LEARNING EMPIRICAL SOFTWARE ENGINEERING USING THE SOFTWAR
INTENSIVE CARE UNIT

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘l IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN
INFORMATION AND COMPUTER SCIENCES

DECEMBER 2009

By
Shaoxuan Zhang

Thesis Committee;

Philip M. Johnson, Chairperson
Henri Casanova
Scott Robertson

We certify that we have read this thesis and that, in our opint is satis-
factory in scope and quality as a thesis for the degree oféastScience
in Information and Computer Sciences.

THESIS COMMITTEE

Chairperson

©Copyright 2009

by

Shaoxuan Zhang

To my mom, dad, wife, and my new born baby girl Ruby.

Acknowledgments

This research would not be possible without the followinggle who have provided me
with guidance, support, and encouragement along the way.

First | would like to express my sincere gratitude to my adwvisrofessor Philip Johnson
for the continuous support of my graduate study and resgéochis patience, motivation, enthu-
siasm, and immense knowledge. His guidance helped me ineatihe of research and writing of
this thesis. | could not have imagined having a better addad mentor for my graduate study.

| would also like to thank the rest of my thesis committee:f&sor Scott Robertson, and
Professor Henri Casanova. Thank you for your guidancegisnts, and encouragement.

Last, but not least, | would like to thank my family. There @timng more important to

me than my family. | am eternally grateful for the strengilport, and above all, the love that all
of you have given to me.

Abstract

In software engineering, the importance of measuremenelswaderstood, and many
efficient software development metrics have been develapbdlp measurement. However, as the
number of metrics increases, the effort required to collatd, analyze them and interpret the results
quickly becomes overwhelming. This problem is even mortcaliin educational approaches
regarding empirical software engineering.

The Software Intensive Care Unit is a new approach to fatiti§y software measurement
and control with multiple software development metricsudes the Hackystat system to achieve
automated data collection and analysis, then uses thetmll@nalysis data to create a monitoring
interface for multiple “vital signs”. A vital sign is a wrapp of a software metric with an easy to
use presentation. It consists of a historical trend and a&sestate value, both of which are colored
according to the “health” state.

My research deployed and evaluated the Software ICU in aséniel software engi-
neering course. Students’ usage was logged in the systeha survey was conducted. The results
provide supporting evidence that Software ICU does heldestts in course project development
and project team organization. In addition, the resulthefdtudy also discover some limitations of

the system, including inappropriate vital sign preseataind measurement dysfunction.

Vi

Table of Contents

Acknowledgments e e e e e \
Abstract. e e Vi
Listof Figures. e e e e e e iX
1 Introduction. e 1
1.1 TheProblem e 2
1.2 Software Intensive Care Unit Approach 2
1.3 Evaluationof Software ICU. 4
1.4 ThesisClaims 4
1.5 ThesisStructure e e e 5
2 RelatedWork e 6
2.1 TSPIPSP . . . e 6
2.2 Research Based on Automated Data Collection 7
2.2.1 ProjectClockltandRetina, 8
222 PROM . . . e 9
2.3 Previous Case Studies of Hackystat. 11
3 Hackystat e 13
3.1 Hackystat Framework. L e 13
311 SENSOIS. . . o o e e e e e e e 13
3.1.2 SensorBase e 14
3.2 AnalysisServices 15
3.2.1 Dalily Project Data Analysis., 15
3.2.2 Telemetry Analysis 15
3.3 Project Browser e e e e 16
4 Design and Implementation of The Software ICU. 20
4.1 Vital Signs. e e e e e 20
4.2 \Vital Sign Presentation e e 23
4.2.1 StreamTrend Coloring i 24
4.2.2 Participation Coloring. 25
4.3 MiniChartDrill-Down e e e e 25
4.4 The Interface of The Software ICU. 27
441 TheControlPanel. 27
4.4.2 TheloadingProcessPanel 29
443 TheDataPanel 29
4.4.4 The Vital Sign ConfigurationPanel 29
45 System Customization. L 33

Vii

5 Classroom Evaluation 36
5.1 Case StudyinClassroom. e 36
5.2 Experimental Limitations 37

6 Results. 38
6.1 Feedback regarding Hackystatsystem 38
6.2 \Verificationof SystemUsage. e 39
6.3 Ultilitiesof Vital Signs e 41
6.4 Vital SignPopularity e e e 42
6.5 Feasibility in a professional software developmentexn 44
6.6 Thesis ClaimsRevisited. 45

7 CoONCIUSIONS. o e 46
7.1 Contributions. e 46
7.2 Future Directions. e a7

A 2008 Classroom Evaluation Questionnaire of Hackystat. 49

B Results form the 2008 Classroom Evaluation Questionmdikgackystat. 52

Bibliography e 69

viii

Figure

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3
6.4
6.5

List of Figures

Page

An example medical ICUscreen..
An example Software ICUscreen.. e

Progression of PSP e
Clocklt BlueJ Data Visualizersummary v v v v v v v oo v v ..
Dataviewersof Retina.

Screenshot of course project to date analysis of Haatkys003
Screenshot of file-metric telemetry analysis of Hackyist 2006.

The architecture of Hackystat.
SensorData viewer in Project Browser.,
DailyProjectData viewer in Project Browser.
Telemetry viewer in Project Browser.

An Example of the Drill-Down of DevTime Vital Sign.
The Software ICU’s control panel with date selectoregen.
The Software ICU’s Loading ProcessPanel
A screenshot of the Software ICU,
The Vital Sign Configuration panel in Software ICU

SICUusageonperstudentbias
Analysis counton aper-studentbasis.,
Vital sign popularity fromsurvey e
The final states of all class projects in Software ICU.
Usage of Telemetry Analyses. i ..

© P

Chapter 1

Introduction

Software Engineering is the application of a systematiscidlined, quantifiable ap-
proaches to the development, operation, and maintenanseftefare, and the study of these ap-
proaches; that is, the application of engineering to safjth As a famous software engineering
researcher says, “you can neither predict nor control whatcannot measure’]. Measurement
is an indispensable step to help software development\achistate characterized by predictable
and controllable processes. Though lots of research ardtlire exists on software metrics, some
of their limitations including measurement distortion ahgfunction are well known, and a ma-
jor error in management decision support comes from usimggéesmetric in isolation. In order to
overcome these limitations, the use of measurement frortipteutimensions is necessary to obtain
a more comprehensive perspective on any given softwaibudérof interest, such as readability,
maintainability, modifiability, reliability and so fortB][4]. However, manipulating multiple soft-
ware metrics is not simple. The increased effort requiredifa collection and analysis needs to be
addressed to reduce the overhead of measurement. Seletcti@irics and their presentation also
demands careful consideration to prevent metric data freemhelming the user and preventing
useful application.

In this research, | use concepts from the medical intensive enit (ICU), where multiple
vital signs are monitored in an automatic and efficient marviedical ICUs provide a set of "vital
signs” that help doctors determine when a patient’s heal#ftable, improving, or declining. Using
the medical ICU as a metaphor, | built an application calleel $oftware Intensive Care Unit.
It provides an intensive monitor interface with multiplgalisigns, which are software metrics
wrapped with an easy to use presentation to indicate thealth’ states. However, the design
of the Software ICU is a great challenge. Both what data tsgrreand how to present them are

essential design decisions, but neither is well-studiguke Viariety of development settings makes

this problem even more complicated. | am not confident thetetlexists a golden rule for all
situations. Hence, providing a capability for configuratend customization is important. In this
research, | tune the Software ICU to the scenario of cougegirdevelopment in the undergraduate

classroom.

1.1 The Problem

In software engineering, the importance of measuremenelswnderstood, and many
efficient software development metrics have been develapbdlp measurement. However, as the
number of metrics increases, the effort required to collatd, analyze them and interpret analysis
results quickly becomes overwhelming. This problem becaven more critical when introducing
software measurement to a software engineering courseewhalents are still struggling to make
the transition from programming to software developmenheré are so many things (such as
system design, code style, software quality control, boltation, etc.) they need to focus on that
utilizing software measurement is often found to be a ditiva. This leads to the impression that

software measurement is difficult.

1.2 Software Intensive Care Unit Approach

The Software Intensive Care Unit (Software ICU) is basednujpe Hackystat system,
which already provides automated data collection and aiglgind further helps developers to in-
terpret software measurement results and control the amtdevelopment process. The Software
ICU adopts the metaphor of a medical intensive care unitrevheset of vital signs are intensively
monitored to determine the health state of the patient, treaiment is planned according to the
state.Figure 1.lillustrates an example medical ICU screen. Each vital sigainedical ICU rep-
resents the condition of an organ system. A vital sign wittimormal range of behavior indicates
that the corresponding organ system functions normallyeMénvital sign departs from its normal
range of behavior, it is an indication of possible organeystailure, and treatment may be required
to keep the organ functional. When this happens to additigte signs, the patient’s health state
is more critical, and emergency treatment is required tadavjury or death.

In the Software ICU, software metrics are used as vital signd are monitored inten-
sively. The “health” states of the software are determia@d, marked with color, so that developers

can plan “treatment” for their software project accordyndtigure 1.2illustrates an example Soft-

A+ 108 @

96

:ﬁr;/\/\“*wr‘vw \"\" "2] "
S S Y A T
36.9

Figure 1.1. An example medical ICU screen.

Figure 1.2. An example Software ICU screen.

ware ICU screen. Each metric represents a factor in the aodtaevelopment process. When a
metric departs from its reasonable behavior, it indicatas some aspect of the software develop-
ment process is going wrong. “Treatment” is required in otdevoid possible project failure.
Similar to the medical ICU, the Software ICU'’s vital signhg aresented with both histor-
ical trend and current state, each of which is then coloreiffer@nt vital signs may use different
coloring methods and parameter configurations. Unlike tedioal ICU, whose vital signs (tem-
perature, respiration, etc.) have been studied in some ¢as@undreds of years, no comparable
body of research exists in software engineering on how tnsively monitor multiple software
metrics to determine the state of the software project or tifierent behavior of metrics impacts
upon the state of the software project. Therefore, my seleof vital signs and their configurations

are research hypotheses, and are validated in the case study

1.3 Evaluation of Software ICU

Undergraduate students enrolled in a Software Engineedngse assisted with the eval-
uation of this research. The class consisted of 19 studbantee second half of the semester, they
were divided into 5 groups and each group developed two equngects. Hackystat and the Soft-
ware ICU were introduced to the class to help them understanbealth state of a software project.
They used the system for approximately six weeks, and tlogirittes on the system were logged
during that period. At the end of the semester, the studeats wvited to participate in a survey
that asked their opinion of Hackystat and the Software ICU.

| compared and analyzed the result from system logs andigoeatre responses to find

out how they used the system and what impact the system hdwwrdévelopment.

1.4 Thesis Claims

This research investigates the mechanism and technolo@pftivare ICU and gathers

data to assess the following claims:
1. Adopting metaphor of the medical ICU to software engiimggis practical and feasible.
2. The selection of vital signs is appropriate.

3. The coloring mechanism correctly illustrates the hestithe of the vital signs.

4. Knowledge of health state of their projects helps stuglenprove their performance in col-

laborative software development.

The first one claims that it is possible to implement an apfitic that monitors multiple software
development metrics and can be used to direct software @@welnt practice in a way similar to
the medical ICU.

The second one claims that the selection of vital signs igjeate to reveal potential
defects during software development.

The third one claims that with a decent coloring method, ited sign of different condi-
tions will be assigned different colors, and the same cdarlme traced back to similar conditions.

The fourth one concerns a chain reaction of events. Wheestsi#gnow the health state of
the vital signs of their projects, they will need to fix theirde or improve their development practice
if the vital sign is not healthy. By trying to keep vital sighsalthy, students should discover better
ways to collaborate with other teammates and produce higltitg software.

1.5 Thesis Structure

The remainder of this thesis is structured as follows. Giraptpresents some previous
studies related to this research. Chapter 3 describes tbkystat system, which Software ICU
is built upon. Chapter 4 contains a detailed descriptiorhefdesign and implementation of the
Software ICU. The evaluation procedures are described ap@h 5 and the results are discussed
in Chapter 6. Finally, Chapter 7 contains the conclusiorsfature directions of this research.

Chapter 2

Related Work

Section 2.1discusses previous research on empirical software engigemncepts. Most
previous research on measurement-based software erigmémruses on methodology. Effective
approaches are developed and deployed in actual practioeevér, the lack of automation adds
significant overhead to developers, thus leading to theasgions that they are hard to do. Research
on Hackystat and the Software ICU is oriented towards a neverg¢ion of approaches to PSP
metrics that automate data collection and analyjze[

Section 2.Aiscusses three recent research projects that focus omaiei data collec-
tion. Two of them mainly focus on introductory level progmaing courses and are not very suitable
to senior software development or professional settingge third one is very similar to Hackystat
and was the object of industry studies.

Section 2.3liscusses two previous related case studies of the Hatkystam to provide
some insight into the use of Hackystat in a classroom settiing to the use of the Software ICU.

2.1 TSP/PSP

The Personal Software Process (PSPJnd the Team Software Process (TSPHre
among the most extensively studied approaches for measuatdrased software engineering. They
were developed by Watts Humphrey to teach students (in tgiiyeand industry alike) about the
use of large scale methods based on the Capability Maturdgle¥l(CMM)[8]. The PSP attempts
to scale down industrial software practices to fit the neddsmall scale program development.
Software processes and software engineering discipliregradually introduced through small
program projects (e.g. course assignment projects). THerR&urity progression is shown in

Figure 2.1 Students first gather both process and product measureseiro@projects. Then by

comparing the measurement result to their original plagnihey gain insight into their program-

ming habits, both pros and cons, and improve their procelsgter level of maturity.

PSP Gradual Introductio /u_ Tonard team.

project

orqaniz on
processes
Cvclic PSP MESP:}
i psP2 | PSPt
management Domicr
rsonal PSP1 PSP1.1
planning /'- et repat || Schdle
PSPO Loding 1 Baseline
Curat Size]
e Process currert practices
Defect tvoe

FromWatts Humohrew. “A Discipline of
Sdtvare Enaineening”. Addison Wesler

Figure 2.1. Progression of PSP

A major drawback of the PSP is lack of automation. Developex® to manually record
their process and product data (mostly the development éintenumber of defects). The high
overhead of data collection raises a barrier to introdactiod adoption. Additionally, it is not easy
to “digest” the data. Developers have to manually analyee tiecorded data in order to understand
their performance, hoping then be able to improve it.

On the contrary, the Software ICU explores how one can peodidhigher level of au-
tomation in tracking and analyzing software process andymibdata.

2.2 Research Based on Automated Data Collection

Project Clocklt and are two recent research projects baseditomated data collection
to support entry-level programming courses, while PROMrsszarch project that is quite similar
to Hackystat})].

