this automatically through hackystat. Besides coverage stats
though, my team did not really use the ICU to improve the software’s quality.

• ICU was able to help us because it told us what needs to be focused or corrected.

• Personally, I only found Hudson useful because it’s like running your code on someone else’s
computer to see if your environment is set up differently from a generic machine. I feel that
the data for Hackystat is more something to look at out of curiosity rather than something
to determine how well a project’s status is because it’s hard to base a project’s health based
on numbers alone and it might put unrealistic pressures on the team to make the project
healthy for Hackystat when they can better spend their time developing instead.

• Yes.

• Yes, coverage tells me if we didn’t write enough test cases.

• No. Coverage: already aware from Emma. DevTime, Commit, Build, Test: either team
members did not look at the statistics, or they didn’t care, because their habits did not
change much. Others: not much we could do about the other statistics.

• Yes because able to manage our time and development fairly equally, and also notice spikes
indicating bigger changes or problems.

15

• Yes, shows were we could improve as a group and improve as a programmer.

• Like in my case last time, I saw on Software ICU that I don’t have a data on my BUILD. So
because of that information I know what the problem is and it helped me to find a solution
and figure everything out before it is too late.

• Our project ICU definitely described our lacking and late attempt to improve coverage. Due
to the ICU, we were able to distinguish this fact quick and easy.

• The amount of activity helped us identify who was falling behind. Without offending our
members by outrageously claiming their not working, we could tell by the sensors. Members
can be more self-critical by looking at their individual data compared to the groups.

• Yes, by checking the coverage, complexity and coupling.

• Yes. By targeting coverage, dev time, coupling, and complexity, my team was able to improve
all these into areas that were acceptable to us.

15. Please provide any other feedback you would like regarding Telemetry and the Software
ICU, as well as any suggestions you have on how we can improve the system.

• I do not think the commits, builds, tests should be colored in because it all depends on how
much the user does on the project. Is it possible to show line coverage instead of method
coverage? The software ICU and telemetry was awesome tools in helping out with the project.
It gave me visual stats on the project.

• What I think would be cool is to implement something to view the trend for each category in
larger format but in the same style as the software ICU. I know this is shown on the telemetry
page when you select it to show. However, I would be nice if there was some sort of rollover
function that brought up a slightly larger window with a blown up overall trend. I can see
how this isn’t really needed but I would mostly likely check it a lot if it was there.

A minor thing that I noticed when using the Telemetry page was that when I selected a new
statistic to view, the page would always jump back to the top and I’d have to scroll down each
time. Its not really a biggie, but it makes navigating a bit slower when your going through
all the project statistics.

• Consistent colors for each members can help.

• In addition to everything I mentioned above, it might help to somehow make the sensors
configurable in some way, for example if two people are doing pair programming, there should
be an option to set the sensors to send data for both people. Perhaps complexity can be
measured somehow to only include methods that, say, start with get or set and toString.
This way people aren’t forced to write pointless test cases in order to increase coverage.

• Help page should be provided inside project browser. It should describe how to use it, what
telemetry, what churn is, something like that.

Also your explanation should be simple so that people want to read it. If it is complicated
and long explanation, nobody will read it.

16

• The different color bars and randomness might be fun and interesting, but I think having a
bit more consistent scheme might be better. I would suggest if possible giving each developer
a specific color that they always have during the project, either random, or chosen at the
beginning.

• Does not capture development outside of Eclipse. For example, IMHO, MS Visual Studio
is much better in the capacity as a web development IDE, which the dev time here was not
recorded.

Question Response

16. If I was a professional software developer,
using Hackystat at my job would be: *

• Very feasible

• Somewhat feasible

• Neither feasible nor infeasible

• Somewhat infeasible

• Very infeasible

17. Please provide any other feedback you can on the feasibility of Hackystat in a professional
setting, as well as any suggestions you have on how its feasibility could be improved.

