
Applying Case-Based Reasoning for Building
Autonomic Service-Oriented Systems

by Hervé Weitz
 0834629@student.ul.ie

M.Sc Software Engineering Dissertation

Supervised by Muhammad Ali Babar

Department of Computer Science & Information Systems
University of Limerick, Ireland

September 2009

mailto:0834629@student.ul.ie

Acknowledgment

With the best thanks to Muhammad Ali Babar from University of Limerick, for supervising this

dissertation. Thanks to Philip Johnson and Austen Ito from University of Hawaii for the great

support throughout this research on conceptual ideas and implementation techniques. Working with

them was a pleasure and a great experience for lifetime. Thanks also to the Google Summer of Code

program for a great experience and insight into open source development and very interesting

student projects.

Abstract

Service-oriented computing is considered as a successful approach build-

ing large-scale software systems, spanning the internet, and globally im-

proving software reuse. Service-oriented architectures are complex and

hard to maintain. A service may run on many machines, and single ma-

chines may host many services. The concept of distributed composition

of services hides a huge amount of complexity in the management of the

service-oriented architecture. Users have to deal with complex configura-

tion of services to achieve functional and quality requirements, thus the

complexity of the system requires a lot of administrator-interference. De-

spite the effort of the administrator, the configuration may not be good

enough. It is hard for an administrator to monitor individual services

and the service-oriented system to determine if the system is running

optimal. Therefore a growing trend for autonomic service-oriented sys-

tems has emerged. In mid-october 2001, IBM released a manifesto that

the main obstacle to further progress in the IT industry is a looming

software complexity crisis. The manifesto claimed that the difficulty of

managing today’s computer systems goes well beyond the administra-

tion of individual software environments. Computing system’s complex-

ity appears to be approaching the limits of human capability, and there

will be no way to make timely, decisive responses to the rapid stream of

changing and conflicting. This dissertation discusses autonomic comput-

ing in service-oriented computing. We present a framework that builds the

foundation for self-healing, self-reconfiguration, self-optimization and self-

protecting service-oriented systems. We apply and implement the frame-

work to Hackystat1, an Open Source Software developed at University of

Hawaii. Furthermore we discuss the role of service-oriented computing in

autonomic computing, which plays a fundamental role for the relation-

ship between autonomic elements. At the end, we achieved to provide a

global overview in the domain of autonomic and service-oriented comput-

ing and how to combine them in bidirectional ways. We implemented an

open source framework called, Hackystat Service Manager2, for achieving

an autonomic service-oriented architecture in Hackystat in the scope of

Google Summer of Code3, which can be evolved and evaluated or adapted

to any other service-oriented system.

1http://www.hackystat.org
2http://code.google.com/p/hackystat-service-manager/
3http://code.google.com/soc/

1

Contents

List of Figures iii

List of Tables v

Chapter 1. Introduction 1

1.1. Overview 1

1.2. Terminology 4

1.3. Symbols 7

Chapter 2. Background 9

2.1. Software architecture 9

2.2. SOA 10

2.3. Introduction to HackyStat 15

Chapter 3. Autonomic and Service-Oriented Computing 29

3.1. Ovierview 29

3.2. Related Work 36

3.3. Service Composition and Coordination 39

3.4. Case-Based Reasoning 41

3.5. Monitor, Analysis, Plan and Execute (MAPE) 46

3.6. Autonomic Service Manager 47

Chapter 4. The Hackystat Service Manager Project 51

4.1. Overview 51

4.2. Architecture of Hackystat Service Manager 53

4.3. Agents for Monitoring and Execution Layer 54

i

ii CONTENTS

4.4. Autonomic Service Manager Layer 56

4.5. Hackystat SOA Layer 67

Chapter 5. Conclusion 69

Bibliography 71

List of Figures

2.1 Hackystat Web-application: ProjectBrowser 16

2.2 HackyStat SOA, Components and Dependencies 20

2.3 Hackystat and Twitter 23

3.1 Structure of an autonomic element (from Kephart and Chess 2003) 31

3.2 Basic schemes of service composition 39

3.3 CBR-cycle 43

3.4 Autonomic MAPE-cycle 46

3.5 Framework for achieving automic service-oriented systems 48

4.1 Hackystat Service Manager (HSM) 51

4.2 The Hackystat Service Manager Architecture 53

iii

List of Tables

1.1 Symbols used in this dissertation 7

4.1 REST API Specification of the Sensorbase Agent 55

4.2 REST API Specification of the TickerTape Agent 55

4.3 Hackystat Sensorbase CBR features 62

4.4 Hackystat DailyProjectData CBR features 63

4.5 Hackystat Telemetery CBR features 63

4.6 Hackystat ProjectBrowser CBR features 64

4.7 Hackystat TickerTape CBR features 64

v

CHAPTER 1

Introduction

1.1. Overview

Service-oriented Architectures, SOA, is considered as a successful approach to build

large-scale software systems, spanning the Internet, and globally improving software

reuse (Erl 2005). Service-orientation is the concept of building software components

that are platform independent and implement a specific business logic. The busi-

ness logic is accessible only through a provided interface. The interface defines

which service the component is offering. In terms of service-oriented computing

and service-oriented architecture, a service provides a specific autonomous func-

tionality (Gorton 2006). The service can be discovered, bound and used by any

other software (Gorton 2006). Services can be composed, and they can be hosted

by many machines, and one machine can host many services (Li et al. 2005.).

This concept of distributed composition of services hides a huge amount of com-

plexity in the management of these services. Users have to deal with complex

configuration of services to achieve functional and quality requirements, thus the

complexity of the system requires a lot of human-interference (Papazoglou and Van

den Heuvel 2007). Service-oriented computing and SOA increases reusability and

enables normal software engineering, by building blocks. The complexity of service-

oriented systems is the system itself, since services are generally black boxes and

autonomous. Software systems are increasingly constructed by composing multiple

applications which leads to the need for self-management of the system (Sadjadi

and McKinley 2005).

1

2 1. INTRODUCTION

This dissertation adresses the management of service-oriented architectures and

considers taking the autonomy of the services to a higher level: the service-oriented

system itself should become autonomic.

Autonomic computing, as defined by IBM (Horn 2001), is the concept of a self-

managed computing system with a minimum requirement of human intervention.

The goal of autonomic computing is to create smart systems that are able to take

best decisions. They are developed in a way, that human-intervention is not needed

anymore for tasks that have a limited complexity. Talking about systems without

any human-interference would require the system to have consciousness, which is a

philosophical aspect and far beyond this dissertation.

A service-oriented architecture is composed of autonomous services which, in gen-

eral, cannot be influenced because they may belong to different organizations.

Sometimes a service has to be manually reconfigured, if accessible. If the ser-

vice is not accessible in any form, it has to be manually replaced by another service

providing the same functionality. These are time and cost consuming tasks, carried

out by developers and administrators of the system. Thus, there is a need in soft-

ware engineering for autonomic self-managing service-oriented systems. It became

an essential research domain in software engineering resides mostly in the field of

autonomous computing and service-oriented computing.

In this dissertation the core problems, different concepts and proposed solutions

for achieving autonomic service-oriented systems are presented. The aim of this

research is to create a concrete concept, composed by ideas and other different

concepts studied during the research. This concept, resulting in a framework for

achieving autonomic service-oriented systems, will be presented and implemented

for a service-oriented system called Hackystat (Johnson 2001). Hackystat is an

open source project developed by academics at University of Hawaii providing a

1.1. OVERVIEW 3

perfect example for a case study.

The concrete concept is created in a way, that it can be adopted to any service-

oriented architecture by generalizing common issues in service-oriented architec-

tures. The concept also addresses its extendibility in different scenarios. Applying

theoretical concepts to a real life project achieves that the previous knowledge of

the research domain is summarized and extended. Some conflicts of different con-

cepts by different researchers are solved. Furthermore the implementation of the

concept can be evaluated and improved beyond the scope of this dissertation.

At the beginning of chapter two, a general overview of software architecture, service-

oriented computing and the better known term SOA is provided. A description of

the service-oriented paradigm is presented with just one of its many implemen-

tations called Representational State Transfer (REST). Knowledge is extended to

base level, in order to understand the issues of service-oriented architectures. In

the second part the Hackystat project is presented in detail.

In chapter three, autonomic and service-oriented computing, a combined research

paradigm is discussed. Problems and solution proposals from related work, for dif-

ferent scenarios and service compositions are presented. The dissertation focuses

on Cased-based Reasoning (CBR) to achieve the autonomy of service-oriented sys-

tems. The Case-based Reasoning paradigm seems to be very well suited to the

domain of service-oriented architectures (Anglano and Montani 2005).

Chapter four describes implementation of the concept for autonomic service-oriented

systems in Hackystat.

In chapter five a conclusion will be drawn.

4 1. INTRODUCTION

1.2. Terminology

The terminology for SOA is adopted from Thomas Erl’s SOA Glossary (Erl 2009),

which it is a very consistent glossary with good definitions.

• Services and Service Oriented Architectures

– Service

A service is a unit of solution logic to which service-orientation has

been applied to a meaningful extent. It is the application of service-

orientation design principles that distinguish a unit of logic as a ser-

vice compared to units of logic that may exist only as objects or

components (Erl 2009).

– Service-orientation

Service-orientation is a design paradigm intended for the creation of

solution logic units that are individually shaped, so that they can be

collectively and repeatedly utilized in support of the realization of a

specific set of strategic goals and benefits, associated with SOA and

service-oriented computing.

Solution logic designed in accordance with service-orientation can be

qualified with “service-oriented,” and units of service-oriented solu-

tion logic are referred to as services. As a design paradigm for dis-

tributed computing, service-orientation can be compared to object-

orientation (or object-oriented design). Service-orientation, in fact,

has many roots in object-orientation and has also been influenced by

other industry developments, including EAI, BPM, and Web services

(Erl 2009).

– Service-oriented computing

Service-oriented computing is an umbrella term used to represent

a new generation distributed computing platform. As such, it en-

compasses many things, including its own design paradigm and de-

1.2. TERMINOLOGY 5

sign principles, design pattern catalogs, pattern languages, a distinct

architectural model, and related concepts, technologies, and frame-

works. Service-oriented computing builds upon past distributed com-

puting platforms and adds new design layers, governance consider-

ations, and a vast set of preferred implementation technologies (Erl

2009).

– Service-oriented architecture

Historically, the term "service-oriented architecture" (or "SOA") has

been used so broadly by the media and within vendor marketing lit-

erature that it has almost become synonymous with service-oriented

computing itself (Erl 2009).

– Service oriented solution logic / service-oriented system

Any body of solution logic to which service-orientation has been ap-

plied to a meaningful extent is considered "service-oriented." A ser-

vice represents the most fundamental unit of service-oriented solution

logic.

There has been a common misperception that the use of Web ser-

vices technology within an application constitutes a service-oriented

solution. It is through service-orientation design principles that solu-

tion logic is shaped so that it supports the realization of the strategic

goals and benefits associated with SOA and service-oriented comput-

ing (Erl 2009).

– QoS

Quality of Service (QoS) defines the non-functional requirments of a

service.

• Autonomic computing:

Many authors suggest that autonomic computing should exhibit the self-*

properties. There is no general agreement on the definition of the proper-

6 1. INTRODUCTION

ties among the literature, which finally should be provided to accomplish

autonomic computing. Let us define four categories and one overall term

to have a common understanding of the self-* properties.

We analyse the process of a child learning to walk. After falling it has

to get up on the legs again, a self-healing property is required to find

the equilibrum again. The self-healing process may need many little self-

reconfiguration steps. When the child is walking again, it can self-optimize

from its previous experience to avoid falling again, and increase perfor-

mance of walking. In an evironment of unpredictable events the child

learns to self-protect from falling under the occurence of unpredictable

events.

The self-reconfiguring approach is the most important one a system has to

adopt. A system has to be able to reconfigure itself, for self-healing, self-

optimizing and self-protecting. These abilities cannot be achieved without

reconfiguration as we defined it. To fulfill the common understanding,

a system must exhibit at least one of the properties to be called self-

managing.

• Self-managing

– Self-reconfiguring

– Self-healing

– Self-optimizing

– Self-protecting

Other terms like, self-adapting, self-configuring e.t.c. can be seen as syn-

onyms of one of the categories. This point of view is defined in more depth

later in this dissertation.

In this dissertation we address two research paradigms: autonomic computing and

service-oriented computing. As we will see both domains have a tight relationship

in a bidirectional way. We define autonomic and service-oriented computing

1.3. SYMBOLS 7

for analysing this relationship. We call autonomic service-oriented systems

one of the ways of the relationship, gaining autonomy in service-oriented systems.

This was the offspring and the main goal of the dissertation, however we discovered

that autonomic computing can also benefit from service-oriented computing, we

relate to this carefully as service-oriented autonomic computing.

1.3. Symbols

In this section, the symbols and graphics used during the dissertation are explained

in Table 1.1.

