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Chapter 1

Introduction

1.1 Motivation

A software process is a set of activities performed in order to design, develop and maintain

software systems. Examples of such activities include design methods; requirements collec-

tion and creation of UML diagrams; requirements testing; and performance analysis. The

intent behind a software process is to structure and coordinate human activities in order to

achieve the goal - deliver a software system successfully.

Much work has been done in software process research resulting in a number of industrial

standards for process models (CMM, ISO, PSP etc. [10]) which are widely accepted by many

institutions. Nevertheless, software development remains error-prone and more than half of

all software development projects ending up failing or being very poorly executed. Some of

them are abandoned due to running over budget, some are delivered with such low quality

or so late that they are useless, and some, when delivered, are never used because they do

not fulfill requirements. The cost of this lost effort is enormous and may in part be due to

our incomplete understanding of software process.

There is a long history of software process improvement through proposing specific pat-

terns of software development. For example, the Waterfall Model process proposes a sequen-

tial pattern in which developers first create a Requirements document, then create a Design,

then create an Implementation, and finally develop Tests. The Test Driven Development

process proposes an iterative pattern in which the developer must first write a test case,

then write the code to implement that test case, then refactor the system for maximum

clarity and minimal code duplication. One problem with the traditional top-down approach

to process development is that it requires the developer or manager to notice a recurrent
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pattern of behavior in the first place [10].

In my research, I will apply knowledge discovery and data mining techniques to the

domain of software engineering in order to evaluate their ability to automatically notice

interesting recurrent patterns of behavior. While I am not proposing to be able to infer a

complete and correct software process model, my system will provide its users with a formal

description of recurrent behaviors in their software development. As a simple example,

consider a development team in which committing code to a repository triggers a build of

the system. Sometimes the build passes, and sometimes the build fails. To improve the

productivity of the team, it would be useful to be aware of any recurrent behaviors of the

developers. My system might generate one recurrent pattern consisting of a) implementing

code b) running unit tests, c) committing code and d) a passed build: i → u → c → s, and

another recurrent pattern consisting of a) implementing code, b) committing code, and c) a

failed build: i → c → f . The automated generation of these recurrent patterns can provide

actionable knowledge to developers; in this case, the insight that running test cases prior to

committing code reduces the frequency of build failures.

Although the latest trends in software process research emphasize mining of software

process artifacts and behaviors [23] [45] [39] [45], to the best of my knowledge, the approach

I am taking has never been attempted. This may be partly due to the lack of means of

automated, real-time data collection of fine-grained developer behaviors. By leveraging the

ability of the Hackystat system [25] to collect such a fine grained data, I propose to extend

previous research with new knowledge that will support improvements in our understanding

of software process.

1.2 Proposed contribution

In summary, the proposed contributions of my research will include:

• the implementation of a system aiding in discovery of novel software process knowledge

through the analysis of fine-grained software process and product data;

• experimental evaluation of the system, which will provide insight into its strengths and

weaknesses;

• the possible discovery of useful new software process patterns.

4



1.3 Roadmap

This proposal has the following organization:

• Chapter 2 presents a review of the literature related to software process discovery.

Methods discussed in the Section 2.1 are high-level frameworks which are used for

software process inference from abstracted process artifacts. Section 2.2 presents up

to date relevant progress in the mining of software repositories. Section 2.3 presents a

review of research related to construction of the symbolic time-point and time-interval

series and pattern discovery from a temporal symbolic data.

• Chapter 3 describes the requirements for the system and presents the current state of

my Software Trajectory framework for automated software process discovery.

• Chapter 4 outlines the planned experimental evaluation of my research and presents

preliminary results of the pilot study.

• Chapter 5 discusses the anticipated contributions in greater detail and presents the

estimated timeline.
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Chapter 2

Related work

The purpose of this chapter is to review related work in software process discovery and

unsupervised temporal pattern mining. These two research areas provide a basis for my

research. I am planning to use unsupervised temporal pattern mining methods for the

automated discovery of recurrent behavioral patterns from the stream of low-level process

and product artifacts generated by the software process. These patterns, in turn, will be

used for software process discovery.

Discovery of recurrent behaviors in software process discussed in the Section 2.1. Min-

ing recurrent evolutionary patterns from software repositories discussed in the Section 2.2.

General algorithms of temporal data mining discussed in Section 2.3.

2.1 Software process discovery

Although process mining in the business domain is a well-established field with much software

developed up to date (ERP, WFM and other systems), “Business Process Intelligence” tools

usually do not perform process discovery and typically offer relatively simple analyses that

depend upon a correct a-priori process model [52] [3]. This fact restricts direct application

of business domain process mining techniques to software engineering, where processes are

usually performed concurrently by many agents, are more complex and typically have a

higher level of noise. Taking this fact in account, I will review only the approaches to the

mining for which applicability to software process mining was expressed.

Three papers are reviewed in this section:

• Cook & Wolf in [13] discuss an event-based framework for process discovery based on

grammar inference and finite state machines. The authors directly applied their frame-
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work to Software Configuration Management (SCM) logs demonstrating satisfactory

results.

• Van der Aalst et al. [52] demonstrate the applicability of Transition Systems and

labeled Petri nets to process discovery in general. While this paper does not apply its

results directly to software process, the subsequent work by van der Aalst and Rubin

[45] discusses software process application.

• The third paper, by Jensen & Scacchi [23], while not presenting a pattern mining

strategy, describes an interesting framework built upon an universal generic meta-

model and specific to the observed processes models which are iteratively built and

revised during case studies. The value of this paper is in the demonstration of the

importance of the correct mapping between process artifacts and process entities as

well as a demonstration of iterative, human-involved technique of process revision which

is emphasizing importance of pre-existing domain knowledge in the effective pruning

of the search space.

As pointed by the authors in the reviewed papers, the proposed methods have difficulties

dealing with concurrency, which, in turn, is inevitable in the software process usually per-

formed by many agents. Much successive work has been done extending reviewed approaches

to the concurrent processes. Among others, Weijters & van der Aalst in [59] propose heuris-

tics to handle concurrency and noise issues, while van der Aalst et al. in [53] discuss a genetic

programming application.

2.1.1 Process discovery through Grammar Inference

Perhaps, the research most relevant to my own was done by Cook & Wolf in [13]. The authors

developed a “process discovery” techniques intended to discover process models from event

streams. The authors did not really intend to generate a complete model, but rather to

generate sub-models that express the most frequent patterns in the event stream. They

designed a framework which collects process data from ongoing software process or from

history logs, and generates a set of recurring patterns of behavior characterizing observed

process. In this work they extended two methods of grammar inference from previous work:

purely statistical (neural network based RNet) and purely algorithmic (KTail) as well as

developing their own Markovian method (Markov).

Process discovery, in the author’s opinion, resembles the process of grammar inference,

which can be defined as the process of inferring a language grammar from the given set
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Figure 2.1: Process discovery through the grammar inference: panel a) a sample event stream
(simple process involving three types of events: Edit, Review, and Checkin); and FNA results
obtained by applying three methods of process discovery from Cook & Wolf [13].

(sample) of sentences in this language. In the demonstrated approach, words of the language

are atomic events of the dynamic process, whether sentences built from such words, are

describing the behavior of a process. Consequently, the inferred grammar of that language

is the formal model of the process. Cook & Wolf expressed such grammars as Finite State

Machines (FSMs) and implemented a software tool for the mining of the software process.

This tool was successfully tested in an industrial case study.

The first method extended by the authors, the neural-network based grammar inference,

RNet algorithm, defines a recurrent neural network architecture which is trained by the

sequences of events. After training, this neural net is able to characterize a current system

state by looking on past behavior. The authors extract the FSM from the trained neural

network by presenting different strings to it and extracting the hidden neurons activity

through observations. Due to the nature of Neural Net, closely related activation patterns

are clustered into the same state; therefore, by noting the current pattern, the input token,

and the next activation pattern, transitions are recorded and compiled into the inferred FSM.

The second method investigated, is a purely algorithmic KTail method, which was taken

from the work of Biermann & Feldman [7]. The idea is that a current state is defined by

what future behaviors can occur from it. The future is defined as the set of next k tokens.

By looking at a window of successor events, the KTail algorithm can build the equivalence

classes that compose the process model. The authors extensively modified the original KTail
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algorithm improving the folding in the mined model making to make it more robust to noise.

The Markov based method developed by the authors is based on both algorithmic and

statistical approaches. It takes to account past and future system behavior in order to

guess the current system state. Assuming that a finite number of states can define the

process, and that the probability of the next state is based only on the current state (Markov

property), the authors built a nth-order Markov model using the first and second order

probabilities. Once built, the transition probability table corresponding to the Markov model

is converted into FSM which is in turn reduced based on the user-specified cut-off threshold

for probabilities.

The authors implemented all three of these algorithms in a software tool called DaGama

as a plugin for larger software system called Balboa [11]. By performing benchmarking, Cook

& Wolf found that the Markov algorithm was superior to the two others. RNet was found

to be the worst of the three algorithms.

Overall, while having some issues with the complexity of produced output and noise han-

dling, the authors proved applicability of implemented algorithms to real-world process data

by demonstrating an abstraction of the actual process executions and capturing important

properties of the process behavior. The major backdraw of the approach, as stated by the

authors, lies in the inability of the FSMs to model concurrency of processes which limits its

applicability to the software development process. Later, Cook et al. in [12] addressed this

limitation.

2.1.2 Incremental Workflow Mining with Petri Nets

Another set of findings relevant to my research approach was developed by Rubin et al.

[45] and van der Aalst et al. [52] and is called incremental workflow mining. The authors

not only designed sophisticated algorithms but built a software system using a business

process mining framework called ProM by van Dongen et al. [54] which synthesizes a Petri

Net corresponding to the observed process. The system was tested on SCM logs and while

the process artifacts retrieved from the SCM system are rather high-level, the approach

discussed is very promising for the modeling of software processes from the low-level product

and process data.

