
Recognizing recurrent development behaviors
corresponding to Android OS release life-cycle

Pavel Senin
Collaborative Software Development Laboratory
Information and Computer Sciences Department

University of Hawaii at Manoa
Honolulu, Hawaii, 96822

senin@hawaii.edu

Abstract—Within the field of software repository mining
(MSR) researchers deal with a problem of discovery of inter-
esting and actionable information about software projects. It is
a common practice to perform analyzes on the various levels
of abstraction of change events, for example by aggregating
change-events into time-series. Following this, I investigate
the applicability of SAX-based approximation and indexingof
time-series with tf∗idf weights in order to discover recurrent
behaviors within development process. The proposed workflow
starts by extracting and aggregating of revision control data
and followed by reduction and transformation of aggregated
data into symbolic space with PAA and SAX. Resulting SAX
words then grouped into dictionaries associated with software
process constraints known to influence behaviors, such as time,
location, employment, etc. These, in turn, are investigated with
the use of tf∗idf statistics as a dissimilarity measure in order
to discover behavioral patterns.

As a proof of the concept I have applied this technique to
software process artifact trails corresponding to Android OS1

development, where it was able to discover recurrent behaviors
in the “new code lines dynamics” before and after release.
By building a classifier upon these behaviors, I was able to
successfully recognize pre- and post-release behaviors within
the same and similar sub-projects of Android OS.

Keywords: software process, recurrent behaviors, data-mining

I. I NTRODUCTION

By the large body of previous research it has been
shown, that software process artifact trail (change events
and associated metadata) is a rich source of process and
developers’ information and characteristics. The abilityto
discover recurrent behaviors with Fourier Analysis of change
events is explained in [1], while another work [2] con-
nects recurrent behaviors and software product quality. Thus,
potentially, it is possible to relate recurrent behaviors to
software product quality and to software process efficiency.
The main part of a toolkit aiding such research is not only
an efficient mechanism of recurrent behaviors discovery, but
a mechanism of recognition of social and project-related
constraints modulating these behaviors. This paper presents
my exploratory study resulted in a universal framework

1http://source.android.com

for temporal partitioning and mining of software change
artifacts. As an evaluation example, it presents a recurrent
behaviors discovery from the data extracted from Android
SCM (software configuration management) system.

The rest of the paper is organized as follows. In Section
2, I discuss the motivation, results of previous work in
MSR and present the research questions. In Section 3, I
consider the workflow, data selection, collection, partitioning,
and describe algorithms and methods. Section 4 presents
results and the contribution. Finally, in Section 5, I discuss
limitations and possible extension of this work.

II. M OTIVATION

Software development is a human activity resulting in a
software product. The software process is a structure im-
posed on the software development. This structure identifies
a set and an order of activities performed to design, develop
and maintain software systems. Examples of such activities
include design methods; requirements collection and cre-
ation of UML diagrams; requirements testing; performance
analysis, and others. The intent behind a software process
is to structure and coordinate human activities in order to
achieve the goal - deliver a software system successfully.
Many processes and process methodologies exist today, and
it has been found, that the amount of time and effort
needed to complete a software project, and the quality of the
final product, are heavily affected by the software process
choice [3]. Thus, studying software processes is one of the
important areas of software engineering.

Traditionally, the software process study is built from
top to bottom: it requires the researcher to guess a whole
process, or to notice a recurrent pattern of behavior up-
front, and to study it in a variety of settings later. These
empirical studies usually involve two expensive and limited
in scale techniques: interviewing and monitoring of the
developers. Furthermore, these techniques are virtually im-
possible to apply within open-source project settings where
a diverse development community scattered over the globe.
Fortunately, current advances in software configuration man-
agement (SCM) technologies enable researchers to study

software process by mining software artifact trails [4], such
as change logs, bug and issue tracking systems and mailing
lists archives.

Mining of large software repositories demands advanced
techniques allowing to tame with the complexities of data
extraction and its analysis. These challenges are not new
to the data-mining community and an enormous wealth of
methods, algorithms and data structures have been developed
to address these issues. While some of these approaches
were already implemented within the field, such as finding of
trends, periodicity and recurrent behaviors through the linear
predictive coding and cepstrum coefficients [5], Fourier
Transform [1] and coding [6], many are yet to be tried.