Symbol Description

This symbol represents a service in terms of
service-oriented computing

This symbol represents a service in terms of
service-oriented computing that belongs to a dif-
ferent organization. From our point of view the
service is completely autonomous

The symbol shows a software component that has
no service-oriented attributes

The symbol indicates that a theoretical concept is
implemented in the software components or ser-
vices it is attached to

The symbol shows a database. In combination
with a service or software component the data-
base symbol indicates that the service or software
components dispose an embedded database

Table 1.1. Symbols used in this dissertation

8 1. INTRODUCTION

For service-oriented systems the OMG has published an UML extension called

SoaML, which is not well suited to explain the general concepts used in this dis-

sertaion. Therefore this dissertation uses its own symbols, influenced by Thomas

Erl’s symbols (Erl 2007). The color of symbols is crucial, because they indicate the

subtype of a certain type, or differences in the same type.

CHAPTER 2

Background

2.1. Software architecture

Recently the term “software architecture” has gained a lot of attention by re-

searcher and Industry. Technical Architects and Chief Architects are just a few of

many job titles emerged in software industry (Gorton 2006). Software architecture

is a sub-discipline of software engineering and a hot topic in software engineering re-

search because it reaches from the actual software structure and design, over specific

technologies up to the organization structure and business goals (Bass, Clements

and Kazman 2003). Software architects have to deal with the requirements spec-

ified with the stakeholders up to the possibilities of the recent technology. Thus,

software architecture is a broad and complex area with many point of views, and it

is hard to share the know-how that software architects gained trough their experi-

ence. This dissertation adopts the definition by Len Bass, Paul Clements and Rick

Kazman from their book “Software Architecture in Practice”:

“The software architecture of a program or computing system is the structure

of structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them” (Bass, Clements

and Kazman 2003)

This definition could be sufficient requirement to understand service-oriented ar-

chitectures from a practitioner’s point of view for this dissertation, but it does

not reflect the importance and popularity of service-oriented architectures. The

definition is not addressing the influence of software architecture on the business

9

10 2. BACKGROUND

organization structure. It is necessary to understand this influence, and therefore

the influence on the Hackystat project and organization structure is analysed. This

analysis, accompanied with a deep insight into service-oriented architectures auto-

matically leads to the urge of a certain autonomy in complex software architectures.

2.2. SOA

2.2.1. Introduction. Service oriented architectures and Web services are the

latest step in the development of application integration middleware. They pro-

vide a basic principle for internet-scaled distributed applications (Gorton 2006).

Gorton also states that the technology precipitates the end of technology depen-

dent middlewares because all major vendors are finally agreeing on a single rich set

of technology standards and protocols for application integration and distributed

computing (Gorton 2006). Service oriented computing and service-oriented archi-

tectures are a continuum from older concepts of distributed computing technologies

and architectures (Bell 2008) (Gorton 2006) (Erl 2005). Just like J2EE middleware

lets Java applications call methods offered by J2EE components, service oriented

computing lets platform-independent applications invoke functionality provided by

other platform-independent applications through interoperable services.

A service oriented architecture (SOA), is thus, a software architecture where a

software component, or a group of software components provide a well defined au-

tonomous interoperable service that can be used by any other software. Thus SOA

is a software architecture as defined above, in section 2.1. SOA is a theoretical con-

cept for inter-application communication (Gorton 2006), just like other well-known

integration technologies like CORBA (Vinoski 1997), J2EE (Singh 2001)or DCOM

(Sessions 1997). The major difference, and reason why SOA can be considered

to have a higher level of abstraction, is that SOA is a concept not bound to any

language nor to any specific technology, but making use of well defined standards

2.2. SOA 11

and communication protocols.

In SOA every single service has to be described by well defined standardized speci-

fications, so that an organization is able to make the service public to other parties

(Gorton 2006). In SOA services are autonomous. All that a client has to know

about a service is which messages it will accept and return. That is the only de-

pendency between client and service. Implementation of a service can be changed

without letting the client know, as long as the messages remain backwards compat-

ible.

2.2.2. Principles of SOA and Implementation. As already mentioned,

SOA is a theoretical concept and can be implemented in many ways as long as it

follows some standards. Web services implement a service-oriented architecture by

making their service available over standard internet protocols independent of plat-

forms or programming languages. Web services can be developed as new standalone

application or as extension to legacy systems, in order to make their functionality

available to other applications. Gorton defines the four basic principles of service

oriented architectures as following (Gorton 2006) :

• Boundaries are explicit

Services are independent applications, accessing a service implies crossing

over boundaries that separate processes, traversing networks and cross-

domain user authentication. Each crossed boundary: process, machine

and trust, increases complexity and risk of failure and decreases the per-

formance.

• Services are autonomous

SOA separates function into distinct units and services (Bell 2008). Ser-

vices are deployed onto a network where they can be easily integrated into

12 2. BACKGROUND

any application. They can depend on other autonomous services, but not

on the applications that make use of themselves. The implementation is

not depending on any language or platform. Services can be written in

any language and running on any platform. SOAs create software appli-

cations out of the composition of loosely coupled autonomous services. As

services are autonomous they are responsible for their own functionality

and also security.

• Share Schemas and Contracts, not Implementations

This principle is the most important one, even though it is quite sim-

ple, it is the core idea behind SOA: services are just applications that

receive and send messages. Clients and services share only the definitions

of these messages, and certainly don’t share code or complex objects. To

make this work, SOA relies on services publishing their functionality via

interfaces, that other applications and services can use to communicate.

This concept is also called the contract between client and service. All

that a client needs to know about a service is its contract, the schema of

sequence of messages the service will accept and return.

“A service contract is comprised of one or more published documents

(called service description documents) that express meta information about

a service. The fundamental part of a service contract consists of the ser-

vice description documents that express its technical interface. These form

the technical service contract which essentially establishes an API into the

functionality offered by the service.” (Erl 2009)

The most common Web service description documents are the WSDL def-

inition, XML schema definition and the WS-Policy. These contracts are

used for Web services which are implemented using SOAP, but services

2.2. SOA 13

can also be implemented as components and then the technical service

contract can be of any technology-specific API, like for example: REST,

RPC, DCOM, CORBA or WCF. The service-oriented architectures are

independent of specific technologies (Erl 2005).

• Service Compatibility is Based on Policy

A client needs to know more than just the contract, it also needs to know

the quality requirements like for example, quality of service, security and

encryption. These requirements are assessed in the policies. The policies

are integrated into the service contract and are a collection of XML state-

ments that let a service define its requirements for issues like security and

reliability.

Another important part of service oriented architectures is to find a suitable ser-

vice. When looking for a service, one can consult UDDI (Universal Description,

Discovery and Integration), an XML-based registry for businesses to publish their

services on the Internet.

To succssfully build and deploy a distributed SOA, there are four primary aspects

that need to be addressed (Papazoglou and Heuvel 2007) :

(1) Service enablement - Each discrete application needs to be exposed as a

service.

(2) Service orchestration - Distributed services need to be configured and

orchestrated in a unified and clearly defined distributed process.

(3) Deployment Emphasis should be shifted from test to the production en-

vironment, addressing security, reliability, and scalability concerns.

(4) Management Services must be audited, maintained and reconfigured. This

requires that corresponding changes in processes must be made without

14 2. BACKGROUND

rewriting the services or the underlying application.

2.2.3. Representational State Transfer (REST). One popular implemen-

tation of the SOA paradigm, that can be applied to service-oriented systems, is

called Representational State Transfer (REST). It is an architectural style for dis-

tributed hypermedia systems. Fielding introduced this architectural hybrid style,

derived from several network-based patterns (Fielding 2000).

The most salient feature of a REST architecture is that exchange of messages, be-

tween services, should be in a simple form. For example, the HTTP protocol is

widely used in a REST architecture and the operations are GET, POST, PUT and

DELETE. Another feature is that any resource or service should be identifiable

by its URI. All this means that, any client that wishes to connect to a service

needs only to know the URI of the service, the protocol and the format of the

data returned by the service. REST provides a set of architectural constraints

that, when applied as a whole, emphasize scalability of component interactions,

generality of interfaces, independent deployment of components, and intermediary

components to reduce interaction latency, enforce security, and encapsulate legacy

systems (Fielding 2000).

A specific REST style architecture such as the web, consists of client and server.

Coupling between client and server on a REST architecture is more loose than with

other Remote Procedure Call (RPC) architectures because of this insistence of a

simplified, well-known interface. Request and response are built around the trans-

fer of "representations" to or from "resources". A resource can be essentially any

coherent and meaningful concept that requests could be addressed to. A represen-

tation is typically a document, mostly XML format, that captures the current or

intended state of a resource. This makes development of services by different teams

easier, especially when a project is open source and team members are geographi-

2.3. INTRODUCTION TO HACKYSTAT 15

cally dispersed. Also, REST does not need any resource discovery mechanism.

Fielding defines the desirable properties which the REST style addresses (Fielding

2000):

• Performance

• Scalability

• Simplicity

• Modifiability

• Visibility

• Portability

• Reliability

2.3. Introduction to HackyStat

HackyStat1 is an open source framework for automated collection and analysis

of software engineering process and product data. Hackystat was founded in 2001

by Philip Johnson at the University of Hawaii and has gone trough eight major

architectural revisions during that time. The Hackystat framework was reimple-

mented as a service oriented architecture (SOA) and is now released in version 8

(Johnson, Zhang, Senin 2009). The simplified idea of Hackystat is to attach sensors

to the integrated development environment (IDE) or operating system (OS) of a

developer, collecting raw data, any kind of metrics, and send them to the HackyS-

tat server for storage and evaluation. Once sent to the Hackystat server the data

is stored in a database, the so called Sensorbase. The Hackystat framework anal-

yses and visualizes the data of a specific project to a developer. The major user

interface is a web application providing a visualization of the collected data for a

developer (see figure 2.1). The projects belonging to a developer are listed, and for

1http://www.hackystat.org

16 2. BACKGROUND

Figure 2.1. Hackystat Web-application: ProjectBrowser

each project the data can be shown for a given period.

There are two motivations to focus on projects for the representation of data in

Hackystat :

(1) Usually developers work on more than one project at a time. It is some-

times useful to be able to analyse the work that is done on project A

separately from the work done on project B.

(2) Usually developers work on projects with other developers. In this case,

it is sometimes useful to aggregate data collected from one developer’s

activities with the data collected by other ones. For example, one might

be developing software with three other ones and be interested in the total

number of unit tests invoked by all members of the project. Or, one de-

veloper may have a daily build mechanism that automatically runs tests,

computes coverage, and generates size data. It would be nice if that sensor

data could be shared by all members of the project, rather than forcing

each person to generate it individually.

2.3. INTRODUCTION TO HACKYSTAT 17

The project-representation in Hackystat is designed to satisfy these two situations,

as well as the combination of the two. Projects also have start and end dates, which

allow the analysis of data associated with a single increment of development, for

example.

The second user interface is called TickerTape, generating so called Twitter mes-

sages on the social networking website Twitter2. The aim is to have an automatic

way for developers to tell other developers what they are working on. This is inter-

esting if developers are connected via Twitter and are working on the same project.

Tickertape has also support for the Nabaztag Rabbit3 service.

Hackystat is in general intented for:

• Researchers: Hackystat can be used to support empirical software engi-

neering experimentation, metrics validation, and more long range research

initiatives such as collective intelligence.

• Practitioners: Hackystat can be used as infrastructure to support pro-

fessional development, either proprietary or open source, by facilitating

the collection and analysis of information useful for quality assurance,

project planning, and resource management.

• Educators: Hackystat is actively used in software engineering courses at

the undergraduate and graduate levels to introduce students to software

measurement and empirically guided software project management.

2.3.1. The Vision of Hackystat. Software engineering measurement is a

compelling practice in principle. Measurement and observation of developer be-

haviour and code quality can provide insight into the current state of development,

one can make predictions about the future and establish ideas on how to improve

2http://www.twitter.com
3http://www.nabaztag.com

18 2. BACKGROUND

current development practice and work artifacts (Johnson, Zhang, Senin 2009).

The facts, that not every sensor has to be attached to an IDE, a sensor can be

written in and for any developing language (Java, C, C++, Python e.t.c), and that

the service oriented architecture enables an extendable independent framework for

further functionality, provide an overall vision of a dynamic powerful tool that is

open minded and so willing to make advances in software engineering research. The

Hackystat framework and its services are employed to use and interpret all kind of

data for any kind of analysis needed. For example, the system has been used in

Universities to collect and evaluate data of students in order to improve the educa-

tional system of software development in computer science (Johnson, Zhang 2009).

Hackystat accomplishes it’s REST architectural style through the use of a REST

API provided by restlet.org. The client sensors and the sensorbase communicate

with one another using this API. One of the main quality attributes that the Hack-

ystat project should deliver is extensibility with regard to new client-side plugin

sensors for IDEs and the extensibility of user interfaces. This includes extending

existing user interfaces such as the project browser and adding new ones in addi-

tion to Twitter, Facebook etc. These extensions are easily delivered to developers.

This allows tailoring of Hackystat for their own statistical analyses requirements.

The REST API provides low coupling between all of these services by using the

standardised HTTP protocol and, hence, makes it easy and available to everyone

to extend the system.

The vision of HackyStat is to gather knowledge in the domain of software engineer-

ing and software development process and to return this knowledge by supporting

practitioners and researchers.