2.2.1 Project Clocklt and Retina

Project Clocklt provides a data logger as a Bluedtension. It records developer’s
open/close of project and package events, file change aetedslents, and compilation results.
Data is saved to a local file and later sent to a database viatér@et. A data visualizer integrated
into Blued is available to view data about the current pitojéggure 2.2shows an example of this
visualizer. Data stored in database is used for statisétyais such as class averages. A web in-
terface is also available to instructors to view the indinbdata of their students and class average

analysis data.

Clockinis : :
File
Summary | Ovendew ‘wmfmm ﬂm VLHFI'
Compile Summary Invocation Summary
[Campils w s . -

8}
cma 5 ceem s
ocaten Succen

|c Compile Failure = 15 @ Complle Succass = 48 = Compés Waming = 0] |- imvocation Eror= & @ Invocation Success = 58

Activity Sessions

=
g 5|

Em-

r= T}

ZEx

E 151

Rl 1 1

51

d1le HE | BB — O

Tlne

[# Summan/] Su—nma.-,

6 how's: 12 hours tohows || tday || 2aay A

Figure 2.2. Clocklt BlueJ Data Visualizer summary

Closely related to Clocklt, Retina also provides automatgd collection. Though Retina
provides more tool support (BlueJ, Eclipse and commareal-tiompiler), it focuses on a even
smaller area of programming events: compilation. It onlshges data from students’ compilation
events, mostly compilation errors. In additional to itssdaewer (seé-igure 2.3, it also provides a
recommendation tool for students. The tool uses instansagasg (IM) to give students an estimate
of the amount of time required for the upcoming assignmemd, tae compilation errors they are
likely to make. These are based on both the student’s prevdata and the data from courses of

previous semesters.

l“Blued is an integrated Java environment specifically desigfor introductory teaching.” —Quoted from
http://ww. bl uej. org/ about/what . ht m

http://www.bluej.org/about/what.html

[-[ofx]
BROWSE]

Home Different Assignment Graphs Recommendation History Help Logout

Assignment #3

Select an Assignment: [1

Selected Student; w2112 Statistics

YoU
Total # of Compilations. 52 2
Total # of Successful Compilations 28 (53.8%) 18.1 (56.2%)

Total £ of Compilation Errors 33 45

Time Spent on Assignment 33hows 2.6 hours

& ly 67% of the other students have made more compilation errors than you

Approximately 38% of the other studeats have spent more time on this assigoment than you.

Suggestions

Based on your performance on this assigoment, Assignment 4 will take you approximately 4.5 hours to complete

Your most common error is "cannot find 5
a declare variables. Keep in mind that you ng

I, swhich means that you are either misspeling variable/method names or are forgetting to
o declare a variable before you use i, and be carcful about spellng and capitalization!

200e-
200502091

s 52 (28 succes: stul)
Time spent on assignment: - Approx. 3.2 hrs. Compilation Error History

i expected

@ mtemet ®100% -

(a) Retina Instructor Viewer (b) Retina Student Viewer

Figure 2.3. Data viewers of Retina.

The difference between these two research projects andbofwea®e ICU is that Clocklt
and Retina focus only on introductory level courses, whemapilation is the most interesting
development event. On the other hand, their relatively easfiguration contrasts with one of
the major short-comings of Hackystat and the Software ICH.n&ither of them provide good
extensibility, they are unlikely to be useful in advancedgsamming situations like senior-level

programming course or professional setting.

2.2.2 PROM

PRO Metric (PROM) 9] is a system that is quite similar to Hackystat. PROM is avgaifé
system for collecting process and product metrics in a sowompany. It was initiated and
driven by the demand of the company, and thus the researcis fson an industry setting. It is
designed to work fully automatically without any interactiwith the user in order to get reliable
and accurate data about company'’s internal workflows andloilgment processes. It is organized
in a sequence of interconnected components, communicasing the SOAP protocol. Similar to
sensors in Hackystat, it collects data using plugins forywiffierent applications, including IDEs,
word processing tools, email clients, and issue trackirsgesys. The collected data is transmitted
to a plugin server to extract metric, then the results aretsdPROM server to store into a database.
Figure 2.4shows the overview of PROM'’s architecture.

Compared to Hackystat, PROM’s data is stored as analyzeaticmesults while Hackystat
stores the raw sensor data. The disadvantage of storingatawsithat analysis has to be executed

every time the results are requested, while the advantati@tighe abilities to modify analysis
algorithms and to run new analysis on existing data arenetiai Moreover, Hackystat’s caching
mechanism has compensated for this disadvantage to soerd.ext

\/" ?:;azﬁc_l.
\//'«KET\,J = }%C_l.

—

/ﬂ“\g
) a8 R
%[yﬁwgﬁ\

.-1-4;? C—|
ol

i =

Figure 2.4. Architecture of the PROM system

PROM categorizes users into 3 roles: developer, team leaddrmanager of the team.
Each of these roles is provided with different views of théadeDevelopers have access to their
individual and detailed data, the leader has access to tiregated data of the whole team, and the
manager has access to project level aggregated data. liysfaglka user is given either no access
to data (if they are not a member of the project) or completessto the data (if they are a member
of the project).

A recent case study of PROM in an industrial environm&ijt[discusses the lessons
learned from two years experience of using the PROM systeheilil department of a large com-
pany in Italy. Evidence indicates that adopting a system RIROM requires a long set-up phase
and needs the company and the development team’s patieticemumitment to succeed, but it can
eventually deliver value to the company.

One of the lessons suggests that data presentation is agamipas data accuracy, and
simplicity, brevity and clarity is preferable. Another $&% suggests that fast aggregated view of
data is desired, and users of different roles favor diffeaggregations, e.g., developers like reports
of their daily activities, while team leader and managee ummary views of data on team and
project level. The Software ICU’s simple and fast data pregen and high configurability and
extensibility would appear to address these requirements.

10

2.3 Previous Case Studies of Hackystat

The classroom study presented in this thesis is the thilstagly of the Hackystat system
in a classroom setting.

The first case study was performed in 2003 using an earlyorersi Hackystat[1]. At
that time, Hackystat was only collecting 4 types of metridstive Time, Size, Unit Tests and
Coverage). The system was oriented around a set of “Coursdyses that were tailored to an
educational setting. Those analyses summarized the dudivieam project’'s metric data in tabular
form, and also presented comparisons of all of the coursegisofigure 2.5. The case study
evaluation showed that the installation of Ant sensors werenost significant barrier to the system.
It was too difficult to install without direct help from the widopment team. But the overhead of
use was relatively low and analyses were usable and usefwbeter, the lack of data privacy was

uncomfortable for some students.

—ioix
|J—E\Ie Edt Miew Favorites Tools Help ﬁ
=~
al-iackysm takuyay@hawaii.edu Course PI'O]e(-Jt
Analysis
University of Hawaii analyses | preferences | alerts | extras | help
Course Project Analysis: Comparative analyses for classroom projects (more...} Arislyze
Course: lm
Project prefix: [sitewatch
Comparison: [Project To Date |
Start Day: o1 =] [Wovermber =] [z003 =]
End Day: IE[m [zo03 =]
| Project Active Time (hrs) Classes | Methods | LOC | Tests | Coverage
163.4 62 263 2371 30 949%
95.7 41 157 1456 18 98%
128.2 57 220 1948 23 26%
sitewatch-ewalu 117.4 79 322 2438 32 96%
28.4 22 83 e84 9 81%
97.2 L4 1289 1632 19 90%,
118.7 63 237 2190 25 84%
169.7 53 227 2191 23 T2% JUlll
95.2 49 205 1698 20 31_99_ _|
] |1 e aremet 4

Figure 2.5. Screenshot of course project to date analystaokystat in 2003

The second case study was performed in 2006 as a partiatagph of the first case
study[.2]. Hackystat had undergone significant changes from 2008@6.2The sensor installation,
which is the major barrier to the system in 2003, was autodhiayethe Hackylnstaller GUI, which
greatly lowered the overhead of configuration for develsp&he evaluation confirmed this with a

substantial drop in sensor installation difficulty. Howe\eenew sophisticated Telemetry analysis

11

(seeFigure 2.6 and its complex user interface raised the difficulty of gstrand interpreting data,

leading to slight drop in usability and professional fedisjb

PR Accidental GUT
o " i _ builder import
" BB | Analyze not run
£ 1w = | Inall 3 proj.
o " Common code |
temp. duplicated-,' e

:\?‘QF fﬁ@hrai‘@‘;@@ '1?‘@'.#? fi‘s’“

o o @"
S S ég‘*"

Sl Syl S gt
na-rdov-:nnﬁTchﬁmk ihg
® Fil=Metric<totallines, **=

Figure 2.6. Screenshot of file-metric telemetry analysidatkystat in 2006

In 2007, Hackystat was re-implemented with a new architecttAdopting a service-
oriented architecture (SOA)f] enables the development of multiple user interfaces t@rsee
from the data collection and analysis components. The So&WCU is built upon a new web-
based Ul called Project Browser, and the classroom studgasoased on this user interface.

12

Chapter 3

Hackystat

In this research, the Software ICU is built upon Hackystdutbll automated data col-
lection and analysis. This chapter briefly describes thekifstat system, which was invented by
Professor Philip M. Johnson, in the Collaborative Softwaexvelopment Laboratory, Department

of Information and Computer Sciences, University of HawaiManoa.

3.1 Hackystat Framework

Hackystat is an open source framework for collection, asig)yisualization, interpreta-
tion, annotation, and dissemination of software develagrpeocess and product datd]. Hacky-
stat consists of many software services that communicatg BREST architectural principles].
These software services can be categorized into 4 groupsorss data repository, analysis services
and viewersFigure 3.1shows the architecture of Hackystat system.

3.1.1 Sensors

Sensors are small software plugins that collect data frenusie of tools and applications.
Currently, sensors are available for many developmenivaoét systems including Eclipse, Emacs,
Ant, etc. Sensor data is represented in XML, and consistewdrsbasic elementsiata owner
resource timestampruntime tool, Sensor Data Typeandproperties The first six are required and
the last one is optional.

The Sensor Data Type (SDT) is specified for every piece ofseteta when collected,
so that the same type of data can be collected from diffeamis tand higher level services can
easily determine which data is relevant to them. Sensoridatasigned to record only a piece of

atomic data such as the size of a single file. Mirgimefield is used to group data that belong to the

13

Boswell DailyProjectData
Anmalysis Analysis Analysis

SensorBase
Repository

7

Eclipse Emacs JUnit Ant
Sensor - Cnincn. UEssIEEEEEEEEE Sensor

Figure 3.1. The architecture of Hackystat

same event, such as collecting size metric of a profexdpertiesare additional information that is
specified for different types of sensor data, such as cogeralyie for coverage SDT and lines of
code for size metric.

Sensors are designed to work automatically without any@bie from the user apart from
initial configuration. The collected data is sent to the defaository via HTTP. In order to reduce
the Internet communication and support offline work, datarisporarily stored locally, then sent to

the data repository every several minutes or when the let&annection is available.

3.1.2 SensorBase

SensorBase is the data repository that stores the datasaseibt from sensors, and pro-
vides a RESTful interface for easy manipulation of the datagiHTTP. Sensor data can be queried
with the six required elements mentioned above via HTTR calid data is sent back as XML. The
SensorBase is implemented with a database manager aldasstthus it is easy to add support
for different database implementations. The current varsi Hackystat provides database support

for Derby, Oracle and PostgreSQL.

14

3.2 Analysis Services

The analysis services of Hackystat provide abstractiorieeofaw data from the Sensor-
Base. DailyProjectData and Telemetry are the two fundaahenialysis services of Hackystat.

3.2.1 Dalily Project Data Analysis

As its name indicates, the DailyProjectData (DPD) servicwiples abstractions of sensor
data associated with a single project within a 24 hour windekich represents a simple software
development metric on a single day. Data for a single praj@tides data from all members of that
project. In a DailyProjectData instance, both a summaryejaé.g. total development time across
the project, and detailed values, e.g. development timadf eroject member, are available. So it
is easy for higher level services to use this data.

Each DPD analysis generates software metric from data oftaiceSensor Data Type.
Current available DPD analyses are Build, Code Issue, Con@nimplexity, Coupling, Coverage,
Dev Time, File Metric, Issue, and Unit Test. These DPD aredyare the basis of the Hackystat
system, most other analysis services are based on theme WRD is a low level of abstraction,

these can also be considered as the available softwaresietiiackystat.

3.2.2 Telemetry Analysis

Based on the DPD service, the Telemetry service providesaaltion over a longer period
of time such as several days, weeks or months. A Telemetny chiasists of one or more streams,
each of which is a set of data points in chronological ordexctEdata point represents the metric
value of the object of the stream in a single granularity (desek or month). Together they show
the trend of the metric(s).

There is a special group of Telemetry charts called MemlaselLTelemetry. These charts
consist of several streams, each of which belongs to a meofiltee project. They are used in the
Software ICU’s drill-down feature to compare performan¢each member within a project (see
more detailed description iBection 4.3.

To support the practices of different organizations, thiemetry service provides a do-
main specific language that allows to build new Telemetryrtolwvith Telemetry stream lines. The
predefined Telemetry charts are all written using this |aggu

15

Telemetry streams can also accept parameters to refine jbet olata. This feature is
inherited in the Software ICU, where user can configure tmamaters of the associated Telemetry

analysis of each vital sign (more detailed discussio8eition 4.JandSection 4.4

3.3 Project Browser

Project Browser is one of the viewers in Hackystat systeni¢hvis integrated with view-
ers to most Hackystat services. It is based on Wigketlava-based web application framework.

With the help of Wicket's modularization, pages on Projecbyser can share common
panels, such as project/date selection panels and Ajainipgulocess panel, which facilitate the
development of new pages. This also makes user’'s experi@oce consistent across different
viewers. Therefore it now serves as a data presentationighddvel analysis development center.
Several new presentations and high level analyses areogeeklipon it. The Software ICU is one
of them.

Viewers for SensorData, DailyProjectData analysis, arldrietry analysis are included
in the current version of Project Browser.

The SensorData viewer provides two levels of presentailitw. first level shows a sum-
mary table of days from the selected month, on which sensiar @dsted for the given project
(Figure 3.3. The sensor data is categorized into sensor data types thkeepieces of data of a
sensor data type on a specific day are counted against thevitbolvhich the data was collected.
By clicking a number-tool pair, the user opens a pop-up windbowing the detail of the data.

The DailyProjectData provides specific summary of each DR&lyais. For example,
in Coverage DPD, the classes of the source code are sepamties groups according to their
coverage figure 3.3. In Build and Test DPD, the number of invocations are dididieto two
groups: success and failure. Each DPD analysis has its osamggers, which can be selected from
the choice fields under the project selector.

