Recognizing recurrent development behaviors
corresponding to Android OS release life-cycle

Pavel Senin
Collaborative Software Development Laboratory
Information and Computer Sciences Department
University of Hawaii at Manoa
Honolulu, Hawaii, 96822
senin@hawaii.edu

Abstract—Within the field of software repository mining
(MSR) researchers deal with a problem of discovery of inter-
esting and actionable information about software projectslt is
a common practice to perform analyzes on the various levels
of abstraction of change events, for example by aggregating
change-events into time-series. Following this, | invegiate
the applicability of SAX-based approximation and indexing of
time-series with tfxidf weights in order to discover recurrent
behaviors within development process. The proposed workfio
starts by extracting and aggregating of revision control d#a
and followed by reduction and transformation of aggregated
data into symbolic space with PAA and SAX. Resulting SAX
words then grouped into dictionaries associated with softare
process constraints known to influence behaviors, such asie,
location, employment, etc. These, in turn, are investigatewith
the use oftfxidf statistics as a dissimilarity measure in order
to discover behavioral patterns.

As a proof of the concept | have applied this technique to
software process artifact trails corresponding to Android OS!
development, where it was able to discover recurrent behawrs
in the “new code lines dynamics” before and after release.
By building a classifier upon these behaviors, | was able to
successfully recognize pre- and post-release behaviorsthin
the same and similar sub-projects of Android OS.

Keywords: software process, recurrent behaviors, data-mining

|. INTRODUCTION

for temporal partitioning and mining of software change
artifacts. As an evaluation example, it presents a rectrren
behaviors discovery from the data extracted from Android
SCM (software configuration management) system.

The rest of the paper is organized as follows. In Section
2, | discuss the motivation, results of previous work in
MSR and present the research questions. In Section 3, |
consider the workflow, data selection, collection, pantiing,
and describe algorithms and methods. Section 4 presents
results and the contribution. Finally, in Section 5, | disgu
limitations and possible extension of this work.

II. MOTIVATION

Software development is a human activity resulting in a
software product. The software process is a structure im-
posed on the software development. This structure idestifie
a set and an order of activities performed to design, develop
and maintain software systems. Examples of such activities
include design methods; requirements collection and cre-
ation of UML diagrams; requirements testing; performance
analysis, and others. The intent behind a software process
is to structure and coordinate human activities in order to
achieve the goal - deliver a software system successfully.
Many processes and process methodologies exist today, and

shown, that software process artifact trail (change eventdeeded to complete a software project, and the quality of the
and associated metadata) is a rich source of process afifal product, are heavily affected by the software process
developers’ information and characteristics. The abitay choice [3]. Thus, studying software processes is one of the
discover recurrent behaviors with Fourier Analysis of ajan important areas of software engineering.
events is explained in [1], while another work [2] con- Traditionally, the software process study is built from
nects recurrent behaviors and software product qualitysTh top to bottom: it requires the researcher to guess a whole
potentially, it is possible to relate recurrent behaviaws t Process, or to notice a recurrent pattern of behavior up-
software product quality and to software process efficiencfront, and to study it in a variety of settings later. These
The main part of a toolkit aiding such research is not onlyempirical studies usually involve two expensive and limhite
an efficient mechanism of recurrent behaviors discovery, bun scale techniques: interviewing and monitoring of the
a mechanism of recognition of social and project-relatedl€velopers. Furthermore, these techniques are virtuaily i
constraints modulating these behaviors. This paper pteserPossible to apply within open-source project settings wher
my exploratory study resulted in a universal framework& diverse development community scattered over the globe.
Fortunately, current advances in software configuration-ma

Lhitp://source.android.com agement (SCM) technologies enable researchers to study