2.3. INTRODUCTION TO HACKYSTAT 19

2.3.2. Overview of Hackystat’s Service Oriented Architecture. Hack-

ystat is not a conventional monolithic system but it is a collection of services (see

figure 2.2) that are working together to provide developers with data about certain

activities or data around their projects. Hackystat has a service-oriented archi-

tecture build on REST (see section 2.1.3). Not every service used by the system

belongs to the Hackystat project. It also uses external services like Twitter and

Google Charts. Twitter is used for communication facilities and Google Charts is

used to present the data in visualized forms like charts. Every Service of Hackystat

is a standalone project hosted by Google Code. Every service has its own docu-

mentation, SVN and mailing groups. The core components of the framework are

listed and explained in the following sections.

2.3.3. Hackystat’s Services and Components.

2.3.3.1. Sensorbase. Sensorbase is providing the following facilities:

• Receives sensor data transmitted from Hackystat sensors and persists it

in a database.

• Receives sensor meta-data (Users, Projects, Sensor Data Types, etc.)

transmitted from UI services and persists it in a database.

• Responds to queries from services for information about sensor data and

meta-data.

Project: hackystat-sensorbase-uh (Sensorbase)

Description: The Sensorbase service with an underlying database provides a HTTP

server, which is responsible for processing GET, PUT, POST, and

DELETE requests from other Hackystat web services, an interface to

the underlying database persistency layer and a Java Client with high-

level methods to interact with the server services via REST.

Interacting: Database

Depending: hackystat-utilities

20 2. BACKGROUND

Figure 2.2. HackyStat SOA, Components and Dependencies

The Sensorbase server interacts with an Apache Derby database over JDBC. Apache

Derby is a Java relational database management system that can be embedded in

Java programs and used for online transaction processing. It can be connected over

JDBC. Java Database Connectivity (JDBC) is an API for the Java programming

language that defines how a client may access a database. It provides methods

for querying and updating data in a database. The server only interacts with the

database over the JDBC driver and a Java client class interacts with the server via

the REST API.

2.3. INTRODUCTION TO HACKYSTAT 21

2.3.3.2. Daily Data Project (DPD). DPD takes data from the Sensorbase and

abstracts it into summaries of project processes and product metrics at the grain

size of a day. The DailyProjectData service provides abstractions of the raw sensor

data in the Sensorbase repository. Specifically, it creates abstractions of the sensor

data associated with a single Project for a single 24 hour period. For example,

the "DevTime" abstraction represents the number of minutes that developers were

actively interacting with development tools on work products associated with a

specific Project. This abstraction is generated by analyzing the DevEvent sensor

data and transforming it into a value indicating the number of minutes that the

developers were actively working on the project.

Project: hackystat-dailyprojectdata

Description: The DailyProjectData project is a service taking data from the sen-

sorbase and abstracts it into summaries of project process and product

metrics at the grain size of a day. It provides a server for the services,

a front-side cache, interprets metrics and a java client with high-level

methods to access the services via REST.

Interacting: Sensorbase

Depending: hackystat-utilities, hackystat-sensorbase-uh

The service interacts with the Sensorbase service via the REST API and provides

its own services.

2.3.3.3. Telemetry. Telemetry provides an implementation of Software Project

Telemetry suitable for display by Hackystat 8 user interface services. These Teleme-

try Analysis services utilize data from the Daily Project Data service to produce

representations of process and product trends over time.

Project: hackystat-analysis-telemetry

22 2. BACKGROUND

Description: This Telemetry Analysis service utilizes data from the DailyProject-

Data (DPD) service to produce representations of process and prod-

uct trends over time. The project provides a server for the services, a

prefetch service that speeds up Telemetry Chart display, an analyzer for

the DPD data, and a Java client with high-level methods for connecting

the services via REST.

Interacting: DailyProjectData Service, Sensorbase service

Depending: hackystat-utilities, hackystat-sensorbase-uh,

hackystat-dailyprojectdata

The service interacts with the DPD Service via REST. It collects DPD data and uses

its analyzer classes to interpret them. It also connects the services of Sensorbase

over the Java Client SensorbaseClient, which is a high level java class interacting

with the Sensorbase services via the REST API. The Telemetry server provides

services to retrieve chart data for the Google Chart service.

2.3.3.4. TickerTape. TickerTape is a simple user interface that polls Hackystat

for changes to a given project, then generates a status report that can be sent to a

variety of devices. Similar to a "ticker tape" it can currently connect two devices.

The supported devices are the Nabaztag Rabbit (www.nabaztag.com) and Twitter

(www.twitter.com) (see figure 2.3). Twitter is a service-oriented web application

that allows to publish short messages in its community. The server is configured

by an XML file. The XML files also provide the necessary account information for

Twitter and/or Nabaztag. The TickerTape is configured to collect data in a given

interval about specified projects, identify changes, summarize them and update

Twitter or Nabaztag in a given time interval.

Project: hackystat-ui-tickertape

Description: Provides a server that polls Hackystat for changes to a given project,

then generates a status report that can be sent to a variety of devices.

2.3. INTRODUCTION TO HACKYSTAT 23

Figure 2.3. Hackystat and Twitter

Interacting: Telemetry Service, DailyProjectData Service, Sensorbase service, Google

Chart Service

Depending: hackystat-utilities, hackystat-sensorbase-uh,

hackystat-dailyprojectdata, hackystat-analysis-telemetry

It is a simple server application, configured by an XML file that is not provid-

ing services. It connects the other services, Hackystat and third-parity (example:

Twitter) over the REST API. Twitter is also providing a java library with classes

to connect the Twitter API. .

2.3.3.5. Project Browser. The Project Browser provides a web application in-

terface to Hackystat services. It is the standard user interface for managing projects

and providing information on the single projects. One of the goals of the Project-

Browser is to simplify the task of creating basic analyses for Hackystat. The initial

overhead is learning Apache Wicket, but after that the ProjectBrowser is designed

to provide a framework where one can easily implement a new "tab" with a custom

analysis.

24 2. BACKGROUND

Project: hackystat-ui-wicket

Description: Provides an web application interface to Hackystat services. It in-

teracts with all the underlying services to present the data to a user. It

is built on the Apache Wicket Framework.

Interacting: Telemetry Service, DailyProjectData Service, Sensorbase service, Google

Chart Service

Depending: hackystat-utilities, hackystat-sensorbase-uh,

hackystat-dailyprojectdata, hackystat-analysis-telemetry

It connects to all the services over the REST API. The chart data from telemetry

is sent to the Google Chart service to retrieve chart diagrams, also via the Google’s

REST API. This project is one of the biggest components of Hackystat and is

worth exploring in more detail in the following sections. The Project Browser has a

multi-tier architecture. It interacts with different services, which interact with

other services and the backend is the database.

Wicket is a java web development framework from Apache. There are a copious

number of other java web development frameworks in existence and wicket tries

to differentiate itself from these on the grounds of being component-based, using

generic XHTML/HTML with no added features, and mimics the frameworks of

other stateful user interface frameworks such as Sun’s Swing, Microsoft’s Visual

Studio and Borland’s Delphi.

An application written for the Wicket framework is a tree of components. In the

same way that a conventional desktop framework operates, the components use

listeners to react to user events, the events being HTTP requests in this case. The

component delegates a listener and associates it with an element on the webpage by

using the special HTML attribute ’wicket:id’. This is the only link from the HTML

code to the component and the framework handles the rest. Furthermore, due to

the fact that the tag attribute ’wicket:id’ is a valid HTML attribute and there is

2.3. INTRODUCTION TO HACKYSTAT 25

no embedded code, it allows for the HTML to be worked on using ordinary HTML

visual editors such as Dreamweaver. Similar to Swing, the Wicket framework con-

siders the ’page’ to be the top level container. A page can have components added

to it and some of these components can also be considered as containers. Com-

ponents can be packaged in JAR or ZIP files for reuse. To make an analogy to

the MVC architecture, each wicket component has an associated ’model’, which is

used to hold the data for that component, the ’view’ is the HTML and style sheets

associated with that component and the controller is the wicket component which

contains the business logic and responds to requests from the ’view’.

2.3.3.6. SensorShell and Sensors. Sensors are independent small applications

collecting data and metrics and sending them to the Sensorbase service. There

are 21 different sensors. Sensors can be depending on the SensorShell project to

simplify its implementation.

The SensorShell can be used by Java-based Hackystat clients to simplify collection

and transmission of sensor data to a Hackystat Sensorbase service.

The SensorShell provides the following facilities:

• Data transmission. The SensorShell provides an object-oriented interface

that makes it easy for Java-based sensors to specify what sensor data

should be sent to a Sensorbase server. The SensorShell takes care of the

details of emitting the HTTP calls.

• Data buffering. When a SensorData instance is "added" to a SensorShell,

it is not immediately sent to the server. Instead, the instance is added

to an internal list, and accumulated SensorData instances are sent in a

single HTTP request when the SensorShell receives a "send" command.

• Automated sending at user-defined intervals. The SensorShell provides

a timer-based subprocess that sends accumulated SensorData at regular

intervals (by default, one per minute). Thus, while buffered transmission

26 2. BACKGROUND

is intended to avoid excessive HTTP traffic, automated sending ensures

that an excessive amount of data does not accumulate on the client-side.

• Interactive shell interface. In addition to a Java API, the SensorShell

implements an interactive, string-based command line interface. This en-

ables the SensorShell to be invoked manually, as well as being useful as

infrastructure for non-Java-based tools that can communicate with sub-

processes.

• Offline data storage. If the Sensorbase cannot be contacted, the Sen-

sorShell can cache data locally until a connection is established at some

future point in time.

Project: hackystat-sensor-shell (SensorShell)

Description: Provides a middleware for accumulating and sending notification of

sensor data to Hackystat. SensorShell has two modes of interaction:

command line and programmatic.

Interacting: Sensorbase

Depending: hackystat-utilities, hackystat-sensor-base

This project can be used by sensors to interact with the Sensorbase service. It can

be used as local service to send data to the Hackystat server over the command

line. A sensor can execute these command lines or use the Java interfaces to send

data to the server. The SensorShell is configured by an XML file. The project is a

middleware because it sits in the middle of the client (sensor) and the application

server (Sensorbase), it is a three-tier architecture.

Project: hackystat-eclipse-sensor (EclipseSensor)

Description: Provides a middleware for accumulating and sending notification of

sensor data to Hackystat. SensorShell has two modes of interaction:

command line and programmatic.

Interacting: Sensorshell/Sensorbase or only Sensorbase

Depending: Eclipse API

2.3. INTRODUCTION TO HACKYSTAT 27

This project is part of the Eclipse architecture. It is a stand-alone plugin inte-

grated into Eclipse accessing the Eclipse API to collect data and send the data to

the Sensorbase via the Sensorshell. It is also the client in a three-tier arctitecture.

If the sensor is connecting to the Sensorbase directly then we are dealing with a

Client-Server architecture.

2.3.3.7. Utilities, SimData and SystemStatus.

• The Utilities project provides a repository for generic utilities of potential

use to multiple Hackystat services.

• The SimData project supports "simulated" Hackystat sensor data. For

example, in order to understand a Hackystat analysis technique such as

Software Project Telemetry, it helps to see telemetry generated from sen-

sor data that illustrates various canonical kinds of software project trends.

Such simulations form "scenarios" of use.

• The SystemStatus project provides tools to support assessment of Hack-

ystat sensors and services. It is a command line tool that assesses the

Sensorbase service status and sends an email to a user with its results.

CHAPTER 3

Autonomic and Service-Oriented Computing

3.1. Ovierview

3.1.1. Autonomic computing. In mid-october 2001, IBM released a man-

ifesto that the main obstacle to further progress in the IT industry is a looming

software complexity crisis (Kephart and Chess 2003). The manifesto claimed that

the difficulty of managing today’s computer systems goes well beyond the adminis-

tration of individual software environments. The need to integrate several hetero-

geneous environments into cooperate-wide computing systems, and to extend that

beyond company boundaries into the internet, introduces new levels of complexity

(Kephart and Chess 2003).

Computing system’s complexity appears to be approaching the limits of human

capability, and there will be no way to make timely, decisive responses to the rapid

stream of changing and conflicting (Kephart and Chess 2003). The only option re-

maining is autonomic computing, computer systems that can manage them-selves

given high-level objectives from administrators (Kephart and Chess 2003). When

IBM’s senior vice president of research, Paul Horn, introduced the term autonomic

computing in 2001 he choose it on purpose with a biological connotation: auto-

nomic nervous systems. The autonomic nervous system controls our heart rate and

body temperature, thus freeing our conscious brain from the burden of dealing with

these and many other low-level, yet vital, functions. Autonomic computing is a big

challenge that reaches far beyond a single organization (Kephart and Chess 2003).

29

30 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

Let’s redefine the self-* properties we introduced in chapter 1, more precisely from

the point of view of automic computer as descibed by IBM (Horn 2001).

• Self-management

“The essence of autonomic computing is self-management, the intent of

which is to free system administrators from the details of system opera-

tions and maintenance and to provide users with a machine that runs at

peak of performance twenty-four hours a day, seven days a week.” Self-

managing system have to adjust by facing changing components, work-

loads, demands, external conditions, and of course, failure.

