
Empirical Computational Thinking

Philip M. Johnson
Collaborative Software Development Laboratory

Department of Information and Computer Sciences
University of Hawai’i
Honolulu, HI 96822
johnson@hawaii.edu

May 8, 2009

Abstract

This technical report presents an edited version of a proposal to the NSF CPATH program. The
vision of this proposal is to develop and institutionalize a new approach to computational think-
ing where abstraction and automation combine to transform the use of empirical thinking in
software development. We call this approach “empirical computational thinking”, or eCT. The
goal of this research is to explore, evaluate, and institutionalize techniques and technologies
for eCT, building upon research and education by ourselves and others in empirically-based
software development.

1 Project Vision, Goals, Objectives, and Outcomes
Jeannette Wing writes, “Computational thinking involves solving problems, designing systems,
and understanding human behavior, by drawing on the concepts fundamental to computer science”
(Wing, 2006). In her presentation “Computational Thinking and Thinking About Computation”,
Wing refines her view of these fundamental computer science concepts in terms of the “Two As”:
Abstraction and Automation. Activities related to abstraction involve choosing the right abstrac-
tions, operating at multiple levels of abstraction, and defining relationships between abstractions.
Activities related to automation involve mechanizing abstraction via precise notations and mod-
els. In essence, automation amplifies the power of abstraction. Computational thinking, from
this perspective, involves the correct choice of abstraction combined with the correct choice of
automation.

The vision of this proposal is to develop and institutionalize a new approach to computational
thinking where abstraction and automation combine to transform the use of empirical thinking in
software development. We call this approach “empirical computational thinking”, or eCT.

To introduce our approach, we must first address what is meant by empirical thinking. The term
“empirical” is variously defined as “derived from experiment and observation rather than theory”;

1



“evidence or consequences observable by the senses”; and “capable of being verified or disproved
by observation or experiment.”

Given these definitions, it is clear that some degree of empirical thinking is already common-
place in software development. For example, beginning programmers use empirical thinking when
they “observe” the output of the compiler to learn how to write syntactically correct programs.
Beginners also tend to make extensive use of “experimentation”: they execute their program with
example data, compare the actual behavior to what they expect, then make modifications until the
observed behavior matches their expectations.

These examples of empirical thinking, while typical for beginning programmers, do not scale
well because they lack both abstraction and automation. Thus, they fail to constitute the kind of
computational thinking of interest to the CPATH program, and they fail as well to be eCT.

One would hope that as students progress into more advanced software development courses,
the curriculum would scale in at least two ways. First, the complexity, size, and number of people
involved in a software development project would scale upwards. Second, the level of abstrac-
tion and automation in their empirical thinking would scale commensurately. Unfortunately, while
advanced software development courses certainly require students to develop significantly more
sophisticated systems than their introductory counterparts, the use of empirical thinking remains
mostly non-abstract and non-automated. The principle computational support for advanced pro-
gramming classes is an integrated development environment such as Eclipse or Visual Studio.
While this is a significant advance over vanilla text editors, such IDEs provide relatively little in
the way of abstraction or automation for empirical thinking about the products and processes of
software development.

Supporting abstraction in empirical thinking for software development generally means cre-
ating quantitative models for important development concepts. For example, test quality is an
important concept that is commonly emphasized in advanced software development courses. One
quantitative model for test quality is line-level test coverage, which is generally expressed as the
percentage of source lines of code in the software exercised by the test cases. Another important
concept is complexity, and quantitative models such as afferent and efferent coupling or cyclo-
matic complexity provide abstract, empirical representations for this concept. Some aspects of
design quality can be observed through tools that, for example, generate UML representations of
the source code and provide rule-based critiques. Even “agile” concepts such as “commit early,
commit often” or “collective code ownership” can support abstract, empirical models. For exam-
ple, “commit early” can be modeled as the percentage of files in the system that are committed
within a certain number of days of their creation. “Collective code ownership” can be modeled by
the percentage of files in the system that have been edited by every member of the development
team.

Supporting automation for these abstractions of empirical thinking for software development
means tool support for collecting, analyzing, disseminating, and interpreting these abstractions.
For example, an automated process can run once a day and calculate the current coverage and
complexity values for the system. These values can be made available to the user by a web appli-
cation. Alternatively, email or Twitter “alerts” can be sent to the developers when coverage crosses
a threshold and becomes too low, or coupling crosses a threshold and becomes too high. Plugins
to development tools like IDEs can collect information on which files are edited when in order to
determine the age of a file when it is first committed, or the degree of collective editing on the file.

Thus, our vision for eCT includes programming as an activity that is rich in automated, abstract

2



representations of development processes and products, made available conveniently and appropri-
ately for observation and reflection by the programmers. It also includes education in the analytic
capabilities required to effectively interpret these representations, to understand their limitations
as representations of reality, to know when to take action based upon them and what kind of action
is warranted.

The goal of this research is to explore, evaluate, and institutionalize techniques and technolo-
gies for eCT, building upon research and education by ourselves and others in empirically-based
software development. For example, we recently performed an initial evaluation of a novel system
and associated curriculum we developed called the “Software Intensive Care Unit” (Johnson and
Zhang, 2009). In this approach, sensors attached to development tools automatically collect stu-
dent process and product data and abstract it into a set of ten “vital signs” that provide an empirical
basis for students to assess the “health” of their ongoing projects. The Software ICU is an exam-
ple of eCT, as it supports both automated and abstract empirical thinking about the current state
and past history of both their projects and their group processes. Our curriculum materials taught
students how to introduce the Software ICU data collection sensors into their laptop development
environments, how to obtain the analyses, and how to interpret the results. Section 3 provides more
details on our own research and educational initiatives.

While we are excited by the potential of our own prior work in eCT, Section 2 overviews
other research and educational initiatives that also conform to our vision for eCT, such as PSP
(Humphrey, 1995), SimSE (Navarro and van der Hoek, 2007), and Win-Win (Valerdi and Madachy,
2007). We intend to organize and develop a constellation of approaches to eCT and build a body of
knowledge that enables future researchers and educators to understand the comparative strengths
and weaknesses of the various approaches and to create innovative new approaches to eCT that
synthesize and/or extend present day capabilities.