software process by mining software artifact trails [4]¢clsu 2007. The Android OS code is open and released under the
as change logs, bug and issue tracking systems and mailidgpache License.
lists archives. Google platform is used for hosting, issue and bug track-
Mining of large software repositories demands advancethg systems, whether Git is used as the distributed version
techniques allowing to tame with the complexities of datacontrol system for Android. The source code is organized
extraction and its analysis. These challenges are not newwto more than 200 of sub-projects by function (kernel, Ul,
to the data-mining community and an enormous wealth ofmailing system, etc.) and underlying hardware (CPU type,
methods, algorithms and data structures have been dedelopgluetooth communication chip, etc.). There are about two
to address these issues. While some of these approachesglion change records registered in the Android SCM by
were already implemented within the field, such as finding ofore than eleven thousands of contributors within an eight
trends, periodicity and recurrent behaviors through thedr year span. The richness of this data makes Android SCM
predictive coding and cepstrum coefficients [5], Fouriervery interesting repository for exploring.
Transform [1] and coding [6], many are yet to be tried. By using provided Google Data API for bugs and issues
In this paper, | investigate the application of Symbolic Ag-data retrieval, and custom coded Git repository data collec
gregate Approximation [7] and the term frequency—invers¢ion engine, | have collected information about bugs and
document frequency weight statistias<(df) [8] to the prob- issues, the revision tree, authors and committers, change
lem of discovering recurrent behaviors from software pssce messages, and affected targets. In addition to that data, by
artifacts. The motivation behind this choice is coming fromcreating a local mirror and by iterating over changes, | was
the demonstration of outstanding performance by SAX irable to recover the auxiliary data for the most of the change
time-series mining, and from the wide range of successfulecords. This auxiliary data provides quantitative sunymar
applications otfxidf statistics, which is focusing on measur-of added, modified, and deleted targets, as well as the sum-
ing the degree of dissimilarity as the opposite to conveniermary about LOC changes: added, modified or deleted lines.
similarity metrics. Implementation of this approach | dalie ~ All this information was stored in the relational database.

on Android SCM data. Main tables of this database correspond to change and issue
) events; these accompanied with change target tables, issue
A. Research question details, comments, and tables for contributor authenticat

In this exploratory work | am investigating the appli- Overall, the database was normalized and optimized for the
cability of Lin&Keogh symbolic approximation technique fast retrieval of change and issue information using SQL
combined withtf«idf statistics to the discovery of recurrent language.
behaviors from SCM trails of Android OS. The research The collected data constitute almost full set of colleetibl

guestions | am addressing are: artifacts. The only lacking information is the precise info
. Which kinds of SCM data need to be collected for suchmation for source-code line changes, which | intentionally
analyzes? omitted in this step due to the storage space and collection

. What is the optimal approach to data representation anffme constraints. Despite of being collected, bugs ancessu
a data storage configuration? data has not been included into recurrent behaviors disgove

. Which partitioning (slicing) is appropriate, and which experim_ents in thig work mostly due to the complexity Qf
set of parameters should one use for SAX approximaﬁhange"ssue relations. However, as was shown by previous
tion? research, this data is a valuable source of information for

« What is the general mining workflow? recurrent behaviors discovery [2].

[1l. EXPERIMENTAL SETUP AND METHODS B. Temporal data partitioning

In this section | explain the steps of the recurrent behavior BY following the previous research targeting social char-

discovery workflow along with their theoretical background cteristics of committers [2], as well as the release patter
discovery [6], | have partitioned and organized the co#ldct

A. Data collection and organization change trails by the time of the day using time windows of

As with many other large open-source projects, Android + Full day, 12AM - 12AM
OS has been in the development for many years. It is “an * Late night, 12AM - 04AM
open-source software stack for mobile phones and other « Early morning, 04AM - 08AM
devices”, which is based on the Linux 2.6 monolithic kernel. + Day, 08AM - O5PM
Development of Android was begun by Android Inc., the < Night, 05PM - 12AM
small startup company. In 2005, the company was acquireBor every of these windows, | then aggregated values
by Google which formed the Open Handset Alliance - a confor commits, added, edited, or deleted targets and lines,
sortium of 84 companies which announced the availability oproducing equidistant time-series abstraction of soféwar
the Android Software Development Kit (SDK) in November development activity.