IBM cites four aspects of self-management in autonomic computing (Kephart and

Chess 2003):

• Self-configuration: “Automated configuration of components and systems

follows high-level policies. Rest of the system adjusts automatically and

seamlessly”

• Self-optimization: “Components and systems continually seek opportuni-

ties to improve their own performance and efficiency”

• Self-healing: “System automatically detects, diagnoses, and repairs local-

ized software and hardware problems”

• Self-protecting: “System automatically defends against malicious attacks

or cascading features. It uses early warning to anticipate and prevent

systemwide failures”.

This definition matches the initial definition provided in chapter 1 of this disserta-

tion.

Autonomic systems are interactive collections of autonomic elements, individual

system constituents that contain resources and deliver services to humans and other

autonomic elements (Kephart and Chess 2003).

An autonomic element will typically consist of one or more managed elements cou-

pled with a single autonomic manager that controls and represents them, as illus-

3.1. OVIERVIEW 31

Figure 3.1. Structure of an autonomic element (from Kephart
and Chess 2003)

trated in figure 3.1. The managed element will essentially be equivalent to what

is found in ordinary non-autonomic systems, although it can be adapted to enable

the autonomic manager to monitor and control it. The managed element can be a

a software resource, such as database, a directory service or a web-service but also

a hardware resource, such as storage, a CPU or a printer. By monitoring the man-

aged element and its environment, and constructing and executing plans based on

analysis of the monitored information, the autonomic manager will relieve humans

of the responsibility of directly managing the managed element.

This sounds perfect in theory, however fully autonomic computing is hardly possi-

ble to achieve. Fully autonomic computing can be evolved as designers gradually

add increasingly sophisticated autonomic managers to existing managed elements

(Kephart and Chess 2003).

32 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

The distinction between autonomic manager and managed element may become

merely conceptual rather than architectural (Kephart and Chess 2003), but for the

sake of reusability the distinction should be well defined, for example with interfaces

that separate the abstract from its implementation. The boundaries between the

system-agnostic and system-specific part whiitin the autonomic manager should be

well defined in order to distinct between the autonomic manager and the managed

element (Anglano Montani 2005) .

Virtually every aspect of autonomic computing offers significant engineering chal-

lenges. The life cycle of an individual autonomic element or of a relationship among

autonomic elements reveals several challenges. Some challenges arise in the context

of the system as whole, and still more become apparent at the interface between

humans and autonomic computing (Kephart and Chess 2003).

The concept for automomic service-oriented systems, described at the end of this

chapter distinguishes well between the autonomic manager and managed elements

and the implementation of concept shows the engineering challenges.

Kephart and Chess (Kephart and Chess 2003) discuss the scientific challenges of

autonomic computing and state that the success of autonomic computing will hinge

on the extent to which theorists can identify universal principals that span the mul-

tiple levels at which autonomic systems can exist. This universal principals reach

from behavioral abstraction over models to machine learning.

In this dissertation we choose machine learning and its mature do-

main of Cased-based Reasoning to accomplish our concept for autonomic

service-oriented systems, to achieve self-healing, self-reconfiguring, self-

optimizing and self-protecting. We combine the autonomic machine

learning concept of Case-based Reasoning, presented in section 3.4, with

3.1. OVIERVIEW 33

the autonomic MAPE-cyle presented in detail in section 3.5 and add a

service-oriented architecture to it in order to address the problems and

apply the solutions presented in the following sections 3.1.2, 3.2 and 3.3.

3.1.2. Service-Oriented Computing . Service-oriented architectures are

complex and hard to maintain. In service-oriented computing, a service may run on

many machines, and single machines may host many services (Li et al. 2005). The

concept of distributed composition of services hides a huge amount of complexity

in the management of the services. Users have to deal with complex configuration

of services to achieve functional and quality requirements, thus the complexity of

the system requires a lot of administrator-interference (Papazoglou and Van den

Heuvel 2007). Despite the effort of the administrator, the configuration may not be

good enough (Li et al. 2005). It is hard for an administrator to monitor individual

services and the service-oriented system to determine if the system is running op-

timal (Li et. al 2005). Therefore a growing trend for autonomy in service-oriented

architectures has emerged. This trend leads, like many other trends of different

domains, to a rather specific and isolated research domain called autonomic com-

puting. Combining the two domains of autonomic computing and service.oriented

computing results in a domain we can call autonomic service-oriented computing.

In the research domain of autonomic service-oriented computing, we can observe a

growing trend of publishing over the last years. Many approaches and solutions,

addressing different topics, are proposed. Looking closer at them, they have some

common characters with automic computing. It is clear that those problems are

the same as the problems addressed by autonomic computing. Therefore it obvious

that we need autonomic computing to addess these issues.

First, let us remember what we need to successfully build and deploy a distributed

SOA. There are four primary aspects that need to be addressed (Papazoglou and

Heuvel 2007):

34 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

(1) Service enablement

(2) Service orchestration

(3) Deployment

(4) Management of services

We need to address all four aspects to successfully build service-oriented systems.

Some of the aspects are already provided in legacy systems we need to improve.

Altough these four aspects should not violated by any proposed solution for auto-

momic service-oriented systems. Furthermore a proposed concept should improve

and automate the last aspect: management of services.

In service-oriented computing, there are several categories of conceptual issues that

need to be managed. Some problems, their solution, and the approach to achieve

those solutions are presented here in this chapter in a general overview.

The composition of services and the problems it encompasses are conceptually the

same as in any other distributed system(Li et al. 2005). Since a service-oriented

architecture is a composition of many services, problems of the architecture can de-

pend on only one, or more elements. This can range from a single misconfiguration

of a service up to the disfunction of the overall structure of the service-oriented

architecture. The problems service composition encompasses, can be adopted

from the problems in distributed systems (Li et al. 2005). Christiane Hofmeister

(Hofmeister 1998) defines overall areas of possible change in distributed applica-

tions. In this research the areas of possible change are adopted to service-oriented

systems and called: general types of change in service-oriented computing.

• Service Implementation (Module Implementation): The system’s overall

structure remains the same. Maybe one or more services are misbehaving

and causing problems.

• Service-oriented Architecture (Structure): The system’s logical structure

(also called either the modular structure or the topology) may change.

3.1. OVIERVIEW 35

The bindings between services, messaging between services, may be al-

tered, new services may be introduced and other services may be removed.

Of course, structural change may cause alterations to the implementation

of the service-oriented system.

• Service Localization (Geometry): The service-oriented architecture may

remain the same, but the mapping of the system’s logical structure to the

physical service localization - that is the geometry - may change.

These definitions are to be carefully understood. The differences between service

implementation, system’s logical structure and service localization have to be care-

fully understood because they can easily fade.

Does bringing up a second instance of a service on the same machine, change the

service implementation, the logical structure or a geometrical service location? It

does not change the service implementation, neither does it change geometrical

location, it changes the service-oriented architecture, the communication and mes-

saging path.

Li et al. (Li et al. 2005) adopted Christiane Hofmeister’s concept as well, but in

a slightly different way. They argue that for a web-service based system, the first

two kinds of problem areas become easy to handle since components, building a

service, can be easily and dynamically replaced, because web services separate the

interface from its implementation. Thus they focus on geometrical change.

While they are right that service localization addresses the quality of service (QoS),

they seem to underestimate the importance of the two first types. Service imple-

mentation is also about configuration, optimization and recovery of a single service.

Reconfiguring a service may increase performance and diminishes the need for a ge-

ometrical change, which can end-up in extra costs. Service-oriented architectures

can also be configured and improved. Starting up the same service twice to address

load balancing does not need essentially a geometrical change, the binding between

36 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

services gets altered and changes the logical structure. Anyway, one major assump-

tion of the first two kinds of configuration change is the accessibility of the services

and that they are configurable. First we have to trace back to the initial points of

service compositions and the kind of change they may raise, this can be identified

in the solution proposed in realted work.

3.2. Related Work

In this section, some selected work of different approaches related to this thesis

are presented. The papers are classified to point out the capabilities of the concept

we will design and which is presented at the end of this chapter. All the listed work

influenced our framework in some way. Furthermore we provide a simple general

categorization of the poblems and solutions.

3.2.1. Service-subsitution. BenHalima et. al (BenHalima Jmaiel and Drira

2008) present in their paper a QoS-oriented reconfigurable middleware for self-

healing services . The middleware has been achieved in the context of WS-DIAMOND

1 project and covers the whole cycle of adaption management including monitoring

and analysis of QoS values, and substitution-based reconfiguration. The substi-

tution recovery approach is suitable for recovery when a compatible service, with

acceptable QoS. exists that can replace a service with QoS misbehavior or QoS

degradation.

Hielscher et. al (Hielscher Kazhamiakin, Metzger and Pistore 2008) present in their

paper a framework for proactive self-adaption of service-based applications based

on online testing. The service gets monitored online and adaption requests are send

to the service.

1http://wsdiamond.di.unito.it/

3.2. RELATED WORK 37

Denaro and Shilling (Denaro and Schilling 2006) head to the direction of service-

substitution trough service discovery mechanisms to achieve self-adaption in service-

oriented architectures.

Grishikashvili et.al (Grishikashvili, Pereira and Taleb-Bendiab 2005) are extending

existing works in autonomic computing and service-oriented computing by describ-

ing a OSAD (On-demand Service Assembly and Delivery) model which follows the

MAPE-cycle to achieve self-healing of distributed services.

Gehler and Heuer (Gehlert and Heuer 2008) propose in their paper called “Towards

Goal-driven Self Optimisation of Service Based Applications” a concept for achiev-

ing self-optimization by using goal-models. If a service is discovered that suits the

goal-model better than the actual one, it gets substituted by the new service. Of

course the new service provides the same functionality, but the service fulfills the

requirements of the service-oriented system better, e.g has a higher performance

than the existing one.

3.2.2. Service-reconfiguration. Tichy and Giese (Tichy and Giese 2004)

present in their paper “A self-optimizing run-time architecture for configurable

dependability of services” an architecture implemented on top of Jini (FootNOte

JINI) that is self-healing and self-optimizing. It manages the instances of services in

the service-oriented architecture by restarting if failure and parameter adaptation

to improve QoS.

3.2.3. Service-adaption. Di Nitto et. al (Di Nitto, Ghezzi, Metzger, Pa-

pazoglou and Phol 2008) provide in their paper “A journey to highly dynamic,

self-adaptive service-based applications” a good overview on the topic of autonomic

service-oriented systems. They claim that future service-oriented systems will op-

erate in a highly-dynamic world. Technology, regulations, market opportunities

and a mixed environment of people, content, and systems will continuously change

38 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

and evolve. Service-based applications will thus have to continuously adapt them-

selves to react to changes in their context and to address changing user require-

ments. Adaptation must be achieved in an automatic fashion: service-oriented

systems should exhibit self-healing, self-optimizing, and self-protecting capabilities.

In addition, they should be able to predict problems, such as potential degrada-

tion scenarios, future faulty behavior, and deviations from expected behavior, and

move towards resolving those issues before they occur. This means that future

service-oriented applications will need to become truly proactive (Di Nitto, Ghezzi,

Metzger, Papazoglou and Phol 2008).

3.2.4. Service-relocalization. Li et al. (Li, Sun, Qui and Chen 2005) present

in their paper “ Self-reconfiguration of service-based systems: A case study for

service level agreements and resource optimization” a MAPE-cycle strategy for

re-configuring the geometrical location of services within a service-oriented archi-

tecture.

3.2.5. Service-oriented and agent-oriented concepts for autonomic

computing. Cao et. al (Cao, Wang, Zhang and Li 2004) propose in their paper “A

dynamically reconfigurable system based on workflow and service agents” a service-

oriented dynamically reconfigurable system framework. They state that service-

oriented computing plays a fundamental role in supporting self-management for a

software system within an autonomic computing paradigm and that current service

technology is far from satisfying. In their framework, service agents can configure

their service independent plans into service dependent plans to respond to requests

from the environment. A service agent can also optimize it services based on QoS

evaluation.

3.2.6. Self-healing trough Case-based Reasing. Anglano and Montani

(Anglano Montani 2005) provide the most relevant work for this dissertation in

3.3. SERVICE COMPOSITION AND COORDINATION 39

their paper “Achieving self-healing in autonomic software systems: a case-based rea-

soning approach”. They address only self-healing, but successfully within service-

oriented computing by creating CBR-features and CBR-cases out of the service-

oriented system and apply them to Case-based Reasoning. Unlike alternative so-

lutions, service failure gets addressed directly rather than individual component

faults, so that unnecessary repair actions are avoided. Moreover, the concept does

not require the availability of structure knowledge like, for instance, behavioral

models. Thus applying the concept to large-scale, complex systems is more likely

feasible.

3.3. Service Composition and Coordination

We analyze the elementary possible service compositions that a service-oriented

architecture consists of. There may be just a few scenarios of service composition

building the foundation of a service-oriented architecture. They are presented here

in a modulary perspective, assuming that there are three major basic schemes of

service composition. We reflect the general types of changes in service-oriented

computing to the schemes from the problem and solution point of view. In a

scenario we can identify which possible types of change are sources of problems,

and to which type of change a possible solution belongs, presented in the previous

section.