The Telemetry viewer provides both table of values and decapkisualization Figure 3.4.
After invoking a Telemetry analysis, the user can seleanhftbe data table the streams he want to

include in the graphical chart which will be shown after thet Chartbutton is clicked.

http://w cket.apache. org/

16

http://wicket.apache.org/

ok St

SensoeData Projects DuiyProjeciDats Tesrety Porloie Trajecisry Logow

Sensor Data Display
Data: Day Total BulfTrans Bulld Codelssue Commit Coupling Coversge DevEwent FileMeirc UnifTest
i s cbininn e 25:PND
Project: Man, Dec{ 2008 657 Z7:mal 275 FirdBugs 208 Echpse
| Maciystat & 32Checstyle
——r Tus, Dec 2 2008 617 20 At 587 Echpse
S
Wed, Dec 3 2008 25 S:hnt 20:Eclipss
Thu, Dec & 2008 253 253:Ectpse
Fii, Dec 52008 322 22 Eckpss
Saf Dec 62008 333 333 Echpse
Suw, Do 72008 4130 18:Aa1 1:Bumerson 873 DepandencyFingar 31T:Ermma 485 Eskpse ?:;’:‘(T:SS 2Tk
53X JavaNOSS
Mon, Dac B 2008 3566 A 1:Sutversior 873 DegendencyFinger 317.Emma 45:Eclipes 1313-*!::|.c 277U
L 847 Eclpss 5X3-JavaMCS5E
Tus, Dac O 2008 5088 B3:4nl 55:FmdBugs 1:Subversion 873 DepandancyFger 517:Emma 15_E'ﬁ:; 131'3_:;:13 as1.urit
223 Checksnye . e
BEPMD
Wed, Dec 18 2008 1830 1240l 5B5FindBugs B&Emma T17.Eckpse 272SCLC 3-MUni
122-Checkatyh
Thu, Dec 11 2008 575 et S0 2:BubersEon i T o s5.0Unt
55 FindBugs #:Emacs
Fii, Doz 12 2008 3585 Tt 878 DependencyFinger 326 Emma 145 Eckpse ﬁ_ﬁ":‘:ss 277U
A 53T JavaNOSE ;
Sat, Des 13 2008 3375 24 BE4 DegandencyFincer 320:Emma 1573:50LC 2TEUnL
Sun, Dec 14 2008 3375 oA D54 DegandencyFincsr 320 Emina SR IREMCES. prm it
13735010
Man, Dec 152008 50 8-Emacs Sam 25:Edlpes
A Tmacs
Tus, Dec 162008 21 T IriEtped
G:Emacs
S37-JavaM OS5
Weel, Dec 17 2008 3408 At B54-DependencyFinder 320:Emma 33:Eclipse 3 2Te:Urit
1373:80L0
Thi, Dec 162008 328 11:A0E 318:Echpse
44PMD
Fri, Dos 19 2008 T84 oA 351 FirdBugs 2-Emma 121 Eckpse 138-80LC 15:4Uni
§1:Checksiyle
537-JavaMCS5
Sai, Dec 202008 3331 3:Ant @:Supversion 864 DependencyFncer S20Emma 38ckpse 0 278Ut
Hun, Des 21 2008 3377 T:Ant BES DesendensyFser S20:Emma 1:Eeipse ?;;;""“"CSS e RO

Figure 3.2. SensorData viewer in Project Browser.

17

&3 Hacky st

SensorData Projects DailyProjectData Telemetry Partfolio Tralectory Logout
Daily Project Data Analysis
Date: Count of classes in each of five ranges for Method-level coverage
2008-11:01 | [
Project: Project 0-20% 20-40% 40-60% 60-80% BO-100% Total
CAmbientHackystat hackystai-ul-wicket a o] o o 0
[CiDefault hackystat-analysis-dailyprojectdata 1 2 2 5 25 33
el hackyst lysis-tel 1 8 17 13 78 127
Phackystat-analysis-d El at-analysis-telematry 1 a 1 13 78
#hackystat-analys hackystat-sensor-ant 2r o a 1 2 30
AR h ¢ rbase-uh 4 3z 8 ? 30 49
[Chackystat-sensor-ecl LA O = = = = =
[TIhackystat-sensor-em
Dhackyslni-ssnsnrhnx:.-' The goal of thiz analysis is to provide a perspective on the guality of testing associated with a set of
mes'ni.“mr\.“ projects. Each row of the table provides a perspective on coverage for 2 single project. The perspective

Dhm:k]rs‘tai-sensnr—shi.f
[Chackystat-sensor-vim *
ey at-sensor-xm ¥
(s e T
Analysis:
“Coverage &
Values
“Count &

Coverage Type
Methad Z

indicates how many classes fall into each of five possible ranges for coverage: 0-20%, 20-40%, 40-60%,,
60-B0%, and B0-100%. [deally, 100% of the classes will have 100% coverage, which would result in all of
the classes appearing in the 80-100% range.

Ta facilitate comparison between projects, you can specfy either "Count” or "Percentage” when generating
this table. "Count” shows the absolute number of classes whose coverage falls within the given range.
"Percentage” shows the proportion of classes for this project that falls within the given range. Using
"Count” helps you distinguish between large and small projects, while using "Percentage” enables you o
more easily compara projects with a "normalized” value.

Different coverage tools suppon different types. For example, Emma supports "Method™, "Block”, "Ling",
and "Class". Clover supporis "Conditional”, "Element’, "Statement”, and "Method",

About this page: This page provides "snapshots” of the state of one or more projects on a specific day. The "analysis” menu item indicales
the types of snapshots that can be displayed.

sz@hawaii.edu

version 8.3.811, 1148

Figure 3.3. DailyProjectData viewer in Project Browser.

18

QS HarcleyStar

SensorData Projects DailyProjectData Telemetry Portfolio Trajectory Logout
Telemetry Analysis
From Date: DevTime
Tooe 1101 | [
permalink
ToDuhe - Project # stream Unit Marker 10-26 11-02 11-08 11-16 11-23 11-30 1207 12-14
| 2008-12-17
hackystat-sensorbase-uh ¥ DevTimeStream<", false> Hours —@— 25 05 03 05 03 NA 03 02
Granularity:
Week 7o | hackystat-ui-wicket @ DevTimeStream<”, false> Hours --@-- 66 42 53 180 78 11 10 03
P t(s): PE—— ————
roject(s) (GetGhan) Chart Size =[700 |x[400 | pixels (no greater than 300000)
[ClambientHackystat '
[CDefault
[CHackystat 18 H
[Chackystat-analysis-dg g
[Chackystat-analysis-te i& A TR
[Chackystat-sensor-ant i »
[Chackystat-sensor-ecil J b
lhackystat-sensor-em; 14 & N
| A)
[Chackystat-sensor-exa o \
[Chackystat-sensor-mai 12 ‘:’ 5
[Chackystat-sensor-she ! *
[Chackystat-sensor-vim 4| 10 ; %
| Chackystat-sensor-xmi T ! 5
<> ' b
& ’.r a
Chart: @ I N
DevTime % 5.-.._"‘ J \\‘
member: . Ty _____--‘ \\
B @ i - \
| | .
‘\
cumulative:
o e
®n=nen ===l
(Display Telematry) | - - — —==
10-26 11-02 11-08 11-16 11-23 11-30 1207 1214
Cancsl
@

Figure 3.4. Telemetry viewer in Project Browser.

19

Chapter 4

Design and Implementation of The
Software ICU

In order to utilize multiple software development metrizsrtanage software development
process, | adopt the metaphor of the medical ICU and devedgptam called the Software Intensive
Care Unit (Software ICU). It consists of a set of vital sigaach of which is based on a software

development metric and indicates the project’s “healthtestrom one perspective.

4.1 Vital Signs

Similar to the medical ICU, the use of multiple software depenent metrics in Software
ICU is necessary because there is not a single metric thatetermine the health state of a software
project. Each software metric shows a different aspect oftavare project. Changes in one of them
may or may not indicate a change in the overall health state;tiianges in more of them indicates
a higher possibility that health state has changed. In thidys nine vital signs are used in the
Software ICU.

Vital signs of software projects are measured by variousvsoé development process
or product metrics. Each of these vital signs reveals ancasehe health state of the software

project. In this section | will discuss all these vital signs

Coverage is a good indicator of the test quality. It stands for the testerage of source code in
unit testing, which is usually measured as the percentageds units (line, method, class,
etc) that have been executed during testing. There are aaruwhboverage criteria, such as
line, method, class, conditional, etc. In the Software |@&, user can select which to use.

20

But no matter which criterion is chosen, higher coveragdvimys better because a higher
percentage of code covered by unit tests indicates a loaetidn of untested code. However,
high coverage does not necessarily mean good quality testice versa. One reason is
that, in some situations, it is difficult to achieve high tesverage because of the difficulty
of verifying results, especially when developing using tdnmeworks. Another reason is
that the code executed during unit testing can be unverifiea.example, when testing an
image processor with a given image file, the code of loadiegrniage file is executed, but
the test probably has no assertion about the correctnessading the file. However, as
long as developers do not have the intent to trick coveragedar to pretend to be writing

enough unit tests (which is possible if coverage is misus@abige their performance), raising

coverage is always a good thing.

Cyclomatic Complexity, a measurement of the complexity of a program, measures theeruof
linearly independent paths exist in the program’s sourckei@]. The higher the cyclomatic
complexity, the more distinct control paths in a program medand the more difficult it is
to achieve high path test coverage. Additionally, code ghldomplexity is often difficult to
understand, thus it is hard to maintain. Therefore, prograxdules with low complexity are
preferred. But high complexity is not necessarily evil. Tiaure of some algorithms just re-
quires a high level of complexity. Also a raise in complexgygometimes unavoidable during
development, especially when optimizing code performahimvever, developers should try
to avoid high complexity unless it is necessary, especialgarly stages of development, so

that the code is easier to maintain in the future.

Coupling, or dependency, is the degree to which each program modigs ml one or more of the
other modules. Itis a measurement of the complexity of thelevsystem’s module reference
tree. Whenever one module is modified, there will be a chamaethe change causes bugs
in one of the modules that relies on it. Therefore, highermpting implies higher risk of
introducing bugs when making changes, thus making the aodtivarder to maintain. High
coupling might also make the software harder to reuse becaldependent modules must

be included. Therefore, coupling is suggested to be kept low

DevTime, an abbreviation of Development Time, is a measurement ofithe spent on devel-
opment tasks by developers. Hackystat uses a special appimaneasure this: for each 5
minute interval, if any development activities are obsdrigg the tool sensors, the developer
is considered to be developing during that interval. Itxetathe criteria of measuring de-

21

velopment time so that coding while reading from documémnawill get the same DevTime
as an intensive coding period. However, Hackystat sensorBdévTime are only available
in several IDEs (currently available to Emacs, Eclipse, ¥istlal Studio). No sensors are
available for other applications that might be used duriagetbping, such as browsers, E-
mail clients, office systems, or other editors/readers.h8artonitored development activities
are limited. Moreover, some development activities, sucheading and learning, are very
difficult to track. Therefore, DevTime should not be used étedmine a developer’s effort.
During a relatively long development period, if the habiteof individual does not change
a lot, the DevTime of a developer should be relatively stavler time. Thus large sudden

increase in DevTime is a possible sign of bad developingt tibi“start late near deadline”.

Churn is a measurement of the changes (addition, deletion andidification) of code that are
made into repository. It is usually measured by LOC (linecade), and is an indicator
of developers’ contribution to the project. The interptieta of this metric depends upon
the stage of development. In the early stages of developrokatn is expected to be high
because new code is being added. During the maintenanceystiears churn is mainly from
fixing bugs and adding new features, both of which are fewea fetable system, thus churn
is expected to be lower. In terms of development behaviercturn of developers reflects to
some extent the amount of work they are doing. It tends to lagiviely stable over time in
the same project because the work rate of an individual dotegny a lot in the same coding
condition. Dramatic change in churn of an individual depelowhile DevTime not changing
respectively is a bad phenomenon, which might be due to baelajament habit like “copy
and paste without understanding”.

Commit measures the number of commitments made into repositoryomt@it early, commit
often” is a well-accepted guideline of continuous inteigrtl 7/]. For the same amount of

churn, more commits implies better following of this didaip.

Size of the project is measured by the source lines of code (SL@@igh counts the number of
lines in the text of the program’s source code. It can be addfigime effort put into the project,
However, SLOC alone does not make as much sense about th@fthé project as Churn.
We include this vital sign only to give users an idea of the % the project, just like the
height in your medical record.

22

Test is a count of unit test invocations. Unit testing is a sofeveerification and validation method
in which a developer tests individual units of source codeis used to ensure that code
meets its design and behaves as intended. A requiremeniodfdgvelopment behavior is
to test while coding, or event better, use “Test Driven Depaient” (TDD). No matter what
development pattern you follow, unit testing is an indisgaie step and regular execution of
unit tests is always a good sign of a healthy development.habi

Build is a count of invocations of tasks of a build system (such as Make, or Maven). A build
task accomplishes necessary steps to ensure the coreecfnt® code before commit. It
typically consists of compilation, code inspection, umisting, documentation generation,
etc. It is a usual activity in software development nowadayeough how often to build

largely depends on personal preference and habit, it isal to build often to ensure the
correctness of the system.

These nine vital signs are the default set in the Software, I€lt) this can be changed.
Users can determine which vital signs to use, as well asereat vital sign analysis with Telemetry
charts in system customization. More detail about this gométion and customization is provided
in Section 4.4.4andSection 4.5

4.2 Vital Sign Presentation

Asreported in a case study of PROM, data presentation is@wient as data accuracdyy].
One of our primary goals for the Software ICU is to provide egar presentation to help interpret
large amount of software metrics data. In order to achieigegbal, the Software ICU uses mini
charts to integrate historical data and uses color to cegthe health state of vital signs.

A vital sign consists of two parts: a numerical latest valad a mini historical chart.

Latest Value represents the newest state of the vital sign in the angbgsied. In our implemen-
tation, it shows the most recent associated metric dataetétis no metric data on the latest
date of the analysis period, it will search backward for th&t fivailable data of that metric.
The latest value will be “N/A” only when there is no data oftth@etric in the whole analysis
period.

Mini Chart represents the trend line of the associated metric datatbgeanalysis period. This

mini chart is implemented as a bar chart. Each bar reprefiemtsietric value of the metric

23

on a unit of granularity (day, week or month). Bars heightssaraled so that the highest bar

is almost reach the top of the chart.

However, providing the last values and mini charts does ootptetely address the re-
quirement for fast data interpretation. Thus | further eneathe presentation by adding colors to
those numerical values and charts to provide intuitivesdgahe “health” state of the vital signs.

Generally, the color green is used to represent a “healttaté sred to represent a “un-
healthy” state, and yellow for an uncertain state. This rcplattern is good for indicating states
because it matches conventions people attach to color asdribst people can understand it with-
out reading instructions.