To achieve this goal, we will pursue a variety of objectives, as detailed in Section 4. We will
develop the Common eCT Evaluation Framework, which will provide an efficient and effective
mechanism for eliciting useful information about individual eCT initiatives. We will create new
curriculum at the University of Hawaii that builds upon our technological and pedagogical in-
novations of the past ten years, and that supports early evaluation of common facilities like the
evaluation framework. We will create a repository of curriculum development materials as well
as a repository of public outcome data. We will utilize social networking technologies such as
Facebook and LinkIn to create long-term connections with eCT participants and enable follow-up
research on their eCT experience.

2 Intellectual Basis/Related Work
In 1995, Watts Humphrey authored A Discipline for Software Engineering, a ground-breaking text
that adapted organizational-level software measurement and analysis techniques to the individual
developer along with a one semester curriculum (Humphrey, 1995). These techniques are called
the Personal Software Process (PSP), and form the basis for the Team Software Process (TSP),
which extends the method to groups of developers.

The PSP is the best known and most widespread approach to empirical thinking in the ad-
vanced software development curriculum (Maletic et al., 2001; Abrahamsson and Kautz, 2002;
Lisack, 2000; Carrington et al., 2001; Ceberio-Verghese, 1996; Borstler et al., 2002). The ap-

3



proach requires students to develop a series of software projects, typically six to eight during a
single semester. Both process and product measures are gathered about each project, and the mea-
surements become increasingly detailed as the semester proceeds. After the first three projects
are completed, the students can use the completed projects as historical data to support quality
improvement (by identifying repeated types of defects) and estimation (through simple linear re-
gression). The PSP and TSP enjoy strong support from the Software Engineering Institute, which
has published a number of case studies indicating success in a classroom setting and which spon-
sors a yearly symposium to publicize academic and industry experiences (Ferguson et al., 1997;
Hayes and Over, 1997). The PSP/TSP enable support for very basic levels of abstraction and au-
tomation of empirical thinking. For example, the PSP Dashboard, Jasmine, and LEAP are tools
that allow students to enter the data they collect and that automate the calculation of regression
lines.

Conn developed a metrics-based software engineering course called the IS Integrated Capstone
Project (Conn, 2004). The metrics were closely aligned with the PSP/TSP format, though some of
the process constraints were relaxed.

Robillard designed a project-based course in which advanced undergraduates were required to
fill out logs that specified the time spent on various activities (Robillard, 1998). However, minimal
abstraction and no automation was supported.

Boehm employs the Cocomo cost modeling framework to provide advanced undergraduates
with empirical feedback about the costs and required resources for their projects (Valerdi and
Madachy, 2007).

Jaccheri has designed courses on empirical software engineering at both the undergraduate
and graduate levels (Dingsoyr et al., 1999; Jaccheri and Osterlie, 2005). The undergraduate course
revolved around process improvement experiences, while the graduate course focused on empirical
research methods.

A number of researchers have explored providing advanced undergraduates with observational
data about software development practices through simulation. For example, the SimSE environ-
ment (Navarro and van der Hoek, 2007, 2009) allows empirical observation of six different pro-
cesses, including a waterfall model, incremental model, XP model, code inspection model, and so
forth. SESAM (Drappa and Ludewig, 2000) is a textual simulation in which the student manages
a project via commands such as “Start preparing the specification” and receives feedback from
the system such as “During testing, I have detected bugs”. The SimVBSE environment teaches
value-based software engineering by simulating the various stakeholders and their needs (Jain and
Boehm, 2006).

The Retina system automatically collects editing and compilation data on beginning program-
mers, which it then abstracts using a recommendation and suggestion subsystem (Murphy et al.,
2009). Retina can notice, for example, when a student is getting many more errors per compilation
than other students in the class, and recommend that the student might want to break the work
down into smaller pieces. Retina demonstrates that there is potential for the use eCT throughout
the software development curriculum.

An important benefit of eCT is that it provides students with a firm foundation for scientific
and evidence-based thinking.

John Dewey provides one of the earliest, and most eloquent descriptions of the difference be-
tween empirical and scientific thinking (Dewey, 1910). In his chapter “Empirical and Scientific
Thinking”, Dewey begins by noting that empirical thinking, which is based purely on observa-

4



tion, has been used by humans throughout history as an effective way of understanding through
association.

A modern example of empirical thinking involves the swarms of poisonous box jellyfish that
periodically invade Waikiki Beach in Hawaii. It was discovered by a lifeguard in the 1970’s that
their appearance is correlated with the lunar cycle: approximately 7-11 days after the full moon,
the jellyfish will appear for approximately three days. As there is no theory explaining how or
why this correlation exists, it is an example of purely empirical thinking. Nevertheless, it is both
accurate and useful, and Hawaii radio and TV all broadcast warnings to beach goers based upon
this association.

Although the above example shows that empirical thinking can be both accurate and useful,
Dewey explains that there can be dangers if correlation is confused with causality. To address this
problem, he introduces the scientific method. From Dewey’s point of view, the scientific method
involves active experimentation under controlled or semi-controlled conditions (as opposed to pas-
sive observation) and the formation of testable theories that introduce causal mechanisms (for
which evidence can be gathered to support, refute, or refine).

A related effort is the application of evidence-based medical research techniques to software
development (Kitchenham et al., 2004; Kitchenham, 2004), which involves a five step method:
(1) Convert the need for information [about a software engineering practice] into an answerable
question; (2) Track down the best evidence available for answering the question; (3) Critically
appraise that evidence using systematic review for its validity (closeness to the truth), impact (size
of the effect), and applicability (usefulness in software development practice); (4) Integrate the
critical appraisal with current software engineering knowledge and stakeholder values [to support
decision-making]; (5) Evaluate the effectiveness and efficiency in applying Steps 1-4 and seek
ways to improve them for next time.