Figure 3.2. Basic schemes of service composition

40 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

• Scheme 1

Scheme 1 in figure 3.2 shows a simple service composition of two services

(S1 and S2) hosted by the same machine. Assuming that S1 is using func-

tionalities of S2, we reflect this scenario on the general types of change in

service-oriented computing. Since the service-oriented architecture is not

distributed, issues occuring from the geometrical location are not a pos-

sible problem source. Problems occuring from the logical structure and

service implementation, i.e qualitiy of service issues, are the most proba-

ble problem sources. Solutions for problem solving could be of all three

types of changes. For example one of the services could be distributed to

a different machine, a different geometrical location in order to allocate

more resources to both services. QoS-adaption and service-substitution

can be a solution too, depending on the problem source.

• Scheme 2

Scheme 2 in figure 3.2shows a simple scheme of two service (S1 and S2)

hosted by two different machines. This is the most common scenario in

service-oriented architectures. Problems can occur on all three levels and

appropriate solutions can be adopted from all three types of change. As-

suming that one host (Host 2) is down, we launch the service on a different

machine and change the logical structure. The functionality of the failed

service can also be provided, maybe with a better QoS, from another ex-

ternal service located somewhere in the network. QoS-adaption or service

recovery can also be possible type of change depending on the problem

source.

• Scheme 3

Scheme 3 in figure 3.2shows a service composition between a service (S1)

hosted by a machine and an external service (S2) located somewhere in

3.4. CASE-BASED REASONING 41

the network by a different organization. The difference between scheme

3 and the two previous ones, is that the external service is hosted by a

different organization. Reconfiguring or recovering the external service is

not possible via our service management framework. The only solution

here is a geometrical change to a service providing same functionalities.

A complex service-oriented architecture constists of course of many service com-

positions that can be of any of these three types combined to a huge web of ser-

vices. However in order to create a concept for automic service-oriented systems, we

have to use the “divide and conquer-principle”to split up the complexity in service-

oriented architecture in its smalles units. Here we provided those units and will

now present the CBR technology that is able to implement solutions for the differ-

ent units and their problem source. Solutions proposed for any problem can

be adopted from related work and implemented as CBR case. The goal

of using CBR for achieving autonomic service-oriented systems is that

CBR can cover a huge problem domain by teaching it the solutions to

different problems.

3.4. Case-Based Reasoning

The first European workshop on Case-Based Reasoning (CBR) took place in No-

vember 1993 (Aamodt and Plaza 1994) and is nowadays one of the most successful

applied AI technology in recent years (Diaz-Agudo et. al 2007).

CBR is a problem solving paradigm that differs from other major Artificial Intel-

ligence approaches. Instead of relying solely on general knowledge of a problem

domain or making associations between problem descriptors and conclusions, CBR

is able to utilize the specific knowledge of previously concrete problems called cases

(Aamodt and Plaza 1994). CBR is an approach to incremental, sustained learning,

42 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

since a new experience is retained, in the so called case-base. Each time a prob-

lem has been solved, it is immediately available for future problems. CBR is an

automated machine learning approach (Aamodt and Plaza 1994).

CBR transforms unformalized knowledge into formalized knowledge. The cases de-

scribe a problem, its solution and the outcome in self-managing autonomic systems.

With the help of existing solved cases, new problem cases are solved.

We can compare the CBR approach to human reasoning by remembering solutions

to similar problems adopted in the past and by adapting them to current situations

(Anglano and Montani 2005). In this comparison, the problem of a fully autonomic

systems gets clear. Machines are not human and cannot use qualitative reasoning.

This is why there are two strategies for implementing CBR (Anglano and Montani

2005):

(1) Quantitative Reasoning, a solution of a similar problem is applied with

no adoption. This strategy is called Precedent Case-Based Reasoning

(2) New or similar cases are solved with an adopted or new solution. A

simple form of adaption may be full automated. Although usually some

user intervention is needed to perform reuse and adaption. This strategy

is called Case-Based Problem Solving and is the most used approach and

can be summarized by the following steps called CBR cycle:

(a) Retrieve the most similar cases from the case-base

(b) Reuse their solutions to solve the new problem

(c) Revise the proposed new solution

(d) Retain the current case for future problem solving in the case-base.

In CBR, features and cases have to be created for the managed element (Anglano

and Montani 2005). For example a system has some attributes that can cause a

fault. These attributes are captured with possible values they can hold. A case

is a problem scenario where some attributes have one of their possible values and

the solution to fix this problem. The core of CBR is an algorithm that compares

3.4. CASE-BASED REASONING 43

Figure 3.3. CBR-cycle

a new case to the existing cases. The solution of the most similar case is used

and evaluated. A known set of reconfiguration in the planning module, can adopt

the solution. If not successful an intervention of a human can solve the case that

is stored for future new problems. The features and cases are compared using si-

miliarity functions. Nowadays several CBR tools are available, implementing this

functions as well as ontologies for certain domains. Two very good academic CBR

tools, we came across in this research are: JCOLIBRi2 and myCBR3.

Cased-Based Reasoning solves new problems by retrieving previously solved prob-

lems and their solutions from a knowledge of cases. CBR uses the k Nearest Neigh-

bor algorithm, with some little differences, to get similar cases from the knowledge

2http://gaia.fdi.ucm.es/projects/jcolibri/
3http://mycbr-project.net/

44 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

and applies a Reuse and Revise stage afterwards (Craw, Wiratunga and Rowe 2006)

A CBR-case normally consist of:

(1) the problem description – a collection of <feature, value> pairs able to

summarize the problem

(2) the case solution– describing the solution adopted for solving the corre-

sponding problem

(3) the case outcome – justification of the solution

The problem description is a collection of <feature, value> pairs. In CBR features

are attributes describing the managed element. A CBR case describes the state

of a managed element by its attributes to a given time. In CBR the Case-base

consists of information concerning the failures of the system and their symptoms

(problem description), a case solution and the case outcome. First we analyze the

given system and identify metrics, i.e CBR features that can cause problems and

system failures. The CBR features can take possible values of a certain type. For

example for boolean features one can use the so called overlap distance (Wilson

and Martinez 1997).

A critical aspect of CBR is the case retrieval, whose computational costs strongly

depends on the organization of the case-base (Anglano and Montani 2005). For

the different CBR-features similarity functions have to be described for CBR, in

order to compare the features and find the overall most similar cases. The most

important work in CBR is selecting good CBR features and similarity functions

and designing a well defined structure for the case-base. As for AI in general, there

are no universal CBR methods suitable for every domain of application. The chal-

lenge in CBR as elsewhere is to come up with methods that are suited for problem

solving and learning in particular subject domains and for particular application

environments (Aamodt and Plaza 1994).In this dissertation we will define CBR

features and methods for service-oriented computing and provide a solid body of

3.4. CASE-BASED REASONING 45

knowledge for applying CBR in service-oriented systems.

In research, CBR is still evolving, for example Anglano and Montani state that it is

well suited for integration with Rule Based and Model Based Systems (Anglano and

Montani 2005). Another issue is automating the acquisition of adaption knowledge,

since tasks like design or planning typically require a significant amount of adaption

(Craw and Rowe 2001). In adaption knowledge, the adaption of a new solution gets

studied trough learning algorithms analyzing the problem and solution differences

in the case-base. Conversational Case-based Reasoning CCBR is another form of

extension of CBR focusing on user-input (Aha, Breslow and Munoz-Avila 2001).

However, CBR has become a mature and established subfield of artificial intel-

ligence (AI), both as means for addressing AI problems and as bases of fielded

AI technology. Now that CBR fundamental principals have been established and

numerous applications have demonstrated that CBR is a useful technology, many

researchers agree on the increasing necessity to formalize this kind of reasoning, de-

fine application analysis methodologies, and provide a design and implementation

assistance with software engineering tools (Diaz-Agudo et. al 2007).

While the underlying ideas of CBR can be applied consistently across application

domains, the specific implementation of the CBR methods, in particular retrieval

and similarity functions, is highly customized to the application at hand. Two fac-

tors have become critical: the availability of tools to build CBR systems, and the

accumulated practical experience of applying CBR techniques to real-world prob-

lems (Diaz-Agudo et. al 2007).

In this research, not only identifying CBR-features in service-oriented computing

is described, but these features are implemented in a CBR system that is applied

to a real-world service-oriented system.

46 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

The advantage of CBR is that a solution can be of any type, we revised in the

previous sections . With CBR we can accomplish the self-healing, self-reconfiguring,

self-optimizing and self-protecting part of a system to achieve its autonomy.

3.5. Monitor, Analysis, Plan and Execute (MAPE)

Most approaches, proposed in the presented literature (section 3.2), make use of

the Monitor Analysis Plan Execute (MAPE) strategy. We can benefit from it by

implementing CBR in the MAPE cycle in order to adopt different solutions and

integrate them into our concept. Furthermore it sounds logical to first monitor an

object, analyze or diagnose and then create a solution plan which gets executed.

This is well illustrated, in a more concrete manner by Cosimo Anglano and Ste-

fania Montani who suggest a cased-based reasoning (CBR) approach for achieving

self-healing autonomic software systems (Anglano and Montani 2005). In their con-

cept software systems are able to manage themselves in accordance with high-level

guidance from humans.

Figure 3.4. Autonomic MAPE-cycle

3.6. AUTONOMIC SERVICE MANAGER 47

An Autonomic Computing System (ACS) is composed in two entities, the managed

element and the manager which is, in the ideal case, full autonomic. The manager

is composed of five interacting but self-containing modules. The knowledge element

is building the base, learning systems must have a memory. As with our brain, the

memory has to be created and changed by different processes. These processes in

the ACS Manager can be found in the MAPE strategy, also called autonomic cycle.

3.5.1. The MAPE-cycle in Service-Oriented Computing. We present

how this cycle would look like for service-oriented systems.

• Monitor

In the monitoring phase the services are measured for any kind of data.

• Analysis

In the anaylsis phase the collected metrics to a given time are checked

for misbehaviour or inapproriate values. The analysis phases produces a

positive result if all of the metrics are correct, and a negative result if any

of the metrics is not appropriate.

• Plan

If the analysis phase provides a negative result, a strategic plan has do be

created for fixing the misbehaviour, recovering the system and improving

the service-oriented architecture

• Execute

In the execution phase the strategic plan gets executed and the miss-

behaving service or the whole service-oriented architecture gets fixed or

improved.

3.6. Autonomic Service Manager

As already mentioned, we combine the concept of Case-based Reasoning, with the

autonomic MAPE-cyle and add a service-oriented architecture in order to create a

48 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

solid conceptual framework, called Autonomic Service Manager (ASM), for achiev-

ing autonomic service-oriented systems, that enables the aspect of self-healing,

self-reconfiguring, self-optimzing and self-protecting. In the following steps the

MAPE-cycle gets concretized for autonomic service-oriented systems using CBR,

a service-oriented and agent-oriented architecture. Figure 3.5 shows the concept

of the ASM framework: it has three layers reaching from the SOA, over an Agent

layer to monitor the services and execute operations on them, to the core Auto-

nomic Manager implementing the MAPE-cycle with Case-based Reasoning. We

describe the concept from the MAPE-perspective in the next sections.

Figure 3.5. Framework for achieving automic service-oriented systems

3.6.1. Monitor. The Monitoring component makes use of the Agents for

monitoring and execution layer to monitor the service. This allows distributed

services to be monitored locally by its Agent. An agent-oriented architecture and

service-oriented architecture in autonomic computing is very powerfull and exactly

3.6. AUTONOMIC SERVICE MANAGER 49

what we need in this case, in order to also monitor locally the environment, like

resources and performance of a distributed service. Combining autonomic comput-

ing, agent and service-oriented-computing can be profitable for all, in particular,

for the development of autonomic computing systems (Brazier et al. 2009).

In the Monitoring component, the services get monitored. The collected metrics

are CBR-features that create a case for CBR. The CBR-features have to be care-

fully chosen and are dependend on the given system, its implementation, and cases

we want to create in order to solve different problems. To identify a problem

may involve simply noticing its input descriptors, but often, and particularly for

knowledge-intensive methods, a more elaborate approach is taken, in which an at-

tempt is made to understand and identify problems within their context (Aamodt

and Plaza 1994).

In service-oriented systems we may include the code or name of a service as CBR-

feature in order to create system-wide cases. If a problem has been solved for one

service it can be reapplied and adopted for any other service. This is an advantage

that makes CBR very powerful in service-oriented systems.

3.6.2. Analysis. In the Anaylsis component, the collected CBR-features to

a given time are analysed. If the CBR-features show misbehaviour or fall out of

range a CBR-case is created out of the metrics describing the problem.

3.6.3. Plan. If a problem occurred, the CBR-case created in the analysis

phase, gets used for finding an appropriate solution trough Case-based Reasoning:

• Retrieve

We retrieve the most similar cases and use the most appropriate one.

Usually we just use the best case, without any user-interference. It is

possible for example for an administrator to choose the most appropriate

50 3. AUTONOMIC AND SERVICE-ORIENTED COMPUTING

case out of a ranked CBR-case list. Remember, every solved case in the

Case-base has a specifc solution, which we can extract and re-apply.