• I think it’s good to have this in a professional environment, cause the employer or client can
check on how the progress of the program is going. With out having to make so much visits
or hovering over workers.

• Cannot think of any off the top of my head. The Software ICU is already great for us
programming students.

• I think Hackystat is definitely feasible in a professional setting, as long as it is supported
in some way. For instance, if a team of developers is working on a project and they are all
for having Hackystat manage project stats, that would be great. If, however, your the only
person on your team that wants to use it, then it would be hard to send data that would
assess team process.

I could see project managers wanting to have Hackystat data to evaluate everyone’s input
into the project, as well as the health of the project. Hackystat, I think, is perfect for new
open source projects if releases are made early and often. It could be essential to seeing the
overall health of the project.

• Overall, I feel like Hackystat would be an interesting tool to gather data to look at for
curiosity’s sake from time to time, but it should not be used as a basis for determining a
project’s health or to determine something such as member contribution. The sensors can

17

only gather information from a few sources and these readings cannot account for a person’s
full contributions to a project. As for determining a project’s health, I do not believe the
sensor readings can provide an accurate measurement because the sensors can only measure
numbers based on algorithms, but it takes a person to really determine how good the code is.

• When I start to use hackystat, I need to get password from you and then eclipse send my
data to your server. Some developers might have concern that hackystat steal source code.

• I think it depends a lot on the culture of job setting. I’m not too sure, but I think I may try
setting it up on my own job site, even if just for myself to see my own trends.

• It is a very useful tool to keep track the health of a project so I would say it is feasible to
have it in a job.

• My only wish is that ICU’s should have a feature to support pair programming. Possibly a
feature to indicate to the system that two people may be working on the same problem on the
same system, rather than two individual machines. You might want to call this “collaborative
mode”, or something along the lines of that. These settings of course should be turned on or
off easily from the developer’s IDE (Eclipse).

• I work in a one person shop, so it would be difficult to say how useful this would be. As a
lone developer, many metrics I am very cognizant of, however, having such a system would
allow me to view those statistics that I do not have a “gut” feeling for. It would be great for
my boss to measure the amount of time I spend on a project however.

3 Interpretation of the 2008 data

3.1 Experimental Limitations

Before drawing any conclusions from this data, it is important to recognize the limitations of this
study. Compared to the limitations associated with previous study in 2003 and 2006, anonymity
is achieved, but others are still unsolved in class evaluation.

First, this data is drawn from a limited sample size of 18 students in software engineering classes
at the University of Hawaii. The subjects therefore have a relatively narrow and homogeneous
background in software development.

Second, the context in which they used the system was a course project. Course projects tend to
be smaller, narrower in scope, and with less pressure on the developers than an industrial context.
It is one thing to get a poor grade for doing a poor job, it is another thing to lose your job for
doing a poor job. In addition, students are not working full-time on the system; the development
project is just one assignment among several.

These are all major limitations on the external validity of the responses. They do not make
the results meaningless, but rather help provide a perspective on how to gain additional evidence
in future that would confirm/disconfirm these initial findings. For example, it would be helpful to
deploy Hackystat in a real software company, and then gather data anonymously from the coders
and managers. Other insights into future research directions will be covered in an upcoming section.

18

3.2 Conclusions regarding Installation/Configuration

The data indicates that eclipse sensor was easy to install. To install Ant sensors were a little more
difficult. The most difficult one is the SVN sensor, which require configuring Hudson, a continuous
integration engine.

A major cause of installation difficulties is the documentation. Though we provided guides for
every component, some students pointed out that the documentation is too distributed and too
long. Some guides are too similar such that slight differences in procedures might not be noticed.
A more straightforward and brief walkthrough or even an auto installation package are desired.

Regarding the collection of data, no significant problems were reported.
Installation of the services(SensorBase, DailyProjectData, Telemetry, etc.) were not evaluated

because the students are not required to configure the services. They were all using the previously
installed and configured public servers.2.

