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ABSTRACT

A process defines a set of routines which allow one to or-
ganize, manage and improve activities in order to reach a
goal. With expert intuition and a-priori knowledge, software
processes have been modeled for a long time, resulting in
the Waterfall, Spiral and other development models. Later,
with the wide use of SCM 1 systems and the public avail-
ability of primitive software process artifact trails 2, formal
methods such as Petri Nets, State Machines and others have
been applied to the problem of recurrent process discovery
and control. Recent advances in metrics effort, increased
use of continuous integration, and extensive documentation
of the performed process make information-rich fine-grained
software process artifacts trails available for analysis. This
fine-grained data has the potential to shed new light on the
software process. In this work I propose to investigate an
automated technique for the discovery and characterization
of recurrent behaviors in software development - “program-
ming habits” either on an individual or a team level.

1. INTRODUCTION ANDMOTIVATION
A software process is a set of activities performed in order

to design, develop and maintain software systems. Exam-
ples of such activities include design methods; requirements
collection and creation of UML diagrams; testing and per-
formance analysis. The intent behind a software process
is to structure and coordinate human activities in order to
achieve the goal - deliver a software system successfully.

Much work has been done in software process research re-
sulting in a number of industrial standards for process mod-
els (CMM, ISO, PSP etc. [4]) which are widely accepted
by many governmental and industrial institutions. Never-
theless, software development remains error-prone and more

1Software Configuration Management
2software roadmaps, bug and issue tracking and manage-
ment systems, public mailing lists
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than a half of all software development projects end up fail-
ing or being very poorly executed. Some of them are aban-
doned due to running over budget, some are delivered with
such low quality or so late that they are useless, and some,
when delivered, are never used because they do not fulfill
requirements [11]. The cost of this lost effort is enormous
and may in part be due to our incomplete understanding of
software process.

There is a long history of software process improvement
through proposing specific patterns of software development.
For example, theWaterfall Model process proposes a sequen-
tial pattern in which developers first create a Requirements
document, then create a Design, then create an Implemen-
tation, and finally develop a Test. Alternatively, the Test
Driven Development process proposes an iterative pattern
in which the developer must first write a test case, then
write the code to implement that test case, then re-factor the
system for maximum clarity and minimal code duplication
[20]. A significant problem with this traditional top-down
approach to process development is that it requires the de-
veloper or manager to notice a recurrent pattern of behavior
in the first place [4]. Another weakness of this approach is
that such models are often normative and influenced by in-
dividual perception - they prescribe what should be done
instead of describing the actual process [28].

As an alternative to the top-down approach in my re-
search, I am applying knowledge discovery and data mining
techniques to the domain of software engineering in order
to evaluate their ability to automatically notice interesting
recurrent patterns of behaviors from collected software pro-
cess artifacts. While I am not proposing to be able to infer
a complete and correct software process model, my system
will provide its users with a formal description of recurrent
behaviors in their software development. As a simple exam-
ple, consider a development team in which committing code
to a repository triggers a build of the system. Sometimes
the build passes, and sometimes the build fails. To improve
the productivity of the team, it would be useful to be aware
of any recurrent behaviors of the developers. My system
might generate one recurrent pattern consisting of a) imple-
menting code b) running unit tests, c) committing code and
d) a passed build: i → u → c → s, and another recurrent
pattern consisting of a) implementing code, b) committing
code, and c) a failed build: i → c → f . The automated
generation of these recurrent patterns can provide action-
able knowledge to developers; in this case, the insight that
running test cases prior to committing code reduces the fre-



quency of build failures.

2. RELEVANT PRIORWORK
Although process mining in the business domain is a well-

established field with much software developed up to date
(ERP, WFM, SCM, CRM and other systems), “Business
Process Intelligence” tools usually do not perform process
discovery and typically offer relatively simple analyses that
depend upon a correct a-priori process model [2] [26] [28].
This fact restricts direct application of business domain pro-
cess mining techniques to software engineering, where pro-
cesses are usually performed concurrently by many agents,
are much more complex, and typically have a higher level of
noise. Taking this fact into account, I will review only the
approaches to the process (or workflow) mining for which
applicability to software process was expressed.