In this paper, I investigate the application of Symbolic Ag-
gregate Approximation [7] and the term frequency–inverse
document frequency weight statistics (tf∗idf) [8] to the prob-
lem of discovering recurrent behaviors from software process
artifacts. The motivation behind this choice is coming from
the demonstration of outstanding performance by SAX in
time-series mining, and from the wide range of successful
applications oftf∗idf statistics, which is focusing on measur-
ing the degree of dissimilarity as the opposite to convenient
similarity metrics. Implementation of this approach I validate
on Android SCM data.

A. Research question

In this exploratory work I am investigating the appli-
cability of Lin&Keogh symbolic approximation technique
combined withtf∗idf statistics to the discovery of recurrent
behaviors from SCM trails of Android OS. The research
questions I am addressing are:

• Which kinds of SCM data need to be collected for such
analyzes?

• What is the optimal approach to data representation and
a data storage configuration?

• Which partitioning (slicing) is appropriate, and which
set of parameters should one use for SAX approxima-
tion?

• What is the general mining workflow?

III. E XPERIMENTAL SETUP AND METHODS

In this section I explain the steps of the recurrent behaviors
discovery workflow along with their theoretical background.

A. Data collection and organization

As with many other large open-source projects, Android
OS has been in the development for many years. It is “an
open-source software stack for mobile phones and other
devices”, which is based on the Linux 2.6 monolithic kernel.
Development of Android was begun by Android Inc., the
small startup company. In 2005, the company was acquired
by Google which formed the Open Handset Alliance - a con-
sortium of 84 companies which announced the availability of
the Android Software Development Kit (SDK) in November

2007. The Android OS code is open and released under the
Apache License.

Google platform is used for hosting, issue and bug track-
ing systems, whether Git is used as the distributed version
control system for Android. The source code is organized
into more than 200 of sub-projects by function (kernel, UI,
mailing system, etc.) and underlying hardware (CPU type,
bluetooth communication chip, etc.). There are about two
million change records registered in the Android SCM by
more than eleven thousands of contributors within an eight
year span. The richness of this data makes Android SCM
very interesting repository for exploring.

By using provided Google Data API for bugs and issues
data retrieval, and custom coded Git repository data collec-
tion engine, I have collected information about bugs and
issues, the revision tree, authors and committers, change
messages, and affected targets. In addition to that data, by
creating a local mirror and by iterating over changes, I was
able to recover the auxiliary data for the most of the change
records. This auxiliary data provides quantitative summary
of added, modified, and deleted targets, as well as the sum-
mary about LOC changes: added, modified or deleted lines.
All this information was stored in the relational database.
Main tables of this database correspond to change and issue
events; these accompanied with change target tables, issue
details, comments, and tables for contributor authentication.
Overall, the database was normalized and optimized for the
fast retrieval of change and issue information using SQL
language.

The collected data constitute almost full set of collectible
artifacts. The only lacking information is the precise infor-
mation for source-code line changes, which I intentionally
omitted in this step due to the storage space and collection
time constraints. Despite of being collected, bugs and issues
data has not been included into recurrent behaviors discovery
experiments in this work mostly due to the complexity of
change-issue relations. However, as was shown by previous
research, this data is a valuable source of information for
recurrent behaviors discovery [2].

B. Temporal data partitioning

By following the previous research targeting social char-
acteristics of committers [2], as well as the release pattern
discovery [6], I have partitioned and organized the collected
change trails by the time of the day using time windows of

• Full day, 12AM - 12AM
• Late night, 12AM - 04AM
• Early morning, 04AM - 08AM
• Day, 08AM - 05PM
• Night, 05PM - 12AM

For every of these windows, I then aggregated values
for commits, added, edited, or deleted targets and lines,
producing equidistant time-series abstraction of software
development activity.

One of the effects of this data transformation is an instant
increase of the number of change data entities by the
factor of 5 and production of very sparse equidistant time-
series. In order to reduce the sparseness and the complexity
(dimensionality) of data, two additional procedures were
applied within the post-collection data treatment step: PAA
and SAX.

C. Piecewise Aggregate Approximation (PAA)

PAA performs a time-series feature extraction based on
segmented means [9]. Given a time-seriesX of length n,
application of PAA transforms it into vector̄X = (x̄1, ..., x̄M)

of any arbitrary lengthM ≤ n where each of̄xi is calculated
by the following formula:

x̄i =
M

n

(n/M)i
∑

j=n/M(i−1)+1

xj (1)

This simply means that in order to reduce the dimensional-
ity from n to M , we first divide the original time-series into
M equally sized frames and secondly compute the mean
values for each frame. The sequence assembled from the
mean values is the PAA transform of the original time-series.