3.3 Conclusions regarding overhead of use

The overhead of collecting data and running Hackystat analyses were moderate. The comments
indicate that the problem of most concern was speed, both of collecting data and of running portfolio
analysis.

3.4 Conclusions regarding sharing development data with other members

Most students felt OK with sharing development data with other members. But three students
had concerns that sharing development data would reveal their programming habits and introduce
too much competition of statical stats, which made them nervous. It is interesting that those three
students are the three with least SICU running count in Figure 3. It is reasonable to infer that
they worked less harder than other students and did not want it to be noticed.

3.5 Conclusions regarding usage and utility

Figure 1, Figure 4 and Figure 3 show the data from system usage logging. We will combine it with
the data from questionnaire to gain insight into Hackystat’s utility. Also while comparing these
two collections of data, we verify that the data is reflecting the true properties of Hackystat.

Data from system logs indicates that Telemetry and Software ICU were frequently used during
the evaluation period. Telemetry is invoked much more frequently than SICU (see Figure 1 and
Figure 3). The Telemetry invocation stream and SICU invocation telemetry stream are quite similar
in “shape”(see Figure 1) that we can confirm drill-down feature of the Software ICU is useful and
contributes to the high use frequency of Telemetry analyses.

When verifying the questionnaire responses in Results form Questionnaire against the log data,
we find that the choices of question 9 and 11 are somehow ambiguous. Though “every day or more”
is surely about how many days you use the analysis, “2-3 times a week” may be understood as
times of invocations. Figure 2 shows data of these two interpretations. If we consider the answers
as “days of use”, the actual use frequencies are much lower than reported, because there are 28
days in the evaluation period but the highest number of days of use is only 18. But if we consider

2SensorBase: http://dasha.ics.hawaii.edu:9876/sensorbase, DailyProjectData: http://dasha.ics.
hawaii.edu:9877/dailyprojectdata, Telemetry: http://dasha.ics.hawaii.edu:9878/telemetry, Pro-
jectBrowser: http://dasha.ics.hawaii.edu:9879/projectbrowser

19

http://dasha.ics.hawaii.edu:9876/sensorbase
http://dasha.ics.hawaii.edu:9877/dailyprojectdata
http://dasha.ics.hawaii.edu:9877/dailyprojectdata
http://dasha.ics.hawaii.edu:9878/telemetry
http://dasha.ics.hawaii.edu:9879/projectbrowser

Figure 1: Usage trends of SICU and Telemetry over time

Figure 2: The count of days when SICU was used along with the total invocation on per student
bias. Each pair of columns represents data of one student. The X axis shows the responses from
questionnaire. VH = every day or more; H = 2-3 times per week; M = once a week; N/A = not
available.

20

the answers as “times of invocations”, the invocation frequencies are more matched to reported
frequencies. However, in either case, the difference of actual usage between students who claim to
use SICU analysis “every day or more” and “2-3 times a week” is not obvious. Though the total
invocation times and days of the first group is higher than the second group, some students of
second group two did not use SICU analysis less frequently than the students of first group. We
think this error is acceptable because the frequency of use is just a remember and is not precise. So
if we blur the boundary between “every day or more” and “2-3 times a week”, and consider them
both as “did use SICU frequently”, most responses match their log data. But three of them fail
the verification. Those three students claimed that they use Software ICU 2 to 3 times a week or
more, but actually only half as much as they claimed.

Figure 3: Analysis count on a per-student basis during the evaluation period. Each pair of columns
represents data of one student.

We also find that though the reported frequency of SICU and Telemetry are similar, Telemetry’s
analysis invocations are in fact much more than SICU’s(see Figure 3). But this matches the native
of these two analyses: SICU shows the overall summary of a project’s health and no need to run
more than once a day, while Telemetry shows detail of a vital sign and would often be run multiple
times in every use.