Perhaps, the research most relevant to my own was done
by Cook & Wolf in [7]. The authors developed “process
discovery” techniques intended to discover process models
from event streams. The authors did not attempt to gen-
erate a complete model, but rather to generate sub-models
that express the most frequent patterns in the event stream.
They designed a framework that collects process data from
history logs, and generates a set of recurring patterns of be-
havior characterizing observed process. In this work they
extended two methods of grammar inference from previous
work: purely statistical (neural network based RNet) and
purely algorithmic (KTail) as well as developed their own
Markovian method (Markov).

The first method extended by the authors, the neural-
network based grammar inference, RNet algorithm, defines a
recurrent neural network architecture which is trained by the
sequences of events. After training, this neural net is able
to characterize a current system state by looking on past
behavior. The authors extract the FSM from the trained
neural network by presenting different strings to it and ex-
tracting the hidden neurons activity through observations.
Due to the nature of Neural Net, closely related activation
patterns are clustered into the same state; therefore, by not-
ing the current pattern, the input token, and the next ac-
tivation pattern, transitions are recorded and compiled into
the inferred FSM.

The second method investigated, is a purely algorithmic
KTail method, which was taken from the work of Biermann
& Feldman [3]. The idea is that a current state is defined
by what future behaviors can occur from it. The future is
defined as the set of next k tokens. By looking at a window
of successor events, the KTail algorithm can build the equiv-
alence classes that compose the process model. The authors
extensively modified the original KTail algorithm improving
the folding in the mined model making it more robust to
noise.

The Markov based method developed by the authors is
based on both algorithmic and statistical approaches. It
takes to account past and future system behavior in order to
guess the current system state. Assuming that a finite num-
ber of states can define the process, and that the probability
of the next state is based only on the current state (Markov
property), the authors built a nth-order Markov model using
the first and second order probabilities. Once built, the tran-
sition probability table corresponding to the Markov model
is converted into FSM which is in turn reduced based on the
user-specified cut-off threshold for probabilities.

Figure 1: Process discovery through the grammar
inference: panel a) a sample event stream (simple
process involving three types of events: Edit, Re-
view, and CheckIn); and FNA results obtained by
applying three methods of process discovery from
Cook & Wolf [7].

The authors implemented all three of these algorithms
in a software tool called DaGama as a plugin for larger
software system called Balboa [5]. By performing bench-
marking, Cook & Wolf found that the Markov algorithm
was superior to the two others. RNet was found to be the
worst of the three algorithms. The software tool was applied
to a real-world process data and demonstrated an abstrac-
tion of the actual process executions and ability to capture
important properties of the process behavior. The major
backdraw of the approach, as stated by the authors, lies in
the inability of the FSMs to model concurrency of processes
which limits its applicability to the software development
process. Later, Cook et al. in [6] addressed this limitation
by using Petri-nets and Moore-type FSM.

Another set of findings relevant to my research approach
was developed by Rubin et al. [25] and van der Aalst et
al. [26] and is called incremental workflow mining. The au-
thors not only designed sophisticated algorithms but built a



software system using a business process mining framework
called ProM by van Dongen et al. [27] which synthesizes a
Petri Net corresponding to the observed process. The sys-
tem was tested on SCM logs and while the process artifacts
retrieved from the SCM system are rather high-level, the
approach discussed is very promising for the modeling of
software processes from the low-level product and process
data.