Different vital signs may use different coloring methodsg ghe latest value and the mini
bar are colored separately. The choice of coloring methothlyndepends on the nature of the
vital sign. In general, vital signs that have clear prefeeenf higher or lower, like most based
on software development product metrics (Coverage, Cottpl€oupling) will use StreamTrend
coloring method (seBection 4.2.), and vital signs based on software process metrics walyiko
use Participation coloring method (sBection 4.2.2. Sometimes, there may be no ideal coloring

method for a vital sign, such as Size, then the user can gelézve that vital sign uncolored.

4.2.1 StreamTrend Coloring

The StreamTrend coloring method determines the health @tacy its value and trend.
It colors the latest value as well as the mini chart. It takesd parameterddigherBetter Higher
ThresholdandLower Threshold Users can decide the preferable trend, higher or lowenguitie
HigherBetterparameter. For example, a rising mini chart is considerdxt typood if theHigherBet-
ter parameter is set to true. A trend is considered to be risitigeife is no value point lower than
the one before, and if the last value is greater than the falsiev A falling trend is determined in
the opposite way. In order to be able to categorize trend$thee some small disruptions as raising
or falling, the StreamTrend coloring method considers sarabunts (proportional to the average
of the first and the last value) of change as equal. Stablddrare always considered as “healthy”
because in that case it is as good as “healthy” that the ussrmm need to pay much attention to it.
And unstable trend is marked as yellow because it is no eagyovzll if it indicates a good state
or not.

Higher ThresholdandLower Thresholgparameters are only used when coloring the latest

value. Values exceeds the higher threshold will be coloreéryif HigherBetteris true, or red if

24

HigherBetteris false. Values lower than the lower threshold are coloredimilar way. Values

between these two thresholds are always colored yellow.

4.2.2 Participation Coloring

The Participation coloring method determines the health sfream by analyzing the
participation of the members of the project. It only coldre mini chart, leaving the latest value
always uncolored. This coloring method is designed to débechealth state of team collaboration,
mainly via software process metrics. It takes three pararsdflember Percentagd hresholdand

Frequency The Participation coloring method colors a mini chart grie
1. there are more percentage of members thaMigiraber Percentagparameter that,
2. have the metric value greater than or equal toTitmesholdparameter per day,
3. for more frequently than therequencyparameter in the analysis period.

A mini chart is colored yellow if it does not meet the greenuiegment, but the metric of

the team as a whole meets the requirement of green, i.e.,
1. the combined metric value is greater than or equal td tiresholdparameter per day,
2. for more frequently than therequencyparameter in the analysis period.

If the yellow requirement is not met neither, the mini chailt ine colored red.

In other words, Participation coloring method colors alsign green if most members
of a project are making noticeable contribution to the mbjegularly, and color it yellow if the
vital sign does not achieve the green state but there is smer@aking contribution to the project
in most of the time, and color it red otherwise, which meanderms of this vital sign metric, the

contribution of members to the project is rare and/or inicgmt.

4.3 Mini Chart Drill-Down

In each non-empty mini chart, the Software ICU provides ltathe drill-down Teleme-
try analysis. The drill-down Telemetry analysis is the gsel that used to generate the mini chart.
For most of software product metrics, such as Coverage, @xitypand Coupling, the drill-down

Telemetry analysis will show the same chart as the mini ¢hdlnee Software ICU’s vital sign, justin

25

Telemetry Analysis

From Date:
2008-11-08 | 55

To Date:

20081217 | 5

Granularity:

[week :

Project(s):
(CAmbientHackystat
(Defautt

[Hackystat
[Ohackystat-analysis-di
Dhackystat-analysis-te
[hackystat-sensor-ant
Chackystat-sensor-ecl
[Chackystat-sensor-em
[Dhackystat-sensor-ex:
[Dhackystat-sensor-ma
[C|hackystat-sensor-she .
Chackystal-sensor-vim *
Cihackvstat-sensor-xm ¥
—3 Tale

Chart:
MemberDe 3 b

cumulative:

@
Display Telemetry

Cancel

MemberDevTimeStream<falseo @ hawaii.edu

— |

MemberDevTimeStreamfals e s @ hawai.edu

i edu

MemberDevTime
permalink
Project # Stream
™ MemberDevTi <fal
2
&
& MemberDewTi <fal
Hacwystat 2
o
<]
<]
<)
<)

MemberDevTimeSream«<falses— s hawail adu

MemberDevTimeSream<falsesw® hawaii edu

MemberDevTimeStream<false- "2 gmail.com
MemberDevTimeStream<false— = @gmail.com
MemberDevTimeStream<false> = gmail.com
MemberDevTimeSiream<false= =i hawaii.edu

ChartSize =[850 |x(380 | pixels {no greater than 300000)

L S

Unit

Hours
Hours
Hours
Hours
Hours
Hours
Hours
Hours
Hours

Hours

Marker

1108
MiA
13
MNiA
184
MNiA
08
WA
WA
A
A

11-16
NIA
6.9
NIA
17.5
N/A
18.4
NIA
NIA
N/A
N/A

11-23
WA
12
A
87
/A
63
Nia
Nia
A
A

11-30
A
a3
NiA
85

75
0o
N
A
A

118

123

11-30

1214

12-07
WA
01
A
ES
WA
65
A
A
MiA
MiA

12:14
A
NiA
NiA
47
NiA
03
A
A
A
WA

About this page: This page provides a way to see trends in project analyses over time. By seleciing a chart and a date range, you will generate one or mare trend lines that show how characterisiics of the project are

Figure 4.1. An Example of the Drill-Down of DevTime Vital Sig

26

different style with more detailed axes. However, for sa@ftevprocess metrics, instead of the origi-
nal chart, an associated member-level Telemetry analysisawn in the drill-downKigure 4.).

The member-level Telemetry analysis consists of multipieasn lines in the chart, each
of which represents the metric data of a project member. Ehisrmember-level Telemetry charts,
it is easy to see members’ participation to the project is thetric. This is most useful when
combined with Participation coloring in the Software ICUhaeve you see the summary result of
members’ participation, and then explore the detail wittmber-level Telemetry analysis.

The drill-down Telemetry analysis uses the same paramasansed in the Software ICU,
thus the non-member-level chart should be identical to tieeimthe Software ICU. Vital signs with
drill-down to member-level Telemetry, use as well the mertbeel Telemetry to generate the mini
chart by summing all streams into one. The Software ICU plewidifferent integrating method to

handle vital signs that use member-level Telemetry, motailde discussed ilsection 4.5

4.4 The Interface of The Software ICU

The interface to the Software ICU is separated into two parte left-hand side is the
control panel. The right-hand side consists of three patt&sdata panel, the loading process panel,
and the vital sign configuration panel.

4.4.1 The Control Panel

The control panel is in the left-hand side of the Software I€$ the only panel that will
always appear.

The From Dateand To Dateon the top are text fields with date selectors. The user can
open the date selector by clicking the small calendar imagheright of the text fieldKigure 4.3.
The selector is a JavaScript component that let the usestsetiate from a calendar. When a date
is picked, the selector will put it into the associated testdfias a formatted string. The user is also
able to edit the date string directly. The format of the dategs will be validated when the OK
button is pushed. Also the Software ICU will ensure the gdiewe period is within all selected
projects’ life period.

The Granularity is used to define the time granularity that will be used in ety
analyses. The choices including “Day”, “Week”, and “Month”

The “Show Configuration” will show the vital sign configuiati panel when clicked.
More detail is described iBection 4.4.4

27

From Date:
20081002 |)

To Data:
|2008-10-13 | 51

Granutarity: X
Day 3| ¢ October 2009 B
(BhowCol oy Mo Tu We Th Er Sa
3

Project(s): 27 988 29 3@ 1 2
CAmbientdd | 4 | 5 |6 7 | &8 | 9 |10
17

Default 11'12'1315'16
OHackystat) = 020 21 | 22 | 23 | 24
(Chackystat- ! | ! ! |
Ohackystat | 25 | 26 | 27 28|29 | 30 | a1
Chackystat-| TSR SSER T e s
Phackystat-

[hackystat-

(Chackystat-sensor-exe.
(Chackystat-sensor-ma
[Chackystat-sensor-ahi—
[Chackystat-sensor-vim *

N -SENSOr-Xm |
(s . T

" Cancel

Figure 4.2. The Software ICU’s control panel with date seleopened.

28

TheProject(s)is multiple-choice selector for projects to be analyzede Tiker can select
projects by checking the checkbox in front of the projectsyrselect by unchecking.

The last two buttons, th@K andCance] are used to control the execution of the Software
ICU analysis. When th®K button is clicked, execution will be started. Meanwhilé figlds and
buttons are disabled except @ancelbutton, which will become available for user to terminate th
analysis.

4.4.2 The Loading Process Panel

The loading process panel will only appear when the Softi@te analysis is under
execution Figure 4.3. The loading process panel will display some log messagesthe Software
ICU analysis to show the progress of the analysis executlomvill refresh itself every several
seconds using Ajax, until the analysis is finished. If thelysia finishes successfully, the loading
panel will disappear, and the data panel will come out. Qifsgr, the loading panel will stop but

remain visible, with the error message displayed on theobotif it.

4.4.3 The Data Panel

The data panel is the place where the results of the Softwdeare shownFigure 4.4
shows an example of the Software ICU with the data panel.

The data panel consists of a single table that containssigak of all selected projects.
The table is colored in black so that the vital signs’ colayeeén, red and yellow) are in sharp
contrast to the background. Inside the table, each row twnthe vital signs for a single project.
Each mini chart is a link to the associated drill-down Telegnanalysis (Se&ection 4.3or detail).

The permalinkabove the table is a bookmarkable link to this analysis. Bsnapy this
link, the user can directly invoke the Software ICU analysgith the same selection of time period,

granularity and projects as the analysis that is being aysgul.

4.4.4 The Vital Sign Configuration Panel

The vital sign configuration panel provides the user witheascto the configuration of
each vital sign. User can enable/disable a vital sign, ahd@s<oloring method, and configure the
parameters of the associated Telemetry analysis.

By clicking the Show Configuratiorbutton in the control panel on the left, the user can
open the configuration panel to its right. Then 8teow Configuratiotutton will be disabled when

29

Liadyons

SenzorData Projects DailyProjectData Tetematry Portiolic Trajeciory Logout

Software Project Portfolio Analysis

From Date: L
2009-05-10
Retrieving data from Hackystat Telemetry service.
To Date: Retrieve data for project hackystat-analysis-dailyprojectdata (1 of 8).
| 2008-06-30 —= Retrieve Coverage<Percentage, method> (1 .. 1 of 9}
—= Retrieve CyclomaticComplexity<AverageComplexityPerMethod, 10, JavaNCSS> (1 .. 2 of 9).
Granularity: = Retrieve Coupling<All Average,class,10,DependencyFinder= {1 .. 3 of 9).
Week | = Reiriave MemberChurn<false= {1 .. 4 of 8).
(~Show Confgaration -2 Retrisve FileMetric<TotalLines,*> (1 .. 5of 9).

- Ratrieve MemberDevTime<ialsex> (1 ., 6of 9).
Project{s): - Ratrieve MemberCommit<false~> (1 .. 7 of 8).
[= Retrieve MemberBuild<" * false> (1 .. 8 of 9).

—

::Amhluntl-l ot - Ratrieve MemberUnitTest<TotalCount false> (1 .. 9 of 8).
— Default Retrieve data for project hackysiat-analysis-telemetry (2 of 9).
| 'Hackystat -5 Ratrieve Coverage<Percentage method= {2 ., 1 of 9).
'fha:krstﬂl-anatysfs

T4 hackystat-analysis-i¢

'_f hackystat-sensor-am
'f: hﬂckys’tﬂt-sanmr—ac@
" hackystat-sensor-em
':'hackystat-sunwr-né\:

Vv hach:ystﬂt-sensur—ms]!;

&=
(oK

Cancal

About this page: This page provides a view of software project portfolio analysis (SPPA).
sz @ hawail.edu

Figure 4.3. The Software ICU’s Loading Process Panel

30

QMCW

SensorData Projects DailyProjectData Telemetry Portfolio Trajectory Logout

Software Project Portfolio Analysis

From Date: permalink

D - - | oo |comenns | comin | oo | o0 | omton | coren | oo | |
oo [Fome om0 o | W25 [o (1[I verea] & 0w | 1 20 [0 40 [s
20080223 | [7
* oot | W o | W51 | Wi 0w | ux [WN awso] 0w | | W 5o [k o
[20| - w

(i oy omrert® | 1o

| Week _Cl : E

O =c=tccoocroctpne® | A [Wlls1 | wa| wa Mimeo| wal wall 0 fikeo |
‘ QN coeensoremecs | wa| wa| wal waWWmmo | wal| wald a0 wa|
Project(s):

e (] ——— R N N NN NN ECXY
oo Wi | W2 [Wioo | or [Waowes |]

ghankystat—ana\ysls—dw
@]hankystﬂt—ana\ysis—te
Ehan kystat-sensor-ant
Ehan kystat-sensor-ecl
E‘hac kystat-sensor-em
gha:kystat—sensur—exs
Pnackystat-sensar-she
Ehankystat—sensm—vin :

oK

K)

Cancel

Figure 4.4. A screenshot of the Software ICU

the configuration panel is displayeHigure 4.5shows an example of the vital sign configurations.
The first column is the name of the vital sign with the checkbmxenable or disable it. When a
vital sign is disabled, the configuration of color method detemetry parameters will disappear.
However, the settings are not discarded, thus when the sigal is enabled again, it will be the
same as before it was disabled. The second column is therglorethod. The current version
of the Software ICU provides three choices: StreamTrendjdiztion and None. By choosing
the first two, its associated parameters, which are disdussBection 4.2 are shown next to the
drop-down selection field. When “None” is selected, nothivif be shown in that space. The
last column is the Telemetry parameters, which is definedhendefinition of Telemetry charts,
and will be directly transferred to Telemetry service whetrieving Telemetry analysis for vital
sign presentation. Because of the implementation, thdtsesiuenabling/disabling a vital sign and
selecting different coloring method will be saved immeelgtbut other fields will only be saved
when theOK button in the bottom is pushed. When t©& button is pushed, the configuration
panel will disappear after setting is saved, and3hew Configuratiomutton will become available

again.

