
LEARNING EMPIRICAL SOFTWARE ENGINEERING USING THE SOFTWARE
INTENSIVE CARE UNIT

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

INFORMATION AND COMPUTER SCIENCES

DECEMBER 2009

By
Shaoxuan Zhang

Thesis Committee:

Philip M. Johnson, Chairperson
Henri Casanova
Scott Robertson

We certify that we have read this thesis and that, in our opinion, it is satis-

factory in scope and quality as a thesis for the degree of Master of Science

in Information and Computer Sciences.

THESIS COMMITTEE

Chairperson

ii

c©Copyright 2009

by

Shaoxuan Zhang

iii

To my mom, dad, wife, and my new born baby girl Ruby.

iv

Acknowledgments

This research would not be possible without the following people who have provided me

with guidance, support, and encouragement along the way.

First I would like to express my sincere gratitude to my advisor Professor Philip Johnson

for the continuous support of my graduate study and research, for his patience, motivation, enthu-

siasm, and immense knowledge. His guidance helped me in all the time of research and writing of

this thesis. I could not have imagined having a better advisor and mentor for my graduate study.

I would also like to thank the rest of my thesis committee: Professor Scott Robertson, and

Professor Henri Casanova. Thank you for your guidance, criticisms, and encouragement.

Last, but not least, I would like to thank my family. There is nothing more important to

me than my family. I am eternally grateful for the strength, support, and above all, the love that all

of you have given to me.

v

Abstract

In software engineering, the importance of measurement is well understood, and many

efficient software development metrics have been developedto help measurement. However, as the

number of metrics increases, the effort required to collectdata, analyze them and interpret the results

quickly becomes overwhelming. This problem is even more critical in educational approaches

regarding empirical software engineering.

The Software Intensive Care Unit is a new approach to facilitating software measurement

and control with multiple software development metrics. Ituses the Hackystat system to achieve

automated data collection and analysis, then uses the collected analysis data to create a monitoring

interface for multiple “vital signs”. A vital sign is a wrapper of a software metric with an easy to

use presentation. It consists of a historical trend and a newest state value, both of which are colored

according to the “health” state.

My research deployed and evaluated the Software ICU in a senior-level software engi-

neering course. Students’ usage was logged in the system, and a survey was conducted. The results

provide supporting evidence that Software ICU does help students in course project development

and project team organization. In addition, the results of the study also discover some limitations of

the system, including inappropriate vital sign presentation and measurement dysfunction.

vi

Table of Contents

Acknowledgments . v
Abstract . vi
List of Figures. ix
1 Introduction . 1

1.1 The Problem. 2
1.2 Software Intensive Care Unit Approach. 2
1.3 Evaluation of Software ICU . 4
1.4 Thesis Claims. 4
1.5 Thesis Structure. 5

2 Related Work . 6
2.1 TSP/PSP. 6
2.2 Research Based on Automated Data Collection. 7

2.2.1 Project ClockIt and Retina. 8
2.2.2 PROM . 9

2.3 Previous Case Studies of Hackystat. 11
3 Hackystat . 13

3.1 Hackystat Framework. 13
3.1.1 Sensors. 13
3.1.2 SensorBase. 14

3.2 Analysis Services. 15
3.2.1 Daily Project Data Analysis. 15
3.2.2 Telemetry Analysis. 15

3.3 Project Browser. 16
4 Design and Implementation of The Software ICU. 20

4.1 Vital Signs. 20
4.2 Vital Sign Presentation. 23

4.2.1 StreamTrend Coloring. 24
4.2.2 Participation Coloring. 25

4.3 Mini Chart Drill-Down . 25
4.4 The Interface of The Software ICU. 27

4.4.1 The Control Panel. 27
4.4.2 The Loading Process Panel. 29
4.4.3 The Data Panel. 29
4.4.4 The Vital Sign Configuration Panel. 29

4.5 System Customization. 33

vii

5 Classroom Evaluation. 36
5.1 Case Study in Classroom. 36
5.2 Experimental Limitations. 37

6 Results. 38
6.1 Feedback regarding Hackystat system. 38
6.2 Verification of System Usage. 39
6.3 Utilities of Vital Signs . 41
6.4 Vital Sign Popularity . 42
6.5 Feasibility in a professional software development context 44
6.6 Thesis Claims Revisited. 45

7 Conclusions. 46
7.1 Contributions . 46
7.2 Future Directions. 47

A 2008 Classroom Evaluation Questionnaire of Hackystat. 49
B Results form the 2008 Classroom Evaluation Questionnaireof Hackystat. 52
Bibliography . 69

viii

List of Figures

Figure Page

1.1 An example medical ICU screen.. 3
1.2 An example Software ICU screen.. 3

2.1 Progression of PSP. 7
2.2 ClockIt BlueJ Data Visualizer summary. 8
2.3 Data viewers of Retina.. 9
2.4 Architecture of the PROM system. 10
2.5 Screenshot of course project to date analysis of Hackystat in 2003 11
2.6 Screenshot of file-metric telemetry analysis of Hackystat in 2006 12

3.1 The architecture of Hackystat. 14
3.2 SensorData viewer in Project Browser.. 17
3.3 DailyProjectData viewer in Project Browser.. 18
3.4 Telemetry viewer in Project Browser.. 19

4.1 An Example of the Drill-Down of DevTime Vital Sign.. 26
4.2 The Software ICU’s control panel with date selector opened. 28
4.3 The Software ICU’s Loading Process Panel. 30
4.4 A screenshot of the Software ICU. 31
4.5 The Vital Sign Configuration panel in Software ICU. 32

6.1 SICU usage on per student bias. 39
6.2 Analysis count on a per-student basis. 40
6.3 Vital sign popularity from survey. 41
6.4 The final states of all class projects in Software ICU.. 41
6.5 Usage of Telemetry Analyses. 43

ix

Chapter 1

Introduction

Software Engineering is the application of a systematic, disciplined, quantifiable ap-

proaches to the development, operation, and maintenance ofsoftware, and the study of these ap-

proaches; that is, the application of engineering to software[1]. As a famous software engineering

researcher says, “you can neither predict nor control what you cannot measure”[2]. Measurement

is an indispensable step to help software development achieve a state characterized by predictable

and controllable processes. Though lots of research and literature exists on software metrics, some

of their limitations including measurement distortion anddysfunction are well known, and a ma-

jor error in management decision support comes from using a single metric in isolation. In order to

overcome these limitations, the use of measurement from multiple dimensions is necessary to obtain

a more comprehensive perspective on any given software attribute of interest, such as readability,

maintainability, modifiability, reliability and so forth[3][4]. However, manipulating multiple soft-

ware metrics is not simple. The increased effort required for data collection and analysis needs to be

addressed to reduce the overhead of measurement. Selectionof metrics and their presentation also

demands careful consideration to prevent metric data from overwhelming the user and preventing

useful application.

In this research, I use concepts from the medical intensive care unit (ICU), where multiple

vital signs are monitored in an automatic and efficient manner. Medical ICUs provide a set of ”vital

signs” that help doctors determine when a patient’s health is stable, improving, or declining. Using

the medical ICU as a metaphor, I built an application called the Software Intensive Care Unit.

It provides an intensive monitor interface with multiple vital signs, which are software metrics

wrapped with an easy to use presentation to indicate their “health” states. However, the design

of the Software ICU is a great challenge. Both what data to present and how to present them are

essential design decisions, but neither is well-studied. The variety of development settings makes

1

this problem even more complicated. I am not confident that there exists a golden rule for all

situations. Hence, providing a capability for configuration and customization is important. In this

research, I tune the Software ICU to the scenario of course project development in the undergraduate

classroom.

1.1 The Problem

In software engineering, the importance of measurement is well understood, and many

efficient software development metrics have been developedto help measurement. However, as the

number of metrics increases, the effort required to collectdata, analyze them and interpret analysis

results quickly becomes overwhelming. This problem becomes even more critical when introducing

software measurement to a software engineering course, where students are still struggling to make

the transition from programming to software development. There are so many things (such as

system design, code style, software quality control, collaboration, etc.) they need to focus on that

utilizing software measurement is often found to be a distraction. This leads to the impression that

software measurement is difficult.

1.2 Software Intensive Care Unit Approach

The Software Intensive Care Unit (Software ICU) is based upon the Hackystat system,

which already provides automated data collection and analysis, and further helps developers to in-

terpret software measurement results and control the software development process. The Software

ICU adopts the metaphor of a medical intensive care unit, where a set of vital signs are intensively

monitored to determine the health state of the patient, thentreatment is planned according to the

state.Figure 1.1illustrates an example medical ICU screen. Each vital sign in a medical ICU rep-

resents the condition of an organ system. A vital sign withinits normal range of behavior indicates

that the corresponding organ system functions normally. When a vital sign departs from its normal

range of behavior, it is an indication of possible organ system failure, and treatment may be required

to keep the organ functional. When this happens to additional vital signs, the patient’s health state

is more critical, and emergency treatment is required to avoid injury or death.

In the Software ICU, software metrics are used as vital signs, and are monitored inten-

sively. The “health” states of the software are determined,and marked with color, so that developers

can plan “treatment” for their software project accordingly. Figure 1.2illustrates an example Soft-

2

Figure 1.1. An example medical ICU screen.

Figure 1.2. An example Software ICU screen.

3

ware ICU screen. Each metric represents a factor in the software development process. When a

metric departs from its reasonable behavior, it indicates that some aspect of the software develop-

ment process is going wrong. “Treatment” is required in order to avoid possible project failure.

Similar to the medical ICU, the Software ICU’s vital signs are presented with both histor-

ical trend and current state, each of which is then colored. Different vital signs may use different

coloring methods and parameter configurations. Unlike the medical ICU, whose vital signs (tem-

perature, respiration, etc.) have been studied in some cases for hundreds of years, no comparable

body of research exists in software engineering on how to intensively monitor multiple software

metrics to determine the state of the software project or howdifferent behavior of metrics impacts

upon the state of the software project. Therefore, my selection of vital signs and their configurations

are research hypotheses, and are validated in the case study.

1.3 Evaluation of Software ICU

Undergraduate students enrolled in a Software Engineeringcourse assisted with the eval-

uation of this research. The class consisted of 19 students.In the second half of the semester, they

were divided into 5 groups and each group developed two course projects. Hackystat and the Soft-

ware ICU were introduced to the class to help them understandthe health state of a software project.

They used the system for approximately six weeks, and their activities on the system were logged

during that period. At the end of the semester, the students were invited to participate in a survey

that asked their opinion of Hackystat and the Software ICU.

I compared and analyzed the result from system logs and questionnaire responses to find

out how they used the system and what impact the system had on their development.

1.4 Thesis Claims

This research investigates the mechanism and technology ofSoftware ICU and gathers

data to assess the following claims:

1. Adopting metaphor of the medical ICU to software engineering is practical and feasible.

2. The selection of vital signs is appropriate.

3. The coloring mechanism correctly illustrates the healthstate of the vital signs.

4

4. Knowledge of health state of their projects helps students improve their performance in col-

laborative software development.

The first one claims that it is possible to implement an application that monitors multiple software

development metrics and can be used to direct software development practice in a way similar to

the medical ICU.

The second one claims that the selection of vital signs is adequate to reveal potential

defects during software development.

The third one claims that with a decent coloring method, the vital sign of different condi-

tions will be assigned different colors, and the same color can be traced back to similar conditions.

The fourth one concerns a chain reaction of events. When students know the health state of

the vital signs of their projects, they will need to fix their code or improve their development practice

if the vital sign is not healthy. By trying to keep vital signshealthy, students should discover better

ways to collaborate with other teammates and produce high-quality software.

1.5 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 presents some previous

studies related to this research. Chapter 3 describes the Hackystat system, which Software ICU

is built upon. Chapter 4 contains a detailed description of the design and implementation of the

Software ICU. The evaluation procedures are described in Chapter 5 and the results are discussed

in Chapter 6. Finally, Chapter 7 contains the conclusions and future directions of this research.