The algorithm input is an event chain constructed through
the “abstraction on the log level”, which aggregates basic
events into single high-level entities, is treated with the Gen-
erate part of the “Generate and Synthesis” [26] algorithm in
order to generate a Transition System which represents an
ordered series of events. This algorithm looks at the history
(prefix) and the future (suffix) sequences of events related to
the current one in order to discover transitions. When ap-
plied to the abstracted log information, the algorithm gen-
erates a rather large Transition System graph where edges
connect to abstracted events. This transition system is then
successively simplified by using various reduction strategies.
At the last step of the incremental workflow mining ap-
proach, Transition Systems are used to Synthesize labeled
Petri nets (where different transition can refer to the same
event) with the help of “regions theory” [8]. As with the
Transition System generation, the authors investigate many
different strategies of Petri nets synthesis, showing signifi-
cant variability in the results achieved. (see Figure 2). The
significant contribution of this research is in the generality
of the method. It was shown that by tuning the “Generate”
and “Synthesize”phases it is possible to tailor the algorithm
to a wide variety of processes. In particular, as mentioned
before, Rubin et al. successfully applied this framework to
the SCM logs and audit trails analysis.

The work by Cook & Wolf and van der Aalst et al. was re-
cently built upon by Huo et al. [13] [14]. The authors follow
previous attempts by implementation of a software process
pattern-mining engine built upon Petri Nets. The patterns
discovered by its application fully or partially compose an
“enactment model” which in turn are compared one by one
with a set of pre-defined software process models provided
by an expert. By introducing the means for measure of en-
actment model deviation from templates authors are able to
evaluate its fitness and provide recommendations for soft-
ware process improvements or template model adjustment.
While such results are highly valuable within industrial set-
tings, the authors agreed that an inability to discover and
formalize novel patterns as well as low tolerance for noise
are among the limitations of their approach.

In addition to the above, the latest trends in software pro-
cess research emphasize mining of software process artifacts
and behaviors [28] [15] [22].

It is worth noting here that while reviewed work demon-
strate general approaches to modeling of concurrent pro-
cesses, to the best of my knowledge their application to the
real world data was very limited. This may be partially
due to the high level of noise and computational limitations
which made inferring complete models too complex and im-
practical to use; or maybe due to the lack of the means to
collect fine-grained software process artifacts which made
models too abstract.

In my approach I am planning to address both issues by
leveraging the ability of the Hackystat system [16] to collect
fine grained data and by the application of advanced sym-

bolic and temporal data mining techniques which are both
efficient and resistant to noise.

Figure 2: Illustration of the “Generation and Syn-
thesis Approach” from [27]: a) Transition System
with regions shown; b),c) Petri Nets synthesized
from the Transition System.

3. RESEARCH OBJECTIVES
As shown by previous research, it is possible to infer and

successively formalize sequential software process by observ-
ing its artifacts, and in particular, recurrent behavioral pat-
terns. The problem of finding such patterns is the corner-
stone of my research. Solving this will extend previous re-
search with a new knowledge that will support improvements
in our understanding of software process.

The main research objectives of my work is to design,
develop and evaluate a previously unexplored approach to
discovering recurrent behaviors in software process through
the data mining of low-level process and product artifacts.
To reach this goal I am planning to perform the following
steps.

First I am exploring the applicability of proposed pattern-
mining techniques to various levels of software process ar-
tifacts complexity. This exploratory study will result in a
set of well-defined data mining workflows designed for par-
ticular kinds and coarseness of software process data and
research goals.

Secondly, implementations of these workflows will consti-
tute the core of the Software Trajectory package aiding re-
current behavior discovery. This software will be a stand-
alone database-backed framework which provides users with
ability to design and use arbitrary filters in order to shrink
the amount of reported patterns by specifying events of in-
terest, their order or their origin.

Finally, the approach implemented in this software system
will be empirically evaluated. I plan to perform the evalua-
tion on three types of data sets which differ by their origin
and complexity: the first data set will consist of the events
collected by Hackystat from a directed development pro-
cess in a controlled environment - a classroom development
project. The second data set will consist of a data collected
from an open-source project; while the third data set will
originate from a large-scale industrial software development
project.

4. RESEARCH APPROACH
My approach to this problem rests on the application of

data-mining techniques to symbolic time-point and time-
interval series constructed directly from the software process



artifacts such as SCM logs, software audit trails or telemetry
streams provided by Hackystat or by a similar in-process
software development monitoring system.