It worth noting, that PAA reduction of original data
satisfies to a bounding condition, and guarantees no false
dismissals in upstream analyzes as shown by Keogh et al.
[10] by introducing the distance function:

DPAA(X̄, Ȳ) ≡

√

n

M

√

√

√

√

M
∑

i=1

(x̄i − ȳi) (2)

and showing thatDPAA(X̄, Ȳ) ≤ D(X,Y).

D. Symbolic Aggregate approXimation (SAX)

Symbolic Aggregate approXimation extends the PAA-
based approach, inheriting algorithmic simplicity and low
computational complexity, while providing satisfactory sen-
sitivity and selectivity [7].

SAX transforms a time-seriesX of lengthn into a string
of arbitrary lengthω, where ω << n typically, using an
alphabetA of size a ≥ 2. The SAX algorithm consist of
two steps: during the first step it transforms the original

Figure 1: The illustration of the SAX approach taken from [7]
depicts two pre-determined breakpoints for the three-symbols al-
phabet and the conversion of the time-series of lengthn = 128 into
PAA representation followed by mapping of the PAA coefficients
into SAX symbols withw = 8 and a = 3 resulting in the string
baabccbc.

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table I: A look-up table used by the MINDIST function for the
a = 4

time-series into a PAA representation and this intermediate
representation gets converted into a string during the second
step. Use of PAA at the first step brings the advantage of
a simple and efficient dimensionality reduction while pro-
viding the important lower bounding property. The second
step, actual conversion of PAA coefficients into letters, is
also computationally efficient and the contractive property
of symbolic distance was proven by Lin et al. in [11].

Discretization of the PAA representation of a time-series
into SAX is implemented in a way which produces sym-
bols corresponding to the time-series features with equal
probability. The extensive and rigorous analysis of various
time-series datasets available to the authors has shown that
normalized by the zero mean and unit of energy time-series
follow the Normal distribution law. By using Gaussian distri-
bution properties, it’s easy to picka equal-sized areas under
the Normal curve using look-up tables [12] for the cut lines
coordinates, slicing the under-the-Gaussian-curve area.The
x coordinates of these lines called “breakpoints” in the SAX
algorithm context. The list of breakpointsB = β1, β2, ..., βa−1

such thatβi−1 < βi and β0 = −∞, βa = ∞ divides
the area underN(0, 1) into a equal areas. By assigning
a corresponding alphabet symbolalphaj to each interval
[βj−1, βj), the conversion of the vector of PAA coefficients
C̄ into the stringĈ implemented as follows:

ĉi = alphaj , iif c̄i ∈ [βj−1, βj) (3)

SAX introduces new metrics for measuring distance be-
tween strings by extending Euclidean and PAA (2) distances.
The function returning the minimal distance between two
string representations of original time seriesQ̂ and Ĉ is
defined as

MINDIST (Q̂, Ĉ) ≡

√

n

w

√

√

√

√

w
∑

i=1

(dist(q̂i, ĉi))2 (4)

where thedist function is implemented by using the look-up
table for the particular set of the breakpoints (alphabet size)
as shown in Table I, and where the singular value for each
cell (r, c) is computed as

cell(r,c) =

{

0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c)−1, otherwise
(5)

As shown by Lin et al., this SAX distance metrics lower-
bounds the PAA distance, i.e.

n
∑

i=1

(qi − ci)
2 ≥ n(Q̄− C̄)2 ≥ n(dist(Q̂, Ĉ))2 (6)

It worth noting, that SAX lower bound was examined by
Ding et al. [13] in great detail and found to be superior in
precision to the spectral decomposition methods on bursty

(non-periodic) data sets.

E. Symbolic approximation and indexing

As explained above, application of SAX to the single
time-series results in its symbolic representation which is
much shorter (reduced in the dimensionality) and easier to
manipulate.

By following a sliding window sub-series extraction and
SAX indexing technique described in detail by Lin et al.
in [7] and Keogh et al. in [11], I have built a number of
symbolic indexes for every time-series generated at partition-
ing step (III-B) combining following parameters for SAX
transformation:

• three sizes for sliding window reflecting natural inter-
vals of a week (7 days), two weeks (14 days) and a
month (30 days);

• 4 PAA steps for a weekly window, 6 PAA steps for
a bi-weekly window, and 10 PAA steps for a monthly
window;

• 3 letters alphabet for weekly window, 5 letters for bi-
weekly, and a 7 letters alphabet for monthly window.