3 Current State
For over ten years, we have been exploring empirical software engineering techniques and their
applications in the classroom setting as part of our research in the Collaborative Software Devel-
opment Laboratory at the University of Hawaii. This section summarizes our prior studies and the
current state of practice in our institution.

PSP. Beginning in the late 1990’s, we instituted the use of the Personal Software Process in both
undergraduate and graduate software engineering courses. While our outcomes were quite positive
and in line with the data gathered by the Software Engineering Institute, we were concerned by the
possibility of data quality problems and the lack of automation. To investigate the first question, we
undertook a study of PSP data quality which found that manual collection and analysis could result
in data quality problems that could effect the outcomes and interpretation of the data (Johnson and
Disney, 1999, 1998). To investigate the second question, we implemented extensive tool support
for PSP/TSP style of data collection and analysis (Johnson et al., 2000), but still found the overhead
to be substantial (Johnson, 2001).

Hackystat. In 2001, we initiated a research project called Hackystat (Johnson, 2007; Johnson
et al., 2005, 2003), one of whose goals is to support abstract and automated empirical thinking in
the classroom setting in a manner different from the PSP/TSP. To accomplish this, we changed
the types of data collected and the nature of the analyses and interpretations provided by the

5



framework. For example, in the PSP/TSP (as well as other approaches like COCOMO), data on
completed projects is used to make predictions about future, as-yet-unstarted projects. Hackystat
instead uses “sensors” attached to development tools to automatically and unobtrusively collect
fine-grained process and product data. Analyses on this data are intended for direct feedback into
the current system under development, not for use in future system planning.

For the past five years, Hackystat has been an integral part of the University of Hawaii software
engineering curriculum at both the undergraduate and graduate levels. We performed case study
experiments in 2003 (Johnson et al., 2004; Johnson, 2003), 2006 (Johnson, 2006), and 2008 (John-
son and Zhang, 2009; Zhang and Johnson, 2009) to assess the classroom impact and effectiveness
of the system in supported automated and abstract empirical thinking. Each case study collected
both quantitative and qualitative data that motivated extensive redesign and improvement of the
system, which we evaluated in the subsequent case study. While the details of evaluation differed
in the three studies, in all cases we were generally concerned with three issues: (1) What was the
perceived overhead of the system? In other words, how well does the system provide automation?
(2) What was the perceived utility of the system? In other words, how well does the system pro-
vide abstraction? (3) How well will the system apply to “professional” settings? In other words,
to what extent does the empirical thinking promoted by this system feel relevant and useful in the
long term?

These case studies generated a great deal of useful data that has directly influenced the course
of our research and educational practice. For example, the 2003 experiment provided data indicat-
ing that sensor installation was perceived as a significant barrier to use. From the eCT perspective,
this is an example of a failure of the system to provide sufficient automation. The 2006 experiment
provided data indicating that students had difficulties interpreting the trends in data and under-
standing when the data indicated the need for a change in behavior. From the eCT perspective, this
is an example of a failure of the system to provide sufficient abstraction. In all three case studies,
students have raised concerns about privacy issues. This is an example of a challenge and potential
limitation of this approach to support empirical thinking.

Software ICU. In 2008, we performed an initial case study evaluation of a new approach to
teaching eCT concepts. In this approach, we frame eCT within the metaphor of a medical intensive
care unit (ICU).

Medical intensive care units feature automatic and continuous monitoring of patient vital signs.
The four fundamental medical vital signs are temperature, heart rate, blood pressure and respiration
rate. Other vital signs may be monitored depending upon the particulars of a patient condition.
Vital signs have a “normal range of behavior”, and the monitoring unit can raise an alarm when
any of the patient’s vital signs departs from its normal range of behavior. Vital signs are interesting
because: (a) in a healthy patient, they are normal or improving; (b) change in one vital sign may or
may not be significant; (c) change in multiple vital signs is almost certainly significant, particularly
if more than one are outside their normal range.

The Software ICU translates “health”, “vital signs”, “normal range” and the ICU monitoring
user interface into terms useful to students and their software development projects. We defined a
healthy development project as satisfying three high-level characteristics: high efficiency (software
development proceeds “as fast as possible, but no faster”); high effectiveness (effort is focused on
the most important issues, with minimal rework); and high quality (software satisfies user needs;
software can be easily installed, adapted, and maintained).

We then presented a set of simple practices that, if followed, we claimed would improve

6



the health of their projects. These included: everyone works consistently; everyone contributes
equally; code is committed consistently; progress is regular; quality remains high; no last minute
rush to finish. These development practices are analogous to life-style behaviors like “eat right”,
“get enough sleep” and “exercise regularly” that generally facilitate (but, of course, do not guaran-
tee) good health in a patient.

Next, we presented nine software vital signs: coverage, complexity, coupling, churn, builds,
commits, unit tests, size, and development time. Through a combination of Hackystat sensors
and the Hudson continuous integration system, these nine vital signs could be automatically and
continuously collected for their projects. For each software vital sign, we then presented its normal
range of behavior. For example, for the coverage vital sign to be considered healthy, its current
value should be above 90% and the trend in coverage over time should be stable or increasing.
For the commit vital sign to be considered normal, at least 50% of the team members should have
committed, and there should be commits on at least 50% of the days in the project interval. For
one of the vital signs, size, we stated that there is no simple way of assessing its normal range of
behavior, though it still provides some value in understanding project health.

Unlike a medical ICU, where there is literally hundreds of years of medical research establish-
ing both the importance of the four fundamental vital signs and their normal range of behaviors,
no comparable body of knowledge and practice exists for software development. Learning how to
assess the usefulness of the selected software vital signs and appropriateness of what we declared
as “ normal” was an essential part of this eCT curriculum.

Figure 1: An example Software ICU display

Finally, we presented the user interface to the Software ICU. A portion of this user interface
appears in Figure 1. Each row in the Software ICU interface provides information about one
software project. Each column presents information about one vital sign. Similar to the medical
ICU, the software ICU presents both the most recent numeric value as well as the recent trend in
values for each vital sign. The normal range of behavior is represented by independently coloring
the trend line and the most recent value as green, yellow, or red depending upon whether the value
was healthy, unstable, or unhealthy.