To investigate the requirements for a software tool that
aids in the discovery of recurrent behavioral patterns in
software process, I am designing and developing the “Soft-
ware Trajectory” framework. A high-level overview of the
framework is shown in Figure 3 and resembles the flow of
the“Knowledge Discovery in Database”process discussed by
Han et al. in [12]. As shown, the data collected by Hack-
ystat is transformed into an intermediate symbolic format
and then indexed for further use in data-mining. The tools,
designed for data-mining, have a specific restrictions placed
on the search space by domain and context knowledge in an
attempt to limit the amount of reported patterns to useful
ones. I am planning to design a GUI in a way that will allow
easy access and modification of these restrictions.

While I plan to use Hackystat as a primary data collec-
tion system in my future experimental setup, for the current
exploratory study I am working with various ways of data
collection, extraction and abstraction. The ability to ab-
stract into symbolic representation various software artifact
streams such as SCM logs and audit trails is crucial for the
exploratory study phase enabling me to experiment with
much broader spectrum of existing software process data
collections.

5. DATA AND ANALYSIS METHODS
Various types and complexity of data are available for

software process analysis. For example, simple data ex-
tracted from SCM logs allow us to track software change
and to perform a basic software process reconstruction and
modeling - however a very little information can be recalled
about individual development activities and behaviors from
such models. When development audit trails added to ana-
lyzes, the enriched data allow us to shed more light on the
performed process. By using a contemporary automated
build system and code analysis tools it is possible to collect
a much broader spectrum of process artifacts and software
metrics. Moreover a centralized build system creates a set
of singular time points which are persisting through and ty-
ing together processes performed concurrently by developers
allowing concurrent process reconstruction. Finally, collect-
ing temporal data about atomic development events by the
means of Hackystat and similar systems - such as results of
background compilation and unit tests, IDE buffer transfers
etc. along with quantification of the development effort en-
ables characterization of the dynamic behavior of software
process in great detail. However, rich data brings much more
noise 3 which makes process analysis a non-trivial task.

To overcome the noise and computational complexity is-
sues I have turned to recent advances in two research fields:
patterns mining from temporal data and patterns (motifs)
discovery in genetics. Within both fields researchers work
with vast amounts of the data on a daily basis and many
new methods have been developed which are characterized
by their efficiency, computational simplicity and high noise
tolerance. The data-mining techniques employed in these

3The term noise here is used to refer to many types of dis-
crepancy between logged data and performed process: in-
complete logs, incorrectly logged events, human or technical
errors etc. If not handled properly, the noise distorts process
reconstruction making models useless, as shown in [28].

Figure 3: The high-level system overview. Software
engineering process and product data are collected
and aggregated by Hackystat and then used to gen-
erate temporal symbolic indexes. Data mining tools
constrained by software engineering domain knowl-
edge are then used for unsupervised patterns discov-
ery. The GUI provides an interface to the discovered
patterns and aids in investigation of a discovered
phenomena.

fields are based on the mining of the symbolic data, and
while in Bioinformatics DNA and AA sequences (proteins)
historically represented by symbols, in the temporal data
mining some preliminary conversion is required [21]. By fol-
lowing this model in my approach I am also performing two
steps: at first software process artifacts trails are reduced to
a symbolic form and later this data is indexed and mined
for recurrent patterns.

5.1 Application of the symbolic aggregate ap-
proximation.

The current state of the art approach in temporal data
mining is called Symbolic Aggregate approXimation and was
proposed by Lin et al. in [21]. This method extends the
PAA-based approach, inheriting algorithmic simplicity and
low computational complexity, while providing satisfactory
sensitivity and selectivity in range-query processing. More-
over, as mentioned by the authors, the use of a symbolic
representation opens the door to the existing wealth of data-
structures and string-manipulation algorithms in computer
science such as hashing, regular expression pattern match-
ing, suffix trees etc. As showed by the authors, SAX out-
performs all previously known methods - DFT, DWT, DTW
and similar - by using SAX it is possible to index and find
discords - recurrent and “surprise” patterns in vast amounts
of data in almost linear time and space [1] [19] [17].