These indexes were stored in the same relational database,
organized and indexed in order to allow the fast retrieval of
SAX words and their frequencies for a specific project, a
contributor, a time-interval, a SAX parameters set, or any
combination of these fields.

F. Behavioral portrait

Here I define a term of “behavioral portrait” of a contrib-
utor c as the set of all observed SAX words in her software
artifact trail(s):

BPc = {(w1, f1), (w2, f2), ..., (wn, fn)} (7)

where each pair(w1, f1) corresponds to the observed SAX
word and its frequency. This portrait can be further specified
by project, time-interval and SAX parameters set. Also it can
be easily extended from the individual contributor to a team,
whose “behavioral portrait” is a union set of “behavioral
portraits” of team members.

G. Token-based distance metrics application to behavioral
portraits

In my previous experiments I have measured the per-
formance of three similarity metrics when applied to the
behavioral portraits.

The first metrics I have tried is weighted by SAX
Euclidean similarity distance defined for common to two
behavioral portraits words:

D(S, T) =

√

∑

S∩T

(MINDIST (si, ti) ∗ ‖Fsi − Fti‖)
2 (8)

whereS andT are two behavioral portraits whose words are
ordered by frequency.

The second metrics I have tried is the Jaccard similarity
coefficient between two behavioral portraitsS andT which

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Android kernel−OMAP hierarchical clustering
stream ADDED_LINES, user mask ``*@google.com``

Android 1.5, POST-release

Android 2.0, POST-release

Android 1.0, POST-release

Android 2.0, pre-release

Android 1.0, pre-release

Android 1.5, pre-release

Figure 2: Hierarchical clustering of pre- and post- releasebehav-
ioral portraits corresponding to the new code lines dynamics of
google.com affiliated contributors.

is simply

Jδ(S, T) =
|S ∪ T | − |S ∩ T |

|S ∪ T |
(9)

The third metrics I have tried is thetf∗idf similarity which
defined as a dot product

TFIDF (S,T) =
∑

ω∈S∩T

V (ω,S) · V (ω,T) (10)

where

V (ω, S) =
V ′(ω,S)

√
∑

ω′ V ′(ω, S)2
(11)

is a normalization oftf∗idf (product of token frequency and
inverse document frequency):

V
′(ω, S) = log(TFω,S + 1) · log(IDFω) (12)

whereTFω,S is a normalized token frequency

TFω,S =
|ω|

|S|
(13)

and IDFω is a measure of the general importance of the
pattern among all users

IDFω =
|D|

DF (ω)
(14)

where |D| is cardinality ofD - the total number of users,
andDF (ω) is the number of users havingω pattern in their
activity set.

While first two metrics demonstrated very poor perfor-
mance in the clustering tests (discussed in the section III-H),
the tf∗idf similarity statistics performed very well and is
presented in this work.

H. Clustering

As a universal tool for the exploration of derived behav-
ioral portraits through their partitioning, and for assessment
of the metrics’ performance, I used hierarchical clustering.
The k-means clustering was used in the validation of the
class assignment and for general assessment of the validity
of the approach.

Table II: Patterns observed within pre- and post-release behavioral portraits, theirtf∗idf weights and sample,not normalized curves.(here
pre-x.x and post-x.x rows of the upper table correspond to pre-release and post-releases of Android OS version x.x; columns of the table
correspond to non-trivial patterns observed in all behavioral portraits; cells of the table contain tf∗idf weights computed for a particular
SAX word in a particular behavioral portrait)

release "bbac" "abca" "babc" "bbba" "bcaa" "bcbb" "ccaa" "cbaa" "bbcb" "bbbb" "bbbc"
post-2.0 0.63 0 0.63 0 0 0 0 0.39 0.24 0.06 0
post-1.0 0 0.93 0 0 0 0 0 0 0 0.09 0.36
post-1.5 0 0 0 0 0 0 0 0 0.79 0.61 0
pre-1.5 0 0 0 0.23 0.23 0.91 0 0.14 0.18 0 0.09
pre-2.0 0 0 0 0 0 0 0 0 0 1 0
pre-1.0 0 0 0 0 0 0 0.79 0 0 0.08 0.61

unnormalized
sample
curves corre-
sponding to
patterns

IV. RESULTS

For the experiments related to this work I have tried a
number of contributors partitioning schemes, variety of time-
intervals and sub-projects selections observing satisfactory
performance of investigated approach. However, due to the
space constraint of this paper, I present only single validation
experiment in this section as the proof of concept.