One of the effects of this data transformation is an instant a b C d
increase of the number of change data entities by the2 0 0 0.67 1.34
factor of 5 and production of very sparse equidistant time- " 0 0 0 0.67

. p y sp a "¢ 0.67 0 0 0
series. In order to reduce the sparseness and the complexity 1.34 0.67 0 0

(dimensionality) of data, two additional procedures WeTCraple I A look-up table used by the MINDIST function for the
applied within the post-collection data treatment stepAPA , _ 4

and SAX.
time-series into a PAA representation and this intermediat
C. Piecewise Aggregate Approximation (PAA) representation gets converted into a string during thersbco

PAA performs a time-series feature extraction based oft€P- Use of PAA at the first step brings the advantage of
segmented means [9]. Given a time-seriesof length n a simple and efficient dimensionality reduction while pro-
application of PAA transforms it into vectot = (z1, ..., /) viding the important lower bounding property. The second
of any arbitrary length/ < n where each of; is calculated ~ St€P; actual conversion of PAA coefficients into letters, is

by the following formula: also computationally efficient and the contractive propert
(n/M)i of symbolic distance was proven by Lin et al. in [11].
_ M " o . h .
T = — Z z; (1) Discretization of the PAA representation of a time-series
" mn/M(—1)+1 into SAX is implemented in a way which produces sym-

This simply means that in order to reduce the dimensionabols corresponding to the time-series features with equal
ity from » to M, we first divide the original time-series into probability. The extensive and rigorous analysis of vasiou
M equally sized frames and secondly compute the meatime-series datasets available to the authors has shown tha
values for each frame. The sequence assembled from tm®rmalized by the zero mean and unit of energy time-series
mean values is the PAA transform of the original time-seriedollow the Normal distribution law. By using Gaussian distr

It worth noting, that PAA reduction of original data bution properties, it's easy to pickequal-sized areas under
satisfies to a bounding condition, and guarantees no faldbe Normal curve using look-up tables [12] for the cut lines
dismissals in upstream analyzes as shown by Keogh et abordinates, slicing the under-the-Gaussian-curve drea.

[10] by introducing the distance function: x coordinates of these lines called “breakpoints” in the SAX
M algorithm context. The list of breakpoints= 31, 5, ..., Ba—1
DPAA(X7§7)E % Z(‘fl_gl) (2) such thatﬂifl < Bi and Bo = —o00, Ba = 00 divides
i=1 the area undemv(0,1) into « equal areas. By assigning
and showing thaDpa4(X,Y) < D(X,Y). a corresponding alphabet symbalha; to each interval

[Bi-1, B;), the conversion of the vector of PAA coefficients
C into the stringC implemented as follows:

Symbolic Aggregate approXimation extends the PAA- ¢ = alphay, iif & € [3;_1,5;) ()
based approach, inheriting algorithmic simplicity and low gax introduces new metrics for measuring distance be-

computational complexity, while providing satisfacto®ns yyeen strings by extending Euclidean and PAA (2) distances.

sitivity and selectivity [7]. _ , The function returning the minimal distance between two
SAX transforms a time-serie§ of lengthn into a string gyring representations of original time seriésand ¢ is
of arbitrary lengthw, wherew << n typically, using an jefined as

alphabetA of sizea > 2. The SAX algorithm consist of "
two steps: during the first step it transforms the original MINDIST(Q,C) = r Z(dist(qi7éi))2 (4)
w
=1

D. Symbolic Aggregate approXimation (SAX)

c where thedist function is implemented by using the look-up
/_XCF c table for the particular set of the breakpoints (alphabet)si
\;_,J'E' as shown in Table I, and where the singular value for each

b b cell (r,c) is computed as

0, if [r—c/ <1
a Ce”(r,a) = { |T C| - . (5)
a a ﬂmax('mc)fl - 5min(r',c)717 OIherWISe
0 20 40 60 8

As shown by Lin et al., this SAX distance metrics lower-
bounds the PAA distance, i.e.

0 100 120

Figure 1: The illustration of the SAX approach taken from [7] n) N A Ao
depicts two pre-determined breakpoints for the three-symhl- D (@i —) = n(@Q - C)? > n(dist(Q, C)) (6)
phabet and the conversion of the time-series of length 128 into i=1

PAA representation followed by mapping of the PAA coeffitien It worth noting, that SAX lower bound was examined by
into SAX symbols withw = 8 anda = 3 resulting in the string Ding et al. [13] in great detail and found to be superior in
baabccbe precision to the spectral decomposition methods on bursty

(non-periodic) data sets. Android kernel-OMAP hierarchical clustering

. stream ADDED_LINES, user mask “*@google.com™
E. Symbolic approximation and indexing
0.00 0.05 0.10 0.15 0.20 0.25 0.30

As explained above, application of SAX to the single T T N B Android 1.5, pre-release
time-series results in its symbolic representation whih i
much shorter (reduced in the dimensionality) and easier to
manipulate.