Previously in my research I have attempted to mine be-
havioral patterns from software telemetry streams by using
DTW (similarly to the speech recognition) and application
of SAX was a natural continuation of this attempt, how-
ever the results of such application were not encouraging as
shown further in Section 6. While resolving issues and eval-
uating parameters for SAX-performed data reduction I have
noticed that due to the PAA step of the algorithm a high
level of noise in the raw data can be dramatically reduced
leaving only a major time-series trends for successful “sym-
bolization”. In my opinion, this protocol can be adopted for
the complexity reduction of the software process artifacts



streams. For example, if symbolic coding of a performed
software process would be d → d → d → u → d → d → d →

u → c → s inferring a long cycle of development with inter-
mediate unit test at some point (position 4) succeeded by
a unit test, commit and build success, it may be necessary
to dismiss this intermediate unit test event and collapse in
time all development events into the single one, transform-
ing the original sequence into d → u → c → s and thus
reducing the pattern complexity. The implementation of
this approach is currently under way and will be included
within my exploratory study.

5.2 Application of motif mining in biological
data.

Multiple alignments of protein sequences are important in
many biological applications including phylogenetic tree es-
timation, secondary structure prediction and critical residue
identification. In multiple alignment algorithms gaps and
substitution usually introduced within possibly similar se-
quences in order to find the best possible score for an align-
ment, clever weighting of such discrepancies was shown to
improve alignments. Further, recent advances in MSA (mul-
tiple sequence alignment) algorithms [9] include a new method
for design and evaluation of objective functions for improv-
ing alignments by its profiling by statistically inferred weight-
ing schema. Such a heuristic strategy can be also adopted
within the search of “software development motifs” - for
example in an attempt to reduce complexity one may ig-
nore (score low) the presence or lack of code analysis events
within a development cycle. This will immediately align to-
gether patterns with or without such events, making them
statistically much more noticeable while preserving the over-
all contextual correctness.

Another idea seen in both methods which can be borrowed
is the clever distance function implementation - it will score
sequences different by a single symbol (single substitution)
as equal if the both symbols are approximately equal to each
other in the context of actions. By adopting this strategy
one may consider events representing running code analy-
sis tools such as CheckStyle, PMD, FindBugs (all are Java
code analysis tools) and SCLC (code line counter) as equal
in their meaning and if the sequences representing software
process are different only by these events, than no value will
be added to the resulting distance.

6. PRELIMINARY RESULTS
During my work on the pilot version of Software Trajec-

tory framework, I began a set of small exploratory exper-
iments in order to aid in the architectural design, data-
mining algorithms selection and implementation. In addi-
tion, these experiments helped me to outline the boundaries
of applicability of my approach to certain problems in soft-
ware engineering. I call these experiments the Pilot study.

One of the Pilot study experiments was performed in order
to evaluate the ability of SAX approximations and index-
ing to capture a temporal specificity of telemetry streams
through the discovery of temporal motifs - recurrent tem-
poral patterns. The goal of the experiment was to cluster
developers by their development behaviors and to find cor-
relations between software metrics streams. Knowing about
the frequently misleading results of a time-series clustering
[18], I did not expect to capture many interesting facts,
nevertheless the results were encouraging. The data used

developer1_3

developer4_3

developer5_3

developer8_3

developer3_3

developer6_3

developer2_3

developer7_3

Window 4, PAA 4, Alphabet 3

a) DevTime streams from 8 developers

b) Developers behavior clustering

developer1 developer2

developer4 developer7

developer3 developer5

developer6 developer8

SAX parameters: window size 4, alphabet size 3

Figure 4: Clustering of developers behavior us-
ing symbolic approximation and temporal motif fre-
quencies vectors. This analysis captured similar de-
velopment behavior among developers. Developers
#2 and #7 were consistent (no bursts observed) in
both, coding and measuring effort during whole time
interval, while all others can be characterized with
bursty, inconsistent effort.

in this study were collected from eight students and rep-
resent Hackystat metrics collected during sixty days of a
classroom project. The streams under analysis were com-
posed by quantifying development events within a day: for
example for the BuildSuccess stream a single value 5 means
that five builds succeeded within that day.