A. Kernel-OMAP life cycle patterns discovery

I have arbitrary selected the Android kernel-OMAP
project as one of the large sub-projects in Android OS.
It is the Android kernel implementation for OMAP-based
(a proprietary system on chips based on ARM architecture
processor by Texas Instruments) devices.

As a “training set” for discovery of behavioral portraits
of pre- and post-release patterns, I chose three Android
releases:Android 1.0, Android 1.5 “Cupcake”andAndroid
2.0 “Eclair” . For each of these I generated behavioral
portraits corresponding to four weeks before the release
- pre-release behavioral portrait, and to four weeks after
release -post-release behavioral portraithaving in place an
additional constraint on contributors and the artifacts trail. I
have selected contributors affiliated withgoogle.com e-mail
domain only, expecting that paid developers will have much
more consistent behavior [2]. By selecting theadded_lines
artifacts stream only, I additionally limited the scope of the
analyzes and the complexity of captured behaviors to the
“new code lines dynamics” only. The almost perfect cluster-
ing picture (Figure 2) obtained with hierarchical clustering
and tf∗idf statistics as the distance function indicates, that
there are significant differences in the pre- and post-release
weekly behaviors of contributors in selected time-windows.

While hierarchical clustering is a good sanity test for
the data exploration, the performance of K-means clustering
is much more valuable [14]. I performed k-means on the
symbolic representation of data usingtf∗idf statistics and
Euclidean distance. The algorithm converged after two iter-
ations separating pre- and post-release dictionaries witha
single mismatch for the Android 2.0 pre-release.

Table III: Pre- and post-release development patterns classification
results for kernel-OMAP.

Release Classification Release Classification
1.6-pre misclassified beta -pre OK
1.6-post OK beta-post OK
2.2-pre OK 2.0.1-pre OK
2.2-post OK 2.0.1-post misclassified
1.1-pre OK 2.1-pre OK
1.1-post OK 2.1-post OK
2.3-pre OK 2.2.1-pre OK
2.3-post OK 2.2.1-post misclassified

By using centroids of two resulting clusters as a basis for
pre- and post-release patterns I tested the classifier on therest
of Android kernel-OMAP releases. The classifier was able
to successfully classify more than 81% of pre- and post-
release behaviors (Table III). When applied to the similar
project - kernel-TEGRA - it demonstrated the error rate less
than 15%.

The classifier demonstrated a weak, almost random per-
formance on other sub-projects, such as user-interface
related projects and e-mail client. However, when re-
trained on the platform-external-bluetooth-bluez project,
its performance on other bluetooth-related sub-projects,
such as platform-external-bluetooth-glib, platform-external-
bluetooth-hcidump, and platform-system-bluetooth, recov-
ered to 20% miss-classification.

B. Contribution

To the best of my knowledge, this work is the first attempt
to study the applicability of symbolic aggregate approx-
imation and term frequency–inverse document frequency
weight statistics to the mining of software process artifacts.
This methodology has a number of advantages. First of all,
SAX facilitates significant reduction of the large complexity
(dimensionality and noise) of temporal artifacts and opens
the door to application of a plethora of string search and text-
mining algorithms. In addition, thetf∗idf statistics provides
an efficient mechanism for discrimination of the signal
by ranking symbolic data while focusing on dissimilarity.
Finally, the third component I have used - the relational

database - facilitates efficient data slicing, indexing, and
retrieval.

As an example of a possible data-mining workflow demon-
strating the resolving power and correctness of the approach,
I presented a case study of building a classifier for pre-
and post-release recurrent behaviors. Whereas this classifier
demonstrates a good performance within the project it was
trained on with less than 20% miss-classification, it has
less than 15% miss-classification rate in similar Android OS
kernel sub-projects.

V. D ISCUSSION

The presented approach and workflow employs two novel
techniques in order to discover and rank recurrent behaviors
from software process artifact trails. While the approach
demonstrates satisfactory performance, the interpretation of
the captured behaviors requires more work. The discovered
behavioral patterns are organized in Table II by their oc-
currence: the first three columns belong to the post-release
time-window, the four next columns belong to pre-release
time-window, while the rest are the behavioral patterns
observed in both. The bottom row of the table contains plots
visualizing examples of the raw-data streams corresponding
to symbolic behavioral patterns. By the visual examination
of these examples, it appears that during pre-release most
of the added lines within a week fall on the Monday and
Tuesday, whereas during post-release time, most of the lines
are added during the end of the week and the week-end.
While an explanation of these findings requires an additional
study to be made, one of the interpretations of such behavior
could be based on the contributors employment profile. For
example, if the coding activity of developers paid to work
on Android (thus mostly commit during working days) has
fallen below the activity of developers working on their own
volition (who commit mostly off business hours); which,
in turn, could be a consequence of removing of a pre-
release code-freeze, or that the paid developers switched in
post release period to design, documentation, or bug-fixing
activities.