• Reuse

The extracted solution from the best case is re-applied with or without

adoption to fix the current problem case.

• Revise

After the solution has been applied, we revise the outcome of applying the

solution. One may retain or adopt the solution or one can take a different

similiar case solution.

• Retain

Once a suitable working solution found for the case created in the analysis

phase, one should retain the case and its solution. The knowledge gets

stored in the Case-base for solving new cases.

3.6.4. Execute. This is actually the same step as Reuse in the CBR-cycle,

described in the Plan component above. However the execution compomonent

translates the more abstract solution stored in the Case-base to operations for the

Agents, in order to execute real operations on the services. An Agent is located

on the same machine as the associated service, this allows to control distributed

services via an agent-oriented and service-oriented architecture.

CHAPTER 4

The Hackystat Service Manager Project

4.1. Overview

In chapter three, we created the concept of the Autonomic Service Manager. Now

we implement this concept for Hackystat.

Figure 4.1. Hackystat Service Manager (HSM)

The Hackystat Service Manger (HSM) , is a free and open source software im-

plemented in Java1. It comes along with a simple GUI providing an overview of

the managed services. The current status of each service is provided, and each

service can be started or stopped. The innovative idea is that for each service,

an autonomic behavior of the service can be enabled, respectively disabled. The

autonomic behavior is achieved through a Thread implementing the MAPE-cycle.

1http://www.java.com

51

52 4. THE HACKYSTAT SERVICE MANAGER PROJECT

The MAPE-cycle and its underlying architecture, functionalities and implementa-

tion is the core of the Hackystat Service Manager and can easily be adopted and

extended to any other service-oriented software. Furthermore all services can be

launched locally at one time, but first we have to set up the appropriate Agents

for all services. This is mostly a functionality for demonstration reasons. HSM

implements partly the ASM concept and demonstrates its usage and way of how it

can be applied in real-life systems. However, due to the time limit of this research,

HSM only implements self-healing of the service-oriented system, but provides a

flexible extendable framework based on CBR. Introducing new CBR-features and

extending the case-base is quite easy and self-optimization, self-reconfiguration and

self-protecting can be achieved in the lifetime of the Hackystat-project. The project

page2 provides a binary distribution of the framework as Download. It also pro-

vides a detailed Wiki-directory with Installation Guide, Developper Guide, REST

API Specification and of course a SVN repository with the source code, available

to everyone. The projects is structured as follows:

• hsm - Hackystat Service Manager

• hsm-agent-sensorbase - Sensorbase Agent for the Hackystat Sensorbase

Service

• hsm-agent-dpd - DailyProjectData Agent for the Hackystat DailyPro-

jectData Service

• hsm-agent-telemetry - Telemetry Agent for the Hackystat Telemetry

Service

• hsm-agent-projectbrowser - ProjectBrowser Agent for the Hackystat

Web Application

• hsm.agent-tickertape - TickerTape Agent for the Hackystat TickerTape

component

2http://code.google.com/p/hackystat-service-manager/

4.2. ARCHITECTURE OF HACKYSTAT SERVICE MANAGER 53

4.2. Architecture of Hackystat Service Manager

Figure 4.2. The Hackystat Service Manager Architecture

The architecture of the Hackystat Service Manager can be divided into three layers.

The first one is the Hackystat system itself with its internal services: TickerTape,

ProjectBrowser, SensorBase, Telemetry and DailyProjectData (DPD). The second

layer is the Agent Layer, each Hackystat service has its own Agent. Agents monitor

the Hackystat service and its environment, and execute operations on the service.

The third layer is the autonomic service manager itself, implementing the business-

logic for achieving the autonomy of the services. A detailed presentation of each

layer is provided in the following sections.

54 4. THE HACKYSTAT SERVICE MANAGER PROJECT

4.3. Agents for Monitoring and Execution Layer

We associate for each Hackystat service an Agent. Agents are SOA services again,

that are implemented in RESTLet3, an implementation of the REST architectural

pattern. Agent functionalities depend on the monitored service, its implementation

and its environment. For the conceptual same functionalities, naming conventions

are applied. We implemented 5 Agents, an Agent for each service. The implemen-

tation of each Agent follows the RESTlet pattern, algorithm 1 shows an implemen-

tation for the Sensorbase Agent. We attach the so called Resources implementing

the functionalities to the Component Registry which is started under a specific port

number.

Algorithm 1 RESTLet Implementation ofr SensorBase Agent

package org . hackystat . serv icemanager . agents . s ensorbase . s e r v e r ;
import org . hackystat . serv icemanager . agents . s ensorbase . r e s ou r c e . ping .

PingResource ;
import org . hackystat . serv icemanager . agents . s ensorbase . r e s ou r c e . s t a r t .

StartResource ;
import org . hackystat . serv icemanager . agents . s ensorbase . r e s ou r c e . stop .

StopResource ;
import org . r e s t l e t . App l i cat ion ;
import org . r e s t l e t . Component ;
import org . r e s t l e t . Re s t l e t ;
import org . r e s t l e t . Router ;
import org . r e s t l e t . data . Protoco l ;
public c lass Server extends Appl i cat ion {

public Res t l e t createRoot () {
// Create a Res t l e t router tha t routes each c a l l to a
// new instance of i t s Resource .
Router route r = new Router (getContext ()) ;
// Defines the routes
route r . attach ("/ s t a r t " , StartResource . class) ;
r oute r . attach ("/ stop " , StopResource . class) ;
r oute r . attach ("/ping " , PingResource . class) ;
return route r ; }

public stat ic void main (St r ing [] a rgs) {
try {
Component component = new Component () ;
component . g e tSe rve r s () . add (Protoco l .HTTP, ServerConf ig .

SENSORBASE_AGENT_PORT) ;
component . getDefau l tHost () . attach (new Server ()) ;
component . s t a r t () ; }

catch (Exception e) {
e . pr intStackTrace () ;

}}}

3http://www.restlet.org/

4.3. AGENTS FOR MONITORING AND EXECUTION LAYER 55

Since Agents are implemented in RESTlet, they provide a REST API for communi-

cation over HTTP. We demonstrated the REST API for Sensorbase and TickerTape.

For a full list please visit the project homepage.

SensorBase Agent (hsm-agent-sensorbase)

METHOD URI EFFECT
GET {host}/start Starts the Hackystat service
GET {host}/stop Stops the Hackystat service
GET {host}/ping Pings the Hackystat service
GET {host}/heapsize Returns the associated max. Heapsize
PUT {host}/heapsize Sets the max. heapsize of a service
Table 4.1. REST API Specification of the Sensorbase Agent

Table 4.1 shows an example of the REST API Specification for the Sensorbase

Agent. {host} defines URI under which the Agent is running. The column Method

advises the type of the HTTP-method.

TickerTape Agent (hsm-agent-tickertape)

First of all, we indicate that TickerTape is not really a service but rather service-

oriented. It makes us of services, but has no service capabilities itself . Therefore

we are not monitoring the software component but execute simple operations on it.

We just integrated TickerTape because of completeness reasons.

METHOD URI EFFECT
GET {host}/start Starts the Hackystat service
GET {host}/stop Stops the Hackystat service

Table 4.2. REST API Specification of the TickerTape Agent

Table 4.2 shows an example of the REST API Specification for the TickerTape

component. The placeholder.{host} defines URI under which the Agent is running.

56 4. THE HACKYSTAT SERVICE MANAGER PROJECT

The column Method advises the type of the HTTP-method.

All agents are following, more or less, the same structure in the REST API, at

least for the calls providing the same functionalitites. This is because the services

should provide the same functionality for the HSM in order to apply monitoring

and solutions. This allows a growing knowledge for all services where solution for

one service can be applied to any other service.

The REST API methods in detail:

All calls should follow a certain convention in order to let them operate with the

HSM independently:

• /start

Returns a String Representation "started" if successful

• /stop

Returns a String Representation "stopped" if successful

• /ping

Returns a String Representation "successful" if successful, otherwise the

REST error from the previous call to the Hackystat service or "error" if

the calls fails at all.

• /heapsize

– GET - Returns a String Representation with the number of Heap

allocated f.ex. "512"

– PUT - Interpretes a String Representation with the number of Heap

allocated f.ex. "128"

4.4. Autonomic Service Manager Layer

The Autonomic Service Manager has three major components: one component im-

plementing the MAPE-cycle for each service in a Java Thread, a solution directory

and the Graphical User Interface (GUI).

4.4. AUTONOMIC SERVICE MANAGER LAYER 57

4.4.1. Autonomic cycle (MAPE-cycle). A superclass provides a template

for implementing the MAPE-cycle in a Thread. Since we are working in Java

Swing4, the Thread is implemented in a SwingWorker class. For each service that

should adopt autonomic behavior a class has to be implemented inheriting from

the MAPE Java class.

Algorithm 2 Java Class: MAPE.java

package org . hackystat . serv icemanager . framework .mape ;
import javax . swing . SwingWorker ;
import org . hackystat . serv icemanager . framework . c on f i g . HSMConfig ;
import j c o l i b r i . cbrcore .CBRQuery ;

public c lass MAPE extends SwingWorker{
private boolean a c t i v e= true ;

protected void monitor () {
// To overwri te }

protected void ana l y s i s () {
// To overwri te
// i f ana ly i s shows misbhevaiour c a l l plan () }

protected void plan (CBRQuery query) {
// To Overwrite
// c a l l execute () when so lu t i on has been found }

protected void execute (int s o l u t i o n) {
// To overwri te }

public void stop () {
a c t i v e = fa l se ; }

protected Object doInBackground () throws Exception {
while (a c t i v e) {
monitor () ;
a n a l y s i s () ;

try {
Thread . s l e ep (HSMConfig .MONITORING_DELAY) ;
}
catch (Inter ruptedExcept ion e) {}
}

return "Done" ; }}

As we can see the MAPE cycle is derived into little methods, implementing the ap-

propriate MAPE functionality. The MAPE cycle is implemented for each service,

and thus data gets collected in the monitoring phase trough the agent associated

with a Hackystat service. Since the Agent is a service, the Hackystat service can

4http://www.java.com

58 4. THE HACKYSTAT SERVICE MANAGER PROJECT

be located everywhere in the network. All the Hackystat Service Manager has to

know is the location of the Agent which runs on the same machine as the specific

Hackystat Service. When the data is collected for a specific service, its MAPE-

class analyses the data and creates a CBR-case of the collected data. The system

is designed in a way that collected metrics are CBR-features in the CBR-system,

as advised in chapter three.

4.4.1.1. Planning with Case-based Reasoning. The Autonomic Manager makes

use of the JCOLIBRi5 CBR framework for processing CBR functionalities in the

planning phase of the MAPE-cycle.

Algorithm 3 Sensorbase Agent MAPE planning phase implementation

public c lass SensorbaseMAPE extends MAPE {

protected void ana l y s i s () {
/∗
. . Checking CBR−f ea ture s

∗/
i f (misbehaviour) {
j c o l i b r i . cbrcore .CBRQuery query = new CBRQuery () ;
CaseDescr ipt ion d e s c r i p t i o n = new CaseDescr ipt ion () ;
d e s c r i p t i o n . setCaseId ("Case : " + new Date (System . cur rentTimeMi l l i s ())) ;
d e s c r i p t i o n . s e t S e r v i c e (HSMConfig .SENSORBASE_NAME) ;
d e s c r i p t i o n . setReachable (r eachab l e) ;
d e s c r i p t i o n . setReqLatency (reqLatency) ;
d e s c r i p t i o n . setAdeqHeapsize (adeqHeapSize) ;
d e s c r i p t i o n . setExceHeaps ize (execHeapSize) ;
d e s c r i p t i o n . setDbLatency (dbLatency) ;
query . s e tDe s c r i p t i on (d e s c r i p t i o n) ;
plan (query) ;

}}

protected void plan (CBRQuery query) {
So lut ionFinder so lu t i onF inde r = So lut ionFinder . g e t In s tance () ;
try {
so lu t i onF inde r . preCycle () ;
s o l u t i onF inde r . c y c l e (query) ;
int s o l u t i o n = so lu t i onF inde r . g e tRe t r i evedSo lu t i on () . g e tSo lu t i on () ;
s o l u t i onF inde r . postCycle () ;
execute (s o l u t i o n) ;

}
catch (ExecutionException e) {}}

JCOLIBRi has been designed as a wide spectrum framework able to support several

types of CBR systems from the simple nearest-neighbor approaches based on flat

or simple structures to more complex knowledge intensive ones. It also contains

5http://gaia.fdi.ucm.es/projects/jcolibri/

4.4. AUTONOMIC SERVICE MANAGER LAYER 59

textual and conversational extensions (Dıaz-Agudo et al. 2007). JCOLIBRi is

developed by University of Madrid and implemented in Java. It is also very well

documeneted6. Algorithm 3 shows an implementation of the analysis and planning

phase of the Sensorbase Agent using JCOLIBRi. As we can see in the analysis and

planning phase, a jcolibri.cbrcore.CBRQuery object gets created and send to the

CBR framework.