The two clustering experiments were conducted using the
distance between motif frequencies vectors (note that tem-
poral ordering of motifs was not accounted in these analysis)
extracted by indexing of telemetry streams. The procedure
for building such vectors closely follows SAX approximation
and uses a sliding window to extract all subsequences (po-
tential motifs) from a given stream. These subsequences are
mapped into strings and stored in the hash-like structure.



At the next step the hash entries are counted and sorted by
the frequency of occurrence. The vector of N most frequent
motifs then used in the clustering.

CodeIssue Build

UnitTest_Failure Build_success

UnitTest_SuccessCount DevTime

UnitTest_TotalCount Build_failure

CyclomaticComplexity Commit

Coverage_NumUncovered Coverage_NumCovered

Churn Coverage_Percentage

FileMetric_TotalLines

Figure 5: Aggregated Telemetry streams for class-
room pilot dataset presenting non-cumulative values
for each metrics for 60 days.

At first, by clustering of development time telemetry streams
collected from individual developers I was able to group de-
velopers with similar behavioral patterns within clusters,
which indicates the feasibility of the classification by effort
approach. Figure 4 depicts results of this analysis.

However clustering of product-related telemetry streams
was not successful. I was able to group telemetry streams,
but while these groups look intuitively meaningful - for ex-
ample clustering together filemetrics and development time
- the close examination of the stream features suggests that
this grouping happened due to the similar temporal behav-
ior on the short stretches rather then positive correlation.
This result, while proving the correctness of approach, indi-
cates its limitation, pointing out that instead of using just
motif frequencies, some temporal ordering should be taken
into account. Figure 6 displays the results of this analysis.

Another result within a Pilot Study was also achieved by
the direct application of SAX indexing. For this experiment
I used data collected from my own concurrent development
of Trajectory software package and JMotif library. Within a
symbolic approximation paradigm the change of symbols can
be interpreted as growth or drop in the value of underlying
data stream: for example consecutive ab symbols indicate
that growth happened and ba correspond to a drop. The idea
was to find if there was any recurrent drop or growth events
coincidence within two streams. For this purpose I defined a
sliding window consisting of three days and searched for such
coinciding within the window events. Events were found in
the development time stream, churn, commit and others.
Detailed analysis of coinciding growth events revealed that
changes within JMotif data manipulation routines almost
always followed by changes within Trajectory data analyzes
routines which are heavily relying on the JMotif API. While
within my two-project software portfolio such a discovery is
a quite obvious fact, one can see an immediate application
of this method to a large software projects portfolio or a
large software system where it will be possible to build a
repertoire of frequent consecutive changes aiding in estimate
of an effort required for performing certain changes.

7. EXPLORATORY STUDY DIRECTIONS
The previous section describes two completed experiments

which provide an insight into the applicability of SAX ap-
proximation of Telemetry streams to discovery of recurrent
behaviors in software process. Work on both experiments
resulted in a database schema which supports symbolic in-
dexing of telemetry streams. Such storage solution provides
an immediate and structured access to the symbolic streams
allowing to perform time-range queries with use of regular
expressions (in SQL language) and to extract sequences of
interest which for example include successful Unit-Test, or
Commit events, or software metrics values above an arbi-
trary threshold. This database-driven solution is somewhat
similar to the CVSAnalY tool [24] providing an abstraction
layer over the raw, mostly unstructured data. One of the
direction I am working on right now is the complimentary
use of both databases under unifying API in order to eval-
uate a capacity of such approach in the recurrent behavior
discovery for the MSR challenge [10].