5

Chapter 2

Related Work

Section 2.1discusses previous research on empirical software engineering concepts. Most

previous research on measurement-based software engineering focuses on methodology. Effective

approaches are developed and deployed in actual practice. However, the lack of automation adds

significant overhead to developers, thus leading to the impressions that they are hard to do. Research

on Hackystat and the Software ICU is oriented towards a new generation of approaches to PSP

metrics that automate data collection and analyze[5].

Section 2.2discusses three recent research projects that focus on automated data collec-

tion. Two of them mainly focus on introductory level programming courses and are not very suitable

to senior software development or professional settings. The third one is very similar to Hackystat

and was the object of industry studies.

Section 2.3discusses two previous related case studies of the Hackystat system to provide

some insight into the use of Hackystat in a classroom settingprior to the use of the Software ICU.

2.1 TSP/PSP

The Personal Software Process (PSP)[6] and the Team Software Process (TSP)[7] are

among the most extensively studied approaches for measurement-based software engineering. They

were developed by Watts Humphrey to teach students (in university and industry alike) about the

use of large scale methods based on the Capability Maturity Model (CMM)[8]. The PSP attempts

to scale down industrial software practices to fit the needs of small scale program development.

Software processes and software engineering disciplines are gradually introduced through small

program projects (e.g. course assignment projects). The PSP maturity progression is shown in

Figure 2.1. Students first gather both process and product measures on aset of projects. Then by

6

comparing the measurement result to their original planning, they gain insight into their program-

ming habits, both pros and cons, and improve their process tohigher level of maturity.

Figure 2.1. Progression of PSP

A major drawback of the PSP is lack of automation. Developershave to manually record

their process and product data (mostly the development timeand number of defects). The high

overhead of data collection raises a barrier to introduction and adoption. Additionally, it is not easy

to “digest” the data. Developers have to manually analyze their recorded data in order to understand

their performance, hoping then be able to improve it.

On the contrary, the Software ICU explores how one can provide a higher level of au-

tomation in tracking and analyzing software process and product data.

2.2 Research Based on Automated Data Collection

Project ClockIt and are two recent research projects based on automated data collection

to support entry-level programming courses, while PROM is aresearch project that is quite similar

to Hackystat[9].

7

2.2.1 Project ClockIt and Retina

Project ClockIt provides a data logger as a BlueJ1 extension. It records developer’s

open/close of project and package events, file change and delete events, and compilation results.

Data is saved to a local file and later sent to a database via theInternet. A data visualizer integrated

into BlueJ is available to view data about the current project. Figure 2.2shows an example of this

visualizer. Data stored in database is used for statistic analysis such as class averages. A web in-

terface is also available to instructors to view the individual data of their students and class average

analysis data.

Figure 2.2. ClockIt BlueJ Data Visualizer summary

Closely related to ClockIt, Retina also provides automateddata collection. Though Retina

provides more tool support (BlueJ, Eclipse and command-line compiler), it focuses on a even

smaller area of programming events: compilation. It only gathers data from students’ compilation

events, mostly compilation errors. In additional to its data viewer (seeFigure 2.3), it also provides a

recommendation tool for students. The tool uses instant messaging (IM) to give students an estimate

of the amount of time required for the upcoming assignment, and the compilation errors they are

likely to make. These are based on both the student’s previous data and the data from courses of

previous semesters.

1“BlueJ is an integrated Java environment specifically designed for introductory teaching.” –Quoted from
http://www.bluej.org/about/what.html

8

http://www.bluej.org/about/what.html

(a) Retina Instructor Viewer (b) Retina Student Viewer

Figure 2.3. Data viewers of Retina.

The difference between these two research projects and the Software ICU is that ClockIt

and Retina focus only on introductory level courses, where compilation is the most interesting

development event. On the other hand, their relatively easyconfiguration contrasts with one of

the major short-comings of Hackystat and the Software ICU. As neither of them provide good

extensibility, they are unlikely to be useful in advanced programming situations like senior-level

programming course or professional setting.

2.2.2 PROM

PRO Metric (PROM) [9] is a system that is quite similar to Hackystat. PROM is a software

system for collecting process and product metrics in a software company. It was initiated and

driven by the demand of the company, and thus the research focus is on an industry setting. It is

designed to work fully automatically without any interaction with the user in order to get reliable

and accurate data about company’s internal workflows and development processes. It is organized

in a sequence of interconnected components, communicatingusing the SOAP protocol. Similar to

sensors in Hackystat, it collects data using plugins for many different applications, including IDEs,

word processing tools, email clients, and issue tracking systems. The collected data is transmitted

to a plugin server to extract metric, then the results are sent to PROM server to store into a database.

Figure 2.4shows the overview of PROM’s architecture.

Compared to Hackystat, PROM’s data is stored as analyzed metric results while Hackystat

stores the raw sensor data. The disadvantage of storing raw data is that analysis has to be executed

9

every time the results are requested, while the advantage isthat the abilities to modify analysis

algorithms and to run new analysis on existing data are retained. Moreover, Hackystat’s caching

mechanism has compensated for this disadvantage to some extent.

Figure 2.4. Architecture of the PROM system

PROM categorizes users into 3 roles: developer, team leader, and manager of the team.

Each of these roles is provided with different views of the data. Developers have access to their

individual and detailed data, the leader has access to the aggregated data of the whole team, and the

manager has access to project level aggregated data. In Hackystat, a user is given either no access

to data (if they are not a member of the project) or complete access to the data (if they are a member

of the project).

A recent case study of PROM in an industrial environment[10] discusses the lessons

learned from two years experience of using the PROM system inthe IT department of a large com-

pany in Italy. Evidence indicates that adopting a system like PROM requires a long set-up phase

and needs the company and the development team’s patience and commitment to succeed, but it can

eventually deliver value to the company.

One of the lessons suggests that data presentation is as important as data accuracy, and

simplicity, brevity and clarity is preferable. Another lesson suggests that fast aggregated view of

data is desired, and users of different roles favor different aggregations, e.g., developers like reports

of their daily activities, while team leader and manager like summary views of data on team and

project level. The Software ICU’s simple and fast data presentation and high configurability and

extensibility would appear to address these requirements.

10

2.3 Previous Case Studies of Hackystat

The classroom study presented in this thesis is the third case study of the Hackystat system

in a classroom setting.

The first case study was performed in 2003 using an early version of Hackystat[11]. At

that time, Hackystat was only collecting 4 types of metrics (Active Time, Size, Unit Tests and

Coverage). The system was oriented around a set of “Course” analyses that were tailored to an

educational setting. Those analyses summarized the individual team project’s metric data in tabular

form, and also presented comparisons of all of the course projects (Figure 2.5). The case study

evaluation showed that the installation of Ant sensors werethe most significant barrier to the system.

It was too difficult to install without direct help from the development team. But the overhead of

use was relatively low and analyses were usable and useful. However, the lack of data privacy was

uncomfortable for some students.

Figure 2.5. Screenshot of course project to date analysis ofHackystat in 2003

The second case study was performed in 2006 as a partial replication of the first case

study[12]. Hackystat had undergone significant changes from 2003 to 2006. The sensor installation,

which is the major barrier to the system in 2003, was automated by the HackyInstaller GUI, which

greatly lowered the overhead of configuration for developers. The evaluation confirmed this with a

substantial drop in sensor installation difficulty. However, a new sophisticated Telemetry analysis

11

(seeFigure 2.6) and its complex user interface raised the difficulty of using it and interpreting data,

leading to slight drop in usability and professional feasibility.

Figure 2.6. Screenshot of file-metric telemetry analysis ofHackystat in 2006

In 2007, Hackystat was re-implemented with a new architecture. Adopting a service-

oriented architecture (SOA)[13] enables the development of multiple user interfaces to separate

from the data collection and analysis components. The Software ICU is built upon a new web-

based UI called Project Browser, and the classroom study is also based on this user interface.

12

Chapter 3

Hackystat

In this research, the Software ICU is built upon Hackystat tofulfill automated data col-

lection and analysis. This chapter briefly describes the Hackystat system, which was invented by

Professor Philip M. Johnson, in the Collaborative SoftwareDevelopment Laboratory, Department

of Information and Computer Sciences, University of Hawaiiat Manoa.

3.1 Hackystat Framework

Hackystat is an open source framework for collection, analysis, visualization, interpreta-

tion, annotation, and dissemination of software development process and product data[14]. Hacky-

stat consists of many software services that communicate using REST architectural principles[15].

These software services can be categorized into 4 groups: sensors, data repository, analysis services

and viewers.Figure 3.1shows the architecture of Hackystat system.

3.1.1 Sensors

Sensors are small software plugins that collect data from the use of tools and applications.

Currently, sensors are available for many development software systems including Eclipse, Emacs,

Ant, etc. Sensor data is represented in XML, and consists of seven basic elements:data owner,

resource, timestamp, runtime, tool, Sensor Data Type, andproperties. The first six are required and

the last one is optional.

The Sensor Data Type (SDT) is specified for every piece of sensor data when collected,

so that the same type of data can be collected from different tools and higher level services can

easily determine which data is relevant to them. Sensor datais designed to record only a piece of

atomic data such as the size of a single file. Theruntimefield is used to group data that belong to the

13

Figure 3.1. The architecture of Hackystat

same event, such as collecting size metric of a project.Propertiesare additional information that is

specified for different types of sensor data, such as coverage value for coverage SDT and lines of

code for size metric.

Sensors are designed to work automatically without any attention from the user apart from

initial configuration. The collected data is sent to the datarepository via HTTP. In order to reduce

the Internet communication and support offline work, data istemporarily stored locally, then sent to

the data repository every several minutes or when the Internet connection is available.

3.1.2 SensorBase

SensorBase is the data repository that stores the data as it is sent from sensors, and pro-

vides a RESTful interface for easy manipulation of the data using HTTP. Sensor data can be queried

with the six required elements mentioned above via HTTP calls, and data is sent back as XML. The

SensorBase is implemented with a database manager abstractclass, thus it is easy to add support

for different database implementations. The current version of Hackystat provides database support

for Derby, Oracle and PostgreSQL.

14

3.2 Analysis Services

The analysis services of Hackystat provide abstractions ofthe raw data from the Sensor-

Base. DailyProjectData and Telemetry are the two fundamental analysis services of Hackystat.

3.2.1 Daily Project Data Analysis

As its name indicates, the DailyProjectData (DPD) service provides abstractions of sensor

data associated with a single project within a 24 hour window, which represents a simple software

development metric on a single day. Data for a single projectincludes data from all members of that

project. In a DailyProjectData instance, both a summary value, e.g. total development time across

the project, and detailed values, e.g. development time of each project member, are available. So it

is easy for higher level services to use this data.

Each DPD analysis generates software metric from data of a certain Sensor Data Type.

Current available DPD analyses are Build, Code Issue, Commit, Complexity, Coupling, Coverage,

Dev Time, File Metric, Issue, and Unit Test. These DPD analyses are the basis of the Hackystat

system, most other analysis services are based on them. While DPD is a low level of abstraction,

these can also be considered as the available software metrics in Hackystat.

3.2.2 Telemetry Analysis

Based on the DPD service, the Telemetry service provides abstraction over a longer period

of time such as several days, weeks or months. A Telemetry chart consists of one or more streams,

each of which is a set of data points in chronological order. Each data point represents the metric

value of the object of the stream in a single granularity (day, week or month). Together they show

the trend of the metric(s).

There is a special group of Telemetry charts called Member-Level Telemetry. These charts

consist of several streams, each of which belongs to a memberof the project. They are used in the

Software ICU’s drill-down feature to compare performance of each member within a project (see

more detailed description inSection 4.3).

To support the practices of different organizations, the Telemetry service provides a do-

main specific language that allows to build new Telemetry chart with Telemetry stream lines. The

predefined Telemetry charts are all written using this language.

15

Telemetry streams can also accept parameters to refine the object data. This feature is

inherited in the Software ICU, where user can configure the parameters of the associated Telemetry

analysis of each vital sign (more detailed discussion inSection 4.1andSection 4.4.4).

3.3 Project Browser

Project Browser is one of the viewers in Hackystat system, which is integrated with view-

ers to most Hackystat services. It is based on Wicket1, a Java-based web application framework.