The measurements underlying the Software ICU were collected automatically through two
mechanisms. First, the students installed Hackystat sensors into their IDE (Eclipse) and build
system (Ant) which sent process metrics regarding their development activities. Second, their
projects used the Hudson system to perform continuous integration, which meant that after each
commit of their code, the system would be automatically built and tested. The Hudson system was
also configured to automatically gather certain product metrics such as coverage, coupling, and
complexity.

The results of our initial case study of the Software ICU indicate that it creates a wealth of op-
portunities for exploring eCT concepts in the classroom setting. Students gained awareness of the

7



strengths and weaknesses of these nine empirical models of software development processes and
products. They could observe their own project’s behavior over time, compare it to other projects,
and see how changes in their development behaviors affected the vital signs. The case study also
indicates a number of promising ways to improve the system, which we are implementing in prepa-
ration for its next deployment in Fall, 2009.

Devcathlon. A current active research and development project involves the creation of an
environment in which eCT principles are embedded within a game environment. Unlike other soft-
ware development games which rely on simulation of developer activities (Drappa and Ludewig,
2000; Navarro and van der Hoek, 2009; Jain and Boehm, 2006), Devcathlon is designed around the
use of actual data collected from students as they develop software. Students can form teams and
play matches against each other. Matches are based upon “events” which reward teams for appro-
priate software development behaviors, such as “commit early, commit often”, “keep the coverage
high”, and “don’t break the build”.

Devcathlon is designed to contrast in interesting ways with the Software ICU. Unlike the pas-
sive, “pull-based” interface in the Software ICU, Devcathlon will provide a more active, “push-
based” interface in which point awards will can be broadcast to participants via Twitter, email,
or instant messaging. The observations are also more fine-grained. For example, in the Software
ICU, commit events are aggregated for an entire team and day. In Devcathlon, a single build event
can generate a point award (if, for example, the build fails and the match is configured to award
negative points for that behavior). Unlike the Software ICU, which can allow every project to be
“healthy”, Devcathlon requires some projects to “win” and some to “lose”. We are interested to
evaluate the impact of introducing competition in this way.

As of Spring, 2009, Devcathlon is under active development and we expect to have an initial
release for evaluation by Fall of 2009.

4 Implementation Plan
Our implementation plan focuses primarily on three stakeholder groups: university computer sci-
ence students; their teachers, and computer science pedagogy researchers. It includes the func-
tional activities discussed below, with additional details in the supplementary document called
Project Timeline and Milestones.

Common eCT Evaluation Framework development. A primary objective of this project is
to develop a framework for evaluation of eCT initiatives. The goal of this evaluation framework
is to elicit useful information concerning the ways in which a particular approach to eCT provides
for empirical, automated, and abstract thinking. Figure 2 provides an overview of the framework
components.

The Framework elicits information regarding six key aspects of an eCT initiative: student
demographics, curriculum integration, empiricism, abstraction, automation, learning objectives,
and outcome data. The structure of this framework, and the questions we pursue within each area,
are based upon our prior eCT experiences starting with the PSP and up to our current evaluation
of the Software ICU. We also incorporate findings from prior software development assessment
efforts, such as ATSE (Klappholz et al., 2003).

Addressing the questions in the Framework provides a good basis for understanding the design
trade-offs inherent in any eCT effort. For example, the PSP sacrifices some potential forms of

8



Component Description
Student
Demo-
graphics

What are the required or desirable characteristics of the student population that
appear to make them suitable to this form of eCT? What kinds of prerequisite
skills or technical background does this form of eCT presuppose?

Curriculum
Integration

Which course or courses are best suited to this form of eCT: introductory, inter-
mediate, or advanced computer programming? Is the eCT experience provided
as a stand-alone course, a “mixin” occurring throughout the course, or a short,
self-contained “module”?

Empiricism What types of observations are made? Are they qualitative, quantitative, or
both? When are the observations made? What are the potential sources of
error? Can observations be triangulated and/or cross-validated? What is the
potential for measurement dysfunction? What is the overhead on students and
teachers?

Abstraction Into what representations are the observations abstracted? When are these
abstractions made? Is abstraction generation student-controlled or teacher-
controlled? How are the results of abstraction communicated to students? Is
this communication “pull-based”, “push-based”, or some combination? What
is the overhead on students and teachers?

Automation What forms of automation are used, if any, to: (a) collect observations; (b) gen-
erate abstractions from the observations; (c) visualize abstractions; (d) dissem-
inate abstractions; (e) validate abstractions? What kinds of failure are possible?
What is the overhead? What are the technical and infrastructure prerequisites?

Learning
objectives

What are the intended learning objectives? What knowledge will students have;
what skills will they have assimilated; and what attitudes be fostered? How are
these learning objectives measured?

Outcome
data

What qualitative and quantitative data can be made public? What kinds of con-
textual information can be provided to support meta-analysis and data mining,
without compromising privacy and confidentiality?

Figure 2: Evaluation Framework Components

automated data collection (i.e. time and defects) in order to support certain kinds of abstraction
(effort and quality estimation models). Retina sacrifices many kinds of empirical observations in
order to address the limited programming capabilities of novice programmers.

The Framework also illuminates opportunities for synergy between initiatives and/or adaptation
of innovations from one approach to another. For example, PSP abstractions are mainly focused
on project planning improvements through a historical database of past project data. The PSP pro-
vides empirical techniques that enable you, based on your prior performance, to make predictions
about future project end dates and required resources. However, let’s say that you have a team
with suboptimal behaviors. In some sense, the PSP can even codify these behaviors, as the team
might get simply get better at predicting their suboptimal performance. The Software ICU, on the
other hand, focuses purely on improving behavior without providing insight into the “goal line”.
Combining the two has the potential to address the weaknesses in both.