Algorithm 4 CBR engine - SolutionFinder, Part 1

package org . hackystat . serv icemanager . framework .mape . cbr ;
import j c o l i b r i . casebase . LinealCaseBase ;
import j c o l i b r i . c b r a p l i c a t i o n s . StandardCBRApplication ;
import j c o l i b r i . cbrcore . Att r ibute ;
import j c o l i b r i . cbrcore .CBRCase ;
import j c o l i b r i . cbrcore . CBRCaseBase ;
import j c o l i b r i . cbrcore .CBRQuery ;
import j c o l i b r i . cbrcore . Connector ;
import j c o l i b r i . connector . DataBaseConnector ;
import j c o l i b r i . method . r e t r i e v e . Re t r i eva lRe su l t ;
import j c o l i b r i . method . r e t r i e v e . NNretr i eva l . NNConfig ;
import j c o l i b r i . method . r e t r i e v e . NNretr i eva l . NNScoringMethod ;
import j c o l i b r i . method . r e t r i e v e . NNretr i eva l . s im i l a r i t y . g l oba l . Average ;
import j c o l i b r i . method . r e t r i e v e . NNretr i eva l . s im i l a r i t y . l o c a l . Equal ;
import j c o l i b r i . method . r e t r i e v e . NNretr i eva l . s im i l a r i t y . l o c a l . I n t e r v a l ;

import j c o l i b r i . method . r e t r i e v e . s e l e c t i o n . Se l e c tCase s ;

public c lass So lut ionFinder implements StandardCBRApplication {

private Connector connector ;
private CBRCaseBase caseBase ;
private CaseSolut ion r e t r i e v edSo l u t i o n ;
private stat ic So lut ionFinder in s t ance = null ;

public stat ic So lut ionFinder ge t In s tance () {
i f (i n s t ance == null)
i n s t ance = new So lut ionFinder () ;
return i n s t ance ; }

public void con f i gu r e () throws ExecutionException {
// i n i t database
Ca s eBa s e I n i t z i a l i s e r . i n i t () ;
// i n i t connectors
connector = new DataBaseConnector () ;
connector . initFromXMLfile (j c o l i b r i . u t i l . F i le IO . f i n dF i l e (" c on f i g /

databasecon f i g . xml")) ;
// Create a Lineal case base for in−memory organizat ion
caseBase = new LinealCaseBase () ; }

public CBRCaseBase preCycle () throws ExecutionException {
caseBase . i n i t (connector) ; }

6http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri2/docs.html

60 4. THE HACKYSTAT SERVICE MANAGER PROJECT

The CBR Framework JCOLIBRi is accessing an embedded Apache Derby7 data-

base in the Hackystat Service Manager via the Hibernate8 technology. In algorithm

4 and 5 we show the main CBR business logic. It shows four methods:

• configure() - Configuration of the CBR Case-base and Database Con-

nector.

• precycle() - Initialisation of the Database Connector.

• cycle() - Finding similiar cases than the one passed in parameters and

defining similiarity functions for the features.

• postcycle() - Closing CBR Case-base and Database Connector.

• getRetrievedSolution() - After execution of the first four methods the

solution gets saved and is available trough this method.

JCOLIBRi is an object oriented CBR framework, i.e that CBR-features in the Case-

base are mapped into Java Objects via Hibernate. Therefore we use XML mapping

files, a CaseDescription.class Java Bean and a Solution.class Java Bean. The CBR

case consist of the CaseDescription.class Bean, for each field in the class we create

an jcolibri.cbrcore.Attribute object that gets mapped with the similiarity func-

tion. With the evaluate Similarity (caseBase.getCases() , query , simConfig)

method we retrieve a collection of the type Collection<RetrievelResult> holding

the most similiar cases with a double value indicating the percentage of similiartity.

We extract the solution of the best case and store it. This is shown is algorithm 5.

7http://db.apache.org/derby/
8http://www.hibernate.org/

4.4. AUTONOMIC SERVICE MANAGER LAYER 61

Algorithm 5 CBR Engine - SolutionFinder, Part 2

public void cy c l e (CBRQuery query) throws ExecutionException {
// Fir s t conf igure the NN scoring
NNConfig simConfig = new NNConfig () ;
// Set Global s im i l a r i t y funct ion to average
s imConfig . se tDescr ipt ionS imFunct ion (new Average ()) ;
// Create a t t r i b u t e s for Mapping CBR fea ture s
Attr ibute s e r v i c e = new Attr ibute (" s e r v i c e " , CaseDescr ipt ion . class) ;
Att r ibute reachab l e = new Attr ibute (" reachab le " , CaseDescr ipt ion . class) ;
Att r ibute reqLatency = new Attr ibute (" reqLatency " , CaseDescr ipt ion . class) ;
Att r ibute adeqHeapsize = new Attr ibute (" adeqHeapsize " , CaseDescr ipt ion .

class) ;
Att r ibute exceHeaps ize = new Attr ibute (" exceHeaps ize " , CaseDescr ipt ion .

class) ;
Att r ibute dbLatency = new Attr ibute ("dbLatency" , CaseDescr ipt ion . class) ;
// Set s im i l a r i t y funct ion for each CBR fea ture
s imConfig . addMapping (s e rv i c e , new Equal ()) ;
s imConfig . setWeight (s e rv i c e , 0 . 5) ;
s imConfig . addMapping (reachable , new Equal ()) ;
s imConfig . addMapping (reqLatency , new I n t e r v a l (100)) ;
s imConfig . addMapping (adeqHeapsize , new I n t e r v a l (4000)) ;
s imConfig . addMapping (exceHeapsize , new I n t e r v a l (4000)) ;
s imConfig . addMapping (dbLatency , new I n t e r v a l (100)) ;
// Execute NN Nearest Neighbor
Col l e c t i on<Retr i eva lResu l t> eva l = NNScoringMethod . e v a l u a t eS im i l a r i t y (

caseBase . getCases () , query , s imConfig) ;
// Se l e c t k cases
eva l = Se l e c tCase s . selectTopKRR(eval , 3) ;
// Print Retr i eva l
System . out . p r i n t l n ("3␣Best ␣Retr ieved ␣ cases , ␣ r e t a i n ␣ best : ") ;
boolean f i r s t = true ;
CBRCase bestCase = null ;
for (Re t r i eva lRe su l t nse : eva l) {
System . out . p r i n t l n (nse) ;
i f (f i r s t)
bestCase = nse . get_case () ;
f i r s t = fa l se ; }

i f (bestCase != null) {
System . out . p r i n t l n ("Best ␣Case : " + bestCase . g e tSo lu t i on ()) ;

r e t r i e v edSo l u t i o n = (CaseSolut ion) bestCase . g e tSo lu t i on () ;
System . out . p r i n t l n (" So lu t i on : ␣" + r e t r i e v edSo l u t i o n . g e tSo lu t i on ()) ; }}

public void postCycle () throws ExecutionException {
// c lo se connectors
connector . c l o s e () ;
// c lo se database
DerbyManager . shutdown () ; }

public CaseSolut ion ge tRet r i evedSo lu t i on () {
return r e t r i e v edSo l u t i o n ; }}

62 4. THE HACKYSTAT SERVICE MANAGER PROJECT

4.4.1.2. CBR-features for Hackystat service and Case-base. The CBR-features

of the Hackystat Services are stored in the Case-base. Therefore we have to analyse

the CBR-features we want to integrate into the system and create an appropriate

Case-base. We list the tables for each Hackystat service representing the CBR-

features of each service. The CBR-features should follow the same structure over

the different services. Because of limited time of this dissertation, the features are

only implemented partly, but this should provide an idea of where the Case-base

should head towards.

Feature Possible
Values

Description Implementation

reachable Yes/No indicates whether the
service is reachable over
network (Yes) or not

(NO)

REST API
GET

{host}/ping

request
latency

None/
Low/

Normal/
High

Depending on caching,
this feature indicates if
the service responds in a

reasonable time

Measuring time
of the REST
API GET

{host}/ping call
adequate
heap size

Adequate /
Not

Adequate

indicates if the JVM heap
size of the service exeeds

80%
excessive
heap size

Excessive /
Not

Excessive

indicates if the services
use to much heap size, for

example if after N
requests heap size is less

than 40%
db latency None/

Low/
Normal/
High

indactes wheter a db
operation latency exeeds

M milliseconds

Table 4.3. Hackystat Sensorbase CBR features

4.4. AUTONOMIC SERVICE MANAGER LAYER 63

Feature Possible
Values

Description Implementation

reachable Yes/No indicates whether the
service is reachable over
network (Yes) or not

(NO)

REST API
GET

{host}/ping

request
latency

None/
Low/

Normal/
High

Depending on caching,
this feature indicates if
the service responds in a

reasonable time

Measuring time
of the REST
API GET

{host}/ping call
adequate
heap size

Adequate /
Not

Adequate

indicates if the JVM heap
size of the service exeeds

80%
excessive
heap size

Excessive /
Not

Excessive

indicates if the services
use to much heap size, for

example if after N
requests heap size is less

than 40%
Table 4.4. Hackystat DailyProjectData CBR features

Feature Possible
Values

Description Implementation

reachable Yes/No indicates whether the
service is reachable over
network (Yes) or not

(NO)

REST API
GET

{host}/ping

request
latency

None/
Low/

Normal/
High

Depending on caching,
this feature indicates if
the service responds in a

reasonable time

Measuring time
of the REST
API GET

{host}/ping call
adequate
heap size

Adequate /
Not

Adequate

indicates if the JVM heap
size of the service exeeds

80%
excessive
heap size

Excessive /
Not

Excessive

indicates if the services
use to much heap size, for

example if after N
requests heap size is less

than 40%
Table 4.5. Hackystat Telemetery CBR features

64 4. THE HACKYSTAT SERVICE MANAGER PROJECT

Feature Possible
Values

Description Implementation

reachable Yes/No indicates whether the
service is reachable over
network (Yes) or not

(NO)

REST API
GET

{host}/ping

request
latency

None/
Low/

Normal/
High

Depending on caching,
this feature indicates if
the service responds in a

reasonable time

Measuring time
of the REST
API GET

{host}/ping call
adequate
heap size

Adequate /
Not

Adequate

indicates if the JVM heap
size of the service exeeds

80%

? Some JVM
Monitoring tool

?
excessive
heap size

Excessive /
Not

Excessive

indicates if the services
use to much heap size, for

example if after N
requests heap size is less

than 40%

? Some JVM
Monitoring tool

?

Table 4.6. Hackystat ProjectBrowser CBR features

Feature Possible
Values

Description Implementation

reachable Yes/No indicates whether the
service is reachable over
network (Yes) or not

(NO)

REST API
GET

{host}/ping

request
latency

None/
Low/

Normal/
High

Depending on caching,
this feature indicates if
the service responds in a

reasonable time

Measuring time
of the REST
API GET

{host}/ping call
adequate
heap size

Adequate /
Not

Adequate

indicates if the JVM heap
size of the service exeeds

80%
excessive
heap size

Excessive /
Not

Excessive

indicates if the services
use to much heap size, for

example if after N
requests heap size is less

than 40%
Table 4.7. Hackystat TickerTape CBR features

4.4. AUTONOMIC SERVICE MANAGER LAYER 65

Algorithm 6 DerbyManager for creating Case-base

package org . hackystat . serv icemanager . framework .mape . cbr ;

public c lass DerbyManager {
public stat ic St r ing embedded_driver = "org . apache . derby . jdbc .

EmbeddedDriver" ;
public stat ic St r ing c l i e n t_dr i v e r = "org . apache . derby . jdbc . C l i en tDr ive r " ;
private stat ic St r ing dbName = "hsm_case_base" ;
public stat ic St r ing embedded_protocol = " jdbc : derby : " + dbName + " ; c r ea t e=

true " ;
public St r ing c l i e n t_pro t o co l = " jdbc : derby :// l o c a l h o s t :1527/ " + dbName + "

; c r ea t e=true " ;

public stat ic void i n i t () {
// Load dr iver
St r ing d r i v e r = embedded_driver ;
S t r ing p ro toco l = embedded_protocol ;
Class . forName (d r i v e r) . newInstance () ;
// Connect database
try {
Connection conn = DriverManager . getConnect ion (p ro to co l) ;
System . out . p r i n t l n ("Connected␣ to ␣ database ␣" + dbName) ;
try {
Statement s = conn . createStatement () ;
S t r ing s q l ;

s q l = " c r ea t e ␣ tab l e ␣ case_base ␣ (case Id ␣ varchar (15) , ␣ s e r v i c e ␣ varchar (50) , ␣
reachab le ␣ in t ege r , ␣ reqLatency ␣ rea l , ␣ adeqHeapsize ␣ in t ege r , ␣␣␣
exceHeapSize ␣ in t ege r , ␣dbLatency␣ rea l , ␣ s o l u t i o n ␣ i n t e g e r) " ;

s . executeUpdate (s q l) ;
conn . commit () ;
s q l = " i n s e r t ␣ in to ␣ case_base ␣ va lues (’ In i t i a l_Case1 ’ , ’ "+HSMConfig .