Both log data(4(b)) and questionnaire responses(Question 10) indicate that Telemetry is mainly
used to see member level analyses, which reflect contribution of each member in the group. The two
most used analyses are MemberDevTime and MemberCommint(see 4(a)). Comparing to Question
12, DevTime and Commit is the first and third vital sign and Coverage is the second. The Coverage
is not of the top use in Telemetry analyses is possibly because it is enough to comprehend it from
SICU and there is no member level coverage analysis.

Response of Queation 12 indicates that process vital signs(DevTime, Commit, Churn, Build and
Test) abstract much more attention than productive vital signs(Coverage, Complexity, Coupling
and Size). Popularity of process vital signs completely exceed all productive vital signs except
Coverage. One reason of this is the comprehensive difficulty of the vital signs. The theoretical

21

(a) Invocations of each Telemetry analysis (b) Comparison of member-level and non-member-
level analyses

Figure 4: Usage of Telemetry Analyses

conception behind those productive vital signs create barrier to interpretation, while process vital
signs are just straight-forward statistics of some development events and easy to understand. How-
ever, there is also a worried that students might paid too much attention on the “fairness” of their
contributions rather than trying to make better program.

While DevTime attract most attention, its accuracy is most doubted. Currently DevTime is
only collected from limited tools. DevTime data about work on other tools or doing research it
is not collected. It makes DevTime highly inaccurate in measuring a member’s work output, and
thus sometime cause unhealthy competition within group partners. Moreover, someone might argue
that work quality, rather than flat work output, is the most significant factor when measuring one’s
contribution.

Regarding Software ICU as a whole, 7 out of 9 vital signs are considered to be useful by at least
half of the respondences and 10 out of 18 responses said the Software ICU was accurately reflecting
the health of their project via colors. 4 responses disagree that was accurate because high and/or
increasing Churn and Coupling are not necessarily bad. Most students thought Hackystat did help
them improve their performance either in programming or teamwork or both.

We can conclude that, though there are still some deficiencies about presentation methods and
potential bias of the data cause by its native or collection, Hackystat does achieve its goal to provide
users useful tools to help them understand and improve their programming procedure.

3.6 Feasibility in a professional software development context

The data indicates that most students thought it was at least somewhat feasible to use Hackystat as
a professional developer. Most comments indicate that Hackystat would be helpful in professional

22

settings. There are some arguments about the potential bias of analysis data of Hackystat that the
statistical data did not accurate enough to exclusively determine a project’s health state.

4 Comparison to the results of 2003 and 2006

4.1 Hackystat in 2008 vs. 2003 and 2006

To usefully compare the data from 2003 and 2006 to the data from 2008, it is necessary to understand
the changes that have been made to the Hackystat system since 2006.

First, in 2007, the Hackystat system underwent a complete rewrite for a new major version.
Hackystat Version 8 is organized as a collection of loosely coupled software services that commu-
nicate using REST architectural principles. The new architecture is much more extensible than
previous versions. Upon it we built the SICU analysis, which is almost impossible in previous
version because it involves large scale of data. We also built a new web interface called Project
Browser, which we believe it is the best UI in Hackystat history.

Second, new sensors and metrics are introduced since 2006. Beside the seven metrics used in
2006 (Coverage, Code Issues, DevTime, Commit, Build, Unit Test, LOC), three new metrics are
introduced to the evaluation: Cyclomatic Complexity(from JavaNCSS), Coupling(from Dependen-
cyFinder) and Churn(from Subversion).

Third, the main analysis used by students are changed since 2006. In 2003, the students mainly
used the course project analysis that presented summaries of the individual team project to-date
metric data and the comparisons of all of the course projects. In 2006, the data was presented
by the Software Project Telemetry system, which show trends over time. In 2008, the Telemetry
service was still available to them. Upon it and the DailyProjectData service, we built a new service
called Software Intensive Care Unit(SICU) to present the data. It combined the functionalities from
the systems in 2003 and 2006 that presented both to-date data and trends of the projects. The
interface, which built upon Wicket, is more user-friendly and easy to interpret.