31

Software Project Portfolio Analysis

From Date: Measure Name Color Method Telemetry Parameters
20091002 | [if Higher Threshold [0
) : mode: | Percentagi 2
To Date: # Coverage [StreamTrend 2 Lower Threshold 40
m‘ L granularity: | method
fir Higher Better: @ '
Granularity: Higher Threshold | 0 mode: [AverageCc =)
Day z — ey
¥ Complexity [StreamTrend 2] Lower Threshold [0 | threshold: |10
Show Ganfiguratian Higher Better: @ tool: [Javancss |
Project(s): coupling:
[CAmbientHackystat Fen | o e, -
Higher Threshold | 20 mode: | Average 3
[iDefault ” =2
CHackystat ¥ Coupling StreamTrend ;] Lower Threshold | 10 | type: |class
[Cihackystat-analysis- Higher Better: [threshold: | 10
Ohackystat-analysis- tool: | DependencyFinde
Cihackystat-sensor-an
Cihackystat-sensor-ecl Higher Threshold 500
Ehackystabatn sorsm) # Churn StreamTrend & Lower Threshold [400 | cumulative:]
[Ohackystat-sensor-exs ! !
[Chackystat-sensor-ma Higher Better: [
- L a T
[Chackystat-sensor 3"'(‘: sizemetric: | TotalLines
[Chackystat-sensor-vim = ¥ Size(LOC) MNane =,

i Gt 4 tool: |~
{ o 1
=

Member(%) | 50
5 |

DevTime Barticipation & Threshold 05 | cumulative:)
Cancel Frequency(%) 50 |
Member(%s) 50
Commit Threshold |1 | cumulative: O
Fregquancy(%:) | 50
Member(%) | 50 result: [* 5
Build Participation = Threshold 3 | type: |*
Frequency(%) 50 | cumulative: O
Member(%) 50
S rest Threshald 0
= cumulative: T
Frequency(5:) | 50
[Codelssue
(oK) Configuration Instructions

Figure 4.5. The Vital Sign Configuration panel in Softwar&JIC

32

In order to persist the user’s configuration setting betwemrh visit, the configuration
settings are saved in server side using UriCache. UriCachenrapper around the Apache JCS
system. It is designed to provide an API well suited to the needs afkyatat services. The vital
sign configuration objects are directly cached, under theenaf the user. The cache expiration
timer is set to 300 days so that it will not easily be expiredt Bthe cache is expired or missed by
any means, the system will use the default settings.

Next to theOK button is theRest to Defaulbutton. It will restore all vital sign configura-
tion settings to default, and the results of restoring welldhown and saved immediately.

In the bottom-right of the configuration panel is a link cdlf@onfiguration Instructions

When clicked, it will show a simple instruction of the configtion panel in a pop-up window.

4.5 System Customization

Beside the ability to configure vital signs on the fly, the @aite ICU also provides offline
customization of default vital signs. All vital signs, inding the default set discussed above, are
defined in PortfolioDefinition XML files. There are two pladeetsystem will look for these XML
files. The first place is inside the package of the detail pafigle Software ICU, where the default
set of vital signs are defined. The other placeishackystat/projectbrowser/, where™ stands for
user’'s home directory. Here is an example of the Portfolfoiiteon XML file:

<?xm version="1.0" encodi ng="utf-8"7>
<PortfolioDefinitions>
<Measur es>
<Measur e nane="Cover age"
cl assi fi er Met hod=" St r eanTr end"
enabl ed="true"
t el enet r yPar anet er s=" Per cent age, net hod" >
<Streanilr endPar anet ers hi gherBetter="true"
| ower Thr eshol d="40"
hi gher Thr eshol d="90"/ >
</ Measur e>
<Measur e nanme="Menber DevTi ne"
al i as="DevTi ne"
mer ge="sunt
cl assi fier Met hod="Parti ci pati on"
enabl ed="true">

14JCS is a distributed caching system written in java. It teimled to speed up applications by providing a means to
manage cached data of various dynamic natureg.tp: / / j akar t a. apache. org/j cs/

33

http://jakarta.apache.org/jcs/

<Parti ci pati onPar anet ers nenber Per cent age="50"
t hr eshol dval ue="0. 5"
frequencyPer cent age="50"/ >
</ Measur e>
<Measure name="Fil eMetric"
alias="Si ze(LOC) "
enabl ed="true">
</ Measur e>

</ Measur es>
</ PortfolioDefinitions>

There is a root element callébrtfolioDefinitions enclosing a single elemekteasures

Within the Measureslement, there are a setMfeasureelements, each of which stands for a vital

sign.
1.

2.

EachMeasureelement can take up to six attributes:
Thenameattribute is required. It is the name of the Telemetry anslysed in this vital sign.

Thealias attribute is optional. When this is set, it will be used asrhee of this vital sign.

Otherwise, thenameattribute will be used as this vital sign’s name.

. The classifierMethodattribute defines the default coloring method, either &tfE@nd or

Participation. This attribute is optional. When it is ungké default coloring method will be

none.

. Theenabledattribute defines if the vital sign is enabled by default. df ®© false, the vital

sign will be disabled by default. But the user can still erabin configuration panel.

. Themergeattribute defines the method to integrate multi-streamriietey. It is necessary

for member-level Telemetries to work. “sum”, “min” and “nfeare the available choices. If
it is unset, the first stream of the telemetry will be used. &se the order of streams in a
Telemetry chart is not guaranteed, using member-levehietiy without setting this attribute

might cause unexpected results.

. ThetelemetryParameterattribute is the Telemetry parameters of the Telemetryyaismte-

fined innameattribute. It can be unset, then the default parameterdwilised. This attribute
accepts values formatted the same way as the Telemetry REET.& common separated

values ordered the same as parameter definition of the Teleotert.

TheMeasureslement also can have up to two optional sub-elements. TeSt@amTrend-

Parametersand ParticipationParameterseach of which defines default parameters of the corre-

34

sponding coloring method, and can exist together regardidsat is set in thelassifierMethod

attribute. They take the same attributes as their paraméiscussed isection 4.2

35

Chapter 5

Classroom Evaluation

5.1 Case Study in Classroom

The evaluation of the Software ICU in this project occurneci academic environment
by undergraduates in a senior-level Software Engineermgse (ICS 413) at the University of
Hawaii. The class consisted of nineteen students. They gre@ually introduced to software
engineering concepts like specification, modeling, amslgsd design, along with useful tools in-
cluding the Eclipse IDE, the JUnit testing framework, thé&rsion configuration management
system, the Ant build system, and the Hackystat system. Asogpdhe first 7 weeks, they were
guided to the three prime directives of open source softfiard he system accomplishes a useful
task. 2. An external user can successfully install and usesyktem. 3. An external developer can
successfully understand and enhance the system.), anitpdaon these directives on individual
basis. Then for another 3 weeks, they were divided into ggamfgwo to work on open source
projects hosted on Google Project Hosting using Subverssistem. Then Hackystat and the Soft-
ware ICU were added to their practice. They continued to workheir projects in large groups for
approximately 5 weeks.

At the end of the Fall 2008 semester, the students were agkedgond to a questionnaire
soliciting their opinions regarding Hackystat and the ®afe ICU. The complete questionnaire can
be found inAppendix A

In order to eliminate the potential bias that due to the gitemither consciously or un-
consciously, to “please” the instructor who would presulydle gratified by positive responses to
the questionnaire, responses were provided anonymoushe toourse instructor. It is done in this
way: Before the questionnaire was given out, a “secret” awde provided to each student. The
correspondence between the secret codes and the studkntsvis by me, but not the instructor

36

of the class. Response was optional, but the students wiereaextra credit points for providing
their opinions. The list of names who should be awarded ex&dit was sent to the class instructor
without identifying individual responses. Eighteen outltd nineteen students contacted provided
responses.

In addition to the survey, students’ activities on the SafevCU and the related Teleme-
try page of Project Browser was logged. Every time when sitgdean an analysis on Telemetry
or Software ICU, the name of the analysis, its parameterd,tlam timestamp of the request was
recorded in the log file. The events of clicking the mini chiartun Telemetry drill-down analysis
were also recorded, in order to assess that the drill-doatuffe is actually useful. The last event
| tracked is configuring the settings of vital signs. Howewver meaningful action of configuration
is recorded. This is reasonable because of the studenksbfesophistication regarding software
measurement at the time of the study.

At the end of the evaluation, the log data was compared toetbdtfacks from the survey
to help verify students’ responses.

5.2 Experimental Limitations

It is important to recognize the limitations of this study.or@pared to the limitations
associated with previous study in 2003 and 2006, anonyshaghieved, but others are still unsolved
in class evaluation.

First, this data is drawn from a limited sample size of 18 stugl. The subjects have a
relatively narrow and homogeneous background in softwaveldpment.

Second, the context in which they used the system was a cproget. Course projects
tend to be smaller, narrower in scope, and with less pressuthe developers than an industrial
context. It is one thing to get a poor grade for doing a poor ipis another thing to lose your job
for doing a poor job. In addition, students are not workinttime on the system; the development
project is just one assignment among several.

These are all major limitations on the external validitylaf tesponses. They do not make
the results meaningless, but rather help provide a pergpaxt how to gain additional evidence in
future that would confirm/disconfirm these initial findingsor example, it would be helpful to de-
ploy Hackystat and the Software ICU in a real software compand then gather data anonymously
from the coders and managers. Other insights into futurearek directions will be covered in an

upcoming section.

37

Chapter 6

Results

The data collected from the classroom evaluation questiomcan be found iAppendix B

6.1 Feedback regarding Hackystat system

Besides the purpose of research regarding the Softwareti@ kstudy can also be inter-
preted as a evaluation of Hackystat's new service-orieatelitecture.

The responses of the questionnaire indicate that senstedlation is more difficult than
Hackystat in 2006. This is not surprising because of thetfatta client-side installer package was
provided in 2006, which is not yet available in the time oftkiudy. However, once the sensors are
installed correctly, no further effort is required in datdlection. Because all the students are using
the public services of Hackystathere is no effort required in the server-side configurgtighich
was reported to be the biggest installation/configuratidfrcdlty in 2006.

The sensors’ installation difficulties is mainly cause by documentation. Though instal-
lation guides are provided for every component, the doctatien is too distributed to follow as a
result of Hackystat's service-oriented architecture,ciihieduces the coupling among components,
but also reduces the correspondence among componentshdatation.

Regarding development data sharing, most students felt I@irgy development data
with other members. But three students had concerns thahghdevelopment data would reveal
their programming habits and introduce too much compaetitibstatical stats, which made them
nervous. Itis interesting that those three students ardthe with the lowest Software ICU running

count inFigure 6.2

'SensorBaskt t p: / / dasha. i cs. hawai i . edu: 9876/ sensor base,
DailyProjectDataht t p: / / dasha. i cs. hawai i . edu: 9877/ dai | ypr oj ect dat a,
Telemetryht t p: / / dasha. i cs. hawai i . edu: 9878/ t el enetry,
ProjectBrowsent t p: / / dasha. i cs. hawai i . edu: 9879/ pr oj ect br owser

38

http://dasha.ics.hawaii.edu:9876/sensorbase
http://dasha.ics.hawaii.edu:9877/dailyprojectdata
http://dasha.ics.hawaii.edu:9878/telemetry
http://dasha.ics.hawaii.edu:9879/projectbrowser

6.2 Verification of System Usage

Figure 6.1andFigure 6.2show the data from system usage logging. | combine it with the
data from the questionnaire to confirm that the student@garses from questionnaire reflect the

truths of their practice.

70

60

50

40

30

20

10

VH VH VH VHVHVHVHVHVH H H HH H H H H M NA

W Days of use M Total Invocation

Figure 6.1. The count of days when the Software ICU was udedgavith the total invocations
on per student bias. Each pair of columns represents dataeo$todent. The X axis shows the
responses from questionnaire. VH = every day or more; H =ith8d per week; M = once a week;
N/A = not available.

When verifying the questionnaire responses against thddtay | find that the choices of
question “How frequently did you use the telemetry page? d ‘&fow frequently did you use the
Software ICU?” are somehow ambiguous. Though “every dayareiris surely asking how many
days you use the analysis, “2-3 times a week” may be undetstetimes of invocations:igure 6.1
shows data of these two interpretations. If we consider tisgvars as “days of use”, the actual use
frequencies are much lower than reported, because the?8 aliays in the evaluation period but the
highest number of days of use is only 18. But if we consideratii®vers as “times of invocations”,
the invocation frequencies are more matched to reportegiérecies. However, in either case, the
difference of actual usage between students who claim tthesgoftware ICU “every day or more”
and “2-3 times a week” is not obvious. Though the total intimcatimes and days of the first group
is higher than the second, some students of the second gsedjihe Software ICU more frequently
than the students of the first group. But this error is acdd@tiaecause the frequency of use is just as

39

remembered and might not be precise. So if the criteria ikere=d and both “every day or more”
and “2-3 times a week” are considered as “did use the Softialtefrequently”, all responses
match their log data except three of them. Those three steidi&imed that they use the Software
ICU 2 to 3 times a week or more, but they actually used only &alfnuch as they claimed (The
lowest one with response “every day or more” and the lowestvith response of “2-3 times per

week”).

140

120

100

80

60

40

20

HSICU = Telemetry

Figure 6.2. Analysis count on a per-student basis duringtaiiation period. Each pair of columns
represents data of one student.

| also find that though the reported frequency of the Softu@té and the Telemetry are
similar, Telemetry’s analysis invocations are much highan the Software ICU’s(sdeigure 6.3.
But this matches the nature of these two analyses: the Seft@& shows the overall summary of
a project’s health and no need to run more than once a daye Wwhiemetry shows detail of a vital
sign and would often be run multiple times in every use.

Because both questionnaire responses and log data showetaeidence that students
are using the Software ICU and other Hackystat servicesiénmty, | believe that survey participants
actually have plenty of experience with the Software ICU Hre responses are based on their real

experience and opinions.

40

20
18
16 T
14 —
12—
10 7 —

o N OB Oy 00
]

Figure 6.3. Counts of selections of each vital sign in resperof question “If you used the Software
ICU, please check the vital signs that were useful to you.”.

6.3 Utilities of Vital Signs

Regarding the Software ICU as a whole, 7 out of 9 vital sigescansidered to be useful
by at least half of the respondentSidure 6.3. 10 out of 18 responses said Software ICU was
accurately reflecting the health of their project via caolevkile another 6 responses are not denying
the utilities of vital signs, but are arguing that some véigihs are not accurate enough to determine
a project’s health. Only one student found it is “hard to deiee what will fall into green, red, or
yellow”, and the last student said he failed to configure #mesers. Overall, students were quite

positive regarding the utilities of vital signs.

Figure 6.4. The final states of all class projects in Softwaig.

41

Three vital signs cause the most concern in student feedi@mlkpling, Churn and Dev-
Time.

Coupling causes concern in that its increase during deneop is unavoidable, at least
there is no easy way to avoid it, especially when adopting peekages. The course is not focussed
on how to design software to avoid significant increase ingling, and students were not experi-
enced enough to figure it out on their own. So student feltused about what to do: adding new
classes and packages is necessary to accomplish the taisisyill also increase the coupling and
make the vital sign to turn red. As shown in the final stateshefdlass projects in the Software
ICU (Figure 6.4, 4 of 5 projects failed to keep their Coupling trend greerowidver, considering
their other vital signs, they are not necessarily doing wadhnan the ones with green Coupling. This
indicates that the presentation of Coupling vital sign doeisaccurately reflect the true “health”
state of the projects.