Within the incremental workflow mining framework, the input data from the SCM audit

trail information is mapped to the event chain which corresponds to the software process

artifacts. The authors call this process abstraction on the log level which is implemented as

a set of filters which not only aggregates basic events into single high-level entities but also
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Figure 2.2: Illustration of the “Generation and Synthesis Approach” from [54]: a) Transition
System with regions shown; b),c) Petri Nets synthesized from the Transition System.

removes data irrelevant to the mining process (noise).

The event chain constructed through the abstraction is then treated with the Generate

part of the “Generate and Synthesis” [52] algorithm in order to generate a Transition System

which represents an ordered series of events. This algorithm looks at the history (prefix)

and the future (suffix) sequences of events related to the current one in order to discover

transitions. When applied to the abstracted log information, the algorithm generates a rather

large Transition System graph where edges connect to abstracted events. This transition

system is then successively simplified by using various reduction strategies such as “Kill

Loops”, “Extend”, “Merge by Output” and others; it is possible to combine these reduction

strategies in order to achieve a greater simplification.

At the last step of the incremental workflow mining approach, Transition Systems are

used to Synthesize labeled Petri nets (where different transition can refer to the same event)

with the help of “regions theory” [14]. As with the Transition System generation, the authors

investigate many different strategies of Petri nets synthesis, showing significant variability

in the results achieved. (see Figure 2.2).

The significant contribution of this research is in the generality of the method. It was

shown that by tuning the “Generate” and “Synthesize” phases it is possible to tailor the

algorithm to a wide variety of processes. In particular, as mentioned before, Rubin et al.

successfully applied this framework to the SCM logs analysis.
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Figure 2.3: Example of the reference model mapping from [23].

2.1.3 Reference model for Open Source Software Processes Dis-

covery

Jensen & Scacchi in [23] take a somewhat different approach from the previously discussed

research efforts. The authors are follow a top-down approach and do not try to build a

software process model from available process artifacts. Instead, they try to develop a

software process reference model by iteratively refining mapping between observed artifacts

and the model entities.

The proposed software process reference model is a layer which provides a mapping

from the underlying recognized software process artifacts into a higher level software-process

meta-model by Mi & Sacchi [40]. The iterative revision of the reference model vocabulary

of mapped terms (Figure 2.3) is performed through case studies. During such a study, the

observed process artifacts such as SCM logs, defect reports and others are queried with terms

from the reference model pulling correlated artifacts which are revised and curated by the

process expert and lead to the further revisions of the terms taxonomy on the next iteration.

In the relation to my research, I am envisioning the application of such iterative “meta-

model driven approach” for characterization of the discovered recurrent patterns with un-

known generative phenomena. The creation of the low-level recurrent patterns taxonomy

through successive mapping into the meta-model assures from a “nonsense patterns” discov-

ery.

2.2 Mining software repositories

According to Kagdi et al. [27] the term mining software repositories (MSR) “... has been

coined to describe a broad class of investigations into the examination of software reposito-

ries.” The “software repositories” here refer to various sources containing artifacts produced
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by software process. Examples of such sources are version-control systems (CVS, SVN, etc.),

requirements/change/bug control systems (Bugzilla, Trac etc.), mailing lists archives and so-

cial networks. These repositories have different purposes but they support a single goal - a

software change which is the single unit of the software evolution.

In the literature, software change defined as an addition, deletion or modification of any

software artifact such as requirement, design document, test case, function in the source code,

etc. Typically, software change is realized as the source code modification; and while version

control system keeps track of actual source code changes, other repositories track various

artifacts (called metadata) about these changes: a description of a rationale behind a change,

tracking number assigned to a change, assignment to a particular developer, communications

among developers about a change, etc.

Researchers mine this wealth of data from repositories in order to extract relevant in-

formation and discover relationships about a particular evolutionary characteristic. For

example, one may be interested in the growth of a system during each change, or reuse of

components from version to version. In this section I will review some MSR research liter-

ature which is relevant to my research and based on the mining of temporal patterns from

SCM audit trails.

2.2.1 Mining evolutionary coupling and changes

One of the approaches in MSR mining relevant to my research is built upon mining of the

simultaneous changes occurring in software evolution. This type of mining considers changes

in the code within a short time-window interval which occur recurrently. Such changes are

revealing logical coupling within the code which can not be captured by the static code

analysis tools. This knowledge allows researcher and analysts predict the required effort and

impact of changes with a higher precision.

Mining of evolutionary coupling is typically performed on different levels of code abstrac-

tion: Zimmermann et al. in [64] discuss mining of version archives on the level of the lines of

source-code using annotation graphs; Ying et al. in [62] discuss mining of version archives for

co-change patterns among files by employing association rule mining algorithm, and refining

results by introducing interestingness measure, which based on the call and usage patterns

along with inheritance; Gall et al. in [51] use a window-based heuristics on CVS logs for

uncovering logical couplings and change patterns on the module/package level. Kim et al. in

[33] taking a different approach by mining function signature change and introducing kinds

of signature changes and its metrics in order to understand and predict future evolution
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patterns and aid software evolution analysis.

The fine-grain mining of changes on the level of lines of source code is usually implemented

with the use of diff utilities family which report differences between versions of the same file.

For capturing temporal properties the sliding-window approach is used if mining CVS logs,

while Subversion is able to report co-changed filesets (change-sets). Use of the information

extracted by parsing issue/bug tracking logs and developer comments from version control

logs allows to capture co-occurring changes with higher precision.

What is common among all this work is that while researchers use different sources

and abstraction levels of information, they are extracting only the relevant to a specific

question data (using filters and taxonomy mappings) and compose data sets suitable for

KDD algorithms. In order to refine and classify (prune) reported results, various support

functions proposed.

The main contribution of this type of mining is in the discovery of patterns in software

changes which are improving our understanding of the software and allowing estimation of

effort and impact of new changes with higher precision.

2.2.2 Ordered change patterns

A step ahead in the analysis of co-occurring changes in source code entities was shown by

Kagdi et al. in [28]. The authors investigated a problem of mining ordered sequences of

changed files from change-sets. Six heuristics (Day, Author, File, Author-date, Author-file,

and Day-file) based on the version control transaction properties were developed and imple-

mented. Abstracted sequences were mined with Apriori algorithm (see 2.3.10) discovering

recurrent sequential patterns. The authors proposed a higher specificity and effectiveness of

such approach to software change prediction than by using convenient (un-ordered) change

patterns mining.

2.2.3 Usage patterns

Another interesting approach for MSR, relevant to my work, is the mining of usage patterns

proposed by Livshits & Zimmermann in [38]. In this work, the authors approach a problem

of finding violations of application-specific coding rules which are ultimately responsible for a

number of errors. They designed approach to find “surprise patterns” (see Subsection 2.3.7)

of the API and function usage in SCM audit trail by implementing a preprocessing of the

functional calls and mining aggregated data with a customized Apriori algorithm (see 2.3.10)
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implementation. By considering past changes and bug fixes, authors were able to classify

patterns into three categories: valid patterns, likely error patterns, and unlikely patterns.

Candidate patterns found with Apriori algorithms were considered to be a valid pattern if

they were found a specified number of times and an unlikely patterns otherwise. Similarly,

if a previously labeled as valid pattern was later violated a certain number of times, it was

considered as an error pattern. The authors validated their approach on mining publicly

available repositories effectively reporting error patterns.

2.3 Temporal data mining

My research in software process discovery mainly rests on the mining of recurrent behavioral

patterns from a representation of software processes as a temporal sequences of events per-

formed by individual developers or automated tools with or without concurrency. As we saw

in the previous sections of this Chapter, it is possible not only to infer the known high-level

processes from observing low-level artifacts, but also to discover novel processes through the

use of a unsupervised process mining techniques.

In my research, the collection of development artifacts is performed by Hackystat, a

framework for automated software process and product metrics collection and analysis. The

event streams provided by Hackystat are very rich in information. They provide temporal

data about atomic events, such as invoking of a build tool or performing a test, along with

a great variety of process and product metrics such as cyclomatic complexity of the code, or

amount of effort applied to software development and many other. It is possible to retrieve

other very low-level artifacts such as buffer transfers within the IDE editor or background

compilation activities. All of these artifacts characterize the dynamic behavior of a software

process in great detail.

In order to perform analyses in my system, I am extracting the necessary process data

with a desired granularity from the Hackystat and converting it into a symbolic representa-

tion by performing a direct mapping based on the taxonomy of events or by approximating

telemetry streams (time-series) with Piecewise Aggregate Approximation (section 2.3.1) and

Symbolic Aggregate approXimation (section 2.3.2). This symbolic representation of the ob-

served software processes are used in the Software Trajectory analyses which build upon

Symbolic Temporal Data Models (section 2.3.4), Temporal Concepts (section 2.3.3) and

Temporal Operators (section 2.3.6).

Section 2.3.7 defines temporal patterns of motif and surprise along with discussing rel-
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evant pattern search algorithms and data structures used for the indexing. Section 2.3.10

presents AprioriAll algorithm for unsupervised pattern mining.

2.3.1 Piecewise Aggregate Approximation (PAA)

According to Yi & Faloutsos [61], most of the prior research in the time series indexing was

centered around the Euclidean distance (L2) applied to time sequences, where the method

proposed by the authors enable efficient multi-modal similarity search. Supporting the claim,

the authors explain some of pitfalls of previously published spectral-decomposition methods

such as DFT, DCT, SVD etc. whose core algorithm employs Euclidean distance based

metrics over a set of transform coefficients is shown to be inefficient over other distance

functions.