By following a sliding window sub-series extraction and
SAX indexing technique described in detail by Lin et al.]
in [7] and Keogh et al. in [11], | have built a number of
symbolic indexes for every time-series generated at prartit
ing step (llI-B) combining following parameters for SAX
transformation:

« three sizes for sliding window reflecting natural inter-
vals of a week (7 days), two weeks (14 days) and a
month (30 days); Figure 2: Hierarchical clustering of pre- and post- relebshav-

. 4 PAA steps for a weekly window, 6 PAA steps for ioral portraits gqrresponding to the new code lines dynanut
a bi-weekly window, and 10 PAA steps for a monthly google.com affiliated contributors.

Android 1.0, pre-release

Android 2.0, pre-release

Android 1.0, POST-release

Android 2.0, POST-release

Android 1.5, POST-release

window;, _ _is simply
« 3 letters alphabet for weekly window, 5 letters for bi- _
g [SUT|—|SNT|
weekly, and a 7 letters alphabet for monthly window. J5(S,T) = T suT 9)

These indexes were stored in the same relational databaseThe third metrics | have tried is thé«idf similarity which
organized and indexed in order to allow the fast retrieval otlefined as a dot product

SAX words and their frequencies for a specific project, a TFIDF(S,T) = Z V(w,S) - V(w,T) (10)
contributor, a time-interval, a SAX parameters set, or any wESNT
combination of these fields. where
__ VwS)
F. Behavioral portrait V(w,$5) = NoOMACEE (11)

Here | define a term of “behavioral portrait” of a contrib-iS @ normalization off«idf (product of token frequency and
utor ¢ as the set of all observed SAX words in her softwardnverse document frequency):

artifact trail(s): V'(w,S) =log(TF.,,s +1)-log(IDE,) (12)
BP. = {(w1, f1), (w2, f2), ces (Wn, fr)} (7) whereTF, s is a normalized token frequency

where each paiftw:, f1) corresponds to the observed SAX TF, s = lwl (13)

word and its frequency. This portrait can be further spetifie ’ IS

by project, time-interval and SAX parameters set. Also it ca @"d /DT is @ measure of the general importance of the
be easily extended from the individual contributor to a teamP2ttern among all users 5
whose “behavioral portrait” is a union set of “behavioral IDF, = 2| (14)

- " DF(w)
ortraits” of team members. . o
P where|D| is cardinality of D - the total number of users,

G. Token-based distance metrics application to behaviora®nd DF(w) is the number of users havingpattern in their
portraits activity set.

In my previous experiments | have measured the per- While_ first two m_etrics dem(_)nstrated_very poor perfor-
formance of three similarity metrics when applied to themance in the clustering tests (discussed in the sectiod)lll-
behavioral portraits the tf«idf similarity statistics performed very well and is

The first metrics | have tried is weighted by SAX presented in this work.

Euclidean similarity distance defined for common to two

behavioral portraits words: H. Clustering
D(S,T) = Z(MINDIST(Siyti) «|Fs, — Fy,)2 (8) As a universal tool for the exploration of derived behav-
snT ioral portraits through their partitioning, and for asseest
whereS andT are two behavioral portraits whose words areof the metrics’ performance, | used hierarchical clustgrin
ordered by frequency. The k-means clustering was used in the validation of the

The second metrics | have tried is the Jaccard similaritglass assignment and for general assessment of the validity
coefficient between two behavioral portraitsandT which of the approach.

Table II: Patterns observed within pre- and post-releasavieral portraits, theitfxidf weights and samplajot normalized curves.(here
pre-x.x and post-x.x rows of the upper table correspond &release and post-releases of Android OS version x.xnuauof the table
correspond to non-trivial patterns observed in all behazigortraits; cells of the table contain fdf weights computed for a particular
SAX word in a particular behavioral portrait)

release "bbac" "abca" "babc" "bbba" "bcaa" "bcbb” "ccaa" "chaa" "bbcb” "bbbb" "bbbc”
post-2.0 0.63 0 0.63 0 0 0 0 0.39 0.24 0.06 0
post-1.0 0 0.93 0 0 0 0 0 0 0 0.09 0.36
post-1.5 0 0 0 0 0 0 0 0 0.79 0.61 0
pre-1.5 0 0 0 0.23 0.23 0.91 0 0.14 0.18 0 0.09
pre-2.0 0 0 0 0 0 0 0 0 0 1 0
pre-1.0 0 0 0 0 0 0 0.79 0 0 0.08 0.61
unnormalized

o] | | | i \
curves corre-| // /\/ /\ \/\ /\ /_ /\ __ / _/\/ _.J_
e all il il il il \
sponding © N IAL | AN O NN AN/