Churn’s concern can be ascribed to misuse of coloring methsdiscussed iection 4.1
Churn is preferred to be relatively stable. Neither sigaifiincrease or decrease is desirable. How-
ever, a proper coloring method is not yet implemented. Bgttie default coloring method is set
to StreamTrend wittHigherBetterparameter set to false turn out to be a mistake. It misled stu-
dents with the impression that Churn should be kept loweichviconfused them. On second
thought, without a coloring method exclusively designed @hurn, even Participation coloring
method might be better than StreamTrend because it cam pettent process vital signs.

The problem of DevTime is its lack of completeness. Becatisheolimited collection
of DevTime sensors, only a few applications are supporteddmkystat, and only one of them is
primarily used by students: the Eclipse IDE. The effort oheotdevelopment activities, such as
reading books, researching online, or even pair programrsimot collected. Some students felt
compelled to do more coding to catch up with their group asn

6.4 Vital Sign Popularity

The number of invocations of Telemetry analyses can be usexhandicator of vital
sign popularity and usefulness. Both log dateb(b)) and questionnaire responses indicate that
the Telemetry page is mainly used to run member-level aealysThe two most used analyses
are MemberDevTime and MemberComnfit%(a). In the responses to the question of vital sign
usefulnessKigure 6.3, DevTime and Commit are also among the three most popuialr signs.
The other one in the top-three is Coverage.

42

Build; 2% Others; 9%
Coupling; 3%) -

DevTime; 3%

Coverage;
4%

(a) Invocations of each Telemetry analysis (b) Comparison of member-level and non-member-level
analyses

Figure 6.5. Usage of Telemetry Analyses

Itis not surprising that Coverage is among the most poputarsigns. Compared to other
productive metrics, it is a more intuitive indicator of peof’'s quality. It is not in the frequently used
Telemetry analyses because there is no need to run a sepeleeetry analysis. Users can get all
the information from the coverage vital sign in Software ICU

But DevTime and Commit's popularities were not expectedmtio the evaluation. Sur-
vey result indicates that this is not a special case: Vigihsibased on software process metrics
attract much more attention than those based on softwadugronetrics Figure 6.3. Popularity
of process vital signs (DevTime, Commit, Build, Test, andif) exceed all productive vital signs
except Coverage (Complexity, Coupling and Size). Therahamse major reasons that lead to this
result.

The first reason is that popular vital signs are easier topree than those that are not
popular. The meanings of popular vital signs are very ditafigrward, while on the contrary,
as mentioned in students comments, complexity and coupfiagzics are more complicated to
comprehend. Though their general guidelines are the lohebetter, the meaning of a certain
number is not easy to understand because of the nature efrtetsics. Also, as the development
progresses and more features and functions are added todbeaomplexity and coupling always

43

tend to increase. Additionally, unlike coverage for whialeacan simply “write more tests to
increase the coverage”, there is no single obvious way taceedomplexity and coupling.

But size’s low popularity is expected because it naturaig ho preference to be higher
or lower and it is the only vital sign that does not have a défaaloring method. It is intended to
stay in default vital signs set as a reference rather thandicator.

The second reason of process metrics’ popularity is thatymtometrics are less dynamic
than process metrics. Product metrics, which are statisfithe source code, usually change slowly
and relatively linearly while the changes of code are grigsccumulated over time. On the
contrary, process metrics are measurement of human agjwvhich can vary a lot from day to
day. A developer can code for 6 hours in one day but not codieiatthe next day. Therefore, the
change of process metrics is more interesting.

The last reason, as indicated in students’ responses,asibethe Software ICU was used
by some students to improve their team process by trackingbaes’ activities. As mentioned by
a student, member-level Telemetry analyses provide a fjuanivay to identify who is falling
behind in terms of effort output, thus team members can be rself-critical by comparing their
individual data to the groups. Students did make use of theseess vital signs to better organize
team collaboration. And these vital signs offer a way to waté students to work hard.

However, one concern is that DevTime and Commit are so poplidd they may also
induce measurement dysfunctions that affect user’s betgeavi\s noted by Austin in his Measuring
and Managing Performance in Organizatidri$] measurement dysfunction’s defining characteris-
tic is that the actions leading to it fulfill the letter but nibe spirit of the stated intentions. At least
one student actually experienced this negative effect. ¥péoitly pointed out that the quantitive
measurement of their activities led to a competition ofssteithin the group. More students have
possibly been affected as well because as indicated in tihdérgt's answers, his team shared the

similar opinion of the “stats competition”.

6.5 Feasibility in a professional software development caext

Responses of the questionnaire show that most studentghthibuwas at least somewhat
feasible to use Hackystat and the Software ICU as a profesisiteveloper. Students’ comments
also pointed out some potential barriers to adopting Se&wau to professional setting, including
data privacy, data completeness and measurement dysfusictBut most responses suggest that
Hackystat and the Software ICU are useful in professionéihgein one way or another.

44

6.6 Thesis Claims Revisited

With the observations made from the evaluation resultsfath@ving summaries can be

made about the four claims:

1. Adopting metaphor of the medical ICU to software enginggrapractical and feasible.

The implementation of Software ICU shows abundant evidémsepport this claim. Critical
functionalities are all implemented at the time of evalorti The only concern about im-
plementation from evaluation is the requirement of a chofcemphasized layout that focus
exclusively on a single project, which is not difficult to ilement at all.

2. The selection of vital signs is appropriate.

Evidence did suggest that the selected set of vital sigifisdtthe need of measurement for
the students, and most vital signs were considered usefulvelkr, one concern is that, at
the time of study, students’ lack of sophistication regagdioftware measurement may make
this conclusion questionable.

3. The coloring mechanism correctly illustrates the healtitesof the vital signs.

The result of this is mixed. Firstly, the concept of “colordtate” is supported by the stu-
dents’ opinions. Secondly, some vital signs are thoughtetadyrectly colored while some
are not. The Participation coloring method enjoyed pasitesponses on all deployed vital
signs, while the StreamTrend coloring method’s perforreda@ppropriate on Coverage and
Complexity, but is debatable on Coupling and Churn. Lessam {Churn suggest that careful

selection of coloring method is as important as developrakatnew one.

4. Knowledge of health state of their projects helps studenfwave their performance in col-

laborative software development.

Comments from questionnaire imply evidence to supportdlaisns. Students stated that the
health state of a vital sign guided them to discover and agpablems in their code or team
organization, which will not be (easily) noticed otherwisBut negative impression from
inappropriate coloring also affects the conclusion to sextent.

45

Chapter 7

Conclusions

7.1 Contributions

This research contributes to empirical software engingan four ways.

The first contribution is the evidence that the Software I€kdetaphor and presentation
help students understand and utilize software developmelrics to improve their individual de-
velopment performance and team collaboration. The So#w@l) manages to color most vital
signs correctly to illustrate their health states. The Kedge of the health states of the project’s
vital signs helps students to discover the shortcoming @i {broject, both in the source code and
in their team management, so that they can focus their enerthe right place to improve their
overall performance.

The second contribution of this research is the insight anteew way to teach empirical
software engineering courses. The idea of software healihgbod way to lead student to healthy
development habit. With the help of the Software ICU’s awted data collection, analysis and
presentation, students can get rid of the overhead of sadtweeasurement and follow the vital
signs to understand the principle of software developmedttheir actual performance. Students
no longer had the impression of software measurement isultffiand already started to understand
the essence of software metrics and consider if and how fhease metrics can help them control
their development practice.

The third contribution of this research is, it reveals noyquositive impact of the Soft-
ware ICU paradigm, but also negative affect of measuremgsfudction, which is a phenomena
that was widely believed to exist but with little actual détat reveals it. Study of measurement
dysfunction is not easy because the existence of the pher@imeaunpredictable. The evidence
reported in this research is a valuable material for futesearch.

46

The last contribution of this research is the technicakistiructure, which is open source.
Anyone interested can download and use the system in steidghing or professional develop-
ment. The Software ICU offers good configuration and custation capability to satisfy various
requirements. Hackystat is the only open source systenptbaides rich features of automated
software engineering measurement and analysis and bassshace-oriented architecture, which
provides high extensibility. Users can easily configuredifyoand/or extend the system accord-
ing to their special needs. The Software ICU was developkalfimg the good directives of open
source software. Source code is not only formatted withister® style for good readability, but
also filled with documentation to help developer understand use it. Documentation for users

and developers are also available on the hosting site ofdfie&e ICU-.

7.2 Future Directions

As mentioned in previous sections, the Software ICU stila#svmore research and im-
provement.

First, vital signs require more research. The vital signg'spntations still need further
tuning to better indicate the health states. More reseandquired to explore the inner relationship
between the metric values and actual health state. Theenafuhe software project might be a
factor as well. More sophisticated coloring methods are ateded. The Churn vital sign requires
a coloring method to denote its health state according testlaée of its vibration: stable to be
green, moderate vibration to be yellow, and dramatic vibnato be red. Other vital signs, or new
ones, may require other coloring method as well. Furtheemibre selection of vital signs is not
yet conclusive. Additional vital signs may need to be addadalysis algorithms of some vital
signs may need to modified to generate more normalized valueaier coloring. For example,
the Coupling should be normalized somehow to the size (jmtglthe number of classes) of the
software. Also, the relations among vital signs might alsaalfactor in coloring. For example,
Churn, Commit and DevTime are related to each other to soteseX he ratio among these three
vital sign should be relatively stable, which could be aridatbr of their health states.

Second, it would be useful to deploy the Software ICU in arustdal setting. The
Software ICU offers powerful means to manage a large numbengoing projects. It can help
manager rapidly identify problematic projects, on whichrenattention will be paid to address
the problem. The Software ICU may also be used to discoveitasifprojects and development

'http:// code. googl e. conl p/ hackyst at - ui - wi cket/

47

http://code.google.com/p/hackystat-ui-wicket/

teams, among which opportunity of experience exchange meayiding. Lessons learned from
a project’s recovering from an unhealthy state might be fbkliw another project with similar
problem. Moreover, industry is a good platform to study Iviigns. Large number of projects
and developers provides abundant research data, basedamnstdtistical research on relationship
between value of vital signs and actual health state bec@ogsible. Good organized software
companies are very likely to have existed ways to deterntieequality of the software product.
When adopting the Software ICU, the quality of software picidorovides an objective reference
for vital signs. Also, if the performance of the developmigaims are known, comparing vital signs
of their projects may gain insight into the characteristiovital signs of a healthy development
team. Additionally, professional developers are mordyike have enough sophistication to judge
the utility of the vital signs, which can help refining theesglon of vital signs, and give useful
suggestion to improve the Software ICU.

Last, but not the least, the completeness of DevTime datitsafusther enhancement.
The number of applications that are supported by automate cbllection sensors is small, which
may not only impair potential user’s motivation of using #ystem, but also lead to bias in different
kinds of development activities. This shortage will pralyataise the barrier to adopting Hackystat
and the Software ICU to industry and other software devetgranvironment. There are two ways
to improve this. The first one is to implement more sensorgiare kinds of development tools and
applications. The second one is to provide the user a way taatlg report development activities,
which may be difficult, if even possible, to capture (e.g.dieg paper-based material). But on the
other hand, if DevTime’s completeness is not satisfied byeld@ers, or developers worry about
being judged basing on their DevTime data, it might be bétteliscard it in serious development
setting in order to avoid measurement dysfunction. Ancsbé&rtion could be provide “local mode”
for DevTime sensor, with which the sensor will not send theada central data repository, but
instead send it to local data repository. Then developarsuse the data to understand their time
spend, or use it to create weekly report to their leader. Thay decide whether to submit their
personal data upon request.

48

Appendix A

2008 Classroom Evaluation
Questionnaire of Hackystat

Hackystat Evaluation

Hackystat is a long term research project concerned withiamipg the effectiveness

and efficiency of software engineering metrics collectiod analysis. Since 2003, we
have periodically conducted a survey of students in ICSieo# engineering classes
to assess the current strengths and weaknesses of the system

To preserve anonymity, while also ensuring that only IC8eits respond and respond
only once, we ask you to provide the "secret code” that yodearly selected in class.
To enable credit for completing this evaluation, only thadyate student researcher
on this project (Shaoxuan Zhang) will know which code cqroggls to you. He will
provide a list of names who should be awarded credit to thesdlastructor without
identifying individual responses. You can also contactd®ban if you want your data
deleted from analysis after you've submitted it.

If you want to go back and change your responses, simply filltaientire form again.
We wiill discard all but the most recently submitted entry dagyiven code.

This survey contains 17 questions and we expect that younedt about 10 minutes
to complete it.

Thank you very much for your help! We take your views very@asly: prior responses
to this survey have led to far-reaching changes in Hackystat

Before filling out this questionnaire, you might want to takéook at the following
image for the Software ICU to refresh your memory:

http://csdl.ics.hawaii.edu/ ~ johnson/portfolio.gif
* Required
1. Installing the Eclipse IDE sensor was: *
e \ery Easy
e Easy

49

http://csdl.ics.hawaii.edu/~johnson/portfolio.gif

10.
11.

e Neither easy nor difficult
e Difficult
e Very Difficult

Installing the Ant sensors (JUnit, SCLC, Emma, etc.) was:

Very Easy

Easy

Neither easy nor difficult

Difficult

Very Difficult

Please provide any feedback you can on the problems yaerierped during

sensor installation and server configuration, as well assaggestions you have
to make this easier in future.

The amount of overhead required to collect Hackystat (#dtar successful in-
stallation and configuration of sensors) was: *

Very Low

e Low

Neither low nor high
High

Very High

The amount of overhead required to run Hackystat analyass *

Very Low

e Low

Neither low nor high
High

Very High

Please provide any feedback you can on Hackystat overbeaukll as any sug-
gestions you have to reduce the overhead in future.

Did you encounter any problems while collecting data? Yase any kind of
data that you failed to collect? If yes, please explain.

How did you feel about sharing your software developmaeiea avith other mem-
bers of the class? *

How frequently did you use the telemetry page? *

Every day or more
e 2-3times a week
e Once a week
e Less than once a week
e Never
If you used the Telemetry page, what were you trying to diat?

How frequently did you use the Software ICU? *

50

12.

13.

14.

15.

16.

17.

Every day or more

e 2-3times a week

e Once a week

e Less than once a week
e Never

If you used the Software ICU, please check the vital sibaswere useful to you.

*

e Coverage

e Complexity

e Coupling

e Churn

e Size

e DevTime

e Commit

e Build

e Test

e None of the above
Did you feel the Software ICU colors accurately refledtegl "health” of your
project? If not, why not? *
Were you able to use the Software ICU to improve your saoig quality and/or
your team’s process? If so, in what ways? If not, why not? *

Please provide any other feedback you would like reggrdelemetry and the
Software ICU, as well as any suggestions you have on how wéngarove the
system.