The development of the Common eCT Evaluation Framework will be ongoing throughout the

9



project. During the first year of the project, framework-related activities will consist of simply
collecting information about the ways in which currently known eCT initiatives (such as PSP/TSP,
Software ICU, Devcathlon, SimSE, and Retina) address these issues. We expect to refine the types
of questions we ask and the way we capture the data as part of the first year’s activity. The result
of this initial phase of data gathering will form our “baseline”.

In subsequent years, we will use this baseline data to help push the eCT community forward
along two dimensions. First, the baseline should help us establish more consistent, higher quality
evaluation mechanisms. For example, if one group has developed a particularly good instrument
for assessing student opinion, then the baseline can make this apparent and help spread its use
to other organizations. Second, the baseline can help assess attempts at synergy. For example, it
could help understand what new problems might arise from a composite PSP/TSP/Software ICU
approach. It can reveal new opportunities, such as the possibility of adapting the Retina recom-
mendation for use in advanced computer programming classes. Finally, it help reveal opportunities
for transfer of insight. For example, both SimSE and the PSP/TSP have been evaluated in multiple
university settings, while the Software ICU has not.

On the other hand, it is not our goal for the framework to enable “apples to apples” com-
parisons, such as “Students using PSP/TSP learn more than students using Devcathlon”, or “The
Software ICU provides better abstractions than Retina”. We believe that the context, demograph-
ics, and goals of the current eCT initiatives are much too diverse those kinds of comparisons to be
valid or have value.

Canonical Learning Objectives Development. According to Mager (1962), learning objec-
tives should include three components: (a) a specific, observable behavior; (b) the conditions under
which the behavior is to be completed, including any tools or assistance; and (c) the standard of
performance, including any acceptable range of outcomes.

While we do not believe that there can exist a single set of learning objectives that will univer-
sally apply to all possible eCT initiatives, we do believe that it is possible to create a basic set that
can be used as a basis for enhancement or customization. Figure 3 illustrates a preliminary set of
canonical learning objectives to be evaluated, refined, and expanded upon in this project.

UH eCT curriculum development. Another functional area involves enhancement of our own
eCT initiatives involving the Software ICU and Devcathlon. We plan to use and evaluate both of
these approaches in the software engineering curriculum at the University of Hawaii each year over
the course of the project. Feedback from our initial case study (Johnson and Zhang, 2009; Zhang
and Johnson, 2009) has surfaced a variety of opportunities for improvement in the Software ICU,
and we have yet to deploy Devcathlon in a classroom setting.

We will also use the UH software engineering curriculum as a way to exercise, evaluate, and
refine the Common eCT Framework and Canonical eCT Learning Objectives discussed above, as
well as the eCT curriculum and outcome data repositories discussed below.

While our prior experience provides a rich set of enhancements to these systems, we look
forward to the results of the first year of the project, when the baseline data from the eCT Common
Evaluation Framework becomes available. This will generate a second source of improvement
opportunities for both the Software ICU and Devcathlon, based upon analysis of the strengths,
weaknesses, and application of other eCT initiatives.

eCT curriculum repository development. To make eCT initiatives replicable across insti-
tutions, it is necessary to “package” the curriculum, associated technologies for empirical data
gathering, abstraction, and automation, as well as evaluation mechanisms.

10



eCT Learning
Objective

Description

Awareness The student can specify six examples of observable behaviors of software
products and processes. For each observable behavior, they can specify at
least one abstraction that can be generated from that observation, and at
least one tool that can support automation in either collection, abstraction,
or presentation.

Application Given a specific software development context, the student can specify at
least three observable behaviors of software products and processes. For
each of these observable behaviors in this context, the student can indicate a
useful abstraction as well as feasible tool support that supports automation
in either collection, abstraction, or presentation.

Limitation Given a specific software development context and a single observable be-
havior along with an associated abstraction and automation, the student can
explain the limitation(s) of this single perspective on software development.

Dysfunction An observation, along with its abstraction and/or automation, can some-
times be performed in such a way as to misrepresent the actual software
development project of interest. For a given type of observation along with
its associated abstraction and automation, the student can explain the poten-
tial way(s) in which misrepresentation could occur, as well as the reasons
why a developer might be motivated to do so.

Single impact Given a software development context and a single type of observation with
its associated abstraction(s) and automation(s), the student can describe
what it suggests should change about the way in which software develop-
ment is done.

Multiple
impact

The student can assess how two or more observations with their associated
abstractions and automations impact on a given software development con-
text. Specifically, they can state whether the data supports a specific type of
change, whether the data is in conflict regarding a specific type of change,
or whether the data is not relevant to a specific type of change.

Figure 3: Canonical Learning Objectives

There are a variety of possible packaging mechanisms. For technology, the natural approach
is to use open source licensing and one of the several available open source hosting services such
as SourceForge or Google Project Hosting. Fortunately, most eCT technologies are already open
source and employ an open source hosting service. For curriculum materials, we will take advan-
tage of a packaging mechanism such as Open Seminar.

eCT public outcome data repository development. In recent years, there have been signif-
icant advances in the availability and sophistication of public repositories for data sets, including
CKAN, FreeBase, Swivel, DataPlace, LinkingOpenData, SWSE, and TheInfo. We have partici-
pated in collaborative research on appropriate protocols for the use of software engineering sci-
entific data sets and the licensing issues that can result (Basili et al., 2007). We believe that the
creation of an online repository of eCT outcome datasets, when combined with the contextual

11



information provided by the Common eCT Evaluation Framework, can result in an unparalleled
source of useful evidence regarding the state and progress of eCT.

For example, the Software ICU gathers a variety of abstractions on a daily basis regarding
student projects, including coupling, complexity, coverage, builds, unit test invocations, size, and
so forth. This data could be anonymized and uploaded to an eCT repository along with general
demographic information that would enable teachers at other universities to compare their use of
the Software ICU with ours. Other technologies, such as the PSP/TSP or SimSE, could benefit in
this way as well.

eCT post-course impact assessment. An important open question for eCT initiatives is their
long-term impact on the students. A year or more after the course has ended, do they still view
their eCT experience as useful? If the experience involved tools, do they still use these tools? Have
they implemented or adopted other tools that share an eCT orientation? Have they grown in their
sophistication regarding the appropriate use of empirical computational thinking?