Fourth, in 2003 the students had to manually install the sensors and in 2006, they used hack-
yInstaller, a GUI system, to simplify client-side installation. In 2008, because of the complete
re-implementation of the system, they had to manually install the sensors again.

Fifth, in 2003, the principal analysis provided a tabular representation of “to date” values for
one or more of the course projects, as illustrated below:

23

In 2006, the principal analysis was based upon software project telemetry. The following image
shows one of approximately a dozen different charts that the students would use to analyze and
interpret their collected data:

In 2008, the principal analysis was the SICU, which presented the both the to-date metric data
and trends via spark-line in tabular form, as illustrated below:

24

In order to facilitating the interpretation of the data, the numeric data and spark-line trends
are colored according to the state it represent. The Software ICU represents the first analysis in
the history of Hackystat where an opinion (red, yellow, green) was being provided about the data.

4.2 Comparison of the empirical results

The next section presents a comparison of the data from 2003, 2006 and 2008. All data has been
converted to percentages in order to support comparative analysis despite differences in the number
of participants. Given the small sample size, we do not believe that statistical tests for significance
are useful. Thus, any differences claimed between the data sets based upon the “shape” of the
histograms are tentative and await statistical confirmation.

Only the data regarding installation/configuration, overhead of use and future feasibility are
compared because the other part of the questionnaire was changed significantly from the 2006
evaluation.

4.2.1 Installation/Configuration

As the students were not required to configure the Hackystat services, there is no comparison of
configuration difficulties in 2008.

Question Response

1. Installing the Eclipse IDE sensor was:
• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

25

2. Installing the Ant sensors (JUnit, SCLC,
Emma, etc.) was:

• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

The empirical data indicates that the installation difficulties of both Eclipse sensor and Ant
sensors increased in 2008, especially the Ant sensors. Compared to Hackystat in 2006, the major
difference in installation is the absence of the installer. The distributed documentation instead of
a single user manual is another contributor to the increase in difficulty. Finally, the setup of SVN
sensor and daily build task that collects productive data involves the configuration of Hudson and
thus further increase the installation/configuration difficulty.

4.2.2 Overhead of Use

Question Response

4. The amount of overhead required to col-
lect Hackystat data (after successful installa-
tion and configuration of sensors) was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

26

Question Response

5. The amount of overhead required to run
Hackystat analyses was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

It is surprise that the overhead of use is considered to be higher in 2008. However, the major
contributor is different.

In 2003 and 2006, Ant tasks had to be executed manually everyday in order to ensure no days
without data, and it was the major contributor to the overhead of collecting data. In 2008, no daily
manual work is required, daily sensor data is collected by the auto daily build in Hudson. However,
students complained that the execution time of Ant builds are too long and they considered this
to be the major overhead of collecting data. But in fact, running Ant builds were not required by
collecting sensor data. Instead, it is a part of the practice of agile development in order to verify
the correctness of the code before committing to repository. It was introduced to them along with
Hackystat, and this might be the reason that students got confused.

After the overhead of running Hackystat analyses increased slightly in 2006, it further increased
in 2008. But there is no feedback about what factor lead to this high overhead. One of the major
factors might be the processing time of SICU analysis, which usually took several minutes to finish.
4.2.3 Future Feasibility

Question Response

16. If I was a professional software developer,
using Hackystat at my job would be: *

• Very feasible

• Somewhat feasible

• Neither feasible nor infeasible

• Somewhat infeasible

• Very infeasible

The data indicates that student feelings toward “professional feasibility” increased since 2006
and was the highest among the three evaluations. It is an interesting finding because both installa-

27

tion/configuration difficulties and overhead of use increased since 2006. This might be a reflection
of increase in utility.