If I was a professional software developer, using Haelyat my job would be: *

Very feasible
Somewhat feasible
Neither feasible nor infeasible

e Somewhat infeasible

e \ery infeasible
Please provide any other feedback you can on the fagsibilHackystat in a
professional setting, as well as any suggestions you havewanits feasibility
could be improved.

51

Appendix B

Results form the 2008 Classroom

Evaluation Questionnaire of Hackystat

This section presents the responses from the respondeatioof the questions. For

the “short answer” questions, | corrected misspellings @iabr grammatical errors to improve

readability.

Question

Response

1. Installing the Eclipse IDE sensor was:
e \ery Easy

e Easy

Neither easy nor difficult

Difficult

e \ery Difficult

O B N W R U Y N 0 W

4

Very Easy Easy Neither easy Difficult Very Difficult
nor difficult

52

Question Response

8
2. Installing the Ant sensors (JUnit, SCLC

Emma, etc.) was:

e \ery Easy 5

e Easy

3 : :
e Neither easy nor difficult 5
e Difficult 1
o M , , _ ..

Very Difficult A

Very Easy Easy Neither easy Difficult Very Difficult
nor difficult

3. Please provide any feedback you can on the problems yarierped during sensor

installation and server conguration, as well as any suggesyou have to make this easier in future.

e | could not figure out what step makes a .hackystat directbty. .hackystat directory au-
tomatically generated in my Documents and Settings dirgatdich has a blank space in
directory name. | am still not sure how to move this folder tben. The installation of all
sensors was pretty well described at the project homepatjehare was no problems | have

met during the installation.

e Both the installation and sending sensor data was easy. Woweacking down whenever
there is a problem with the sensor is not so easy. A troubtgsigppage in the near future?

¢ Installing the sensors was pretty straightforward. | dith@ve any problems.

e Case sensitivity was one problem between user and Hackigatdt was fixed.

If it is possible to have a .EXE that will automatically creanvironment variables and also

install files into a local directory will be awesome.

e | did have one small hang up when installing the Ant sensdristeimember correctly | was
getting a NoClassDefinition error whenever a sensor ranslnwaning java 1.5. | fixed it by
downloading the jaxb libraries since the errors were rafgrio that. It could be not related
to jaxb at all, but it worked after that. Otherwise, | had nolgems whatsoever installing the

Sensors.

e Everything went smooth with the instructions given and teefication after each step.

53

e Personally | didn't run into any problems but some of the pstedents did. The sensors
aren’t difficult to install per se, but there are a lot of steap®lved and it's easy to get lost
while installing them. Maybe an automated installer canreated that searches for the Ant
tools (maybe the user can provide a search directory) ahdavifigure and install the sensors

for the user.

e What made it hard was that all the instructions were not infpamge. | had to go from one
page to another and then to another. There should be instisdtom STEP 1 to the end and

provide proper links to the step by step process.

e First of all, the manual is too long. | do like your goal to ayra the software project, but if
it wasn't required by this class, maybe | wouldn't think | wao use it, because it looks too

complicated.

Also there are too many things that we need to download amallin you want to encourage

people to use this more, maybe you should provide a packagiétbe tools somehow.

For example, before it took a long time to install Apache, S PHP, and Perl, but now
somebody offers a package called XAMPP, which is a comlmnaif all of those, and entire

installation finishes in 3 minutes. Something like that dtidne given.

e There is a lot of documentation in a lot of different placeswas confusing trying to figure

out what to read in what order, and whether or not it was reletame.

e Some the installation instructions could benefit from “@Gince, use many times” as they’re
repetitive, which causes some people to start glossingtbednstructions and then there’s a

couple that are slightly different and people (like me) vadgtice the difference.
e The walkthrough was great, which made the installation.easy

e The only problem I had was the installation of the Ant senkarean configuring it on Eclipse
was easy especially when I try to run Emma, JUnit, FindBugkahthat from Eclipse it is
sending stuff to Hackystat but when | checked my software 1Q@ligin't have any data on
Build (all it says was N/A). And little did | know that when ygun the ant sensors on Eclipse
it only registers all the data to Hackystat JUnit, Emma, ®Regde and such except BUILD.
And | was told that running the BUILD on the command line wobkg not on Eclipse. So |
tried that and YES that works. So is there a way to make it warEdipse when you run all
the Ant sensors and it sends all the data to Hackystat inuitie BUILD data?

54

e When we ran the svn sensor, the build would fail if there agecmmits from members not
identified in our local Usermap.xml. Instead of looking fdrcmmit records from all users
within 24 hours, perhaps it could filter out and only look fecords inside our UserMap.xml.

e The installation documentation must be read carefully. diyrhe easier to create a hackys-
tat.build.xml with all the build targets, then import thdefinto each *.build.xml and call the

sensor from the tasks.

e The most challenging sensor to get up and running was the ®visbs Other than that, the
others seemed fairly easy to install.

Question Response

4. The amount of overhead required to collec| ®

(@]

Hackystat data (after successful installation g ¢

]

) . 6
configuration of sensors) was: *

e Very Low >

e Low :

e Neither low nor high b1

e High ! E.
0

+ T 1

Very High Very Low Neither low nor High Very High
high

=
o

5. The amount of overhead required to run

Hackystat analyses was: *

e \ery Low

e Low

Neither low nor high

e High

O = N W B U O N 0 W

T 1

Very High
Very Low Neither low nor High Very High
high

6. Please provide any feedback you can on Hackystat overhsa¢kll as any suggestions
you have to reduce the overhead in future.

e Since the verify command runs all the tests, I'd think thatibuld send data for all tests run.
Rather, in the portfolio analysis, the Unit Test portionyordtrieved data for any JUnit builds

55

that were run. It doesn’t really make sense why we’'d have moitrgseparately when verify

does it anyway.

e If | am correct, overhead - the processing time required bgwce prior to the execution of
a command. Then it all depends on what computer the usemig,Usam using a single-core

processor laptop it did not take long.

e Since Dr. Johnson provided us with Ant sensor examples, stquéte easy to set up every-
thing to send data to the sensorbase. | did the hackystaiaiusmd everything worked fine.
However, | missed the part about creating a usermap.xmbiilthe svn sensors through Ant.
That confused me a bit later on but I figured it out.

What made getting data quite easy as well was having Hudstalled on a dedicated con-
tinuous integration server. Daily builds would auto-semtiado Hackystat and this made it

super easy to get daily info.
e The sensors ran automatically and it was fast with sendiegl#ta.

e Maybe there can be a link on http://dasha.ics.hawaii.eduotb the Hudson and Hackystat
server, that way we don’t have to memorize the port numbeiso,Allowing us to create
an account and password would go a long way towards usalilitggd to put the Hackystat
login information in a text file because | can’'t remember alanly-generated string for the
password.

e Sending sensor data was often quite slow. Generating eepothe web application was

sometimes also slow — the page wouldn't load until you réfeesit.

e The overhead to collect data was generally small, howevey émough that would generally
run multiple (DOS) terminals so that | could continue workiwhile it was sending data.
Analysis was no overhead since that was just pulling up a $eopage.

e When sending hackystat data, it was fairly quick on my complacBook Pro. Tho, there
were some students | saw which had a LONG wait time on the sapted.

¢ | love Hackystat! It is a very great tool especially for a deper like me.

e Since Ant takes care of running Hackystat sensors, this rihadey easy to accomplish.

7. Did you encounter any problems while collecting data? ivase any kind of data that

you failed to collect? If yes, please explain.

56

| had a problem with sending commit data to hackystat whenrkeaae on a group project.

That was because | did not update my sensors to newer version.

At first during the implementation of DueDates 2.0, it was cmitecting commit data from
my account. It was due to the account on hackystat, it incutle @gmail.com part of my
gmail account. So it was not matching up with each other, #ekystat account and my
gmail account.

Running an analyses on my machine was slow, it would take ®weinutes to run a build. |

am not sure why it took so long to send the build data so | caakera suggestion.
Only JUnit data as mentioned previously.

Case sensitivity was an issue at first, but it was correcteddid not get problems after
that. Hudson did not send to Hackystat number of commitstHattwas fixed after a little

modification with build.xml file.

| was lucky. | rarely had any problems collecting data duraligthe time | worked with
Hackystat. The one time something got screwed up was with eagldpment time for one
day. It said 0 when | checked and | had put in a bunch of timedhgtso it should have said

otherwise.

| don’t remember exactly but, that night | believe had workeéclipse till after 12 at night,
so it went to the next day before I closed the program. Thatgoossibly be a reason for the
missing data initially. The next day | just cleared the cazheé it was all fine.

There was a small issue when | first started collecting daitat tvas quickly corrected when
checking the xml files.

Personally | ran into no problems collecting data.
Sometimes it didn’t collect build data for some reason.
Occasional problems with SVN collection, | think, was a latdhto tell.

Everything was great except collecting data for my BUILDegse refer to above statement

for more detailed problem regarding this). Thank you.

I did with commit records but it was my fault. | wish subversiwith Google Project Hosting
would be more strict. | was able to check out the project witlwvibhout the “@gmail.com”

suffix (i.e. “test” and “test@gmail.com”). Thus making meotdifferent authors.

57

e Yes, the build data. | needed to set more environmental Masa

e For some unknown reason, my user name picked up the @gnmajlsmmboth my user name
with and without @gmail.com needed to be added to the pmject

8. How did you feel about sharing your software developmeitd avith other members

of the class?

e We could see how other groups were doing by sharing our smtdevelopment data with
other people. We also could find out what kinds of problem# wiir project by comparing
graphs with other groups and this helped a lot.

e | was not offended if it was low, and | was quite intrigued watihers data.

¢ | did not have a problem with sharing data with other peopldass. | thought it was needed

tool to keep tabs on everyone to assure they're doing thieistare.
e It felt good if your data was better than others. And if it wasihen you felt bad.

e Did not really like it because it is showing my programmindpits, like starting on a project

on the last couple of days.

e | felt alright about sharing my data with the class. It wagiasting for me to see how other
people worked on stuff. Some were consistent and others notreSome people spend a lot
of time working on stuff yet do not commit as much as others Wk half the time. | think
its good to see this data.

e | am okay with sharing my data.

e | didn't think it was a particularly good idea because it tierces group members to become
competitive with each other, especially if one person ig ablput in more time than all the
others. Also, the data doesn't reflect the amount of workmuniaybe someone spent 5 hours
doing research and only 1 hour programming, but the sengarvdé only show 1 hour of
development time and a minor code commit, versus someonesalypjust changes around

the package structure for 3 hours and has a huge commit amount

e Actually hackystat (or hacky-stalk as what my teammates lacalled it) caused a lot of
arguments and trash talk. Some guys were more concernetiabecting stats on hackystat
than actually finishing the project. Some members would stanpeting on who had more

58

commits or move development time. The project turned ouketonbre of a competition of

stats, which wasn’t healthy for the team at all.

e It will be obvious that who worked on the project, so it is nicgéerms of grading students. At
the same time | feel some pressure that | need to work on thedagevient, so if team leader

require everybody to work well, this is good.
e Didn't really care.

e | had no problem with this, and it encouraged me to be awareyofimme management and

coding style.
e It was good in a sense that they can help you with test casescaedage.
¢ It was fun..because you can see how everyone is doing within group.

e Before taking this class, | didn't think that there was a wayrack software development
process. After learning about software continuous intémreand working in a larger group
project, | have a better insight in sharing the developmeotgss. | feel that it is a must in
every software development environment, big or small tolide 0 communicate frequently

and effectively.

e | was nervous because certain individual of the class seealedto put in ridiculous long
hours. | was concerned my amount of time (which seemed reagnvould make me look

as though I’'m not working as hard.
e Good, | can see how | and others rank with each other.

e | am fine with this. All group projects in all schools (e.qg.chitecture) should be required to
use such a system. This is great for facilitating fair eviaduns of students who participate,

and those who ’'get the grade’ by riding on the laurels, blewetat, and tears of others.

Question Response

59

Question Response

9. How frequently did you use the telemetry
page? *

=
o

e Every day or more

e 2-3times aweek

e Once a week

Less than once a week

O = N W B U O N 0 W
!

Never

Everydayor 2-3timesa Once a week Less than once Never
more week a week

10. If you used the Telemetry page, what were you trying to dini?
| tried to find out how was | doing for the project by looking kgstat data.

Seeing how much time i spent on the development of the progaath also others in my

group.

When | used the telemetry page | was trying to find out if | waspan with other groups

members in terms of development, build, and commit numbers.

Whether or not, my sensors were reading, and the work oufpuy@roup members (espe-

cially on days we didn’t meet together).
If my development time was up to par with my team members.

| usually used the telemetry page to evaluate how my team wdsng overall, and what my
part was in that data. | also checked it to make sure everydaiaswvas being sent.

It helps me see how | measure up with my partners.

Member dev time mostly, to compare the amount of developri@et | put in vs. my group

members.

It supposed to show us how healthy individuals are in thegr&o if one person is slacking,
the members need to tell him to step it up. It wasn't used ttzgt w our group. One person
really wanted a good grade for the class so he just used tradély to watch himself; making

sure no one gets more builds/devTime/commits than him (gesafd “i need more dev time

60

because i need an A"). | remember we had dinner as a group andfaur group members
didn't go to dinner. another group members then said “oh fipe his stats more than mine,

tomorrow I’'m gonna hack all day.”

Sad, but true.
e member commit, member dev time
e Curious about trends in dev time, commits.

e Usually MemberDevTime, MemberBuilds, and MemberComniasically just seeing how

everyone was progressing.
e graphs, line trends of other group members
e My status and the status of our group and make sure everyaiwenig their part.
e Mostly trends in individual performance, as well as ovepatiject outlook.

e Basically if everyone was putting in the same amount of &ffélso it helped indicate if

everyone is on track. If they have regular activity, thendhances of them on track is higher.
e Was the coverage, complexity and coupling getting bad?

e | tried to review each telemetry page daily to understandtwitauld do to improve the

project health and focus efforts.