With the help of Wicket’s modularization, pages on Project Browser can share common

panels, such as project/date selection panels and Ajax loading process panel, which facilitate the

development of new pages. This also makes user’s experiencemore consistent across different

viewers. Therefore it now serves as a data presentation and high level analysis development center.

Several new presentations and high level analyses are developed upon it. The Software ICU is one

of them.

Viewers for SensorData, DailyProjectData analysis, and Telemetry analysis are included

in the current version of Project Browser.

The SensorData viewer provides two levels of presentation.The first level shows a sum-

mary table of days from the selected month, on which sensor data existed for the given project

(Figure 3.2). The sensor data is categorized into sensor data types. Then the pieces of data of a

sensor data type on a specific day are counted against the toolwith which the data was collected.

By clicking a number-tool pair, the user opens a pop-up window showing the detail of the data.

The DailyProjectData provides specific summary of each DPD analysis. For example,

in Coverage DPD, the classes of the source code are separatedinto 5 groups according to their

coverage (Figure 3.3). In Build and Test DPD, the number of invocations are divided into two

groups: success and failure. Each DPD analysis has its own parameters, which can be selected from

the choice fields under the project selector.

The Telemetry viewer provides both table of values and graphical visualization (Figure 3.4).

After invoking a Telemetry analysis, the user can select from the data table the streams he want to

include in the graphical chart which will be shown after theGet Chartbutton is clicked.

1http://wicket.apache.org/

16

http://wicket.apache.org/

Figure 3.2. SensorData viewer in Project Browser.

17

Figure 3.3. DailyProjectData viewer in Project Browser.

18

Figure 3.4. Telemetry viewer in Project Browser.

19

Chapter 4

Design and Implementation of The

Software ICU

In order to utilize multiple software development metrics to manage software development

process, I adopt the metaphor of the medical ICU and develop asystem called the Software Intensive

Care Unit (Software ICU). It consists of a set of vital signs,each of which is based on a software

development metric and indicates the project’s “health” state from one perspective.

4.1 Vital Signs

Similar to the medical ICU, the use of multiple software development metrics in Software

ICU is necessary because there is not a single metric that candetermine the health state of a software

project. Each software metric shows a different aspect of a software project. Changes in one of them

may or may not indicate a change in the overall health state, but changes in more of them indicates

a higher possibility that health state has changed. In this study, nine vital signs are used in the

Software ICU.

Vital signs of software projects are measured by various software development process

or product metrics. Each of these vital signs reveals an aspect of the health state of the software

project. In this section I will discuss all these vital signs.

Coverage is a good indicator of the test quality. It stands for the testcoverage of source code in

unit testing, which is usually measured as the percentage ofcode units (line, method, class,

etc) that have been executed during testing. There are a number of coverage criteria, such as

line, method, class, conditional, etc. In the Software ICU,the user can select which to use.

20

But no matter which criterion is chosen, higher coverage is always better because a higher

percentage of code covered by unit tests indicates a lower fraction of untested code. However,

high coverage does not necessarily mean good quality test, or vice versa. One reason is

that, in some situations, it is difficult to achieve high testcoverage because of the difficulty

of verifying results, especially when developing using UI frameworks. Another reason is

that the code executed during unit testing can be unverified.For example, when testing an

image processor with a given image file, the code of loading the image file is executed, but

the test probably has no assertion about the correctness of loading the file. However, as

long as developers do not have the intent to trick coverage inorder to pretend to be writing

enough unit tests (which is possible if coverage is misused to judge their performance), raising

coverage is always a good thing.

Cyclomatic Complexity, a measurement of the complexity of a program, measures the number of

linearly independent paths exist in the program’s source code[16]. The higher the cyclomatic

complexity, the more distinct control paths in a program module, and the more difficult it is

to achieve high path test coverage. Additionally, code of high complexity is often difficult to

understand, thus it is hard to maintain. Therefore, programmodules with low complexity are

preferred. But high complexity is not necessarily evil. Thenature of some algorithms just re-

quires a high level of complexity. Also a raise in complexityis sometimes unavoidable during

development, especially when optimizing code performance. However, developers should try

to avoid high complexity unless it is necessary, especiallyin early stages of development, so

that the code is easier to maintain in the future.

Coupling, or dependency, is the degree to which each program module relies on one or more of the

other modules. It is a measurement of the complexity of the whole system’s module reference

tree. Whenever one module is modified, there will be a chance that the change causes bugs

in one of the modules that relies on it. Therefore, higher coupling implies higher risk of

introducing bugs when making changes, thus making the software harder to maintain. High

coupling might also make the software harder to reuse because all dependent modules must

be included. Therefore, coupling is suggested to be kept low.

DevTime, an abbreviation of Development Time, is a measurement of thetime spent on devel-

opment tasks by developers. Hackystat uses a special approach to measure this: for each 5

minute interval, if any development activities are observed by the tool sensors, the developer

is considered to be developing during that interval. It relaxes the criteria of measuring de-

21

velopment time so that coding while reading from documentation will get the same DevTime

as an intensive coding period. However, Hackystat sensors for DevTime are only available

in several IDEs (currently available to Emacs, Eclipse, andVisual Studio). No sensors are

available for other applications that might be used during developing, such as browsers, E-

mail clients, office systems, or other editors/readers. So the monitored development activities

are limited. Moreover, some development activities, such as reading and learning, are very

difficult to track. Therefore, DevTime should not be used to determine a developer’s effort.

During a relatively long development period, if the habit ofan individual does not change

a lot, the DevTime of a developer should be relatively stableover time. Thus large sudden

increase in DevTime is a possible sign of bad developing habit like “start late near deadline”.

Churn is a measurement of the changes (addition, deletion and/or modification) of code that are

made into repository. It is usually measured by LOC (lines ofcode), and is an indicator

of developers’ contribution to the project. The interpretation of this metric depends upon

the stage of development. In the early stages of development, churn is expected to be high

because new code is being added. During the maintenance of a system, churn is mainly from

fixing bugs and adding new features, both of which are fewer for a stable system, thus churn

is expected to be lower. In terms of development behavior, the churn of developers reflects to

some extent the amount of work they are doing. It tends to be relatively stable over time in

the same project because the work rate of an individual does not vary a lot in the same coding

condition. Dramatic change in churn of an individual developer while DevTime not changing

respectively is a bad phenomenon, which might be due to bad development habit like “copy

and paste without understanding”.

Commit measures the number of commitments made into repository. “Commit early, commit

often” is a well-accepted guideline of continuous integration[17]. For the same amount of

churn, more commits implies better following of this discipline.

Size of the project is measured by the source lines of code (SLOC),which counts the number of

lines in the text of the program’s source code. It can be a signof the effort put into the project,

However, SLOC alone does not make as much sense about the state of the project as Churn.

We include this vital sign only to give users an idea of the size of the project, just like the

height in your medical record.

22

Test is a count of unit test invocations. Unit testing is a software verification and validation method

in which a developer tests individual units of source code. It is used to ensure that code

meets its design and behaves as intended. A requirement of good development behavior is

to test while coding, or event better, use “Test Driven Development” (TDD). No matter what

development pattern you follow, unit testing is an indispensable step and regular execution of

unit tests is always a good sign of a healthy development habit.

Build is a count of invocations of tasks of a build system (such as Ant, Make, or Maven). A build

task accomplishes necessary steps to ensure the correctness of the code before commit. It

typically consists of compilation, code inspection, unit testing, documentation generation,

etc. It is a usual activity in software development nowadays. Though how often to build

largely depends on personal preference and habit, it is advisable to build often to ensure the

correctness of the system.

These nine vital signs are the default set in the Software ICU, but this can be changed.

Users can determine which vital signs to use, as well as create new vital sign analysis with Telemetry

charts in system customization. More detail about this configuration and customization is provided

in Section 4.4.4andSection 4.5.

4.2 Vital Sign Presentation

As reported in a case study of PROM, data presentation is as important as data accuracy[10].

One of our primary goals for the Software ICU is to provide a proper presentation to help interpret

large amount of software metrics data. In order to achieve this goal, the Software ICU uses mini

charts to integrate historical data and uses color to categorize the health state of vital signs.

A vital sign consists of two parts: a numerical latest value and a mini historical chart.

Latest Value represents the newest state of the vital sign in the analysisperiod. In our implemen-

tation, it shows the most recent associated metric data. If there is no metric data on the latest

date of the analysis period, it will search backward for the first available data of that metric.

The latest value will be “N/A” only when there is no data of that metric in the whole analysis

period.

Mini Chart represents the trend line of the associated metric data overthe analysis period. This

mini chart is implemented as a bar chart. Each bar representsthe metric value of the metric

23

on a unit of granularity (day, week or month). Bars heights are scaled so that the highest bar

is almost reach the top of the chart.

However, providing the last values and mini charts does not completely address the re-

quirement for fast data interpretation. Thus I further enhance the presentation by adding colors to

those numerical values and charts to provide intuitive ideas of the “health” state of the vital signs.

Generally, the color green is used to represent a “healthy” state, red to represent a “un-

healthy” state, and yellow for an uncertain state. This color pattern is good for indicating states

because it matches conventions people attach to color and thus most people can understand it with-

out reading instructions.

Different vital signs may use different coloring methods, and the latest value and the mini

bar are colored separately. The choice of coloring method mainly depends on the nature of the

vital sign. In general, vital signs that have clear preference of higher or lower, like most based

on software development product metrics (Coverage, Complexity, Coupling) will use StreamTrend

coloring method (seeSection 4.2.1), and vital signs based on software process metrics will likely to

use Participation coloring method (seeSection 4.2.2). Sometimes, there may be no ideal coloring

method for a vital sign, such as Size, then the user can selectto leave that vital sign uncolored.

4.2.1 StreamTrend Coloring

The StreamTrend coloring method determines the health of a metric by its value and trend.

It colors the latest value as well as the mini chart. It takes three parameters:HigherBetter, Higher

ThresholdandLower Threshold. Users can decide the preferable trend, higher or lower, using the

HigherBetterparameter. For example, a rising mini chart is considered tobe good if theHigherBet-

ter parameter is set to true. A trend is considered to be rising ifthere is no value point lower than

the one before, and if the last value is greater than the first value. A falling trend is determined in

the opposite way. In order to be able to categorize trends that have some small disruptions as raising

or falling, the StreamTrend coloring method considers small amounts (proportional to the average

of the first and the last value) of change as equal. Stable trends are always considered as “healthy”

because in that case it is as good as “healthy” that the user does not need to pay much attention to it.

And unstable trend is marked as yellow because it is no easy way to tell if it indicates a good state

or not.

Higher ThresholdandLower Thresholdparameters are only used when coloring the latest

value. Values exceeds the higher threshold will be colored green if HigherBetteris true, or red if

24

HigherBetteris false. Values lower than the lower threshold are colored in similar way. Values

between these two thresholds are always colored yellow.

4.2.2 Participation Coloring

The Participation coloring method determines the health ofa stream by analyzing the

participation of the members of the project. It only colors the mini chart, leaving the latest value

always uncolored. This coloring method is designed to detect the health state of team collaboration,

mainly via software process metrics. It takes three parameters:Member Percentage, Thresholdand

Frequency. The Participation coloring method colors a mini chart green if

1. there are more percentage of members than theMember Percentageparameter that,

2. have the metric value greater than or equal to theThresholdparameter per day,

3. for more frequently than theFrequencyparameter in the analysis period.

A mini chart is colored yellow if it does not meet the green requirement, but the metric of

the team as a whole meets the requirement of green, i.e.,

1. the combined metric value is greater than or equal to theThresholdparameter per day,

2. for more frequently than theFrequencyparameter in the analysis period.

If the yellow requirement is not met neither, the mini chart will be colored red.

In other words, Participation coloring method colors a vital sign green if most members

of a project are making noticeable contribution to the project regularly, and color it yellow if the

vital sign does not achieve the green state but there is someone making contribution to the project

in most of the time, and color it red otherwise, which means, in terms of this vital sign metric, the

contribution of members to the project is rare and/or insignificant.

4.3 Mini Chart Drill-Down

In each non-empty mini chart, the Software ICU provides a link to the drill-down Teleme-

try analysis. The drill-down Telemetry analysis is the analysis that used to generate the mini chart.