SENSORBASE_NAME +" ’ ,0 ,100 ,512 ,256 ,100 ,1) " ;
s . executeUpdate (s q l) ;
s q l = " i n s e r t ␣ in to ␣ case_base ␣ va lues (’ In i t i a l_Case2 ’ , ’ "+HSMConfig .DPD_NAME

+" ’ ,0 , 100 ,512 ,256 ,0 ,1) " ;
s . executeUpdate (s q l) ;
s q l = " i n s e r t ␣ in to ␣ case_base ␣ va lues (’ In i t i a l_Case3 ’ , ’ "+HSMConfig .

TELEMETRY_NAME +" ’ ,0 , 100 ,512 ,256 ,0 ,1) " ;
s . executeUpdate (s q l) ;
s q l = " i n s e r t ␣ in to ␣ case_base ␣ va lues (’ In i t i a l_Case4 ’ , ’ "+HSMConfig .

PROJECTBROWSER_NAME +" ’ , 0 , 0 , 512 ,256 ,0 , 1) " ;
s . executeUpdate (s q l) ;
s q l = " i n s e r t ␣ in to ␣ case_base ␣ va lues (’ In i t i a l_Case5 ’ , ’ "+HSMConfig .

TICKERTAPE_NAME +" ’ ,0 , 100 ,512 ,256 ,0 ,1) " ;
s . executeUpdate (s q l) ;
conn . commit () ; }

catch (SQLException ex) {}}

catch (SQLException e) {
System . out . p r i n t l n ("Database␣not␣ created ") ; }}

public stat ic void shutdown () {
// the shutdown=true a t t r i b u t e shuts down Derby
DriverManager . getConnect ion (" jdbc : derby : ; shutdown=true ") ;}}

We now are able to create the Database and its structure with some inital cases in

the DerbyManager class, like shown in algorithm 6.

66 4. THE HACKYSTAT SERVICE MANAGER PROJECT

• caseId varchar(15) - Each case must have an id, for the inital cases we

name them appropriate, new cases are combined with a timestamp

• service varchar(50) - The name of the service, this is important because

trough this field the chances that an appropriate case for the same service

is found rather than a solution from a different one.

• reachable integer - described in the CBR-feature tables

• reqLatency real - described in the CBR-feature tables

• adeqHeapsize integer - described in the CBR-feature tables

• exceHeapSize integer -described in the CBR-feature tables

• dbLatency real - described in the CBR-feature tables

• solution integer - Solution code for a general re-applicable solution. The

solution code is explained in the following section.

Not all services use all of the features, these features are left empty.

4.4.2. Solution Component. The solution for our cases is expressed as code

solution number, this number defines a set of actions that are called on the appro-

tiate Agent for executing operation to fix the service. Perfect would be a tool for

administrators to select and combine some general scripts for adopting and teaching

new solutions. A simple solution for restarting the Sensorbase service is provided

in algorithm

Algorithm 7 Solution Directory example for Sensorbase Service

protected void execute (int s o l u t i o n) {
System . out . p r i n t l n (" execute ") ;
switch (s o l u t i o n) {
case 1 :
System . out . p r i n t l n ("Exec␣ So lu t i on ␣1␣−>␣Resta r t ing ␣ Se rv i c e ") ;
CommonSolutions . r e s t a r t S e r v i c e (HSMConfig .SENSORBASE_ADDRESS, HSMConfig .

SENSORBASE_AGENT_PORT, MainWindow . ge t In s tance () .
getLSenorbase_status () , HSMConfig .SENSORBASE_NAME) ;

break ;
default :
System . out . p r i n t l n (" So lu t i on ␣unknown") ; } }

4.5. HACKYSTAT SOA LAYER 67

4.5. Hackystat SOA Layer

As already mentioned Hackystat has a service-oriented architecture. We use

the binary distribution of Hackystat for integration with the Hackystat Service

Manager. However this binary distribution is not adapted to the HSM. The auto-

nomic manager would benefit from a system that provides more information about

itself . This information could be about configuration, and performance. We did

not change the Hackytsat system, because we assume that in huge legacy systems,

adaptation of the managed system to our needs, would be difficult and related with

a huge amount of costs and time. We show that the Autonomic Service Manager

can be adapted to any legacy system without changing this system. The ACS

is system-agnositic but it would be profitable if the managed system itself would

provide as much useful information as possible.

CHAPTER 5

Conclusion

First of all, this dissertation defines a research paradigm called autonomic and

service-oriented computing. We define the term autonomic service-oriented sys-

tems. None of the reviewed literature uses this term, still this term is essential

for describing the application of autonomic computing for achieving autonomy in

service-oriented computing. A lot of literature has been published in the domain

of autonomic and service-oriented computing, however it is multifaceted and there

is no common agreement on terminology. This dissertation tries to provide a clear

terminology and overview in the area of autonomic and service-oriented computing.

The research distinguishes consciously between service-oriented computing and

service-oriented architectures as suggested by Thomas Erl. It analyses the prob-

lems causing the need for autonomy in service-oriented systems. These problems

are categorized and mapped to literature addressing the different conceptual prob-

lems. A concept has been created, called Autonomic Service Manager (ASM), that

is able to address all defined categories of problems. The concept is following a

general Monitor Analysis Plan and Execute approach combined with Case-based

Reasonig. The Autonomic Service Manager framework is agent-oriented, but also

service-oriented. The benefit of both technologies in autonomic computing is dis-

cussed. We discuss service-oriented computing in autonomic computing and relate

to it as service-oriented autonomic computing. We achieved to provide a global

overview in the domain of autonomic and service-oriented computing and how to

combine them in bidirectional ways.

69

70 5. CONCLUSION

The ASM builds the foundation for self-healing, self-reconfiguration, self-optimization

and self- protecting service-oriented systems. We apply and implement the frame-

work to Hackystat , an Open Source Software developed at University of Hawaii.

We implement ASM as an open source framework for Hackystat called, Hackys-

tat Service Manager, for achieving an autonomic service-oriented architecture in

Hackystat. This development was carried out in the scope of Google Summer of

Code program allowing a close communication with the founders of the project. We

develop a tool, that will be integrated into Hackystat and which can be adapted to

any other service-oriented system. Futhermore the integration into a succesful open

source software like Hackystat allows the system to evolve, and the CBR case-base

to grow over time. This can be observed and evaluated.

We mainly extended the work of Anglano and Montani (Anglano and Montani

2005), in a way that solutions from different research can be integrated for achieving

self-managing service-oriented systems. The ASM is an essential framework con-

tributing to further research, which should analyse and explore more CBR-features

in different SOA technologies for extending the CBR knowledge base. CBR of-

fers the possibility to integrate ontologies, which should be explored for autonomic

service-oriented systems.

Bibliography

[1] Aha, D.W., Breslow, L.A. & Munoz-Avila, H., 2001. Conversational case-based reasoning.

Applied Intelligence, 14(1), 9–32.

[2] Aamodt, A. & Plaza, E., 1994. Case-based reasoning. Proc. MLnet Summer School on Ma-

chine Learning and Knowledge Acquisition, 1–58.

[3] Anglano, C. & Montani, S., 2005. Achieving self-healing in autonomic software systems: a

case-based reasoning approach. In Proceeding of the 2005 conference on Self-Organization

and Autonomic Informatics (I). pp. 267–281.

[4] Bass, L., Clements, P. & Kazman, R., 2003. Software Architecture in Practice (2nd Edition)

2nd ed., Addison-Wesley Professional.

[5] Bell, M., 2008. Service-Oriented Modeling (SOA): Service Analysis, Design, and Architecture,

Wiley.

[6] Bello-Tomas, J.J., Gonzalez-Calero, P.A. & Diaz-Agudo, B., 2004. jCOLIBRI: An object-

oriented framework for building cbr systems. Lecture notes in computer science, 32–46.

[7] BenHalima, R., Jmaiel, M. & Drira, K., A qos-oriented reconfigurable middleware for self-

healing web services. In IEEE International Conference on Web Services (ICWS 2008). pp.

104–111.

[8] Brazier, F.M. et al., 2009. Agents and Service-Oriented Computing for Autonomic Comput-

ing: A Research Agenda. IEEE Internet Computing, 13(3), 82–87.

[9] Cao, Wang, Zhang, Li, 2004. A dynamically reconfigurable system based on workflow and

service agents. Engineering Applications of Artificial Intelligence, 17(7), 771–782.

[10] Craw, S., Wiratunga, N. & Rowe, R.C., 2006. Learning adaptation knowledge to improve

case-based reasoning. Artificial Intelligence, 170(16-17), 1175-1192.

[11] Denaro, G. Schilling, D., 2006. Towards self-adaptive service-oriented architectures. In Pro-

ceedings of the 2006 workshop on Testing, analysis, and verification of web services and

applications. pp. 10–16.

[12] Di Nitto, E. et al., 2008. A journey to highly dynamic, self-adaptive service-based applications.

Automated Software Engineering, 15(3), 313–341.

71

72 BIBLIOGRAPHY

[13] Dıaz-Agudo, B. et al., 2007. Building CBR systems with jCOLIBRI. Science of Computer

Programming.

[14] Erl, T., 2007. SOA: Principles of service design.

[15] Erl, T., 2005. Service-Oriented Architecture (SOA): Concepts, Technology, and Design, Pren-

tice Hall PTR.

[16] Erl, T., 2009. SOA Glossary. Available at: http://www.soaglossary.com/default.asp [Accessed

July 21, 2009].

[17] Fielding, R.T., 2000. Architectural styles and the design of network-based software architec-

tures. University of California.

[18] Gehlert, A. & Heuer, A., Towards Goal-Driven Self Optimisation of Service Based Applica-

tions. In 1st International Conference of the Future of the Internet of Services (ServiceWave

2008). 2008, Springer: Madrid, Spain.

[19] Gorla, A., 2008. Automatic workarounds as failure recoveries. In Proceedings of the 2008

Foundations of Software Engineering Doctoral Symposium. pp. 9–12.

[20] Gorton, I., 2006. Essential Software Architecture 1st ed., Springer.

[21] Grishikashvili, E., Pereira, R. & Taleb-Bendiab, A., 2005. Performance evaluation for self-

healing distributed services. In Parallel and Distributed Systems, 2005. Proceedings. 11th

International Conference on.

[22] Hielscher, Kazhamiakin, R., Metzger, A., Pistore, M., 2008. A framework for proactive self-

adaptation of service-based applications based on online testing. In 1st International Confer-

ence of the Future of the Internet of Services (ServiceWave 2008), Madrid, Spain.

[23] Hofmeister, C.R., 1998. Dynamic reconfiguration of distributed applications.

[24] Horn, P., 2001. Autonomic computing: IBM’s perspective on the state of information tech-

nology. IBM TJ Watson Labs, NY, 15th October.

[25] Jarmulak, J., Craw, S. & Rowe, R., 2001. Using case-base data to learn adaptation knowl-

edge for design. In INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTEL-

LIGENCE. pp. 1011–1020.

[26] Johnson, P.M., 2001. Project Hackystat: Accelerating adoption of empirically guided soft-

ware development through non-disruptive, developer-centric, in-process data collection and

analysis. Department of Information and Computer Sciences, University of Hawaii.

[27] Johnson, P., Zhang, S., Senin, P. (2009), Experience with Hackystat as a service-oriented

architecture, University of Hawaii, Honolulu

[28] Johnson, P. Zhang,S. (2009), We need more coverage, stat! Classroom experience with Soft-

ware ICU, Univeristy of Hawaii, Honlulu

BIBLIOGRAPHY 73

[29] Juan, A., Belén, D. & Pedro, G., 2005. A Distributed CBR Framework trough Semantic Web

Services. Universidad Complutense de Madrid, Madrid, Spain.

[30] Kephart, J.O. & Chess, D.M., 2003. The vision of autonomic computing. Computer, 41–50.

[31] Lehman, M.M., 1996. Laws of software evolution revisited. Lecture notes in computer science,

1149, 108–124.

[32] Li, Sun, Qui, Chen, 2005. Self-reconfiguration of service-based systems: A case study for

service level agreements and resource optimization. In 2005 IEEE International Conference

on Web Services, 2005. ICWS 2005. Proceedings. pp. 266–273.

[33] Papazoglou, M.P. & van den Heuvel, W.J., 2007. Service oriented architectures: approaches,

technologies and research issues. The VLDB Journal The International Journal on Very Large

Data Bases, 16(3), 389–415.

[34] Sadjadi, S.M. & McKinley, P.K., 2005. Using transparent shaping and web services to support

self-management of composite systems.

[35] Sessions, R., 1997. COM and DCOM: Microsoft’s vision for distributed objects, John Wiley

& Sons, Inc. New York, NY, USA.

[36] Singh, I., Johnson, M. & Stearns, B., 2002. Designing enterprise applications with the J2EE

platform, Addison-Wesley Professional.

[37] Tichy, M. & Giese, H., 2004. A self-optimizing run-time architecture for configurable depend-

ability of services. Lecture notes in computer science, 25–50.

[38] Vinoski, S. & Inc, I.T., 1997. CORBA: integrating diverse applications within distributed-

heterogeneous environments. IEEE Communications Magazine, 35(2), 46–55.

[39] Wilson, D.R. & Martinez, T.R., 1997. Improved heterogeneous distance functions. Arxiv

preprint cs.AI/9701101.