The proposed method performs a time-series feature extraction based on segmented

means. Given a time-series X of length n transformed into vector X̄ = (x̄1, ..., x̄M) of

any arbitrary length M ≤ n where each of x̄i is calculated by the following formula:

x̄i =
M

n

(n/M)i
∑

j=n/M(i−1)+1

xj (2.3.1.1)

This simply means that in order to reduce the dimensionality from n to M , we first divide

the original time-series into M equally sized frames and secondly compute the mean values

for each frame. The sequence assembled from the mean values is the PAA transform of the

original time-series. It was shown by Keogh et al. that the complexity of the PAA transform

can be reduced from O(NM) (2.3.1.1) to O(Mm) where m is the number of sliding windows

(frames). The satisfaction of the transform to a bounding condition in order to guarantee

no false dismissals was also shown by Yi & Faloutsos for any Lp norms and by Keogh et al.

[30] by introducing the distance function:

DPAA(X̄, Ȳ ) ≡

√

n

M

√

√

√

√

M
∑

i=1

(x̄i − ȳi) (2.3.1.2)

and showing that DPAA(X̄, Ȳ ) ≤ D(X, Y ).
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Figure 2.4: The illustration of the SAX approach taken from [37] depicts two pre-determined
breakpoints for the three-symbols alphabet and the conversion of the time-series of length
n = 128 into PAA representation followed by mapping of the PAA coefficients into SAX
symbols with w = 8 and a = 3 resulting in the string baabccbc.

2.3.2 Symbolic Aggregate approXimation (SAX)

Symbolic Aggregate approXimation was proposed by Lin et al. in [37]. This method ex-

tends the PAA-based approach, inheriting algorithmic simplicity and low computational

complexity, while providing satisfiable sensitivity and selectivity in range-query processing.

Moreover, the use of a symbolic representation opens the door to the existing wealth of data-

structures and string-manipulation algorithms in computer science such as hashing, regular

expression pattern matching, suffix trees etc.

SAX transforms a time-series X of length n into a string of arbitrary length ω, where

ω << n typically, using an alphabet A of size a ≥ 2. The SAX algorithm consist of two steps:

during the first step it transforms the original time-series into a PAA representation and this

intermediate representation gets converted into a string during the second step. Use of

PAA at the first step brings the advantage of a simple and efficient dimensionality reduction

while providing the important lower bounding property as shown in the previous section.

The second step, actual conversion of PAA coefficients into letters, is also computationally

efficient and the contractive property of symbolic distance was proven by Lin et al. in [36].

Discretization of the PAA representation of a time-series into SAX is implemented in a

way which produces symbols corresponding to the time-series features with equal probability.

The extensive and rigorous analysis of various time-series datasets available to the authors

has shown that normalized by the zero mean and unit of energy time-series follow the Normal

distribution law. By using Gaussian distribution properties, it’s easy to pick a equal-sized

areas under the Normal curve using lookup tables [35] for the cut lines coordinates, slicing

the under-the-Gaussian-curve area. The x coordinates of these lines called “breakpoints” in
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Figure 2.5: The visual representation of the two time-series Q and C and three distances
between their representation: Euclidean distance between raw time-series (A), the distance
defined for PAA coefficients (B) and the distance between two SAX representations (C).
(The figure taken from [37] as well)

the SAX algorithm context. The list of breakpoints B = β1, β2, ..., βa−1 such that βi−1 < βi

and β0 = −∞, βa = ∞ divides the area under N(0, 1) into a equal areas. By assigning a

corresponding alphabet symbol alphaj to each interval [βj−1, βj), the conversion of the vector

of PAA coefficients C̄ into the string Ĉ implemented as follows:

ĉi = alphaj , iif c̄i ∈ [βj−1, βj) (2.3.2.1)

SAX introduces new metrics for measuring distance between strings by extending Eu-

clidean and PAA (2.3.1.2) distances. The function returning the minimal distance between

two string representations of original time series Q̂ and Ĉ is defined as

MINDIST (Q̂, Ĉ) ≡

√

n

w

√

√

√

√

w
∑

i=1

(dist(q̂i, ĉi))2 (2.3.2.2)

where the dist function is implemented by using the lookup table for the particular set of

the breakpoints (alphabet size) as shown in Table 2.1, and where the singular value for each

cell (r, c) is computed as

cell(r,c) =







0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c)−1, otherwise
(2.3.2.3)
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a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table 2.1: A lookup table used by the MINDIST function for the a = 4

As shown by Li et al., this SAX distance metrics lower-bounds the PAA distance, i.e.

n
∑

i=1

(qi − ci)
2 ≥ n(Q̄ − C̄)2 ≥ n(dist(Q̂, Ĉ))2 (2.3.2.4)

The SAX lower bound was examined by Ding et al. [16] in great detail and found to be

superior in precision to the spectral decomposition methods on bursty (non-periodic) data

sets.

2.3.3 Symbolic series, temporal models, concepts, and operators

The SAX transformation procedure described in the previous section yields symbolic time-

series based on the real-valued data. Having such a symbolic representation (also called in

the literature a symbolic temporal data) is very advantageous compared to the real-valued

data due to the many algorithms available for the string processing. Moreover, having

homogeneous symbolic series corresponding to low-level process artifacts combined with the

symbolic event streams from the SCM or bug tracking system creates a rich data field for

in-depth software process analysis. In following subsections I will review symbolic temporal

data models, temporal concepts and operators.

2.3.4 Temporal data models

Mörchen aggregates much work in the field of data mining from symbolic temporal data in

[41]. Two figures taken from this report (Figure 2.6) depict a hierarchy of time-points (left

panel) and time-intervals (right panel) data models, concepts and operators.

While the time-points data model is intuitive and resembles the actual real-valued time

series, the time-intervals temporal data model is built upon the concept of duration which is

a repetition of the property over several time-points. Time-intervals are continuous groups

of discrete time instants and some of the algorithms and applications operate with this
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Figure 2.6: The temporal concepts and operators from [41] for both: time point and time
interval data models.

data type rather than individual points. Time-intervals essentially are sets of two or more

continuous points and two successive time points define a minimal interval which starts at

the earlier point and continues to the latter point inclusively. Allen [4] says: “In English,

we can refer times as points or as intervals...” giving next two examples: “We found the

letter at twelve noon.” and “We found the letter while John was away.” implying temporal

relations in the latter.

2.3.5 Temporal concepts

The concept of concurrency, as described by Mörchen, explains the closeness of two time-

points in time without considering their ordering, - a coincidence of events in time is the

most important property. The synchronicity is a special case of concurrency where events

occur synchronously in time.

The order, and synchronicity concepts in the time intervals model are analogous ones in

the time points model, whether the time intervals coincidence describes an intersection of

intervals in time.

2.3.6 Temporal operators

The time point operators from the Figure 2.6: before, after and equals precisely define the

relation of points in time. The close operator is a “fuzzy extension for temporal reasoning”

since it encapsulates other three. Note that some threshold can be used to relax or constrain

these operators, for example we can consider points equal to each other even if they are less

than k time units apart.
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Figure 2.7: The Allen’s thirteen basic relations (from [5]) sorted by the degree to which a

begins and later ends relatively to b. All but equals can be inverted.

The Time intervals operators are more complex and have been examined by many re-

searchers. In 1983, Allen [4] proposed thirteen basic relations between time intervals which

are distinct, exhausting and qualitative. In his work Allen showed that these thirteen re-

lationships are sufficient to model the relationship between any two intervals. Figure 2.7

depicts Allen’s relations. These relations and the operations on them form Allen’s Interval

Algebra.

Despite the exhausting property of Allen’s relations, while working on multimedia data

analysis, Snoek & Worring [49] discovered two practical problems: first is that “in video

analysis, exact alignment of start- or end- points seldom occurs due to noise... ” and the

second is that “two time intervals will always have a relation even if they are far apart in

time...”. In order to resolve these issues, the authors had to relax a set of Allen’s relations

and introduce a new NoRelation relation. This new relaxed set of 14 relations named TIME

(Time Interval Multimedia Event) was built with two time-interval parameters: T1 for the

neighborhood in which impresize boundary segments considered synchronous and T2 which

assigns two intervals as NoRelation if they are more than T2 time apart.

Freksa [17] proposes even more general approach for interval reasoning based on the

relations between semi-intervals arguing that “semi-intervals are rather natural entities both

from a cognitive and from a computational point of view”. Freksa introduces ten operators

(Figure 2.8) which fully exploit incomplete inferences and knowledge about events: “... we

may know that a certain event Y did not start before a given event X, but we do not

know if X and Y started simultaneously or if Y started after X.” This approach easies

representation of incomplete knowledge by simpler formulas instead of long disjunctions of

Allen’s algebra. Two intervals can be related by their start points with younger, older and

head to head operators. The operators survives, survived by and tail to tail are defined by

using end points of each interval. Based on the relation between a start point of one interval

and an end point of the other precedes, succeeds and born before death of with inverse died

after birth of operators defined.

Freksa combined basic operators introducing contemporary of relation, younger contem-
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Figure 2.8: Panel a): Freksas semi-interval relations between the intervals A and B with
inverse operators in italics. Panels b), c), d): Alternative interval operators.

porary of, older contemporary of, surviving contemporary of, survived by contemporary of,

older & survived by and younger & survives.

Rainsford & Roddick in [44] implemented a system of temporal knowledge discovery based

on the Freksa’s relations. Later, Roddick introduced Midpoint Interval Operators extending

Allen’s and Vilain’s five-points [55] relations with nine different overlaps. Two overlaps large

overlap and small overlap depicted at the Figure 2.8 panel b. This improvement allowed the

handling of coarse temporal data and data from streams.

Further extensions were proposed by Mörchen & Ultsch in the form of UTG (Unification-

Based Temporal Grammar) introducing an extension to the Allen’s equals operator with

more or less simultaneous and coincides operators as shown at the Figure 2.8 panels c

and d. Later, the Time Series Knowledge Representation (TSKR) hierarchical language for

expressing temporal knowledge in time interval data was built by the same authors on the

base of UTG [42]. It was shown that TSKR, while compared to other alternative approaches,

has advantages in robustness, expressivity, and comprehensibility

2.3.7 Temporal patterns and indexing

In previous sections of this chapter I have shown the PAA and SAX algorithms for conversion

of real valued time series into the symbolic representation along with symbolic temporal

data models, concepts and operators. All of this is a necessary background in order to
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understand approaches for unsupervised knowledge mining from a symbolic temporal data.