For most of software product metrics, such as Coverage, Complexity and Coupling, the drill-down

Telemetry analysis will show the same chart as the mini chartin the Software ICU’s vital sign, just in

25

Figure 4.1. An Example of the Drill-Down of DevTime Vital Sign.

26

different style with more detailed axes. However, for software process metrics, instead of the origi-

nal chart, an associated member-level Telemetry analysis is shown in the drill-down (Figure 4.1).

The member-level Telemetry analysis consists of multiple stream lines in the chart, each

of which represents the metric data of a project member. Fromthis member-level Telemetry charts,

it is easy to see members’ participation to the project in this metric. This is most useful when

combined with Participation coloring in the Software ICU, where you see the summary result of

members’ participation, and then explore the detail with member-level Telemetry analysis.

The drill-down Telemetry analysis uses the same parametersas used in the Software ICU,

thus the non-member-level chart should be identical to the one in the Software ICU. Vital signs with

drill-down to member-level Telemetry, use as well the member-level Telemetry to generate the mini

chart by summing all streams into one. The Software ICU provides different integrating method to

handle vital signs that use member-level Telemetry, more detail is discussed inSection 4.5.

4.4 The Interface of The Software ICU

The interface to the Software ICU is separated into two parts. The left-hand side is the

control panel. The right-hand side consists of three panels: the data panel, the loading process panel,

and the vital sign configuration panel.

4.4.1 The Control Panel

The control panel is in the left-hand side of the Software ICU. It is the only panel that will

always appear.

TheFrom DateandTo Dateon the top are text fields with date selectors. The user can

open the date selector by clicking the small calendar image on the right of the text field (Figure 4.2).

The selector is a JavaScript component that let the user select a date from a calendar. When a date

is picked, the selector will put it into the associated text field as a formatted string. The user is also

able to edit the date string directly. The format of the date strings will be validated when the OK

button is pushed. Also the Software ICU will ensure the select time period is within all selected

projects’ life period.

The Granularity is used to define the time granularity that will be used in Telemetry

analyses. The choices including “Day”, “Week”, and “Month”.

The “Show Configuration” will show the vital sign configuration panel when clicked.

More detail is described inSection 4.4.4.

27

Figure 4.2. The Software ICU’s control panel with date selector opened.

28

TheProject(s)is multiple-choice selector for projects to be analyzed. The user can select

projects by checking the checkbox in front of the projects, or unselect by unchecking.

The last two buttons, theOK andCancel, are used to control the execution of the Software

ICU analysis. When theOK button is clicked, execution will be started. Meanwhile, all fields and

buttons are disabled except theCancelbutton, which will become available for user to terminate the

analysis.

4.4.2 The Loading Process Panel

The loading process panel will only appear when the SoftwareICU analysis is under

execution (Figure 4.3). The loading process panel will display some log messages from the Software

ICU analysis to show the progress of the analysis execution.It will refresh itself every several

seconds using Ajax, until the analysis is finished. If the analysis finishes successfully, the loading

panel will disappear, and the data panel will come out. Otherwise, the loading panel will stop but

remain visible, with the error message displayed on the bottom of it.

4.4.3 The Data Panel

The data panel is the place where the results of the Software ICU are shown.Figure 4.4

shows an example of the Software ICU with the data panel.

The data panel consists of a single table that contains vitalsigns of all selected projects.

The table is colored in black so that the vital signs’ colors (green, red and yellow) are in sharp

contrast to the background. Inside the table, each row contains the vital signs for a single project.

Each mini chart is a link to the associated drill-down Telemetry analysis (SeeSection 4.3for detail).

Thepermalinkabove the table is a bookmarkable link to this analysis. By opening this

link, the user can directly invoke the Software ICU analysiswith the same selection of time period,

granularity and projects as the analysis that is being displayed.

4.4.4 The Vital Sign Configuration Panel

The vital sign configuration panel provides the user with access to the configuration of

each vital sign. User can enable/disable a vital sign, choose its coloring method, and configure the

parameters of the associated Telemetry analysis.

By clicking theShow Configurationbutton in the control panel on the left, the user can

open the configuration panel to its right. Then theShow Configurationbutton will be disabled when

29

Figure 4.3. The Software ICU’s Loading Process Panel

30

Figure 4.4. A screenshot of the Software ICU

the configuration panel is displayed.Figure 4.5shows an example of the vital sign configurations.

The first column is the name of the vital sign with the checkboxto enable or disable it. When a

vital sign is disabled, the configuration of color method andTelemetry parameters will disappear.

However, the settings are not discarded, thus when the vitalsign is enabled again, it will be the

same as before it was disabled. The second column is the coloring method. The current version

of the Software ICU provides three choices: StreamTrend, Participation and None. By choosing

the first two, its associated parameters, which are discussed in Section 4.2, are shown next to the

drop-down selection field. When “None” is selected, nothingwill be shown in that space. The

last column is the Telemetry parameters, which is defined in the definition of Telemetry charts,

and will be directly transferred to Telemetry service when retrieving Telemetry analysis for vital

sign presentation. Because of the implementation, the results of enabling/disabling a vital sign and

selecting different coloring method will be saved immediately, but other fields will only be saved

when theOK button in the bottom is pushed. When theOK button is pushed, the configuration

panel will disappear after setting is saved, and theShow Configurationbutton will become available

again.

31

Figure 4.5. The Vital Sign Configuration panel in Software ICU

32

In order to persist the user’s configuration setting betweeneach visit, the configuration

settings are saved in server side using UriCache. UriCache is a wrapper around the Apache JCS

system1. It is designed to provide an API well suited to the needs of Hackystat services. The vital

sign configuration objects are directly cached, under the name of the user. The cache expiration

timer is set to 300 days so that it will not easily be expired. But if the cache is expired or missed by

any means, the system will use the default settings.

Next to theOK button is theRest to Defaultbutton. It will restore all vital sign configura-

tion settings to default, and the results of restoring will be shown and saved immediately.

In the bottom-right of the configuration panel is a link called Configuration Instructions.

When clicked, it will show a simple instruction of the configuration panel in a pop-up window.

4.5 System Customization

Beside the ability to configure vital signs on the fly, the Software ICU also provides offline

customization of default vital signs. All vital signs, including the default set discussed above, are

defined in PortfolioDefinition XML files. There are two place the system will look for these XML

files. The first place is inside the package of the detail panelof the Software ICU, where the default

set of vital signs are defined. The other place is∼/.hackystat/projectbrowser/, where “∼” stands for

user’s home directory. Here is an example of the PortfolioDefinition XML file:

<?xml version="1.0" encoding="utf-8"?>
<PortfolioDefinitions>
<Measures>
<Measure name="Coverage"

classifierMethod="StreamTrend"
enabled="true"
telemetryParameters="Percentage,method">

<StreamTrendParameters higherBetter="true"
lowerThreshold="40"
higherThreshold="90"/>

</Measure>
<Measure name="MemberDevTime"

alias="DevTime"
merge="sum"
classifierMethod="Participation"
enabled="true">

1“JCS is a distributed caching system written in java. It is intended to speed up applications by providing a means to
manage cached data of various dynamic natures.” –http://jakarta.apache.org/jcs/

33

http://jakarta.apache.org/jcs/

<ParticipationParameters memberPercentage="50"
thresholdValue="0.5"
frequencyPercentage="50"/>

</Measure>
<Measure name="FileMetric"

alias="Size(LOC)"
enabled="true">

</Measure>
</Measures>

</PortfolioDefinitions>

There is a root element calledPortfolioDefinitions, enclosing a single elementMeasures.

Within theMeasureselement, there are a set ofMeasureelements, each of which stands for a vital

sign. EachMeasureelement can take up to six attributes:

1. Thenameattribute is required. It is the name of the Telemetry analysis used in this vital sign.

2. Thealias attribute is optional. When this is set, it will be used as thename of this vital sign.

Otherwise, thenameattribute will be used as this vital sign’s name.

3. TheclassifierMethodattribute defines the default coloring method, either StreamTrend or

Participation. This attribute is optional. When it is unset, the default coloring method will be

none.

4. Theenabledattribute defines if the vital sign is enabled by default. If set to false, the vital

sign will be disabled by default. But the user can still enable it in configuration panel.

5. Themergeattribute defines the method to integrate multi-stream Telemetry. It is necessary

for member-level Telemetries to work. “sum”, “min” and “max” are the available choices. If

it is unset, the first stream of the telemetry will be used. Because the order of streams in a

Telemetry chart is not guaranteed, using member-level Telemetry without setting this attribute

might cause unexpected results.

6. ThetelemetryParametersattribute is the Telemetry parameters of the Telemetry analysis de-

fined innameattribute. It can be unset, then the default parameters willbe used. This attribute

accepts values formatted the same way as the Telemetry REST API, i.e. common separated

values ordered the same as parameter definition of the Telemetry chart.

TheMeasureelement also can have up to two optional sub-elements. They areStreamTrend-

Parametersand ParticipationParameters, each of which defines default parameters of the corre-

34

sponding coloring method, and can exist together regardless what is set in theclassifierMethod

attribute. They take the same attributes as their parameters discussed inSection 4.2.

35

Chapter 5

Classroom Evaluation

5.1 Case Study in Classroom

The evaluation of the Software ICU in this project occurred in an academic environment

by undergraduates in a senior-level Software Engineering course (ICS 413) at the University of

Hawaii. The class consisted of nineteen students. They weregradually introduced to software

engineering concepts like specification, modeling, analysis, and design, along with useful tools in-

cluding the Eclipse IDE, the JUnit testing framework, the Subversion configuration management

system, the Ant build system, and the Hackystat system. As part of the first 7 weeks, they were

guided to the three prime directives of open source software(1. The system accomplishes a useful

task. 2. An external user can successfully install and use the system. 3. An external developer can

successfully understand and enhance the system.), and practiced on these directives on individual

basis. Then for another 3 weeks, they were divided into groups of two to work on open source

projects hosted on Google Project Hosting using Subversionsystem. Then Hackystat and the Soft-

ware ICU were added to their practice. They continued to workon their projects in large groups for

approximately 5 weeks.

At the end of the Fall 2008 semester, the students were asked to respond to a questionnaire

soliciting their opinions regarding Hackystat and the Software ICU. The complete questionnaire can

be found inAppendix A.

In order to eliminate the potential bias that due to the attempt, either consciously or un-

consciously, to “please” the instructor who would presumably be gratified by positive responses to

the questionnaire, responses were provided anonymously tothe course instructor. It is done in this

way: Before the questionnaire was given out, a “secret” codewas provided to each student. The

correspondence between the secret codes and the students isknown by me, but not the instructor

36

of the class. Response was optional, but the students were offered extra credit points for providing

their opinions. The list of names who should be awarded extracredit was sent to the class instructor

without identifying individual responses. Eighteen out ofthe nineteen students contacted provided

responses.

In addition to the survey, students’ activities on the Software ICU and the related Teleme-

try page of Project Browser was logged. Every time when students ran an analysis on Telemetry

or Software ICU, the name of the analysis, its parameters, and the timestamp of the request was

recorded in the log file. The events of clicking the mini chartto run Telemetry drill-down analysis

were also recorded, in order to assess that the drill-down feature is actually useful. The last event

I tracked is configuring the settings of vital signs. However, no meaningful action of configuration

is recorded. This is reasonable because of the students’ lack of sophistication regarding software

measurement at the time of the study.

At the end of the evaluation, the log data was compared to the feedbacks from the survey

to help verify students’ responses.

5.2 Experimental Limitations

It is important to recognize the limitations of this study. Compared to the limitations

associated with previous study in 2003 and 2006, anonymity is achieved, but others are still unsolved

in class evaluation.

First, this data is drawn from a limited sample size of 18 students. The subjects have a

relatively narrow and homogeneous background in software development.

Second, the context in which they used the system was a courseproject. Course projects

tend to be smaller, narrower in scope, and with less pressureon the developers than an industrial

context. It is one thing to get a poor grade for doing a poor job, it is another thing to lose your job

for doing a poor job. In addition, students are not working full-time on the system; the development

project is just one assignment among several.