This is a very difficult question to investigate, due to the long time frame involved and the
practical difficulties in establishing and maintaining contact with the students. Fortunately, the rise
in social networking technologies, in particular Facebook and LinkedIn, provide an approach to
this problem. As part of our initial year activities, we will implement a number of Facebook-based
mechanisms for creating a community of eCT “graduates”, including groups, recreational quizzes,
and so forth. We will ask instructors of eCT courses to inform their students about these social
network mechanisms and encourage them to join. Once they are members, we can contact them at
yearly intervals to obtain their perspectives on eCT.

From empirical to scientific and evidence-based computational thinking. The migration
patterns of box jellyfish discussed in Section 2 demonstrates that empirical thinking can be both
accurate and useful in the modern, natural world. Similar kinds of associative thinking occur in the
artificial world of software development, such as the observation that low levels of test coverage
are strongly associated with a system that is difficult to modify and failure-prone.

An important direction for this research is to build upon the skills and techniques for eCT
to provide students with insight into scientific, evidence-based thinking. We suspect that direct
experience of scientific, evidence-based thinking might be impractical within the confines of an
undergraduate programming curriculum, as it requires awareness of and the ability to manipu-
late concepts such as dependent and independent variables and internal and external validity while
simultaneously engaged in learning about software development. Prior efforts to incorporate scien-
tific thinking into the software development classroom use simulation rather than direct experience
(Höst, 2002).

Rather than require students to incorporate scientific experimentation into their software devel-
opment process, we propose to use eCT as a springboard for discussion of the differences between
empirical and scientific thinking, and the costs and benefits associated with the latter. Continu-
ing our previous example, there is a clear association between low system quality and low test
coverage that students can experience directly through eCT techniques. However, the association
between high system quality and high test coverage is much more subtle: while a high quality
system tends to strongly associated with high test coverage, the converse is not necessarily true. It
is unfortunately all too possible to produce a test suite that exhibits high coverage without actually
detecting or preventing important classes of defects (Marick, 1999).

This asymmetry in the association between system quality and test coverage provides an ex-
ample of the limitations of purely empirical thinking in software development, and can provide

12



students with an opportunity to discuss ways in which the scientific method can be applied to gain
deeper insight into the true relationship between test coverage and system quality.

We will also explore whether the repository of outcome data produced by this project can
be adapted to support evidence-based analysis. For example, if an eCT student observes that
cyclomatic complexity above 25 appears to be associated with classes requiring redesign, they
might be able to query the repository in addition to a literature review to gather evidence to support
or refute this empirical observation.

eCT everywhere. Although the primary focus this project is to apply eCT to upper-level com-
puter science programming courses, empirical computational thinking can be applied elsewhere in
the computer science curriculum, as shown by the Retina project. It can even transcend disciplines:
for example, one could apply eCT to English composition courses by automating the observation
of grammatical errors in writing exercises, abstracting these into improvement opportunities, and
generating personalized or course-wide recommendations. Our project will establish an experience
base that will facilitate the spread of eCT throughout the computer science curriculum as well as
to other disciplines.

5 Collaboration and Management Plan
The principal leadership of this project will be the responsibility of the PI, Philip Johnson, and his
research group, the Collaborative Software Development Laboratory at the University of Hawaii.
With over ten years of prior work on curriculum and technology development related to eCT, we
have demonstrated a long term interest, commitment, and successful track record for this form of
pedagogy.

The Supplemental Documents section of this proposal contains letters of support from Pekka
Abrahamsson, Teresa Baldassarre, Jeff Carver, Hakan Erdogmus, Tom Hilburn, Letizia Jaccheri,
Ross Jeffery, Maurizio Morisio, Dan Port, Carolyn Seaman, Andre van der Hoek, Laurie Williams,
and Claes Wohlin. These letters indicate a broad spectrum of support for the research and educa-
tional potential of empirical computational thinking, and an interest in seeing this concept inte-
grated into the computer science curriculum.

One of our management priorities is to lower the barriers to adoption. As noted above, we
will establish and maintain repositories for technologies, curriculum materials, and outcome data.
This helps prospective participants to select the most appropriate eCT technology for their needs.
Second, we will avoid introducing new overhead on participants by utilizing existing conferences,
workshops, and gatherings. Finally, we will leverage existing social network technologies, such as
Facebook and LinkedIn, and create eCT groups or discussion forums.

During the first year, we will bootstrap collaborations by promoting eCT in four venues: ISERN
2009 (October, 2009), CSEET (February, 2010), ICSE (May, 2010), and the TSP Symposium (Fall,
2010). Depending upon the venue, bootstrapping activities could consist of: an informal “birds of
a feather” sessions; a poster session; a short talk; or a tutorial session.

By the third year, we believe that there will be sufficient initial adoption and evaluation of eCT
initiatives to support a workshop for presentation and comparison of experiences, co-located with
another conference such as ICSE. At that time we will also work with editors of journals such as
IEEE Software, or Empirical Software engineering to propose a special issue on eCT.

13



Our hope is that after these first three years, we will have generated and institutionalized eCT
such that future engagement and pursuit of this approach is self-sustaining.

6 Evaluation Plan
Our evaluation plan has three components. The first component provides for evaluation of a single
eCT initiative. To accomplish this, we will use the Common eCT Evaluation Framework as de-
scribed in Section 4. The outcome data sets will also provide evaluation information about a single
initiative.

There is a bias in the scientific community against the reporting of negative results. We believe
that the long-term success of empirical computational thinking requires a community in which
both failure and success are acceptable and seen as equal sources of insight. Thus, our evaluation
plan will encourage and support the reporting of experiences regardless of the apparent “success”
of the initiative.