As mentioned before, motif finding in protein sequences
is a well-established research field which deals with vast
amount of data as well as with high level of noise. This noise
problem is inevitable in biology and reflects a natural way
of evolution in life through mutations. Recent advances in
biological data mining resulted in a wealth of algorithms and
software tools. According to [23] there are two categories of
approaches for motif finding in biological sequences: while
the first one is based on the similar to reviewed concepts



such as HMM and automata, the second category “uses pat-
terns with ‘mismatch representation’ and define a signal to
be a consensus pattern allowing up to a certain number of
mismatches to occur in each instance of the pattern”. This
second approach looks like a very promising alternative to
previously explored directions in process mining while ex-
tending the exact motifs search approach explained before.
Allowing mismatches in the noise from non-frequent events
will not decrease the evidence value for the similar patterns,
allowing us to identify key events of the observed process
(as similar to the key amino-acids residues within protein
sequences). I am planning to perform an experiment con-
sisting of abstraction of software process artifacts into the
symbolic representation mimicking protein encoding and ap-
plication of motif-finding packages with purpose of evalua-
tion of their ability to recall frequent patterns from such
data.

Concurrent software processes occur within a team work-
ing on a common goal. Within such processes developers
interact at many levels by means of various software tools
such as SCM, bug and issue tracking systems, e-mails etc.
In the context of my exploratory study I am going to put the
research focus on the role of build automation (such as con-
tinuous integration) and its ability to serve as a place which
persists among all processes providing means of interaction
for all participating agents and potentially influencing their
individual behaviors. I plan to perform data mining analyzes
on intervals of continuous telemetry streams collected from
individual agents using automation-created events as time
points breaking these streams onto intervals. I expect to
find behavioral specificity within such fragments reflecting
different phases of development (such as bug-fixing, testing
or a “death march”) as well as differences among sets from
individual agents reflecting team-assigned roles.

8. FUTURE EMPIRICAL STUDY DESIGN
I propose to conduct two case studies: Public data case

study, and Classroom case study in order to empirically eval-
uate the capabilities and performance of Software Trajectory
framework. These studies differ in the granularity of data
used, and in the approaches for evaluation.

My intent behind these empirical studies is to assess the
ability of Software Trajectory framework to recognize well
known recurrent behavioral patterns and software processes
(for example Test Driven Development), as well as its abil-
ity to discover new ones. In addition, these studies will
support a classification and extension of the current Hacky-
stat sensor family in order to improve Software Trajectory’s
performance. It is quite possible that some of the currently
collected sensor data will be excluded from the Software Tra-
jectory datasets, while some new ones will be designed and
developed in order to capture important features from the
studied software development data streams.

The proposed public data case study is based on the use
of publicly available Software Configuration Management
(SCM) audit trails of the big, ongoing software projects such
as Eclipse, GNOME etc. Mining of SCM repositories is a
well-developed area of research with much work published
[10]. SCM repositories contain coarse software product arti-
facts which are usually mined with a purpose of discovering
of various characteristics of software evolution and software
process. I am using a mixed-method approach in this study.
In the first phase of this study, I plan to perform SCM audit

CodeIssue_3

UnitTest_Failure_3

FileMetric_TotalLines_3

Churn_3

Coverage_NumCovered_3

Coverage_Percentage_3

CyclomaticComplexity

Coverage_NumUncovered_3

Build_failure_3

Commit_3

UnitTest_Success_3

UnitTest_Total_3

DevTime_3

Build_3

Build_success_3

Window 4, PAA 4, Alphabet 3

UnitTest_Total_5

UnitTest_Success_5

DevTime_5

FileMetric_TotalLines_5

Commit_5

Build_success_5

Build_5

Build_failure_5

Coverage_NumUncovered_5

Churn_5

CyclomaticComplexity_5

Coverage_NumCovered_5

Coverage_Percentage_5

CodeIssue_5

UnitTest_Failure_5

Window 5, PAA 5, Alphabet 5

SAX parameters: window size 4, alphabet size 3

SAX parameters: window size 5, alphabet size 5

Build_success_5

Figure 6: Clustering of telemetry streams for
classroom pilot dataset using symbolic approxima-
tion and vectors of motif frequencies. While it
seems to be meaningful to find correlation between
UnitTest Failure and CodeIssue streams unit test,
this grouping happened due to the similarity of be-
havior pattern - short, high amplitude bursts; but
note, there is no correlation of features in time.
There are two trees for different SAX parameters
shown to display inconsistency of clustering.