In this section I will review sequential pattern mining algorithms from time points and time-

intervals data. I will begin the review by focusing on the univariate data and then extend it

to the multivariate.

Before discussing algorithms, I need to provide a formal definition of pattern. The es-

sential property which defines a pattern is called support. Support, roughly speaking, is the

frequency of occurrence of a certain pattern in the observed data. It is generally assumed

that each of the possible patterns have a certain probability to be seen in the dataset just

by chance, and this probability is called the expected probability and defines the expected

support for the pattern. When the actual observed support (or frequency) of a pattern sig-

nificantly differs from the expected one, it is called significant support and indicates that

pattern might have some meaningful knowledge artifact attached to it. Although support

different from the expected level does not guarantee usefulness or interestingness, it is used

for a powerful pruning of a search space since most possible patterns will not have sufficient

support. Note that there is property [56] discussed in the literature which essentially similar

to support: confidence. Usually confidence correlates with support, i.e. greater support

corresponds to higher confidence.

There are two well-established categories of patterns with significant support. The first

category of patterns, frequently occurring ones (with support higher than expected), is very

important in many data mining areas such as medicine, motion-capture, robotics, video

surveillance, meteorology and others. Patterns from this category usually named as repeated,

approximately repeated or motifs. The second category of patterns, contains patterns with

the support lower than expected, this type of pattern is named surprise or novelty patterns.

Novelty patterns also have a great value for many applications: for example it is important to

detect unusual semi-repeated pattern in the ECG data diagnosing heartbeat abnormalities,

or detecting unusual activity patterns in video surveillance recognizing a suspicious activity.

The temporal motif finding problem from symbolic data is very similar to one of the

central problems in the field of Computational Biology [26]. Many algorithms are very

similar, but, in Biology, motifs are usually informative and bear some information about

evolutionary artifacts, which is not true in the field of time-series analysis [60].

2.3.8 Time points patterns

According to Mörchen, the most commonly searched pattern within univariate symbolic time

series is order. This search for a particular order of symbols within a subsequence is called
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Figure 2.9: The time-points patterns as explained in [41]

sequential pattern mining [2] and does not necessarily require symbols to be consecutive.

The classical suffix tree algorithm [50] with some modifications is a standard approach

for pattern discovery from string time-series according to Palopoli et al. [43]. In this paper,

the authors discuss algorithms for automatic discovery of frequent patterns (motifs) in “ex-

act” or “approximate” forms. There are two approaches generally used for the suffix tree

building: generative, when algorithms generate all possible patterns and test their appear-

ance frequency [57], and scanning, when a sliding window used to scan over the sequences

available and construct the tree on the fly [57]. In [24] Jiang & Hamilton compare traversal

strategies for suffix trees: breadth-first (BF , O(K2n)), depth-first (DF , O(Kn)) and the

heuristic depth-first (HDF) algorithms implementations for temporal data mining.

The limitation of the suffix-tree based algorithms is that the maximum length of a pat-

tern needs to be specified upon tree construction since all sub-sequences of this length are

generated or extracted from the time series with a sliding window.

Another approach, specifically designed for the surprise pattern finding problem, is pro-

posed by Keogh et al. in [32]. The authors discuss methods for finding a surprise pattern

from the temporal data and propose their “TARZAN” algorithm which is based upon suffix

tree and Markov model, reporting surprising patterns occurring with a frequency substan-

tially different from that expected by chance.

2.3.9 Time interval patterns

As we saw before, the duration concept is implicit in the time interval definition. Neverthe-

less, while defining a time-interval pattern we do not actually take into account the length
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Figure 2.10: The time-interval patterns from [41]

of the interval. Interval relations are abstracted to the “border” or “mean points” relations.

Containment patterns are discussed by Villafane et al. in [56]. This type of temporal

patterns has found application to many areas, for example software system log mining. In

this case it is important to see what events were happening within the resource overload time

interval. Another example is medicine: what was happening with the heartbeat within the

period when patient’s fever was high? The authors propose a method based on containment

graphs which allows counting of the containment frequency based on a lattice. The authors

designed a naive algorithm of the graph traversal performed incrementally by the path-

size and have shown satisfiable results considering their limitations in computational power.

One of the limitations found is that it yields different patterns describing the same temporal

events. An example of containment patterns is shown at Figure 2.10 panel a, this figure is

borrowed from [41].

Allen’s relations are used in many of the approaches to mining of time-interval patterns.

In [29], Kam & Fu considered interval-based events where duration is expressed in terms

of end-points relations and designed a category of A1 temporal patterns based on Allen’s

relations. However, Kam and Fu restrict the search space to the right concatenations of

intervals corresponding to existing patterns and limit the depth of the patterns. Depending

on time-interval consideration order, this approach yields different patterns describing same

events, for example on the Figure 2.10 panel b: left pattern is (((A starts B) overlaps C)

overlaps D) whether right one is (((A before C) started by B) overlaps D).
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Fluents, another type of time-interval patterns based on the Allen’s algebra, were intro-

duced by Cohen in [9] to address the problem of unsupervised learning of structures in time

series. The formal definition given by the authors states that “Fluents are logical descrip-

tions of situations that persist, and composite fluents are statistically significant temporal

relationships between fluents.” Sliding window and Apriori algorithms are used in this work.

The Fluent learning algorithm designed by the authors was applied to the robot motion data

collected by sensors and helped in the discovery of temporal patterns indicating persistent

robot behavior along with problems with robot’s sonar system. This algorithm suffers from

the same problem as A1 - it reports variations of the same pattern as different patterns. The

authors had to remove “the set of variants” manually before presenting results.

Höppner, in [22], demonstrates an approach to association rules mining through the use

of state sequences. State sequences based on pairwise relations between all temporal intervals

according to Allen. A sliding window is used to generate sub-sequences and the duration

of the pattern over consecutive sliding windows is used to quantify the pattern support

value. This information is then used in the Apriori algorithm for pattern discovery. The

experimental validation of the algorithm on the weather dataset shows the ability of the

approach to yield meaningful patterns.

UTG relations were used in some work for temporal interval patterns mining (Figure

2.10 panel d), but according to Mörchen [41], it was “criticized for the strict conditions

relating interval boundaries”. UTG rules place restrictions on the intervals, requiring the

start and end of the intervals in the pattern to be almost simultaneous. Also, lacking the

ability to express the concept of coincidence, UTG-based methods found somewhat limited

application. However, Guimarães in [20] shows targeted application of UTG-based linguistic

knowledge representation to the discovery of sleep-related breathing disorders. Results of this

study allowed doctors to improve diagnosis, and moreover, led to the discovery of previously

unknown recurrent behaviors among patients.

Unlike UTG, TSKRpatterns provide support for a partial order and allow inclusion of

the sub-intervals into the pattern. This makes them more expressive than UTG and Allen’s

relations. TSKR Chord patterns shown at the Figure 2.10 panel e are mined with the

CHARM [63] algorithm extended with a support function that counts the duration of the

pattern occurrence [41]. TSKR Phrase patterns, in turn, are built upon the partial order of

the several Chords (2.10 panel f ), and provide greater sensitivity and selectivity for temporal

patterns mining.
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Large 3-sequences Candidate 4-sequences Candidate 4-sequences
after join after pruning

{1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4}
{1, 2, 4} {1, 2, 4, 3}
{1, 3, 4} {1, 3, 4, 5}
{1, 3, 5} {1, 3, 5, 4}
{2, 3, 4}

Table 2.2: Illustration of AprioriAll algorithm generative function by Agrawal & Srikant [2].
4-sequences candidates are generated from 3-sequences by join and pruned in turn.

2.3.10 Apriori algorithm

I have mentioned several applications of the Apriori algorithm while reviewing temporal

patterns mining from symbolic time-points and time-interval series. The family of Apriori

algorithms was proposed in 1995 by Agrawal & Srikant [2]. These algorithms are based on

the naive apriori association rule stating that any sub-pattern of a frequent pattern must be

frequent.

The authors has shown application of their algorithms to the mining of recurrent behavior

patterns from a database of purchase transactions. They used a support function which is

defined as the fraction of the customers supporting such a pattern. The problem solved in

this work with the Apriori algorithm can be stated formally: “given a database of customer

transactions, find the set of maximal sequences among all others that have at least user-

specified support”.

The naive Apriori algorithm starts by building a set of maximal sequences by finding all

“candidate” patterns of size 1 with a support value that is greater or equal to the specified

minimum. On the next step, the algorithm generates a successive set of candidate patterns

by extending each of the candidate patterns by 1, and testing it against the database for

sufficient support. The algorithm iterates over this second step, until it terminates when no

further extension is possible, yielding a set of maximal sequences. While being simple, and

proven to produce a correct solution, the naive approach is extremely inefficient due to the

high time cost of the database scanning phase (which is the product of an amount of time

needed for a single pass over the database and the number of generated candidates).

The significant improvement of the generative function and the scanning speed over the

naive approach is the main contribution of Agrawal & Srikant. First, they designed a clever

generative function which efficiently prunes the search space by excluding non-existing se-
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quences of length n + 1 just by looking at the existing set on sequences of length n. Second,

the authors’ implementation of the database scanning leverages the use of efficient inter-

mediate in-memory index (built with a hash-tree and conducts breadth-first search). is to

transform (shrink) the database of transactions during each step. During this transforma-

tion each of the individual transactions within single sequence is replaced by the “set of all

litemsets contained in that transaction. If a transaction does not contain any litemset, it is

not retained in the transformed sequence.” The “litemset” here refers to the item set with

a minimum support.