The second component of our evaluation plan involves the project as a whole. For this compo-
nent, we want to assess how well we have been able to create a community of research and practice
around the idea of eCT. Figure 4 presents some of the metrics we plan to gather on a yearly basis.

Metric Description
Institutions Number of participating institutions.
Data sets Number of outcome data sets
Initiatives Number of distinct, participating eCT initiatives
Cross-
fertilization

Number of attempts to integrate multiple eCT initiatives

Adoption Number of instances of documented post-course eCT use.
Tailoring Number of instances in which an eCT initiative was tailored for use by a

new institution.
Publications Number of publications related to or referencing an eCT initiative.

Figure 4: Project-wide Evaluation Metrics

We will gather these metrics at the end of each year of the project. Evidence of the success of
this project should be seen by increasing values for most or all of these metrics over the course of
the project. By the end of three years, we expect eCT participation from at least six institutions;
at least ten publicly available data sets; at least two attempts at cross-fertilization; at least three
attempts to tailor; and at least six publications in refereed journals or conferences. The Project
Timeline and Milestones document in the Supplementary Documents section provides more infor-
mation on when evaluations of the various functional activities will occur.

The third component of our evaluation plan involves assessing the longer-term impact of eCT
on students after they complete the course. To do this, we will create an eCT group in two social
networking technologies: LinkedIn and Facebook. In all participating eCT courses, we will ask the
instructor to tell students about these groups. Having established contact and community in this
way, we will perform follow-up assessments to obtain their perspectives on the long-term merits
of their eCT experiences. While this will not produce a statistically sound representation, it should
still yield insight into post-course use of eCT.

14



7 Anticipated outcomes, intellectual merit, and broader im-
pact

The intellectual merit and broader impact of this project can be summarized in terms of the fol-
lowing anticipated contributions.

First and foremost, this project will create and institutionalize the notion of empirical compu-
tational thinking as a useful component for advanced programming courses. Students will learn
to observe their programming behaviors and the effect of these behaviors on the system, create
and manipulate abstractions of these behaviors, and use automation to increase scalability, preci-
sion, and utility. This automation and abstraction is also essential to enabling the continued use of
eCT concepts as these students move into professional environments and encounter more complex
development situations.

Second, this project will create a new community of research and practice around the unify-
ing concept of empirical computational thinking. Currently, this community is fragmented and
opportunities for collaboration and synergy are limited. We will create and maintain this commu-
nity primarily through electronic infrastructure, such as community repositories for technology,
curriculum materials, and data. It will also be maintained through joint research and teaching ac-
tivities. To promote this community, we will perform outreach at related conferences and meetings,
and propose workshops at conferences such as ICSE.

Third, this project will generate two new mechanisms for evaluating initiatives in empirical
computational thinking: the Common eCT Evaluation Framework and the Canonical eCT Learning
Objectives. These will provide a way to understand, compare, and integrate curriculum initiatives
in empirical computational thinking.

Fourth, this project will lead to significantly increased use of eCT initiatives in the computer
science curriculum. This will occur because this project will lower the barrier to entry for teachers
interested in these techniques, who will have a way to more easily determine the eCT initiative
appropriate to their situation, access to tailorable curriculum materials, and data regarding prior
use, outcomes, and challenges.

Fifth, this project will generate new empirical data sets regarding software development ac-
tivities in a classroom setting. Along with the contextual information provided by the Evaluation
Framework, this will create new opportunities for meta-analysis and data mining.

Sixth, this project will serve underrepresented populations, as the University of Hawaii is an
EPSCOR state. Approximately 84% of undergraduates at the University of Hawaii are minorities,
and the computer science students exemplify this diversity. The software engineering curriculum
at the University of Hawaii is well-regarded within the local high tech community, and many
of its graduates have gone on to leadership positions. A successful eCT initiative could thus be
transformative beyond the college and into the local community.

Seventh, this project supports the NSF goal of fostering integration of research and education.
The research outcomes regarding eCT will impact directly on classroom practice.

Eighth, this project supports the use of eCT as a foundation for scientific and evidence-based
thinking. It will create an experience base that will facilitate the spread of eCT throughout the
computer science curriculum and into other disciplines as well.

15



References
Abrahamsson, P. and K. Kautz, 2002: Personal software process: Classroom experiences from

Finland. In Proceedings of the 7th International Conference on Software Quality, Springer-
Verlag, London, UK, ISBN 3-540-43749-5, pp. 175–185.

Basili, V. R., M. V. Zelkowitz, D. Sjoberg, P. M. Johnson, and T. Cowling, 2007: Protocols in the
use of empirical software engineering artifacts. Empirical Software Engineering, 12.

Borstler, J., D. Carrington, G. Hislop, S. Lisack, K. Olson, and L. Williams, 2002: Teaching PSP:
Challenges and lessons learned. IEEE Software, 19(5).

Carrington, D., B. McEniery, and D. Johnston, 2001: PSP in the large class. In Proceedings of the
14th Conference on Software Engineering Education and Training, pp. 81–88.

Ceberio-Verghese, A., 1996: Personal Software Process: A user’s perspective. In Mead, N. R., ed.,
Ninth Conference on Software Engineering Education, IEEE Computer Society Press, 10662
Los Vaqueros Circle, P. O. Box 3014, Los Alamitos, CA 90720-1264.

Conn, R., 2004: A reusable, academic-strength, metrics-based software engineering process for
capstone courses and projects. In Proceedings of the 35th SIGCSE technical symposium on Com-
puter science education, ACM, New York, NY, USA.

Dewey, J., 1910: How we think, D.C. Heath, chap. Empirical and scientific thinking.

Dingsoyr, T., L. Jaccheri, and A. Wang, 1999: Teaching software process improvement through a
case study. In Proceedings of the Conference on Engineering and Computer Education, Rio de
Janeiro, Brazil.

Drappa, A. and J. Ludewig, 2000: Simulation in software engineering training. In Proceedings of
the 22nd International Conference on Software Engineering, ACM, New York, NY, USA, ISBN
1-58113-206-9, pp. 199–208.