Question Response

=
o

11. How frequently did you use the Software
ICU?*

Every day or more

2-3 times a week

Once a week

Less than once a week

O = N W Bk 0 OO N 0 W
y

e Never
Everydayor 2-3timesa Once a week Less than once Never
more week a week

61

Question Response

12. If you used the Software ICU, please check
the vital signs that were useful to you. *

Coverage

e Complexity

e Coupling

e Churn

e Size

e DevTime

e Commit

e Build

e Test

e None of the above

13. Did you feel the Software ICU colors accurately refledtezihealth of your project?
If not, why not?

o | felt most of colors accurately reflected the health of thaeut. For the Coverage data, since
we can write test cases just for increasing of the rates, weataassume that the project is in
healthy condition even if the coverage data displayed iemglor. However, | think this is
not a problem of hackystat.

e Yes

e The only issue | had with the ICU colors was with the couplilmgboth versions of DueDates
we had to add extra classes at the last minute which wouldeddwescoupling ICU to turn
red. | am not sure how to address that because the couplirsgnéeel tracking.

e Not really, | don't think having a high churn amount is neeeg bad. Of course, it's a
case-by-case thing. For my group, it wasn’'t about not cotmmitrequently; we were just
rehashing code because something just didn’t work.

e Yes, reflected accurately on the health of the project. SHdwev much coverage we had.

o | feel that the Software ICU did accurately reflect the heaftmy projects. For Due Dates
2.0, which was a longer project, the data was getting inaiggsmore meaningful as the

62

trends were over a larger period of time. It is good to lookhatds like devtime, commits,
coupling, and coverage to see the color and the past treralbed think they really say
something about the current state of the project.

To make it simpler, whenever | knew our project wasn’'t doingdjand people weren’t work-
ing regularly, the software ICU would have lots of reds anitbyes. When | knew the project

was doing better and people were working regularly, then@weeens. It makes sense.

The ICU was accurate with our project because it showedidrggikes in all signs. This
reflects our project in poor health.

Not particularly because a project’s health cannot easlydétermined by just measuring
numbers alone. For example, it's easy to increase covelagef a class has nothing but
getters and setters and a toString method, does it really todee tested? Of course not, but
someone might feel compelled to do it in order to increase@ge and get a better health,
but it's just a waste of time in my opinion. Also, DevTime islpmeasured from Eclipse
but that doesn’t measure things such as someone readingkabtmoking up websites for
information. It only measures active development in oneggram, forcing people to only
use whatever IDE’s Hackystat supports. The figures for cerityl and coupling are hard to
evaluate too. We want complexity to be low but sometimesuitavoidable for it to be high,
and should Hackystat show an absolute cut-off point whezeetimplexity must be below a
certain point for the project to be considered acceptable@plihg is another one that falls
under this category, if your program relies on a lot of owgditiraries, can someone really

determine an absolute value that the project’'s couplingt ipeisinder?
Yes.
maybe

Coverage: perhaps too sensitive to drops/bounces in geethurn: while you're working
on a project, churn is going to vary, sometimes a lot. Thedtieiors were not helpful.

Yes, | felt it was a relatively healthy project, and this geatly showed, in the end. In the first
half the colors reflected not as health of a project, whictafidee as well. I'm not sure rising
coupling was entirely a bad sign as things went along anditumadity was added, as it was

a slow steady rise.

Sometimes. Hard to determine what will fall into green, m@dyellow.

63

e Yes definitely.

e It somewhat reflected the quality of our project. Maybe in eafark corner something is not
thoroughly being depicted through the colors. Perhaps gesiign is to use different color

hues.
e Yes it was pretty accurately reflected.
e No, since | did not correctly configure the sensors.

e This is subjective... Usually the colors were spot on, hawxethey are quick to turn one way
or the other depending on events that are being managed bsaime(e.g., large code churns

due to removal of unused code/imported code, etc.).

14. Were you able to use the Software ICU to improve your s quality and/or your

team’s process? If so, in what ways? If not, why not?

e We can check how other members are doing for the project gfhraloe Software ICU and

this helps a lot especially when we are working on the tearjepto

e Yes, for tracking if members were working on their tasks.oAt®w complex the program is

increasing or decreasing.

e In my opinion, it is not clear if the ICU improved our systemedause other tools such as

junit, findbugs, and pmd was easier to use to improve the cgijuin.

e If anything, keeping an eye on coverage helped us look ouivfaat was being tested and
what wasn't. Yes, showed how much coverage we had, and iragmothat.

e | think for sure the Software ICU improves team process. Mbaa just keeping people “in
check” when grades are at stake, it provides an accurateonassess what's being done and
by whom. Our team got a lot out of checking up on the softwatg #id assessing our team

process. It seemed to get better over time.

As far as the software’s quality, | think the Software ICU kbbe very useful in improving
this. If my project for instance was in the red for complexatyd coupling, and there were
some code issues, | could see all this automatically thrdwaghkystat. Besides coverage stats

though, my team did not really use the ICU to improve the safé)s quality.

e ICU was able to help us because it told us what needs to beddarscorrected.

64

e Personally, | only found Hudson useful because it’s likening your code on someone else’s
computer to see if your environment is set up differentlyrfra generic machine. | feel that
the data for Hackystat is more something to look at out ofosity rather than something to
determine how well a project’s status is because it's hatubg® a project’'s health based on
numbers alone and it might put unrealistic pressures oretima to make the project healthy
for Hackystat when they can better spend their time devetppistead.

e Yes.
e Yes, coverage tells me if we didn’t write enough test cases.

e No. Coverage: already aware from Emma. DevTime, CommitJdBUiest: either team
members did not look at the statistics, or they didn’t caesanse their habits did not change

much. Others: not much we could do about the other statistics

e Yes because able to manage our time and development fairbllggand also notice spikes

indicating bigger changes or problems.
e Yes, shows were we could improve as a group and improve agjagononer.

e Like in my case last time, | saw on Software ICU that | don’t davdata on my BUILD. So
because of that information | know what the problem is andlipéd me to find a solution

and figure everything out before it is too late.

e Our project ICU definitely described our lacking and latemupt to improve coverage. Due

to the ICU, we were able to distinguish this fact quick and/eas

e The amount of activity helped us identify who was falling imeh Without offending our
members by outrageously claiming their not working, we ddall by the sensors. Members
can be more self-critical by looking at their individual daompared to the groups.

e Yes, by checking the coverage, complexity and coupling.

e Yes. By targeting coverage, dev time, coupling, and coniiglaxy team was able to improve

all these into areas that were acceptable to us.

15. Please provide any other feedback you would like reggréielemetry and the Soft-

ware ICU, as well as any suggestions you have on how we camimphe system.

65

e | do not think the commits, builds, tests should be coloredenause it all depends on how
much the user does on the project. Is it possible to show loverage instead of method
coverage? The software ICU and telemetry was awesome tolédping out with the project.

It gave me visual stats on the project.

e What | think would be cool is to implement something to view thend for each category in
larger format but in the same style as the software ICU. | kttogvis shown on the telemetry
page when you select it to show. However, | would be nice ifelveas some sort of rollover
function that brought up a slightly larger window with a blowip overall trend. | can see
how this isn't really needed but | would mostly likely chetlailot if it was there.

A minor thing that | noticed when using the Telemetry page thas when | selected a new
statistic to view, the page would always jump back to the tupl& have to scroll down each
time. Its not really a biggie, but it makes navigating a kitxgr when your going through all

the project statistics.
e Consistent colors for each members can help.

¢ In addition to everything | mentioned above, it might helgtmehow make the sensors con-
figurable in some way, for example if two people are doing peagramming, there should
be an option to set the sensors to send data for both peopleagecomplexity can be mea-
sured somehow to only include methods that, say, start weitloigset and toString. This way

people aren'’t forced to write pointless test cases in o@@rdrease coverage.

e Help page should be provided inside project browser. It shdascribe how to use it, what

telemetry, what churn is, something like that.

Also your explanation should be simple so that people wargdd it. If it is complicated and
long explanation, nobody will read it.

e The different color bars and randomness might be fun andeistieg, but | think having a bit
more consistent scheme might be better. | would suggestsHible giving each developer
a specific color that they always have during the projecheeitandom, or chosen at the

beginning.

e Does not capture development outside of Eclipse. For exgnilglHO, MS Visual Studio
is much better in the capacity as a web development IDE, wihieldev time here was not

recorded.

66

Question Response

16. If | was a professional software develope

=

using Hackystat at my job would be: *

Il

Very feasible

e Somewhat feasible

Il

I

Neither feasible nor infeasible

Somewhat infeasible

:; .

Very feasible Somewhat Neither feasible Somewhat Veryinfeasible
feasible nor infeasible infeasible

O B N W R U Y N 0 W
4 4

e \ery infeasible

17. Please provide any other feedback you can on the fapsifiHackystat in a profes-

sional setting, as well as any suggestions you have on hdeaisibility could be improved.

e | think it's good to have this in a professional environmeasayse the employer or client can
check on how the progress of the program is going. With ouinigaio make so much visits

or hovering over workers.

e Cannot think of any off the top of my head. The Software ICUlisady great for us pro-

gramming students.

e | think Hackystat is definitely feasible in a professiondtisg, as long as it is supported in
some way. For instance, if a team of developers is working progect and they are all for
having Hackystat manage project stats, that would be gifeabwever, your the only person
on your team that wants to use it, then it would be hard to satal tthat would assess team

process.

| could see project managers wanting to have Hackystat d&ealuate everyone’s input into
the project, as well as the health of the project. Hackystdink, is perfect for new open
source projects if releases are made early and often. Itldmuessential to seeing the overall
health of the project.

e Overall, | feel like Hackystat would be an interesting tambtther data to look at for curios-
ity’s sake from time to time, but it should not be used as ashfsi determining a project’s
health or to determine something such as member contribulibe sensors can only gather
information from a few sources and these readings cannouatdor a person’s full contri-
butions to a project. As for determining a project’s hedltiig not believe the sensor readings

67

can provide an accurate measurement because the sensardycameasure numbers based

on algorithms, but it takes a person to really determine hoadghe code is.

When | start to use hackystat, | need to get password from gduhen eclipse send my data

to your server. Some developers might have concern thaykiatlsteal source code.

| think it depends a lot on the culture of job setting. I'm nobtsure, but | think | may try

setting it up on my own job site, even if just for myself to seg own trends.

It is a very useful tool to keep track the health of a projectwould say it is feasible to have
itin a job.

My only wish is that ICU’s should have a feature to support paogramming. Possibly a
feature to indicate to the system that two people may be wgrén the same problem on the
same system, rather than two individual machines. You mviginit to call this “collaborative

mode”, or something along the lines of that. These settifigourse should be turned on or

off easily from the developer’s IDE (Eclipse).

I work in a one person shop, so it would be difficult to say howfukthis would be. As a
lone developer, many metrics | am very cognizant of, howewaring such a system would
allow me to view those statistics that | do not have a “gutlifegfor. It would be great for

my boss to measure the amount of time | spend on a project leowev

68

[1]

[2]
[3]

[4]

[5]

Bibliography

James W. Moore Alain AbranGuide to the Software Engineering Body of KnowledgE
Computer Society, 2004.

T. DeMarco. Controlling Software ProjectsPrentice Hall PTR, 1986.

Cem Kaner and Walter P. Bond. Software engineering cetiWhat do they measure and
how do we know? Irl0th International Software Metrics Symposjuzo04.

L. Buglione and A. Abran. Multidimensionality in softwe performance measurement: the
gest/lime models. IBSGRR2001 - 2nd International Conference in Advancesrashnficture
for Electronic Business, Science, and Education on therete2001.

Philip M. Johnson, Hongbing Kou, Joy M. Agustin, Chrigkeer Chan, Carleton A. Moore,
Jitender Miglani, Shenyan Zhen, and William E. Doane. Beythe personal software pro-
cess: Metrics collection and analysis for the differentigcgblined. InProceedings of the
2003 International Conference on Software EngineerfPgrtland, Oregon, May 2003.

[6] Watts S. Humphery.A Discipline For Software EngineeringAddison-Wesley, New York,

1995.

[7] Watts S. Humpheryintroduction to the Teasm Software Proceasgdison-Wesley, New York,

[8]

2000.

Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary B&hrissis.The Capability Maturity
Model: Guidelines for Improving the Software Proce8sldison Wesley, 1995.

[9] Alberto Sillitti, Andrea Janes, Giancarlo Succi, andlituVernazza. Collecting, integrating

and analyzing software metrics and personal software psoda&ta. IProceedings of the 29th
Conference on EUROMICR®age 336. IEEE Computer Society, 2003.

69

[10] Irina Diana Coman, Alberto Sillitti, and Giancarlo SAulcA case-study on using an automated
in-process software engineering measurement and analystiem in an industrial environ-
ment. InProceedings of the 2009 IEEE 31st International Conferemt&oftware Engineer-
ing, pages 89-99. IEEE Computer Society, 2009.

[11] Philip M. Johnson. Results from the 2003 classroomwet&n of Hackystat-UH. Techni-
cal Report CSDL-03-13, Department of Information and Cotap$ciences, University of
Hawaii, Honolulu, Hawaii 96822, December 2003.

[12] Philip M. Johnson. Results from the 2006 classroomuwat@dn of Hackystat-UH. Techni-
cal Report CSDL-07-02, Department of Information and Coteap&ciences, University of
Hawaii, Honolulu, Hawaii 96822, December 2006.

[13] Michael Bell. Service-Oriented Modeling: Service Analysis, Design, Arahitecture Wiley,
2008.

[14] Philip M. Johnson. Hackystat Framework Home Page.:Mip/w.hackystat.org/.

[15] Roy Thomas FieldingArchitectural Styles and the Design of Network-based So&wrchi-
tectures PhD thesis, Univeristy of California, Irvine, 2000.

[16] Thomas J. McCabe. A complexity measud=EE Transactions on Software Engineering
2(4):308-320, December 1976.

[17] Paul Duvall, Steve Matyas, and Andrew GlovEontinuous Integration: Improving Software
Quiality and Reducing RiskAddison-Wesley, 2007.

[18] Robert D. Austin. Measuring and Managing Performance in Organizatiori3orset House
Publishing, 1996.

70

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	The Problem
	Software Intensive Care Unit Approach
	Evaluation of Software ICU
	Thesis Claims
	Thesis Structure

	Related Work
	TSP/PSP
	Research Based on Automated Data Collection
	Project ClockIt and Retina
	PROM

	Previous Case Studies of Hackystat

	Hackystat
	Hackystat Framework
	Sensors
	SensorBase

	Analysis Services
	Daily Project Data Analysis
	Telemetry Analysis

	Project Browser

	Design and Implementation of The Software ICU
	Vital Signs
	Vital Sign Presentation
	StreamTrend Coloring
	Participation Coloring

	Mini Chart Drill-Down
	The Interface of The Software ICU
	The Control Panel
	The Loading Process Panel
	The Data Panel
	The Vital Sign Configuration Panel

	System Customization

	Classroom Evaluation
	Case Study in Classroom
	Experimental Limitations

	Results
	Feedback regarding Hackystat system
	Verification of System Usage
	Utilities of Vital Signs
	Vital Sign Popularity
	Feasibility in a professional software development context
	Thesis Claims Revisited

	Conclusions
	Contributions
	Future Directions

	2008 Classroom Evaluation Questionnaire of Hackystat
	Results form the 2008 Classroom Evaluation Questionnaire of Hackystat
	Bibliography