VI. A CKNOWLEDGMENT

I thank to Philip Johnson for his time, useful discussions,
and comments.

REFERENCES

[1] A. Hindle, M. W. Godfrey, and R. C. Holt, “Mining recurrent
activities: Fourier analysis of change events,” inSoftware Engineering
- Companion Volume, 2009. ICSE-Companion 2009. 31st International

Conference on. IEEE, May 2009, pp. 295–298. [Online]. Available:
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071005

[2] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” inProceedings of the 8th
Working Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 153–162. [Online]. Available:
http://dx.doi.org/10.1145/1985441.1985464

[3] L. McLeod and S. G. MacDonell, “Factors that affect software
systems development project outcomes: A survey of research,” ACM
Comput. Surv., vol. 43, no. 4, Oct. 2011. [Online]. Available:
http://dx.doi.org/10.1145/1978802.1978803

[4] A. E. Hassan, “The road ahead for mining software repositories,”
in Frontiers of Software Maintenance, 2008. FoSM 2008.IEEE,
Sep. 2008, pp. 48–57. [Online]. Available: http://dx.doi.org/10.1109/
FOSM.2008.4659248

[5] G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predictive coding
and cepstrum coefficients for mining time variant information from
software repositories,” inProceedings of the 2005 international
workshop on Mining software repositories, ser. MSR ’05, vol. 30,
no. 4. New York, NY, USA: ACM, 2005, pp. 1–5. [Online].
Available: http://dx.doi.org/10.1145/1082983.1083156

[6] A. Hindle, M. W. Godfrey, and R. C. Holt, “Release PatternDiscovery
via Partitioning: Methodology and Case Study,” inProceedings of the
29th International Conference on Software Engineering Workshops.
Washington, DC, USA: IEEE Computer Society, 2007. [Online].
Available: http://dx.doi.org/10.1109/ICSEW.2007.181

[7] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a
novel symbolic representation of time series,”Data Mining and
Knowledge Discovery, vol. 15, no. 2, pp. 107–144, Oct. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10618-007-0064-z

[8] T. Roelleke and J. Wang, “TF-IDF uncovered: a study of theories
and probabilities,” inProceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval, ser. SIGIR ’08. New York, NY, USA: ACM, 2008, pp. 435–
442. [Online]. Available: http://dx.doi.org/10.1145/1390334.1390409

[9] B. K. Yi and C. Faloutsos, “Fast Time Sequence Indexing for Arbitrary
Lp Norms,” in VLDB ’00: Proceedings of the 26th International
Conference on Very Large Data Bases. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, pp. 385–394. [Online].
Available: http://portal.acm.org/citation.cfm?id=645926.671689

[10] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra,
“Dimensionality Reduction for Fast Similarity Search in Large
Time Series Databases,”Knowledge and Information Systems,
vol. 3, no. 3, pp. 263–286, Aug. 2001. [Online]. Available:
http://dx.doi.org/10.1007/PL00011669

[11] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic
representation of time series, with implications for streaming
algorithms,” in Proceedings of the 8th ACM SIGMOD workshop
on Research issues in data mining and knowledge discovery, ser.
DMKD ’03. New York, NY, USA: ACM, 2003, pp. 2–11. [Online].
Available: http://dx.doi.org/10.1145/882082.882086

[12] R. J. Larsen and M. L. Marx,An Introduction to Mathematical
Statistics and Its Applications (3rd Edition), 3rd ed. Prentice Hall, Jan.
2000. [Online]. Available: http://www.worldcat.org/isbn/0139223037

[13] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental comparison
of representations and distance measures,”Proc. VLDB Endow.,
vol. 1, no. 2, pp. 1542–1552, Aug. 2008. [Online]. Available:
http://dx.doi.org/10.1145/1454159.1454226

[14] Initialization of Iterative Refinement Clustering Algorithms, 1998.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.54.3469