AprioriAll, AprioriSome and DynamicSome by Agrawal & Srikant were the very first

algorithms for sequential pattern mining built upon the Apriori principle. While being far

more efficient than a naive implementation, they still require many passes over the database

while testing candidate sequences. Many other algorithms based on this implementation

were proposed. In 1996 Srikant & Agrawal extended their original work with GSP (General-

ized Sequential Pattern) algorithm. GSP allows time constraints and relaxes the definition

of transaction; additional improvement was achieved by use of the knowledge of taxonomies

which prunes search space by excluding non-interesting sequences. Wang et al. in 2001 pro-

posed a GSP-based MFS (Mining Frequent Sequences) [58] algorithm based on the concept

of pre-large sequences which further reduces the amount of rescanning.
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Chapter 3

Software Trajectory: a software

process mining framework.

As we saw in Chapter 2, it is possible to infer and successively formalize software process

by observing its artifacts, and in particular, recurrent behavioral patterns. The problem of

finding such patterns is the cornerstone of my research. My approach to this problem rests

on the application of data-mining techniques to symbolic time-point and time-interval series

constructed directly from the real-valued telemetry streams provided by Hackystat.

To investigate the requirements for a software tool that aids in the discovery of recur-

rent behavioral patterns in software process, I am designing and developing the “Software

Trajectory” framework. A high-level overview of the framework is shown in Figure 3.1 and

resembles the flow of the “Knowledge Discovery in Database” process discussed by Han et

al. in [21]. As shown, the data collected by Hackystat is transformed into a symbolic format

and then indexed for further use in data-mining. The tools, designed for data-mining, have

a specific restrictions placed on the search space by domain and context knowledge in an

attempt to limit the amount of reported patterns to useful ones. I am planning to design a

GUI in a way that will allow easy access and modification of these restrictions.

3.1 Current state of development

I started development of the Software Trajectory framework in early 2008 by designing

a user interface for visual comparison of multi-variate time series. I called this package

“TrajectoryBrowser” and called its results “Software Trajectory Analysis”. The idea was

to visualize software project metrics as a set of trajectories in 3D space, as opposed to the
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Figure 3.1: The high-level system overview. Software engineering process and product data
are collected and aggregated by Hackystat and then used to generate temporal symbolic
indexes. Data mining tools constrained by software engineering domain knowledge are then
used for unsupervised patterns discovery. The GUI provides an interface to the discovered
patterns and aids in investigation of a discovered phenomena.

traditional 2D representation. The first TrajectoryBrowser was an ad-hoc application based

on the two technologies: Java3D for visualization and the UI, and the JADE multi-agent

framework [6] for the data generation (see Figure 3.2 panels a and b). While this first

version fulfilled basic requirements for visualization, allowing trajectories to be visualized, it

did not provide any means for quantifying similarities between trajectories or finding similar

trajectories autonomously.

In order to introduce a metric and implement an indexing of temporal features, I then

started experimenting with a naive application of Euclidean distance and later with spectral

decomposition of time series through DFT. Unfortunately both methods were found to be

inconsistent in their results and sometimes even misleading due to the noisy and bursty

nature of temporal data generated by the software process.

At the next iteration, inspired by its success in many applications and its robustness

to noise, I implemented the Dynamic Time Warping (DTW) algorithm. This code was

wrapped into the second, web-based version of TrajectoryBrowser (see Figure 3.2 panels

c). The second version provided the user with the ability to visualize time-series intervals

and quantify the similarity. Nevertheless, there was no implementation of the unsupervised

similarity search provided.

In order to close this gap, I started developing an indexing module that uses sliding
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Figure 3.2: Screenshots of three versions of TrajectoryBrowser (panels a, b and d) and the
software process simulation (panel b). Simulated data was used for validation in early stages.
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Figure 3.3: Overview of the data abstraction from the the low-level process and product
artifacts collected by Hackystat (left side) to the high-level symbolic time-point and time-
interval series stored in the Software Trajectory data repository.

window and DTW. While working on this, I found another promising approach for the same

task: PAA and SAX (see section 2.3.1 and 2.3.2) approximations. The simplicity of these two

methods allowed me to integrate them with my existed codebase almost instantly, delivering

the third version of TrajectoryBrowser which I am currently using in my research. Sections

3.1.1 and 3.1.2 present the indexing mechanism and the index database design.

3.1.1 Temporal data indexing

The temporal data indexing starts with the data abstraction process shown at the Figure 3.3.

Collected and aggregated by Hackystat, raw sensor data and derived Hackystat Telemetry

streams are used as the data sources. Streams of individual events are retrieved from the

Hackystat Sensorbase, then sorted by activity types, tokenized, and finally converted into

symbolic time point (Events) and time-interval (Episodes) series by following a user-defined

taxonomy mapping. By performing a user-configured PAA and successive SAX approxima-

tions, Hackystat Telemetry streams are converted into a temporal symbolic format. This

symbolic data, in turn, are getting indexed and stored in the dedicated relational database

for future use in data mining.
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Figure 3.4: Overview of the current implementation of Software Trajectory framework.

I have not experimented with symbolic abstraction and mining of the raw sensor data

yet, but this approach has a solid foundation provided by Hongbing Kou, in his thesis

[34]. In his work, he was able to infer TDD behaviors by using a technique called Software

Development Stream Analysis (SDSA) which is very similar to mine, except the fundamental

difference in the approach: Hongbing defined TDD patterns at first and then search for them

using SDSA. Within SDSA, low-level software process data was first converted into symbolic

Episodes first. Next, sequences of Episodes (candidate patterns) were matched (aligned) to

the set of the known TDD temporal rules (patterns), and if they were found to satisfy TDD

rules (having sufficient support), the generative process was inferred as TDD.

I have implemented the indexing of Telemetry streams with a sliding window, PAA, and

SAX. I am using a sliding window approach following [37] for generating a set of subsequences

from a real-valued stream. Each of the subsequences is then normalized and converted into a

symbolic representation with PAA and SAX. This symbolic representation and the position

information is then stored in the relational database. For index manipulation and data

retrieval, I am using SQL. Figure 3.4 presents the current software system overview.

3.1.2 Index database design

Figure 3.5 presents the TrajectoryDB database schema in detail. This schema was designed

with two main requirements in mind. First, it must be able to hold a local copy of Teleme-

try streams due to the high time cost of querying Telemetry service remotely. Second, it

must support KDD algorithms through optimized SQL queries. Both goals were achieved,

resulting in high turn-around speed for both indexing and querying.
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Figure 3.5: The database schema used for the Hackystat Telemetry data retrieval and in-
dexing in the pilot project.
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The current version of Hackystat is based on a Service-Oriented architecture, and in order

to retrieve a Telemetry data one must query the Telemetry service over network. My initial

implementation of indexing required network queries for the each of the indexing passes and

was significantly affected by the network lag to my remote location and the amount of data

that needed to be retrieved for each pass. To overcome this issue, I have developed a software

module which provides “caching” and incrementally updates Telemetry streams data locally.

The Project, User, Member, Chart, Chartvalue and Download tables (located at the upper

part of the Figure 3.5) are designed to store the Telemetry data locally. The system performs

incremental update of the streams over time by reading the Download table, which keeps

track of updates.

The telemetry streams indexing is performed on demand. For each of the indexes a sliding

window size, PAA size, and an alphabet must be specified. Following Lin & Keogh [37], in

order to investigate the sensitivity and selectivity of different approximation levels, I have

conducted a number of experiments with various alphabets. Individual alphabets for each

of the data streams (Build, Coverage etc.) and Universal Telemetry Alphabet (see example

for five letters alphabet at the Figure 3.6, panel a) were built and tested for indexing. These

custom alphabets, and the original SAX alphabet, based on the Normal distribution, are

kept in the Sax alphabet and Alphabet cut tables.

The Sax top index table is a “binder” which keeps information about all indexes ever

built. The Sax index chart table keeps track of all indexes built for a particular chart and

a timeframe. Sax motif and Sax motif entry tables separate heavyweight symbolic motifs

and lightweight offset “information” reducing the database size and optimizing data analysis

and retrieval.

This database schema was found optimal for easy retrieval of any kind of information

needed for streams comparisons or clustering. By running a single query it is possible to

retrieve a vector of most frequent motifs for each of the streams or find a set of motifs shared

between streams.

3.2 TrajectoryBrowser

As mentioned before, the current version of TrajectoryBrowser was created in order to vi-

sualize telemetry streams along with temporal features found through indexing. It provides

easy navigation within indexes and is capable of displaying multiple telemetry streams with

highlighted features. By viewing the same motif entry across multiple streams it is possi-
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ble to guess information about coincidence of entries, as an example, see Section 4.4, for

sequential “growth” pattern finding experiment.

3.3 Future development roadmap

As I pointed out before, the current version of the TrajectoryBrowser and analyses do not

support processing of low-level raw Hackystat data and analyses based upon them. I have

already started the development of such a module along with extending the database schema

for storing raw data, its approximation, and taxonomy. Once these components are in place,

I will start developing data mining algorithms for Events and Episodes using the discussed

temporal data mining algorithms. Once all major software pieces are in place, I will focus

on the experimental evaluation of the system and improving the usability of the GUI.
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Figure 3.6: The distribution of the Hackystat Telemetry data for a sample project dataset.
While individual telemetry streams (panel b, left three plots for each stream represent raw
data, right three plots - Z-normalized data) show different data distributions, the combined
and normalized data (panel a) close to the normal distribution. Combined data was used
for creation of the Universal Telemetry SAX alphabet.
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Chapter 4

Experimental evaluation

I propose to conduct two case studies: Public data case study (Section 4.5), and Classroom

case study (Section 4.6) in order to empirically evaluate the capabilities and performance of

Software Trajectory framework. These studies differ in the granularity of data used, and in

the approaches for evaluation.