These are all major limitations on the external validity of the responses. They do not make

the results meaningless, but rather help provide a perspective on how to gain additional evidence in

future that would confirm/disconfirm these initial findings.For example, it would be helpful to de-

ploy Hackystat and the Software ICU in a real software company, and then gather data anonymously

from the coders and managers. Other insights into future research directions will be covered in an

upcoming section.

37

Chapter 6

Results

The data collected from the classroom evaluation questionnaire can be found inAppendix B

6.1 Feedback regarding Hackystat system

Besides the purpose of research regarding the Software ICU,this study can also be inter-

preted as a evaluation of Hackystat’s new service-orientedarchitecture.

The responses of the questionnaire indicate that sensors installation is more difficult than

Hackystat in 2006. This is not surprising because of the factthat a client-side installer package was

provided in 2006, which is not yet available in the time of this study. However, once the sensors are

installed correctly, no further effort is required in data collection. Because all the students are using

the public services of Hackystat1, there is no effort required in the server-side configuration, which

was reported to be the biggest installation/configuration difficulty in 2006.

The sensors’ installation difficulties is mainly cause by the documentation. Though instal-

lation guides are provided for every component, the documentation is too distributed to follow as a

result of Hackystat’s service-oriented architecture, which reduces the coupling among components,

but also reduces the correspondence among components’ documentation.

Regarding development data sharing, most students felt OK sharing development data

with other members. But three students had concerns that sharing development data would reveal

their programming habits and introduce too much competition of statical stats, which made them

nervous. It is interesting that those three students are thethree with the lowest Software ICU running

count inFigure 6.2.

1SensorBase:http://dasha.ics.hawaii.edu:9876/sensorbase,
DailyProjectData:http://dasha.ics.hawaii.edu:9877/dailyprojectdata,
Telemetry:http://dasha.ics.hawaii.edu:9878/telemetry,
ProjectBrowser:http://dasha.ics.hawaii.edu:9879/projectbrowser

38

http://dasha.ics.hawaii.edu:9876/sensorbase
http://dasha.ics.hawaii.edu:9877/dailyprojectdata
http://dasha.ics.hawaii.edu:9878/telemetry
http://dasha.ics.hawaii.edu:9879/projectbrowser

6.2 Verification of System Usage

Figure 6.1andFigure 6.2show the data from system usage logging. I combine it with the

data from the questionnaire to confirm that the students’ responses from questionnaire reflect the

truths of their practice.

Figure 6.1. The count of days when the Software ICU was used, along with the total invocations
on per student bias. Each pair of columns represents data of one student. The X axis shows the
responses from questionnaire. VH = every day or more; H = 2-3 times per week; M = once a week;
N/A = not available.

When verifying the questionnaire responses against the logdata, I find that the choices of

question “How frequently did you use the telemetry page? ” and “How frequently did you use the

Software ICU?” are somehow ambiguous. Though “every day or more” is surely asking how many

days you use the analysis, “2-3 times a week” may be understood as times of invocations.Figure 6.1

shows data of these two interpretations. If we consider the answers as “days of use”, the actual use

frequencies are much lower than reported, because there are28 days in the evaluation period but the

highest number of days of use is only 18. But if we consider theanswers as “times of invocations”,

the invocation frequencies are more matched to reported frequencies. However, in either case, the

difference of actual usage between students who claim to usethe Software ICU “every day or more”

and “2-3 times a week” is not obvious. Though the total invocation times and days of the first group

is higher than the second, some students of the second group used the Software ICU more frequently

than the students of the first group. But this error is acceptable because the frequency of use is just as

39

remembered and might not be precise. So if the criteria is weakened and both “every day or more”

and “2-3 times a week” are considered as “did use the SoftwareICU frequently”, all responses

match their log data except three of them. Those three students claimed that they use the Software

ICU 2 to 3 times a week or more, but they actually used only halfas much as they claimed (The

lowest one with response “every day or more” and the lowest two with response of “2-3 times per

week”).

Figure 6.2. Analysis count on a per-student basis during theevaluation period. Each pair of columns
represents data of one student.

I also find that though the reported frequency of the SoftwareICU and the Telemetry are

similar, Telemetry’s analysis invocations are much higherthan the Software ICU’s(seeFigure 6.2).

But this matches the nature of these two analyses: the Software ICU shows the overall summary of

a project’s health and no need to run more than once a day, while Telemetry shows detail of a vital

sign and would often be run multiple times in every use.

Because both questionnaire responses and log data show matched evidence that students

are using the Software ICU and other Hackystat services frequently, I believe that survey participants

actually have plenty of experience with the Software ICU, and the responses are based on their real

experience and opinions.

40

Figure 6.3. Counts of selections of each vital sign in responses of question “If you used the Software
ICU, please check the vital signs that were useful to you.”.

6.3 Utilities of Vital Signs

Regarding the Software ICU as a whole, 7 out of 9 vital signs are considered to be useful

by at least half of the respondents (Figure 6.3). 10 out of 18 responses said Software ICU was

accurately reflecting the health of their project via colors, while another 6 responses are not denying

the utilities of vital signs, but are arguing that some vitalsigns are not accurate enough to determine

a project’s health. Only one student found it is “hard to determine what will fall into green, red, or

yellow”, and the last student said he failed to configure the sensors. Overall, students were quite

positive regarding the utilities of vital signs.

Figure 6.4. The final states of all class projects in SoftwareICU.

41

Three vital signs cause the most concern in student feedback: Coupling, Churn and Dev-

Time.

Coupling causes concern in that its increase during development is unavoidable, at least

there is no easy way to avoid it, especially when adopting newpackages. The course is not focussed

on how to design software to avoid significant increase in Coupling, and students were not experi-

enced enough to figure it out on their own. So student felt confused about what to do: adding new

classes and packages is necessary to accomplish the tasks, but it will also increase the coupling and

make the vital sign to turn red. As shown in the final states of the class projects in the Software

ICU (Figure 6.4), 4 of 5 projects failed to keep their Coupling trend green. However, considering

their other vital signs, they are not necessarily doing worse than the ones with green Coupling. This

indicates that the presentation of Coupling vital sign doesnot accurately reflect the true “health”

state of the projects.

Churn’s concern can be ascribed to misuse of coloring method. As discussed inSection 4.1,

Churn is preferred to be relatively stable. Neither significant increase or decrease is desirable. How-

ever, a proper coloring method is not yet implemented. Setting the default coloring method is set

to StreamTrend withHigherBetterparameter set to false turn out to be a mistake. It misled stu-

dents with the impression that Churn should be kept lower, which confused them. On second

thought, without a coloring method exclusively designed for Churn, even Participation coloring

method might be better than StreamTrend because it can better present process vital signs.

The problem of DevTime is its lack of completeness. Because of the limited collection

of DevTime sensors, only a few applications are supported byHackystat, and only one of them is

primarily used by students: the Eclipse IDE. The effort on other development activities, such as

reading books, researching online, or even pair programming is not collected. Some students felt

compelled to do more coding to catch up with their group partners.

6.4 Vital Sign Popularity

The number of invocations of Telemetry analyses can be used as an indicator of vital

sign popularity and usefulness. Both log data (6.5(b)) and questionnaire responses indicate that

the Telemetry page is mainly used to run member-level analyses. The two most used analyses

are MemberDevTime and MemberCommit (6.5(a)). In the responses to the question of vital sign

usefulness (Figure 6.3), DevTime and Commit are also among the three most popular vital signs.

The other one in the top-three is Coverage.

42

(a) Invocations of each Telemetry analysis (b) Comparison of member-level and non-member-level

analyses

Figure 6.5. Usage of Telemetry Analyses

It is not surprising that Coverage is among the most popular vital signs. Compared to other

productive metrics, it is a more intuitive indicator of project’s quality. It is not in the frequently used

Telemetry analyses because there is no need to run a separateTelemetry analysis. Users can get all

the information from the coverage vital sign in Software ICU.

But DevTime and Commit’s popularities were not expected prior to the evaluation. Sur-

vey result indicates that this is not a special case: Vital signs based on software process metrics

attract much more attention than those based on software product metrics (Figure 6.3). Popularity

of process vital signs (DevTime, Commit, Build, Test, and Churn) exceed all productive vital signs

except Coverage (Complexity, Coupling and Size). There arethree major reasons that lead to this

result.

The first reason is that popular vital signs are easier to interpret than those that are not

popular. The meanings of popular vital signs are very straight forward, while on the contrary,

as mentioned in students comments, complexity and couplingmetrics are more complicated to

comprehend. Though their general guidelines are the lower the better, the meaning of a certain

number is not easy to understand because of the nature of these metrics. Also, as the development

progresses and more features and functions are added to the code, complexity and coupling always

43

tend to increase. Additionally, unlike coverage for which one can simply “write more tests to

increase the coverage”, there is no single obvious way to reduce complexity and coupling.

But size’s low popularity is expected because it naturally has no preference to be higher

or lower and it is the only vital sign that does not have a default coloring method. It is intended to

stay in default vital signs set as a reference rather than an indicator.

The second reason of process metrics’ popularity is that product metrics are less dynamic

than process metrics. Product metrics, which are statistics of the source code, usually change slowly

and relatively linearly while the changes of code are gradually accumulated over time. On the

contrary, process metrics are measurement of human activities, which can vary a lot from day to

day. A developer can code for 6 hours in one day but not code at all in the next day. Therefore, the

change of process metrics is more interesting.

The last reason, as indicated in students’ responses, is because the Software ICU was used

by some students to improve their team process by tracking members’ activities. As mentioned by

a student, member-level Telemetry analyses provide a quantitive way to identify who is falling

behind in terms of effort output, thus team members can be more self-critical by comparing their

individual data to the groups. Students did make use of theseprocess vital signs to better organize

team collaboration. And these vital signs offer a way to motivate students to work hard.

However, one concern is that DevTime and Commit are so popular that they may also

induce measurement dysfunctions that affect user’s behaviors. As noted by Austin in his Measuring

and Managing Performance in Organizations[18], measurement dysfunction’s defining characteris-

tic is that the actions leading to it fulfill the letter but notthe spirit of the stated intentions. At least

one student actually experienced this negative effect. He explicitly pointed out that the quantitive

measurement of their activities led to a competition of stats within the group. More students have

possibly been affected as well because as indicated in that student’s answers, his team shared the

similar opinion of the “stats competition”.

6.5 Feasibility in a professional software development context

Responses of the questionnaire show that most students thought it was at least somewhat

feasible to use Hackystat and the Software ICU as a professional developer. Students’ comments

also pointed out some potential barriers to adopting Software ICU to professional setting, including

data privacy, data completeness and measurement dysfunctions. But most responses suggest that

Hackystat and the Software ICU are useful in professional setting in one way or another.

44

6.6 Thesis Claims Revisited

With the observations made from the evaluation results, thefollowing summaries can be

made about the four claims:

1. Adopting metaphor of the medical ICU to software engineering is practical and feasible.

The implementation of Software ICU shows abundant evidenceto support this claim. Critical

functionalities are all implemented at the time of evaluation. The only concern about im-

plementation from evaluation is the requirement of a choiceof emphasized layout that focus

exclusively on a single project, which is not difficult to implement at all.

2. The selection of vital signs is appropriate.

Evidence did suggest that the selected set of vital signs satisfied the need of measurement for

the students, and most vital signs were considered useful. However, one concern is that, at

the time of study, students’ lack of sophistication regarding software measurement may make

this conclusion questionable.

3. The coloring mechanism correctly illustrates the health state of the vital signs.

The result of this is mixed. Firstly, the concept of “color tostate” is supported by the stu-

dents’ opinions. Secondly, some vital signs are thought to be correctly colored while some

are not. The Participation coloring method enjoyed positive responses on all deployed vital

signs, while the StreamTrend coloring method’s performance is appropriate on Coverage and

Complexity, but is debatable on Coupling and Churn. Lesson from Churn suggest that careful

selection of coloring method is as important as developmentof a new one.

4. Knowledge of health state of their projects helps students improve their performance in col-

laborative software development.

Comments from questionnaire imply evidence to support thisclaims. Students stated that the

health state of a vital sign guided them to discover and adjust problems in their code or team

organization, which will not be (easily) noticed otherwise. But negative impression from

inappropriate coloring also affects the conclusion to someextent.