trail data mining following published work and using Soft-
ware Trajectory as a tool in order to discover confirmed pat-
terns in software process artifacts, and thus quantitatively
evaluate Software Trajectory’s performance when compared
to existing tools. In the second phase, I will develop my own



pre-processing and taxonomy mapping of software process
artifacts into temporal symbolic series. By using this data
and Software Trajectory framework, I plan to develop a new
approach for SCM audit trail mining and possibly discover
new evolutionary behaviors within software process.

The classroom case study is based on a more comprehen-
sive data set. This data will be collected by Hackystat from
Continuous Integration and from individual developers and
will contain fine-grained information about performed soft-
ware process which may or may not reflect a development
practice restriction placed by the lecturer. The approach I
am taking in this study is similar to the public data case
study. I will develop my own taxonomy for mapping of soft-
ware process artifacts into symbolic temporal data and will
apply Software Trajectory analyzes to this data in order
to discover recurrent behaviors. In turn, these discovered
knowledge will be evaluated through interviewing for use-
fulness and meaningfulness.

9. RESEARCH RISKS
While I strongly believe that my research will result in the

discovery of novel software processes and that the Software
Trajectory package will contribute to the research commu-
nity, it may be the case that I underestimate the overall
complexity of the problem and the approach taken will not
be able to solve it. In this section I will assess the risks asso-
ciated with my research plan as well as explain my thoughts
about these issues.

First of all, one of the big risks for my research lies in the
question whether I will be able to find any of the recurrent
behaviors while mining software process artifacts. The fail-
ure to find patterns may happen due to the nature of the
software development as a human activity. It is possible that
there are no recurrent behaviors within such a process, in
other words, it may be that software development is a craft
- a practical art, which in turn makes every programmer an
artist with a very own, unique behavior. While such a re-
sult will be“terminal” for my research, the impact it makes is
worth getting my research done. Another possibility which
yields a similar result - no recurrent behaviors - may be due
to the inefficiency of process monitoring and data collection
means. If this will be the case - my research will outline
directions for further development of Hackystat and simi-
lar systems by identifying what kind of activities need to be
captured to support future development in the software pro-
cess research. Finally, it may be possible that patterns exist
as well as they are represented within the data, but meth-
ods chosen are not sensitive or not efficient enough to find
them. By detecting this case through the classroom exper-
iment setup and interviewing I will investigate and outline
limitations of implemented methods.

Secondly, I may discover some novel behavioral patterns
through mining, but will not be able to confirm them experi-
mentally. This situation maybe due to the number of reasons
- for example, interviewees may not notice such behaviors or
will hesitate to confirm“not good ones” intentionally. If this
happens, it is hard to see at this point which way to pro-
ceed further, but one of the vital options will be to set up
additional targeted experiments for evaluation of findings.

And finally, I might find patterns and confirm them em-
pirically, but they will be obvious and only trivial ones -
for example building a system before committing changes or
doing an update before running a build. This result is very

similar to the case when no patterns are identified and will
be resolved in the similar fashion.

10. CONCLUSIONS
This paper presented an approach to discovering of novel

recurrent behaviors in software process. Summarizing the
previous work and the experience collected within the ex-
ploratory study I can only see that properties of this ap-
proach and its current implementation in the Software Tra-
jectory framework appear to be very promising. Application
of current advances in temporal symbolic data mining and
Bioinformatics allows to overcome many computational lim-
itations in existing approaches for mining of software process
artifacts; while Hackystat provides the ability to capture
fine-grain software product and process metrics providing
a richness of data, which, potentially, might reveal new in-
sights.
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