During my work on the pilot version of Software Trajectory framework, I began a set of

small experiments in order to aid in the architectural design and algorithms implementation.

In addition, these experiments helped me to outline the boundaries of applicability of my

approach to certain problems in software engineering. I call these experiments the Pilot

study and Section 4.4 discusses some of the insights yielded by this study.

My intent behind these empirical studies is to assess the ability of Software Trajectory

framework to recognize well known recurrent behavioral patterns and software processes (for

example Test Driven Development), as well as its ability to discover new ones. In addition,

these studies will support a classification and extension of the current Hackystat sensor

family in order to improve Software Trajectory’s performance. It is quite possible that some

of the currently collected sensor data will be excluded from the Software Trajectory datasets,

while some new ones will be designed and developed in order to capture important features

from the studied software development data streams.

Before proceeding with the presentation of design of these studies and approaches for

evaluation, I will discuss my evaluation paradigm.
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4.1 Review of evaluation strategies

In contemporary literature, research methods are categorized into three paradigms: quan-

titative, qualitative and mixed-methods [46]. Despite the arguments presented in the past

for integrating first two methods [19], combining qualitative and quantitative methods in

a single, mixed-method study is currently widely practiced and accepted in many areas of

research, and in particular, in empirical software engineering [8] [48].

4.1.1 The two paradigms

The quantitative paradigm is based on positivism. The positivism philosophy presumes that

there exists only one truth, which is an objective reality independent from human perception,

which, in turn, means that a researcher and a researched phenomena is unable to influence

this truth or be influenced by it [19]. Quantitative studies are focused on finding of this

truth through extensive study of the phenomena, and often characterized with very large

sample sizes, control groups etc. in order to ensure proper statistical analysis.

In contrast, qualitative study is based on constructivism [15] [19] and interpretivism [1].

Both presume the existence of multiple truths based on the one’s construction of reality,

as well as non-existence of such a reality prior to the investigation. Moreover, once such a

reality is solely or socially constructed, it is not fixed, - it is changing over time, shaped by

new findings and experiences of researcher. Techniques of qualitative studies are not meant

to be applied to a large population. They rather focus on small, rich in features samples

which can provide valuable information. In other words, subjects in a qualitative study are

picked not because they represent large groups, but because they can articulate important

high-quality information.

The assumptions behind the two approaches extend beyond just methodological or philo-

sophical differences to the one’s perceptions of reality. According to Guba et al. [19], quali-

tative and quantitative methods do not study the same phenomena. Applying the authors’

statement to empirical software engineering, we can infer the limitations of qualitative stud-

ies by their inability to access some of the phenomena that researchers are interested in,

such as prior experiences, social interactions, and the behavioral variations of individuals

performing software process.
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4.1.2 Mixed methods and Exploratory research

Surprisingly, the fundamental differences between the two paradigms are rarely discussed in

the mixed-methods research which is based on pragmatism. The finding of truth is more

important in pragmatist paradigm than the question of methods or philosophy. Researchers

practicing the mixed-method approach are free to use methods, techniques and protocols

which meet their purposes, and which, in the end, provide the best understanding of the

research problem. This unifying logic in understanding of studied phenomena regardless of

approach, is central to mixed methods.

While the three discussed paradigms at least assume the existence of a problem and

provide the outlines for methods of data collection and design of a study, sometimes a clear

statement of a problem is missing from research. In such a case, exploratory research must

be conducted in order to clarify the detailed nature of the problem.

4.2 Software Trajectory approach evolution

When I started exploring Hackystat telemetry streams during the Software Engineering

class taught by my present adviser Philip Johnson, I realized the “coolness” of software

process metrics visualization for providing insights into software process. By using the web

interface of Hackystat, I was able to pull and visualize various telemetry streams reflecting

my development. Working in the class, I compared metrics of my software process to ones

from my team members. Performing such analyses, and discussing their results enabled us

to improve our individual and team software processes, which resulted in excellent grades.

After joining CSDL, I started my research by exploring the boundaries of telemetry visu-

alization and telemetry analyses, and finding possibilities for improvements. At that point

of time, I was working on two problems: improving the visualization of telemetry streams

and introduction of metrics for quantitative comparison of telemetry streams (trajectories).

While working on these two problems, I realized that the real problem I am trying to solve lies

beyond the reach of these two. The problem is that the user is not provided with enough de-

tails about their software process to be able to perform comparative analyses of two projects

(two software processes). I am envisioning the solution of this problem through the extension

of Hackystat analyses with the ability to discover detailed features from software process.

In other words, by conducting exploratory research of visualization tools and techniques

as well as designing “flexible enough” metrics appropriate for telemetry streams comparison,

I have realized the importance of understanding of the generative software process. This
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knowledge about performed software process, inferred from the set of collected artifacts, is

crucial in the process improvement and in the comparative analysis of software projects.

Once I was able to clearly formulate this problem, I have started another exploratory

study - my pilot study. By performing this exploration of the tools and techniques for

software process mining and inference, I am trying to build my own toolkit which will allow

me to approach the next problem - the problem of quantifying of software process through

the discovery of recurrent behaviors.

4.3 Software Trajectory case studies and evaluation

design

The proposed public data case study is based on the use of publicly available Software

Configuration Management (SCM) audit trails of the big, ongoing software projects such as

Eclipse, GNOME etc. Mining of SCM repositories is a well-developed area of research with

much work published [18]. SCM repositories contain coarse software product artifacts which

are usually mined with a purpose of discovering of various characteristics of software evolution

and software process. I am using a mixed-method approach in this study. In the first phase

of this study, I plan to perform SCM audit trail data mining following published work

and using Software Trajectory as a tool in order to discover confirmed patterns in software

process artifacts, and thus quantitatively evaluate Software Trajectory’s performance when

compared to existing tools. In the second phase, I will develop my own pre-processing and

taxonomy mapping of software process artifacts into temporal symbolic series. By using this

data and Software Trajectory framework, I plan to develop a new approach for SCM audit

trail mining and possibly discover new evolutionary behaviors within software process. These

discovered knowledge will be evaluated through the peer-reviewed publication submitted for

the annual MSR challenge [18].

The classroom case study is based on a more comprehensive data set. This data will

be collected by Hackystat from Continuous Integration and from individual developers and

will contain fine-grained information about performed software process. The approach I am

taking in this study is very similar to the public data case study. I will develop my own

taxonomy for mapping of software process artifacts into symbolic temporal data and will

apply Software Trajectory analyses to this data in order to discover recurrent behaviors. In

turn, these discovered knowledge will be evaluated through interviewing for usefulness and

meaningfulness. Results of interviewing will be used to improve Software Trajectory and
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will constitute part of my thesis and following publication.

Both case studies are exploratory in nature. At this point of my research, I can only

see that the properties of my approach and its current implementation in the Software Tra-

jectory framework appear to be very promising. The wealth of developed techniques for

temporal symbolic data mining and recent development of SAX approximation allow me

to overcome many computational limitations in existing approaches for mining of software

process artifacts. The current implementation of Hackystat provides the ability to capture

fine-grain software product and process metrics providing a richness of data, which, poten-

tially, might reveal new insights. Current research in software process discovery indicates

the overall feasibility of proposed goals in the discovery of unknown recurrent behaviors in

software process.

Nevertheless, there is no prior knowledge about application of these techniques to soft-

ware process mining. Moreover, at this stage of my research, it is impossible to foresee

if new recurrent behaviors will be discovered or their meaningfulness or usefulness for real

world applications. For this reason I am undertaking a constructivism paradigm in my re-

search [15], and will develop knowledge about the applicability of my approach to software

process mining during the development of Software Trajectory framework and its empirical

evaluation. By designing, developing, deploying and observing a software system, and by

conducting interviews and surveys, I will gain the desired experience and knowledge.

But it is possible that this part of my research will fail, and I will not be able to discover

any meaningful novel knowledge about software process. If so, I will apply every effort to

investigate and explain the pitfalls of my approach to the domain of software process data

mining. It may be that failure is due to the specificity of domain, or due to the insufficiency of

the information enclosed in the collected artifacts, or maybe due to inefficiency of augmented

methods. Through thorough analyses of failed experiments and collection of feedback, I will

outline boundaries of the approach taken in this work and appropriate avenues for future

development.

4.4 Pilot study

In order to demonstrate the ability of Software Trajectory to perform telemetry indexing

and temporal recurrent patterns extraction, I have conducted two experiments which provide

insights in the use of the motif frequencies and software process event taxonomies.
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developer1_3

developer4_3
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Window 4, PAA 4, Alphabet 3

a) DevTime stream from 8 developers b) Developers behavior clustering

developer1 developer2

developer4 developer7

developer3 developer5

developer6 developer8

Figure 4.1: Clustering of developers behavior using symbolic approximation and vectors of
motif frequencies. This analysis captured similar development behavior among developers.
Developers #2 and #7 were consistent (no bursts observed) in both, coding and measuring
effort during whole time interval, while all others can be characterized with bursty, incon-
sistent effort.
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4.4.1 Clustering of the Hackystat Telemetry streams

The main purpose of the this study was to evaluate the ability of PAA and SAX approx-

imations and indexing to capture a temporal specificity of telemetry streams through the

discovery of recurrent temporal patterns. Knowing about the frequently misleading results of

a time-series clustering [31], I did not expect to capture many interesting facts, nevertheless

the results were encouraging.

The data used in this study was collected from student users of Hackystat during Spring,

2009. This dataset represents Hackystat metrics collected during sixty days of a classroom

project by eight students. The following clustering experiments were conducted using the

distance between vectors of motif frequencies extracted by indexing of telemetry streams:

• Clustering of software process related telemetry streams collected from individual devel-

opers. I was able to group developers with similar behavioral patterns within clusters,

which indicates the feasibility of the classification approach. Figure 4.1 depicts results

of this analysis.