45

Chapter 7

Conclusions

7.1 Contributions

This research contributes to empirical software engineering in four ways.

The first contribution is the evidence that the Software ICU’s metaphor and presentation

help students understand and utilize software developmentmetrics to improve their individual de-

velopment performance and team collaboration. The Software ICU manages to color most vital

signs correctly to illustrate their health states. The knowledge of the health states of the project’s

vital signs helps students to discover the shortcoming of their project, both in the source code and

in their team management, so that they can focus their energyin the right place to improve their

overall performance.

The second contribution of this research is the insight intoa new way to teach empirical

software engineering courses. The idea of software health is a good way to lead student to healthy

development habit. With the help of the Software ICU’s automated data collection, analysis and

presentation, students can get rid of the overhead of software measurement and follow the vital

signs to understand the principle of software development and their actual performance. Students

no longer had the impression of software measurement is difficult, and already started to understand

the essence of software metrics and consider if and how the software metrics can help them control

their development practice.

The third contribution of this research is, it reveals not only positive impact of the Soft-

ware ICU paradigm, but also negative affect of measurement dysfunction, which is a phenomena

that was widely believed to exist but with little actual datathat reveals it. Study of measurement

dysfunction is not easy because the existence of the phenomena is unpredictable. The evidence

reported in this research is a valuable material for future research.

46

The last contribution of this research is the technical infrastructure, which is open source.

Anyone interested can download and use the system in study, teaching or professional develop-

ment. The Software ICU offers good configuration and customization capability to satisfy various

requirements. Hackystat is the only open source system thatprovides rich features of automated

software engineering measurement and analysis and based onservice-oriented architecture, which

provides high extensibility. Users can easily configure, modify and/or extend the system accord-

ing to their special needs. The Software ICU was developed following the good directives of open

source software. Source code is not only formatted with consistent style for good readability, but

also filled with documentation to help developer understandand use it. Documentation for users

and developers are also available on the hosting site of the Software ICU1.

7.2 Future Directions

As mentioned in previous sections, the Software ICU still awaits more research and im-

provement.

First, vital signs require more research. The vital signs’ presentations still need further

tuning to better indicate the health states. More research is required to explore the inner relationship

between the metric values and actual health state. The nature of the software project might be a

factor as well. More sophisticated coloring methods are also needed. The Churn vital sign requires

a coloring method to denote its health state according to thescale of its vibration: stable to be

green, moderate vibration to be yellow, and dramatic vibration to be red. Other vital signs, or new

ones, may require other coloring method as well. Furthermore, the selection of vital signs is not

yet conclusive. Additional vital signs may need to be added.Analysis algorithms of some vital

signs may need to modified to generate more normalized value for easier coloring. For example,

the Coupling should be normalized somehow to the size (probably the number of classes) of the

software. Also, the relations among vital signs might also be a factor in coloring. For example,

Churn, Commit and DevTime are related to each other to some extent. The ratio among these three

vital sign should be relatively stable, which could be an indicator of their health states.

Second, it would be useful to deploy the Software ICU in an industrial setting. The

Software ICU offers powerful means to manage a large number of ongoing projects. It can help

manager rapidly identify problematic projects, on which more attention will be paid to address

the problem. The Software ICU may also be used to discover similar projects and development

1http://code.google.com/p/hackystat-ui-wicket/

47

http://code.google.com/p/hackystat-ui-wicket/

teams, among which opportunity of experience exchange may be hiding. Lessons learned from

a project’s recovering from an unhealthy state might be helpful to another project with similar

problem. Moreover, industry is a good platform to study vital signs. Large number of projects

and developers provides abundant research data, based on which statistical research on relationship

between value of vital signs and actual health state becomespossible. Good organized software

companies are very likely to have existed ways to determine the quality of the software product.

When adopting the Software ICU, the quality of software product provides an objective reference

for vital signs. Also, if the performance of the developmentteams are known, comparing vital signs

of their projects may gain insight into the characteristic of vital signs of a healthy development

team. Additionally, professional developers are more likely to have enough sophistication to judge

the utility of the vital signs, which can help refining the selection of vital signs, and give useful

suggestion to improve the Software ICU.

Last, but not the least, the completeness of DevTime data awaits further enhancement.

The number of applications that are supported by automatic data collection sensors is small, which

may not only impair potential user’s motivation of using thesystem, but also lead to bias in different

kinds of development activities. This shortage will probably raise the barrier to adopting Hackystat

and the Software ICU to industry and other software development environment. There are two ways

to improve this. The first one is to implement more sensors formore kinds of development tools and

applications. The second one is to provide the user a way to manually report development activities,

which may be difficult, if even possible, to capture (e.g. reading paper-based material). But on the

other hand, if DevTime’s completeness is not satisfied by developers, or developers worry about

being judged basing on their DevTime data, it might be betterto discard it in serious development

setting in order to avoid measurement dysfunction. Anothersolution could be provide “local mode”

for DevTime sensor, with which the sensor will not send the data to central data repository, but

instead send it to local data repository. Then developers can use the data to understand their time

spend, or use it to create weekly report to their leader. Theymay decide whether to submit their

personal data upon request.

48

Appendix A

2008 Classroom Evaluation

Questionnaire of Hackystat

Hackystat Evaluation

Hackystat is a long term research project concerned with improving the effectiveness
and efficiency of software engineering metrics collection and analysis. Since 2003, we
have periodically conducted a survey of students in ICS software engineering classes
to assess the current strengths and weaknesses of the system.

To preserve anonymity, while also ensuring that only ICS students respond and respond
only once, we ask you to provide the ”secret code” that you randomly selected in class.
To enable credit for completing this evaluation, only the graduate student researcher
on this project (Shaoxuan Zhang) will know which code corresponds to you. He will
provide a list of names who should be awarded credit to the class instructor without
identifying individual responses. You can also contact Shaoxuan if you want your data
deleted from analysis after you’ve submitted it.

If you want to go back and change your responses, simply fill out the entire form again.
We will discard all but the most recently submitted entry fora given code.

This survey contains 17 questions and we expect that you willneed about 10 minutes
to complete it.

Thank you very much for your help! We take your views very seriously: prior responses
to this survey have led to far-reaching changes in Hackystat.

Before filling out this questionnaire, you might want to takea look at the following
image for the Software ICU to refresh your memory:

http://csdl.ics.hawaii.edu/ ˜ johnson/portfolio.gif

* Required

1. Installing the Eclipse IDE sensor was: *

• Very Easy
• Easy

49

http://csdl.ics.hawaii.edu/~johnson/portfolio.gif

• Neither easy nor difficult

• Difficult
• Very Difficult

2. Installing the Ant sensors (JUnit, SCLC, Emma, etc.) was:*

• Very Easy

• Easy
• Neither easy nor difficult

• Difficult
• Very Difficult

3. Please provide any feedback you can on the problems you experienced during
sensor installation and server configuration, as well as anysuggestions you have
to make this easier in future.

4. The amount of overhead required to collect Hackystat data(after successful in-
stallation and configuration of sensors) was: *

• Very Low

• Low
• Neither low nor high

• High
• Very High

5. The amount of overhead required to run Hackystat analyseswas: *

• Very Low
• Low

• Neither low nor high
• High

• Very High

6. Please provide any feedback you can on Hackystat overhead, as well as any sug-
gestions you have to reduce the overhead in future.

7. Did you encounter any problems while collecting data? Wasthere any kind of
data that you failed to collect? If yes, please explain.

8. How did you feel about sharing your software development data with other mem-
bers of the class? *

9. How frequently did you use the telemetry page? *

• Every day or more
• 2-3 times a week

• Once a week
• Less than once a week

• Never

10. If you used the Telemetry page, what were you trying to findout?

11. How frequently did you use the Software ICU? *

50

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

12. If you used the Software ICU, please check the vital signsthat were useful to you.
*

• Coverage

• Complexity

• Coupling

• Churn

• Size

• DevTime

• Commit

• Build

• Test

• None of the above

13. Did you feel the Software ICU colors accurately reflectedthe ”health” of your
project? If not, why not? *

14. Were you able to use the Software ICU to improve your software’s quality and/or
your team’s process? If so, in what ways? If not, why not? *

15. Please provide any other feedback you would like regarding Telemetry and the
Software ICU, as well as any suggestions you have on how we canimprove the
system.

16. If I was a professional software developer, using Hackystat at my job would be: *

• Very feasible

• Somewhat feasible

• Neither feasible nor infeasible

• Somewhat infeasible

• Very infeasible

17. Please provide any other feedback you can on the feasibility of Hackystat in a
professional setting, as well as any suggestions you have onhow its feasibility
could be improved.

51

Appendix B

Results form the 2008 Classroom

Evaluation Questionnaire of Hackystat

This section presents the responses from the respondents toeach of the questions. For

the “short answer” questions, I corrected misspellings andminor grammatical errors to improve

readability.

Question Response

1. Installing the Eclipse IDE sensor was:

• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

52

Question Response

2. Installing the Ant sensors (JUnit, SCLC,

Emma, etc.) was:

• Very Easy

• Easy

• Neither easy nor difficult

• Difficult

• Very Difficult

3. Please provide any feedback you can on the problems you experienced during sensor

installation and server conguration, as well as any suggestions you have to make this easier in future.

• I could not figure out what step makes a .hackystat directory.My .hackystat directory au-

tomatically generated in my Documents and Settings directory which has a blank space in

directory name. I am still not sure how to move this folder to other. The installation of all

sensors was pretty well described at the project homepage and there was no problems I have

met during the installation.

• Both the installation and sending sensor data was easy. However, tracking down whenever

there is a problem with the sensor is not so easy. A troubleshooting page in the near future?

• Installing the sensors was pretty straightforward. I didn’t have any problems.

• Case sensitivity was one problem between user and Hackystat, but it was fixed.

If it is possible to have a .EXE that will automatically create environment variables and also

install files into a local directory will be awesome.

• I did have one small hang up when installing the Ant sensors: If I remember correctly I was

getting a NoClassDefinition error whenever a sensor ran. I was running java 1.5. I fixed it by

downloading the jaxb libraries since the errors were referring to that. It could be not related

to jaxb at all, but it worked after that. Otherwise, I had no problems whatsoever installing the

sensors.

• Everything went smooth with the instructions given and the verification after each step.

53

• Personally I didn’t run into any problems but some of the other students did. The sensors

aren’t difficult to install per se, but there are a lot of stepsinvolved and it’s easy to get lost

while installing them. Maybe an automated installer can be created that searches for the Ant

tools (maybe the user can provide a search directory) and will configure and install the sensors

for the user.

• What made it hard was that all the instructions were not in onepage. I had to go from one

page to another and then to another. There should be instructions from STEP 1 to the end and

provide proper links to the step by step process.

• First of all, the manual is too long. I do like your goal to analyze the software project, but if

it wasn’t required by this class, maybe I wouldn’t think I want to use it, because it looks too

complicated.

Also there are too many things that we need to download and install. If you want to encourage

people to use this more, maybe you should provide a package ofall the tools somehow.

For example, before it took a long time to install Apache, MySQL, PHP, and Perl, but now

somebody offers a package called XAMPP, which is a combination of all of those, and entire

installation finishes in 3 minutes. Something like that should be given.

• There is a lot of documentation in a lot of different places. It was confusing trying to figure

out what to read in what order, and whether or not it was relevant to me.

• Some the installation instructions could benefit from “write once, use many times” as they’re

repetitive, which causes some people to start glossing overthe instructions and then there’s a

couple that are slightly different and people (like me) won’t notice the difference.

• The walkthrough was great, which made the installation easy.

• The only problem I had was the installation of the Ant sensor.I mean configuring it on Eclipse

was easy especially when I try to run Emma, JUnit, FindBugs and all that from Eclipse it is

sending stuff to Hackystat but when I checked my software ICUI didn’t have any data on

Build (all it says was N/A). And little did I know that when yourun the ant sensors on Eclipse

it only registers all the data to Hackystat JUnit, Emma, Checkstyle and such except BUILD.