Ferguson, P., W. S. Humphrey, S. Khajenoori, S. Macke, and A. Matvya, 1997: Introducing the
Personal Software Process: Three industry cases. IEEE Computer, 30(5), 24–31.

Hayes, W. and J. W. Over, 1997: The Personal Software Process (PSP): An empirical study of the
impact of PSP on individual engineers. Tech. Rep. CMU/SEI-97-TR-001, Software Engineering
Institute, Pittsburgh, PA.

Höst, M., 2002: Introducing empirical software engineering methods in education. In Proceed-
ings of the 15th Conference on Software Engineering Education and Training, IEEE Computer
Society, Washington, DC, USA, p. 170.

Humphrey, W. S., 1995: A Discipline for Software Engineering. Addison-Wesley, New York.

Jaccheri, L. and T. Osterlie, 2005: Can we teach empirical software engineering? In Proceedings
of the 11th IEEE International Software Metrics Symposium, Como, Italy.

16



Jain, A. and B. Boehm, 2006: SimVBSE: Developing a game for value-based software engineer-
ing. In Proceedings of the Conference on Software Engineering Education and Training, IEEE
Computer Society, Los Alamitos, CA, USA, pp. 103–114.

Johnson, P. M., 2001: You can’t even ask them to push a button: Toward ubiquitous, developer-
centric, empirical software engineering. In The NSF Workshop for New Visions for Software
Design and Productivity: Research and Applications, Nashville, TN.

—, 2003: Results from the 2003 classroom evaluation of Hackystat-UH. Tech. Rep. CSDL-03-13,
Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii
96822.

—, 2006: Results from the 2006 classroom evaluation of Hackystat-UH. Tech. Rep. CSDL-07-02,
Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii
96822.

—, 2007: Requirement and design trade-offs in Hackystat: An in-process software engineering
measurement and analysis system. In Proceedings of the 2007 International Symposium on Em-
pirical Software Engineering and Measurement, Madrid, Spain.

Johnson, P. M. and A. M. Disney, 1998: The personal software process: A cautionary case study.
IEEE Software, 15(6).

—, 1999: A critical analysis of PSP data quality: Results from a case study. Journal of Empirical
Software Engineering.

Johnson, P. M., H. Kou, J. M. Agustin, C. Chan, C. A. Moore, J. Miglani, S. Zhen, and W. E.
Doane, 2003: Beyond the personal software process: Metrics collection and analysis for the
differently disciplined. In Proceedings of the 2003 International Conference on Software Engi-
neering, Portland, Oregon.

Johnson, P. M., H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa, and T. Yamashita, 2004: Practical
automated process and product metric collection and analysis in a classroom setting: Lessons
learned from Hackystat-UH. In Proceedings of the 2004 International Symposium on Empirical
Software Engineering, Los Angeles, California.

Johnson, P. M., H. Kou, M. G. Paulding, Q. Zhang, A. Kagawa, and T. Yamashita, 2005: Improving
software development management through software project telemetry. IEEE Software.

Johnson, P. M., C. A. Moore, J. A. Dane, and R. S. Brewer, 2000: Empirically guided software
effort guesstimation. IEEE Software, 17(6).

Johnson, P. M. and S. Zhang, 2009: We need more coverage, stat! Experience with the software
ICU. In Submitted to the 2009 Conference on Empirical Software Engineering and Measure-
ment, Orlando, Florida.

Kitchenham, B., 2004: Systematic reviews. In Proceedings of the 2004 International Symposium
on Software Metrics.

17



Kitchenham, B., T. Dyba, and M. Jorgensen, 2004: Evidence-based software engineering. In Pro-
ceedings of the 2004 International Conference on Software Engineering.

Klappholz, D., L. Bernstein, D. Port, and P. Dominic, 2003: Tools for outcomes assessment of
education and training in the software development process. In Proceedings of the Conference
on Software Engineering Education and Training, IEEE Computer Society, Los Alamitos, CA,
USA, p. 331.

Lisack, S., 2000: The personal software process in the classroom: student reactions (an experience
report). In Proceedings of the 13th Conference on Software Engineering Education and Training,
pp. 169–175.

Mager, R., 1962: Preparing objectives for programmed instruction. Fearon, Belmont, CA.

Maletic, J. I., A. Howald, and A. Marcus, 2001: Incorporating PSP into a traditional software engi-
neering course: An experience report. In Proceedings of the Fourteenth Conference on Software
Engineering Education and Training, pp. 89–97.

Marick, B., 1999: How to misuse code coverage. In Proceedings of the 16th Interational Confer-
ence on Testing Computer Software, pp. 16–18.

Murphy, C., G. Kaiser, K. Loveland, and S. Hasan, 2009: Retina: Helping students and instructors
based on observed programming activities. In Proceedings of the 40th ACM Technical Sympo-
sium on Computer Science Education, ACM, New York, NY, USA.

Navarro, E. and A. van der Hoek, 2007: Comprehensive evaluation of an educational software
engineering simulation environment. In Proceedings of the Twentieth Conference on Software
Engineering Education and Training.

—, 2009: Multi-site evaluation of simSE. In Proceedings of the The 40th ACM Technical Sympo-
sium on Computer Science Education, Chattanooga, TN.

Robillard, P. N., 1998: Measuring team activities in a process-oriented software engineering
course. In Proceedings of the 11th Conference on Software Engineering Education and Training,
IEEE Computer Society, Washington, DC, USA, ISBN 0-8186-8326-0.

Valerdi, R. and R. Madachy, 2007: Impact and contributions of mbase on software engineering
graduate courses. Journal of Systems and Software, 80(8), 1185–1190.

Wing, J., 2006: Computational thinking. Communications of the ACM, 49(3).

Zhang, S. and P. M. Johnson, 2009: Results from the 2008 classroom evaluation of Hackystat.
Tech. Rep. CSDL-09-03, Department of Information and Computer Sciences, University of
Hawaii, Honolulu, Hawaii 96822.

18