• Clustering of software product-related telemetry streams by using motif frequencies. I

was able to group telemetry streams, but while these groups look intuitively meaningful,

the close examination of the stream features suggests that this grouping happened due

to the similar temporal behavior on the short stretches. This result, while proving the

correctness of approach, indicates it’s limitation, pointing that instead of using just

motif frequencies, some temporal ordering should be taken into account. Figure 4.2

displays results of this analysis.

4.4.2 Sequential patterns search

The second pilot study, focusing on discovery of sequential patterns, was conducted using

real data from my own concurrent development of two software projects. While working on

the Software Trajectory framework, I made the decision to split the code into two parts:

an algorithm implementation library that I named JMotif, and user-interface part called

TrajectoryBrowser. While this decision simplified development, it introduced a dependency

of TrajectoryBrowser on the JMotif API. As a result of iterative and incremental pattern in

my development, I changed the JMotif public API three times, which consequently involved

extensive refactoring in the ProjectBrowser code. This dependency can be clearly seen from

observing DevTime streams at Figure 4.3 panel a.

43
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FileMetric_TotalLines_3

Churn_3

Coverage_NumCovered_3
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Coverage_NumUncovered_3
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UnitTest_Total_5
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DevTime_5
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Commit__5
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Build_5

Build_failure_5

Coverage_NumUncovered_5

Churn__5

CyclomaticComplexity_5

Coverage_NumCovered_5
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CodeIssue Build
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UnitTest_SuccessCount DevTime

UnitTest_TotalCount Build_failure

CyclomaticComplexity Commit

Coverage_NumUncovered Coverage_NumCovered

Churn Coverage_Percentage

FileMetric_TotalLines

a) Telemetry streams for Pilot dataset b) Telemetry strems clustering with di�erent settings

Figure 4.2: Clustering of telemetry streams for classroom pilot dataset using symbolic ap-
proximation and vectors of motif frequencies. While it seems to be meaningful to find
correlation between UnitTest Failure and CodeIssue streams unit test, this grouping hap-
pened due to the similarity of behavior pattern - short, high amplitude bursts; but note,
there is no correlation of features in time .
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Figure 4.3: The illustration of finding of sequential growth pattern in two DevTime telemetry
streams. Panel a: The Hackystat ProjectBrowser showing telemetry streams. Panel b: the
TrajectoryBrowser showing same telemetry streams along with identified pattern. Panel c:
the symbolic representation of streams with highlighted pattern.

In order to capture this dependency pattern in two Telemetry streams, representing the

daily amount of development time spent on the TrajectoryBrowser and JMotif projects, I

defined a synthetic growth pattern as the large positive delta value between previous and

current day effort. By transforming Telemetry streams with this simple rule in the symbolic

form, I obtained a two dimensional symbolic time series, where letter G represents a growth

pattern, see Figure 4.3 panel c. I defined a formal rule for sequential growth pattern as the

pattern like GJMotif → GTrajectoryBrowser where distance between these Gs is less than three

days. By application of this rule I identified a pattern which exactly corresponds to my

experience.

While this experiment was designed with a purpose and does not provide any value in

the dependencies discovery, the “sequential growth” pattern and past effort information can

be used in the estimation of effort needed for requested software changes.

4.5 Public data case study

I plan to evaluate my research and its results through the mining of publicly available

software configuration management (SCM) repositories. The goal of this experiment is to
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assess the ability of my approach to reproduce already published results, which will indicate

the correctness of approach taken, along with the ability to compare the performance of

Software Trajectory to other tools. If I can find novel patterns within this data with my

approach, it will provide additional evidence for the utility of my research.

As the main source of the data, I am planning to use public SCM repositories whose

mining is traditionally used in the “MSR Challenges” [18] and published in proceedings of

“IEEE International Conference on Mining Software Repositories”. The GNOME project

SCM data will be used in the 2009 challenge, Eclipse repositories were used in 2008 and 2007;

PostgreSQL and ArgoUML in 2006. Two primary temporal data sets are usually offered for

use: one is the CVS repository audit trail and second one is the bugs and issues tracking

information. The following MSR challenge topics I found relevant to my research:

• Approaches, applications, and tools for software repository mining.

• Analysis of change patterns to assist in future development.

• Prediction, characterization, and classification of software defects based on analysis of

software repositories.

• Techniques to model reliability and defect occurrences.

My approach will be based on the approximation of the artifacts from SCM repositories into

symbolic series using “SCM trail taxonomy” and successful indexing of this symbolic data.

For example, in order to find “ripple effect” patterns in software change, I will construct

a set of symbolic time-points and time-interval series which will represent all code changes

in time by pre-processing change metadata from issue tracking system and actual changes

in version control by using sliding window. Once data will be extracted and saved locally,

for time-points symbolic data I will construct a series for each of the software packages (like

eclipse.swt.layout.*, org.eclipse.swt.widgets.*, etc.) where symbolic data repre-

sents a change occurred in the package. For time-interval symbolic data I will use the dura-

tion when a change request was “open” to construct series representing concurrent order and

dynamics of changes. By applying Software Trajectory analyses, I expect to discover some-

thing like “the change requested in package A class b usually results in changes in package

A class c and package B class d” and it takes Abt + Act + Bdt time to finish these changes.

In turn, this information can be used to estimate the time and effort of newly requested

software changes as well, as to identify changes that more likely to induce bugs and fixes

and should be avoided. By adding the information about developers working on fixes, it is

46



also possible to design an expert system which will suggest assignment of newly reported

bug reports or feature request to a particular developer(s).

In addition to the public SCM, there are various public data hosted by the “PROMISE

software engineering repository” [47] which contains two kinds of data: the software product

datasets used for the building of the predictive software models, and some “universal” data

sets representing SCM repository transaction. Most of these datasets were also used for

a number of publications and I am planning to evaluate my framework by attempting to

reproduce these results.

4.6 Classroom study

In order to evaluate Software Trajectory performance in the discovery of well known and novel

recurrent behavioral patterns in software process, I am planning to conduct two classroom

case studies followed by survey of participants (Section 6.1).

The studies will be conducted in two Software Engineering classes during the Fall’09

semester (ICS 413 and ICS 613) and one software engineering class (ICS 414) during the

Spring’10 semesters taught by Dr. Philip Johnson at the University of Hawaii. ICS 413 and

ICS 414 are for undergraduate students, and ICS 613 is for graduate students. By curriculum

design, students will be required to collect metrics and perform analyses on their own data in

order to develop understanding of software metrics and improve their software development

process. About 20 - 30 students are expected to participate in the study.

By the beginning of the data collection in the Fall’09 class I am planning to implement

a data extraction, transformation and indexing engine, and begin the first phase of the

classroom study. This engine will perform unsupervised recurrent behaviors discovery on the

daily basis. By the end of the class I will administer interviews to collect students feedback

about Software Trajectory analyses. The questionnaire will cover questions concerned about

Software Trajectory analyses performance and usability. Another important question will

be the students’ perception of whether or not Software Trajectory analyses is a reasonable

approach to software process discovery, analysis and improvement in “real world” settings.

The experience collected during the first phase of the classroom study will be used in the

improvement of the Software Trajectory analyses and in the design of the TrajectoryBrowser

user interface.

By the beginning of the data collection in the Spring’10 class I am planning to release a

next version of the Software Trajectory analyses framework incorporating experience from
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the first classroom study. The second classroom study will be very similar to the first one

in the flow.

4.6.1 Classroom study design

As explained before, during the classroom study the software product and process data will

be collected from continuous integration as well as from individual students by Hackystat.

This data will be converted into a symbolic representation and analyzed with Software

Trajectory. Once Software Trajectory identifies strongly supported (“candidate”) patterns,

they will be analyzed by me.

The support function I am considering for this study will be a product of two metrics:

the first one is based on the support function from the AprioriAll algorithm and will quantify

the fraction of participating students demonstrating the pattern, and the second one is based

on the total frequency of the pattern appearance. The reason for using two components is

that the classroom “sampling space” is limited to only twenty students and it is likely that

there will be “non-shared” strong patterns - ones that observed only within a data collected

from the single student.

I understand that this choice of the support function introduces a bias into my analyses

by focusing too much on subjective patterns which might be too specific to the observed

individuals or classroom curriculum settings. Here I am compromising between the ability

to capture recurrent behaviors at all and the usefulness and significance of captured behav-

iors. As I said, at this point of my research it is impossible to foresee the cognitive impact

of observing and understanding of discovered patterns and guess where I should draw the

support function threshold. By iteratively reviewing Software Trajectory results and collect-

ing relevant feedback from students through the instructor, I plan to improve the Software

Trajectory knowledge base in order to prune reported patterns to only useful and meaningful

ones. This ability to communicate with students and iteratively improve the system design

is crucial for in-process knowledge development and overall experiment success.

I am planning to perform two types of analyses: an individual developer behavioral

software process analysis (personal software process discovery) and a “collective software

process” analysis.
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Symbolic abbreviation Description
of Events

CI code implementation event,
corresponds to the new code entry

CR code refactoring event, includes renaming
or deleting of functional units, and buffer transactions

CD debugging event
CCS successful compilation event
CCF unsuccessful compilation event
UTS successful unit test run
UTF unsuccessful unit test run
CM code commit to version control
CU code update from version control
CAS code analysis success event, corresponds to a

successful invocation of one of the code analysis tools
CAF code analysis failure event, corresponds to a

unsuccessful invocation of one of the code analysis tools
CCP positive delta in the code size (churn)
CCN negative delta in the code size (churn)

Table 4.1: Taxonomy of the Symbolic Events to be used in the classroom evaluation of
Software Trajectory analyses.
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4.6.2 Personal software process discovery

For this type of experimental validation, I plan to perform Software Trajectory analyses

using Hackystat data collected from individual developers. The data collected by Hackystat

from each of developers will be aggregated into symbolic streams of two types: symbolic

Events series and symbolic Episodes series:

• Symbolic Events series. This dataset will consist of the thirteen types of Events listed

in Table 4.1. These Events represent a set of essential code-development activities

which will constitute a multivariate symbolic time-point series for further analyses

through data mining. The goal of these analyses will be to discover recurrent behavioral

patterns in the sequence of activities by an individual developer.