And I was told that running the BUILD on the command line worksbut not on Eclipse. So I

tried that and YES that works. So is there a way to make it work on Eclipse when you run all

the Ant sensors and it sends all the data to Hackystat including the BUILD data?

54

• When we ran the svn sensor, the build would fail if there are any commits from members not

identified in our local Usermap.xml. Instead of looking for all commit records from all users

within 24 hours, perhaps it could filter out and only look for records inside our UserMap.xml.

• The installation documentation must be read carefully. It may be easier to create a hackys-

tat.build.xml with all the build targets, then import that file into each *.build.xml and call the

sensor from the tasks.

• The most challenging sensor to get up and running was the SVN sensor. Other than that, the

others seemed fairly easy to install.

Question Response

4. The amount of overhead required to collect

Hackystat data (after successful installation and

configuration of sensors) was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

5. The amount of overhead required to run

Hackystat analyses was: *

• Very Low

• Low

• Neither low nor high

• High

• Very High

6. Please provide any feedback you can on Hackystat overhead, as well as any suggestions

you have to reduce the overhead in future.

• Since the verify command runs all the tests, I’d think that itshould send data for all tests run.

Rather, in the portfolio analysis, the Unit Test portion only retrieved data for any JUnit builds

55

that were run. It doesn’t really make sense why we’d have to run it separately when verify

does it anyway.

• If I am correct, overhead - the processing time required by a device prior to the execution of

a command. Then it all depends on what computer the user is using, I am using a single-core

processor laptop it did not take long.

• Since Dr. Johnson provided us with Ant sensor examples, it was quite easy to set up every-

thing to send data to the sensorbase. I did the hackystat tutorial and everything worked fine.

However, I missed the part about creating a usermap.xml file for the svn sensors through Ant.

That confused me a bit later on but I figured it out.

What made getting data quite easy as well was having Hudson installed on a dedicated con-

tinuous integration server. Daily builds would auto-send data to Hackystat and this made it

super easy to get daily info.

• The sensors ran automatically and it was fast with sending the data.

• Maybe there can be a link on http://dasha.ics.hawaii.edu toboth the Hudson and Hackystat

server, that way we don’t have to memorize the port numbers. Also, allowing us to create

an account and password would go a long way towards usability. I had to put the Hackystat

login information in a text file because I can’t remember a randomly-generated string for the

password.

• Sending sensor data was often quite slow. Generating reports in the web application was

sometimes also slow – the page wouldn’t load until you refreshed it.

• The overhead to collect data was generally small, however long enough that would generally

run multiple (DOS) terminals so that I could continue working while it was sending data.

Analysis was no overhead since that was just pulling up a browser page.

• When sending hackystat data, it was fairly quick on my computer, MacBook Pro. Tho, there

were some students I saw which had a LONG wait time on the same laptop.

• I love Hackystat! It is a very great tool especially for a developer like me.

• Since Ant takes care of running Hackystat sensors, this madeit very easy to accomplish.

7. Did you encounter any problems while collecting data? Wasthere any kind of data that

you failed to collect? If yes, please explain.

56

• I had a problem with sending commit data to hackystat when I worked on a group project.

That was because I did not update my sensors to newer version.

• At first during the implementation of DueDates 2.0, it was notcollecting commit data from

my account. It was due to the account on hackystat, it included the @gmail.com part of my

gmail account. So it was not matching up with each other, the hackystat account and my

gmail account.

• Running an analyses on my machine was slow, it would take over3 minutes to run a build. I

am not sure why it took so long to send the build data so I can’t make a suggestion.

• Only JUnit data as mentioned previously.

• Case sensitivity was an issue at first, but it was corrected soI did not get problems after

that. Hudson did not send to Hackystat number of commits, butthat was fixed after a little

modification with build.xml file.

• I was lucky. I rarely had any problems collecting data duringall the time I worked with

Hackystat. The one time something got screwed up was with my development time for one

day. It said 0 when I checked and I had put in a bunch of time thatday so it should have said

otherwise.

I don’t remember exactly but, that night I believe had workedin eclipse till after 12 at night,

so it went to the next day before I closed the program. That could possibly be a reason for the

missing data initially. The next day I just cleared the cacheand it was all fine.

• There was a small issue when I first started collecting data, but it was quickly corrected when

checking the xml files.

• Personally I ran into no problems collecting data.

• Sometimes it didn’t collect build data for some reason.

• Occasional problems with SVN collection, I think, was a bit hard to tell.

• Everything was great except collecting data for my BUILD (please refer to above statement

for more detailed problem regarding this). Thank you.

• I did with commit records but it was my fault. I wish subversion with Google Project Hosting

would be more strict. I was able to check out the project with or without the “@gmail.com”

suffix (i.e. “test” and “test@gmail.com”). Thus making me two different authors.

57

• Yes, the build data. I needed to set more environmental variables.

• For some unknown reason, my user name picked up the @gmail.com, so both my user name

with and without @gmail.com needed to be added to the projects.

8. How did you feel about sharing your software development data with other members

of the class?

• We could see how other groups were doing by sharing our software development data with

other people. We also could find out what kinds of problems with our project by comparing

graphs with other groups and this helped a lot.

• I was not offended if it was low, and I was quite intrigued withothers data.

• I did not have a problem with sharing data with other people inclass. I thought it was needed

tool to keep tabs on everyone to assure they’re doing their fair share.

• It felt good if your data was better than others. And if it wasn’t, then you felt bad.

• Did not really like it because it is showing my programming habits, like starting on a project

on the last couple of days.

• I felt alright about sharing my data with the class. It was interesting for me to see how other

people worked on stuff. Some were consistent and others werenot. Some people spend a lot

of time working on stuff yet do not commit as much as others that work half the time. I think

its good to see this data.

• I am okay with sharing my data.

• I didn’t think it was a particularly good idea because it thenforces group members to become

competitive with each other, especially if one person is able to put in more time than all the

others. Also, the data doesn’t reflect the amount of work put in, maybe someone spent 5 hours

doing research and only 1 hour programming, but the sensor data will only show 1 hour of

development time and a minor code commit, versus someone who, say, just changes around

the package structure for 3 hours and has a huge commit amount.

• Actually hackystat (or hacky-stalk as what my teammates andI called it) caused a lot of

arguments and trash talk. Some guys were more concerned about collecting stats on hackystat

than actually finishing the project. Some members would start competing on who had more

58

commits or move development time. The project turned out to be more of a competition of

stats, which wasn’t healthy for the team at all.

• It will be obvious that who worked on the project, so it is nicein terms of grading students. At

the same time I feel some pressure that I need to work on the development, so if team leader

require everybody to work well, this is good.

• Didn’t really care.

• I had no problem with this, and it encouraged me to be aware of my time management and

coding style.

• It was good in a sense that they can help you with test cases andcoverage.

• It was fun..because you can see how everyone is doing within your group.

• Before taking this class, I didn’t think that there was a way to track software development

process. After learning about software continuous integration and working in a larger group

project, I have a better insight in sharing the development process. I feel that it is a must in

every software development environment, big or small to be able to communicate frequently

and effectively.

• I was nervous because certain individual of the class seemedable to put in ridiculous long

hours. I was concerned my amount of time (which seemed reasonable) would make me look

as though I’m not working as hard.

• Good, I can see how I and others rank with each other.

• I am fine with this. All group projects in all schools (e.g., Architecture) should be required to

use such a system. This is great for facilitating fair evaluations of students who participate,

and those who ’get the grade’ by riding on the laurels, blood,sweat, and tears of others.

Question Response

59

Question Response

9. How frequently did you use the telemetry

page? *

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

10. If you used the Telemetry page, what were you trying to findout?

• I tried to find out how was I doing for the project by looking hackystat data.

• Seeing how much time i spent on the development of the program, and also others in my

group.

• When I used the telemetry page I was trying to find out if I was onpar with other groups

members in terms of development, build, and commit numbers.

• Whether or not, my sensors were reading, and the work output of my group members (espe-

cially on days we didn’t meet together).

• If my development time was up to par with my team members.

• I usually used the telemetry page to evaluate how my team was working overall, and what my

part was in that data. I also checked it to make sure everyonesdata was being sent.

• It helps me see how I measure up with my partners.

• Member dev time mostly, to compare the amount of developmenttime I put in vs. my group

members.

• It supposed to show us how healthy individuals are in the group. So if one person is slacking,

the members need to tell him to step it up. It wasn’t used that way in our group. One person

really wanted a good grade for the class so he just used the telemetry to watch himself; making

sure no one gets more builds/devTime/commits than him (yes he said “i need more dev time

60

because i need an A”). I remember we had dinner as a group and one of our group members

didn’t go to dinner. another group members then said “oh if heups his stats more than mine,

tomorrow I’m gonna hack all day.”

Sad, but true.

• member commit, member dev time

• Curious about trends in dev time, commits.

• Usually MemberDevTime, MemberBuilds, and MemberCommits.Basically just seeing how

everyone was progressing.

• graphs, line trends of other group members

• My status and the status of our group and make sure everyone isdoing their part.

• Mostly trends in individual performance, as well as overallproject outlook.

• Basically if everyone was putting in the same amount of effort. Also it helped indicate if

everyone is on track. If they have regular activity, then thechances of them on track is higher.

• Was the coverage, complexity and coupling getting bad?

• I tried to review each telemetry page daily to understand what I could do to improve the

project health and focus efforts.

Question Response

11. How frequently did you use the Software

ICU? *

• Every day or more

• 2-3 times a week

• Once a week

• Less than once a week

• Never

61

Question Response

12. If you used the Software ICU, please check

the vital signs that were useful to you. *

• Coverage

• Complexity

• Coupling

• Churn

• Size

• DevTime

• Commit

• Build

• Test

• None of the above

13. Did you feel the Software ICU colors accurately reflectedthe health of your project?

If not, why not?

• I felt most of colors accurately reflected the health of the project. For the Coverage data, since

we can write test cases just for increasing of the rates, we cannot assume that the project is in

healthy condition even if the coverage data displayed in green color. However, I think this is

not a problem of hackystat.

• Yes

• The only issue I had with the ICU colors was with the coupling.In both versions of DueDates

we had to add extra classes at the last minute which would cause the coupling ICU to turn

red. I am not sure how to address that because the coupling does need tracking.

• Not really, I don’t think having a high churn amount is necessarily bad. Of course, it’s a

case-by-case thing. For my group, it wasn’t about not committing frequently; we were just

rehashing code because something just didn’t work.

• Yes, reflected accurately on the health of the project. Showed how much coverage we had.

• I feel that the Software ICU did accurately reflect the healthof my projects. For Due Dates

2.0, which was a longer project, the data was getting increasingly more meaningful as the

62

trends were over a larger period of time. It is good to look at things like devtime, commits,

coupling, and coverage to see the color and the past trend because i think they really say

something about the current state of the project.

To make it simpler, whenever I knew our project wasn’t doing good and people weren’t work-

ing regularly, the software ICU would have lots of reds and yellows. When I knew the project

was doing better and people were working regularly, there were greens. It makes sense.

• The ICU was accurate with our project because it showed drastic spikes in all signs. This

reflects our project in poor health.

• Not particularly because a project’s health cannot easily be determined by just measuring

numbers alone. For example, it’s easy to increase coverage,but if a class has nothing but

getters and setters and a toString method, does it really need to be tested? Of course not, but

someone might feel compelled to do it in order to increase coverage and get a better health,

but it’s just a waste of time in my opinion. Also, DevTime is only measured from Eclipse

but that doesn’t measure things such as someone reading a book or looking up websites for

information. It only measures active development in one program, forcing people to only

use whatever IDE’s Hackystat supports. The figures for complexity and coupling are hard to

evaluate too. We want complexity to be low but sometimes it’sunavoidable for it to be high,

and should Hackystat show an absolute cut-off point where the complexity must be below a

certain point for the project to be considered acceptable? Coupling is another one that falls

under this category, if your program relies on a lot of outside libraries, can someone really

determine an absolute value that the project’s coupling must be under?

• Yes.

• maybe

• Coverage: perhaps too sensitive to drops/bounces in coverage. Churn: while you’re working

on a project, churn is going to vary, sometimes a lot. The trend colors were not helpful.