5 Future Directions

As the previous section indicates, installation and performance are the major factors that stop
users from adopting Hackystat to their daily development. The data accuracy and representation
are also need to improve. The following sections will describe some ideas of further enhancement.

5.1 Installer

The installation difficulty is the primary barrier for new users to Hackystat. It should not be
too difficult to implement one, especially it was implemented before. Hackystat will gain much
free credits from a installer because it will boost the increase in user population and make it less
Hackystat-expert only. For users that are not familiar with writing Ant tasks, the installer should
also provide a set of templates of Ant build tasks that collect sensor data.

5.2 Performance of Ant Build Tasks

Though there is nothing we can do to improve the performance of the tools used in Ant builds,
there is an improvement we can make. That is to reduce the execution times of unit tests to one
in verification build. Currently the verification.build.xml, which is commonly used as template for
new projects, executes the unit tests twice, one for JUnit sensor data and the other for EMMA
sensor data. While the unit tests consume most of the execution time of the verification build, it
is a great waste of time. And it is possible to achieve.

5.3 Performance of Analysis

Beside the algorithms to generate the analyses, the REST API is the major cost in processing. It
is based on HTTP communication, which is expensive with small piece of data. Thus to reduce the
HTTP calls(same as reduce the REST API calls) or , even better, to replace it with direct memory
communication in possible environment will be a solution. But we will surely not eliminate the
REST API because its the principal contributor to Hackystat’s flexibility.

5.4 Data Accuracy

The DevTime is among the most popular metrics. However, it is far from accurate to measure a
developer’s effort. However, there are too many tools a developer can use to build sensor for each
of them. Furthermore, some developing effort is not even made with a computer, such as reading
papers. One way to compensate the automatic sensors is to provide a self-report tool for developers
to report their effort manually. Though users can cheat on their reports, so can they on a data
sensor.

The Coupling is now too sensitive to introduction of new package, thus does not effectively
show the structural complexity of the system.

28

5.5 Data Presentation in SICU

There are many place that data presentation can be improved. They include, but are not restricted
to following ideas.

First, for better present Coupling data, it should provide a coloring method that classify values
within a smaller range to be good, values within a bigger range to be average, and values out of
range to be bad. The trend will be preferred to be stable. Vibrate within average range will be
average, and vibrate out of average range will be bad.

Second, not to classify the values of some metrics. Metrics such as complexity and coupling,
the preference is know to be lower, but good or bad of a certain is not clear. In this case, the value
is better not colored, otherwise it will cause confusion or suspicion of the metric.

Third, SICU can provide an overall health rating of each project, based on their metrics. It will
be a fussy rating like five stars, and user will be able to choose correspondent metrics and their
weights. It will be more useful when the number of projects become bigger.

References

[1] Philip M. Johnson. Results from the 2003 classroom evaluation of Hackystat-UH. Technical
Report CSDL-03-13, Department of Information and Computer Sciences, University of Hawaii,
Honolulu, Hawaii 96822, December 2003.

[2] Philip M. Johnson. Results from the 2006 classroom evaluation of Hackystat-UH. Technical
Report CSDL-07-02, Department of Information and Computer Sciences, University of Hawaii,
Honolulu, Hawaii 96822, December 2006.

29

	Methodology
	Results form Questionnaire
	Interpretation of the 2008 data
	Experimental Limitations
	Conclusions regarding Installation/Configuration
	Conclusions regarding overhead of use
	Conclusions regarding sharing development data with other members
	Conclusions regarding usage and utility
	Feasibility in a professional software development context

	Comparison to the results of 2003 and 2006
	Hackystat in 2008 vs. 2003 and 2006
	Comparison of the empirical results
	Installation/Configuration
	Overhead of Use
	Future Feasibility

	Future Directions
	Installer
	Performance of Ant Build Tasks
	Performance of Analysis
	Data Accuracy
	Data Presentation in SICU