• Symbolic Episodes data. This dataset will consist of the fifteen types of Episodes listed

in the table 4.2. These Episodes represent a set of code-development activities which

intended to capture dynamic recurrent behavioral patterns.

The goal of the Event series analysis is to build a taxonomy of symbolic software pro-

cess patterns corresponding to one of the behaviors such as test-driven design or the more

traditional test-last design.

In contrast to the analysis of symbolic Events series, which treats the process as a set of

sequential activities, the analysis of symbolic Episodes series is intended to support discovery

of overlapping, dynamic patterns. For example, I might find that an unsuccessful unit testing

episode is usually happening within a code refactoring episode.

By combining Events and Episodes in the analyses I might discover that during code

implementation, unit tests are usually successful but accompanied with decreasing test cov-

erage. Also, I expect to be able to infer a developers’ “reaction” patterns. For example, as

a reaction to the continuous failure of unit tests, one might start broad refactoring of the

code with the goal of reducing its complexity.

4.6.3 Team-based software process discovery

Traditionally students in the class work in groups. It will be interesting to see whether the

“team-based behavior” and corresponding recurrent behavioral patterns are different from

those in the personal software process. For the “team-based software process” recurrent

behavioral pattern discovery I plan to summarize individual developer streams by combining

overlapping Events and Episodes of same activities. It is hard to guess at this time whether
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Symbolic abbreviation Description
of Episodes of metric

CI code implementation episode,
corresponds to new code entry events

CR code refactoring episode, includes renaming
or deleting of functional units, and buffer transactions

CD code debugging episode,
corresponds to debugging events

CCS successful code compilation episode, corresponds
to two or more successful compilation events

CCF unsuccessful code compilation episode, corresponds
to two or more unsuccessful compilation events

UTS successful unit test episode, corresponds
to two or more successful unit-test events

UTF unsuccessful unit test episode, corresponds
to two or more unsuccessful unit-test events

TCG code test coverage growth, corresponds to a positive
delta between at least three code coverage analysis
tool invocations

TCD code test coverage decrease, corresponds to a negative
delta between at least three code coverage analysis
tool invocations

CSG code size growth, corresponds to a positive
delta between at least three code size analysis
tool invocations or three commits

CSD code size decrease, corresponds to a negative
delta between at least three code size analysis
tool invocations or three commits

CCG code complexity growth, corresponds to a positive
delta between at least three complexity analysis
tool invocations

CCD code complexity decrease, corresponds to a negative
code complexity delta between at least three complexity
analysis tool invocations

CAS “clean code development” episode, corresponds to
at least three successful code analysis tools invocations

CAF “unclean code development” episode, corresponds to
at least three unsuccessful code analysis tools invocations

Table 4.2: Taxonomy of the Symbolic Episodes to be used in the classroom evaluation of
Software Trajectory analyses.
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or not these aggregated streams will be more or less noisy than individual streams, but in any

case the application of the Software Trajectory analyses might lead to interesting findings.

For example, I might infer a “programming session” episodes through the high fraction

of synchronous (overlapping) development events between team members, or identify role

separation by analyzing each student’s development/commit patterns.
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Chapter 5

Summary and Future Directions

5.1 Contribution

The main contribution of my research to the software engineering and software process com-

munity is the development and evaluation of a previously unexplored approach to discovering

of recurrent behaviors in software process through the temporal data mining of low-level pro-

cess and product artifacts.

The knowledge developed through the experimental work, and evaluation of the approach

taken, will be another contribution of my research. By performing these experiments, I also

hoping to discover new patterns in software process and software evolution thereby improving

our knowledge about it.

The software framework and data mining toolkit which I will develop for my research

will be integrated with the existing family of Hackystat tools and made available as open

source, thus contributing to the software-engineering community.

5.2 Estimated Timeline

By the beginning of the Fall’09 semester, I plan to design a taxonomy and implement a low-

level software process artifact abstractions into a symbolic representation for the classroom

experiments. The current database schema will be extended for storing these data and

indexes. Immediately after that, I will proceed with the implementation of fundamental

algorithms for sequential patterns mining from the time-points and time-interval data. My

goal is to have a first-generation data model and KDD toolkit to be available for use before

in-class development starts.
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Sep-09 Oct-09 Nov-09 Dec-09 Jan-10 Feb-10 Mar-10 Apr-10 May-10 Jun-10 Jul-10 Aug-10

Dec - Feb

Trajectory improvements
based on the results of

classroom experiment

Feb - May

MSR Callenge
mining experiments

and paper submission

Feb

Trajectory v.2.0

Jun

Trajectory v.3.0

May - Aug

Thesis & peer-reviewed 

publication writing

Aug - Oct

Development of Events & Episodes 

approximations, data mining 
algorithms & TrajectoryBrowser

Oct

Trajectory v.1.0

Oct - Dec

The Fall’09 classroom experiment

Sep

Thesis defense

Feb - May

The Spring’10 classroom experiment

May

MSR Challenge,

paper submission deadline

Jan

MSR Challenge,

abstract deadline

Figure 5.1: Proposed Software Trajectory development timeline.

Based on the Fall’09 classroom experiment experience, I will extend and fine-tune my

system for the Spring’10 software engineering class, during which I plan to evaluate a final

version of my system. The results of these two classroom experiments, the description of

designed methods and developed software will constitute a peer-reviewed publication which

I plan finish by Summer’10.

The MSR Challenge 2010 is announced to happen early May’10. I plan to design SCM

data mining toolkit and perform pilot experiments by early January’10 submitting an ab-

stract. If abstract will be accepted, I will prepare and submit a research paper following the

Challenge timeline.

I plan to be working on my thesis during Fall’09, Spring’10 and Summer’10 semesters.

During the Fall’10 semester I plan to finish my work and defend the dissertation.
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Chapter 6

Appendices

6.1 Classroom case study interview design

I plan to conduct at least one classroom interview session evaluating Software Trajectory

framework. I am targeting senior-level undergraduates and graduate students as my primary

responders. These interviews will be conducted under approved by Committee on Human

Subjects application: CHS #16520 - Evaluation of Hackystat. By performing interviews,

I expect to collect evidence about the ability of Software Trajectory framework to capture

recurrent behaviors from software process performed on the team and individual level. My

secondary goal is the evaluation of the significance of these behaviors for software process

understanding and improvement.

I plan to administer interviews during the last week of instructions. I will select respon-

ders demonstrating recurrent behaviors by balancing two factors: first is to cover as much

various discovered patterns as possible, and second is to cover patterns demonstrated by the

most of students. Taking in account the possible students’ concern about final grading, I am

crafting my interview questionnaire in order to make it as neutral as possible. The current

version of the interview questionnaire is presented further.

The first three questions are designed to assess the respondents’ level of education, area

of expertise, and knowledge of software development patterns. The fourth question elicits

a general discussion to the classroom experience and the respondents’ opinion about the

software processes they performed and I observed. By introducing my research in greater

detail at this point, and by walking through the last three questions I will try to encourage

responder to discuss with me my findings. Depending on the responders’ reaction and

willingness to continue, I will finish the interview after two to five iterations over observed
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patterns.

The interviews will be tape-recorded, later they will be transcribed, coded, and ana-

lyzed. I am not very familiar with a methodology of developing of coding procedures yet,

moreover, at this point of time it is impossible to foresee any of the results of Software Trajec-

tory analyses. Thus, interview coding scheme will be constructed after interview-discussed

(“candidate”) patterns will be identified.

6.1.1 Software Trajectory evaluation interview questionnaire

1. What is your level of education and major?

2. Do you have any previous experience with software development?

3. Do you aware about recurrent behaviors (philosophies/approaches/styles) in the soft-

ware development? If so, which ones can you recall?

4. Did you ever follow any of the formal approaches or styles in your own, professional,

or the classroom development?

5. By applying Software Trajectory framework I was able to capture a behavioral pattern

P which looks like P1 → P2 → .... My interpretation of this is .... . Does my interpre-

tation of this recurrent behavior match your own understanding of your development

behavior?

6. Is there another interpretation of this pattern that you believe more accurately reflects

your behavior?

7. When you think about this pattern, can you think of changes you might want to make

to your development behaviors based upon it?
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6.1.2 Software Trajectory consent form

Thank you for agreeing to participate in our research on software process discovery. This

research experiment is being conducted by Pavel Senin as a part of his Ph.D. research in

Computer Science under the supervision of Professor Philip Johnson.

As a part of this research experiment, you will be asked to provide a feedback about

automatically discovered behavioral patterns in your software development process. These

patterns will be automatically discovered by Software Trajectory framework which applies

data mining techniques to the telemetry streams collected by Hackystat. The primary goal

of this research is to evaluate the ability of Software Trajectory to discover and classify re-

current behavioral patterns; while the secondary goal is to assess the usefulness of discovered

behaviors.

The data that we collect will be kept anonymously, and there will be no identifying

information about you in any analyses of this data.

Your participation is voluntary, and you may decide to stop participation at any time,

including after your data has been collected. If you are doing this task as part of a course,

your participation or lack of participation will not affect your grade.

If you have questions regarding this research, you may contact Professor Philip Johnson,

Department of Information and Computer Sciences, University of Hawaii, 1680 East-West

Road, Honolulu, HI 96822, 808-956-3489. If you have questions or concerns related to your

treatment as a research subject, you can contact the University of Hawaii Committee on

Human Studies, 2540 Maile Way, Spalding Hall 253, University of Hawaii, Honolulu, HI

96822, 808-539-3955.

Please sign below to indicate that you have read and agreed to these conditions.

Thank you very much!

Your name/signature

Cc: A copy of this consent form will be provided to you to keep.
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