• Yes, I felt it was a relatively healthy project, and this generally showed, in the end. In the first

half the colors reflected not as health of a project, which I’dagree as well. I’m not sure rising

coupling was entirely a bad sign as things went along and functionality was added, as it was

a slow steady rise.

• Sometimes. Hard to determine what will fall into green, red,or yellow.

63

• Yes definitely.

• It somewhat reflected the quality of our project. Maybe in some dark corner something is not

thoroughly being depicted through the colors. Perhaps a suggestion is to use different color

hues.

• Yes it was pretty accurately reflected.

• No, since I did not correctly configure the sensors.

• This is subjective... Usually the colors were spot on, however, they are quick to turn one way

or the other depending on events that are being managed by theteam (e.g., large code churns

due to removal of unused code/imported code, etc.).

14. Were you able to use the Software ICU to improve your software’s quality and/or your

team’s process? If so, in what ways? If not, why not?

• We can check how other members are doing for the project through the Software ICU and

this helps a lot especially when we are working on the team project.

• Yes, for tracking if members were working on their tasks. Also how complex the program is

increasing or decreasing.

• In my opinion, it is not clear if the ICU improved our system. Because other tools such as

junit, findbugs, and pmd was easier to use to improve the application.

• If anything, keeping an eye on coverage helped us look out forwhat was being tested and

what wasn’t. Yes, showed how much coverage we had, and improve on that.

• I think for sure the Software ICU improves team process. Morethan just keeping people “in

check” when grades are at stake, it provides an accurate way to assess what’s being done and

by whom. Our team got a lot out of checking up on the software ICU and assessing our team

process. It seemed to get better over time.

As far as the software’s quality, I think the Software ICU could be very useful in improving

this. If my project for instance was in the red for complexityand coupling, and there were

some code issues, I could see all this automatically throughhackystat. Besides coverage stats

though, my team did not really use the ICU to improve the software’s quality.

• ICU was able to help us because it told us what needs to be focused or corrected.

64

• Personally, I only found Hudson useful because it’s like running your code on someone else’s

computer to see if your environment is set up differently from a generic machine. I feel that

the data for Hackystat is more something to look at out of curiosity rather than something to

determine how well a project’s status is because it’s hard tobase a project’s health based on

numbers alone and it might put unrealistic pressures on the team to make the project healthy

for Hackystat when they can better spend their time developing instead.

• Yes.

• Yes, coverage tells me if we didn’t write enough test cases.

• No. Coverage: already aware from Emma. DevTime, Commit, Build, Test: either team

members did not look at the statistics, or they didn’t care, because their habits did not change

much. Others: not much we could do about the other statistics.

• Yes because able to manage our time and development fairly equally, and also notice spikes

indicating bigger changes or problems.

• Yes, shows were we could improve as a group and improve as a programmer.

• Like in my case last time, I saw on Software ICU that I don’t have a data on my BUILD. So

because of that information I know what the problem is and it helped me to find a solution

and figure everything out before it is too late.

• Our project ICU definitely described our lacking and late attempt to improve coverage. Due

to the ICU, we were able to distinguish this fact quick and easy.

• The amount of activity helped us identify who was falling behind. Without offending our

members by outrageously claiming their not working, we could tell by the sensors. Members

can be more self-critical by looking at their individual data compared to the groups.

• Yes, by checking the coverage, complexity and coupling.

• Yes. By targeting coverage, dev time, coupling, and complexity, my team was able to improve

all these into areas that were acceptable to us.

15. Please provide any other feedback you would like regarding Telemetry and the Soft-

ware ICU, as well as any suggestions you have on how we can improve the system.

65

• I do not think the commits, builds, tests should be colored inbecause it all depends on how

much the user does on the project. Is it possible to show line coverage instead of method

coverage? The software ICU and telemetry was awesome tools in helping out with the project.

It gave me visual stats on the project.

• What I think would be cool is to implement something to view the trend for each category in

larger format but in the same style as the software ICU. I knowthis is shown on the telemetry

page when you select it to show. However, I would be nice if there was some sort of rollover

function that brought up a slightly larger window with a blown up overall trend. I can see

how this isn’t really needed but I would mostly likely check it a lot if it was there.

A minor thing that I noticed when using the Telemetry page wasthat when I selected a new

statistic to view, the page would always jump back to the top and I’d have to scroll down each

time. Its not really a biggie, but it makes navigating a bit slower when your going through all

the project statistics.

• Consistent colors for each members can help.

• In addition to everything I mentioned above, it might help tosomehow make the sensors con-

figurable in some way, for example if two people are doing pairprogramming, there should

be an option to set the sensors to send data for both people. Perhaps complexity can be mea-

sured somehow to only include methods that, say, start with get or set and toString. This way

people aren’t forced to write pointless test cases in order to increase coverage.

• Help page should be provided inside project browser. It should describe how to use it, what

telemetry, what churn is, something like that.

Also your explanation should be simple so that people want toread it. If it is complicated and

long explanation, nobody will read it.

• The different color bars and randomness might be fun and interesting, but I think having a bit

more consistent scheme might be better. I would suggest if possible giving each developer

a specific color that they always have during the project, either random, or chosen at the

beginning.

• Does not capture development outside of Eclipse. For example, IMHO, MS Visual Studio

is much better in the capacity as a web development IDE, whichthe dev time here was not

recorded.

66

Question Response

16. If I was a professional software developer,

using Hackystat at my job would be: *

• Very feasible

• Somewhat feasible

• Neither feasible nor infeasible

• Somewhat infeasible

• Very infeasible

17. Please provide any other feedback you can on the feasibility of Hackystat in a profes-

sional setting, as well as any suggestions you have on how itsfeasibility could be improved.

• I think it’s good to have this in a professional environment,cause the employer or client can

check on how the progress of the program is going. With out having to make so much visits

or hovering over workers.

• Cannot think of any off the top of my head. The Software ICU is already great for us pro-

gramming students.

• I think Hackystat is definitely feasible in a professional setting, as long as it is supported in

some way. For instance, if a team of developers is working on aproject and they are all for

having Hackystat manage project stats, that would be great.If, however, your the only person

on your team that wants to use it, then it would be hard to send data that would assess team

process.

I could see project managers wanting to have Hackystat data to evaluate everyone’s input into

the project, as well as the health of the project. Hackystat,I think, is perfect for new open

source projects if releases are made early and often. It could be essential to seeing the overall

health of the project.

• Overall, I feel like Hackystat would be an interesting tool to gather data to look at for curios-

ity’s sake from time to time, but it should not be used as a basis for determining a project’s

health or to determine something such as member contribution. The sensors can only gather

information from a few sources and these readings cannot account for a person’s full contri-

butions to a project. As for determining a project’s health,I do not believe the sensor readings

67

can provide an accurate measurement because the sensors canonly measure numbers based

on algorithms, but it takes a person to really determine how good the code is.

• When I start to use hackystat, I need to get password from you and then eclipse send my data

to your server. Some developers might have concern that hackystat steal source code.

• I think it depends a lot on the culture of job setting. I’m not too sure, but I think I may try

setting it up on my own job site, even if just for myself to see my own trends.

• It is a very useful tool to keep track the health of a project soI would say it is feasible to have

it in a job.

• My only wish is that ICU’s should have a feature to support pair programming. Possibly a

feature to indicate to the system that two people may be working on the same problem on the

same system, rather than two individual machines. You mightwant to call this “collaborative

mode”, or something along the lines of that. These settings of course should be turned on or

off easily from the developer’s IDE (Eclipse).

• I work in a one person shop, so it would be difficult to say how useful this would be. As a

lone developer, many metrics I am very cognizant of, however, having such a system would

allow me to view those statistics that I do not have a “gut” feeling for. It would be great for

my boss to measure the amount of time I spend on a project however.

68

Bibliography

[1] James W. Moore Alain Abran.Guide to the Software Engineering Body of Knowledge. IEEE

Computer Society, 2004.

[2] T. DeMarco.Controlling Software Projects. Prentice Hall PTR, 1986.

[3] Cem Kaner and Walter P. Bond. Software engineering metrics: What do they measure and

how do we know? In10th International Software Metrics Symposium, 2004.

[4] L. Buglione and A. Abran. Multidimensionality in software performance measurement: the

qest/lime models. InSSGRR2001 - 2nd International Conference in Advances in Infrastructure

for Electronic Business, Science, and Education on the Internet, 2001.

[5] Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Christopher Chan, Carleton A. Moore,

Jitender Miglani, Shenyan Zhen, and William E. Doane. Beyond the personal software pro-

cess: Metrics collection and analysis for the differently disciplined. InProceedings of the

2003 International Conference on Software Engineering, Portland, Oregon, May 2003.

[6] Watts S. Humphery.A Discipline For Software Engineering. Addison-Wesley, New York,

1995.

[7] Watts S. Humphery.Introduction to the Teasm Software Process. Addison-Wesley, New York,

2000.

[8] Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis.The Capability Maturity

Model: Guidelines for Improving the Software Process. Addison Wesley, 1995.

[9] Alberto Sillitti, Andrea Janes, Giancarlo Succi, and Tullio Vernazza. Collecting, integrating

and analyzing software metrics and personal software process data. InProceedings of the 29th

Conference on EUROMICRO, page 336. IEEE Computer Society, 2003.

69

[10] Irina Diana Coman, Alberto Sillitti, and Giancarlo Succi. A case-study on using an automated

in-process software engineering measurement and analysissystem in an industrial environ-

ment. InProceedings of the 2009 IEEE 31st International Conferenceon Software Engineer-

ing, pages 89–99. IEEE Computer Society, 2009.

[11] Philip M. Johnson. Results from the 2003 classroom evaluation of Hackystat-UH. Techni-

cal Report CSDL-03-13, Department of Information and Computer Sciences, University of

Hawaii, Honolulu, Hawaii 96822, December 2003.

[12] Philip M. Johnson. Results from the 2006 classroom evaluation of Hackystat-UH. Techni-

cal Report CSDL-07-02, Department of Information and Computer Sciences, University of

Hawaii, Honolulu, Hawaii 96822, December 2006.

[13] Michael Bell.Service-Oriented Modeling: Service Analysis, Design, andArchitecture. Wiley,

2008.

[14] Philip M. Johnson. Hackystat Framework Home Page. http://www.hackystat.org/.

[15] Roy Thomas Fielding.Architectural Styles and the Design of Network-based Software Archi-

tectures. PhD thesis, Univeristy of California, Irvine, 2000.

[16] Thomas J. McCabe. A complexity measure.IEEE Transactions on Software Engineering,

2(4):308–320, December 1976.

[17] Paul Duvall, Steve Matyas, and Andrew Glover.Continuous Integration: Improving Software

Quality and Reducing Risk. Addison-Wesley, 2007.

[18] Robert D. Austin. Measuring and Managing Performance in Organizations. Dorset House

Publishing, 1996.

70

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	The Problem
	Software Intensive Care Unit Approach
	Evaluation of Software ICU
	Thesis Claims
	Thesis Structure

	Related Work
	TSP/PSP
	Research Based on Automated Data Collection
	Project ClockIt and Retina
	PROM

	Previous Case Studies of Hackystat

	Hackystat
	Hackystat Framework
	Sensors
	SensorBase

	Analysis Services
	Daily Project Data Analysis
	Telemetry Analysis

	Project Browser

	Design and Implementation of The Software ICU
	Vital Signs
	Vital Sign Presentation
	StreamTrend Coloring
	Participation Coloring

	Mini Chart Drill-Down
	The Interface of The Software ICU
	The Control Panel
	The Loading Process Panel
	The Data Panel
	The Vital Sign Configuration Panel

	System Customization

	Classroom Evaluation
	Case Study in Classroom
	Experimental Limitations

	Results
	Feedback regarding Hackystat system
	Verification of System Usage
	Utilities of Vital Signs
	Vital Sign Popularity
	Feasibility in a professional software development context
	Thesis Claims Revisited

	Conclusions
	Contributions
	Future Directions

	2008 Classroom Evaluation Questionnaire of Hackystat
	Results form the 2008 Classroom Evaluation Questionnaire of Hackystat
	Bibliography