IV. RESULTS Table Ill: Pre- and post-release development patternsiitzetion

For the experiments related to this work | have tried aresuns for kernel-OMAP.

number of contributors partitioning schemes, variety wfet ?%‘ease C'aSSI'f'Caft'Og Eet'ease C'asf)“;'fat'on
. _)b-pre misclassitie eta -pre
intervals and su_b prOJ_ects selections observing satwsfiac 1.6-post OK beta-post OK
performance of investigated approach. However, due to the2.2-pre OK 2.0.1-pre OK
space constraint of this paper, | present only single vatida ﬁ-post 8§ g-g-lﬂoost miscgisified
.1-pre .1-pre

experiment in this section as the proof of concept. 1.1-post OK 2.1-post OK

. . 2.3-pre OK 2.2.1-pre OK
A. Kernel-OMAP life cycle patterns discovery 2.3_zost OK 2_2_1_Sost misclassified

I have arbitrary selected the Android kernel-OMAP B . ids of " | basis f
project as one of the large sub-projects in Android OS. y using centroids of two resulting clusters as a basis for

It is the Android kernel implementation for OMAP-based P'¢" and post-release pattems | tested the classifier amshe

(a proprietary system on chips based on ARM architecturgf Android kerneI-OMAP releases. The0 classifier was able

processor by Texas Instruments) devices. to successfully classify more than 81% _of pre- and_ ppst-
As a “training set” for discovery of behavioral portraits release behaviors (Table Ill). When applied to the similar

of pre- and post-release patterns, | chose three AndroiqojeCt' kernel-TEGRA - it demonstrated the error rate less

releasesAndroid 1.Q Android 1.5 “Cupcake”and Android than 15%. .
2.0 “Eclair’ . For each of these | generated behavioral 1N€ classifier demonstrated a weak, almost random per-
portraits corresponding to four weeks before the releasg"rmance on other sub—pr(_)ject_s, such as user-interface
- pre-release behavioral portrgitand to four weeks after relc_’:\ted projects and e-mail client. However, When_ re-
release post-release behavioral portraitaving in place an ained on the platform-external-bluetooth-bluez projec
additional constraint on contributors and the artifacasi.ti 'S Performance on other bluetooth-related sub-projects,
have selected contributors affiliated wighogle.com e-mail ~ SUCh as platform-external-bluetooth-glib, platformezral-
domain only, expecting that paid developers will have mudpluetooth-hmdu.mp, anq _plgtform-system-bluetooth, veco
more consistent behavior [2]. By selecting th&led_lines ered to 20% miss-classification.
artifacts stream only, | additionally limited the scope bét oo
analyzes and the complexity of captured behaviors to thg' Contribution
“new code lines dynamics” only. The almost perfect cluster- To the best of my knowledge, this work is the first attempt
ing picture (Figure 2) obtained with hierarchical clustgri to study the applicability of symbolic aggregate approx-
and tfxidf statistics as the distance function indicates, thaimation and term frequency—inverse document frequency
there are significant differences in the pre- and post-selea weight statistics to the mining of software process artffac
weekly behaviors of contributors in selected time-windowsThis methodology has a number of advantages. First of all,
While hierarchical clustering is a good sanity test forSAX facilitates significant reduction of the large comptgxi
the data exploration, the performance of K-means clugierin(dimensionality and noise) of temporal artifacts and opens
is much more valuable [14]. | performed k-means on thehe door to application of a plethora of string search antt tex
symbolic representation of data usitigidf statistics and mining algorithms. In addition, th&xidf statistics provides
Euclidean distance. The algorithm converged after two itelan efficient mechanism for discrimination of the signal
ations separating pre- and post-release dictionaries aith by ranking symbolic data while focusing on dissimilarity.
single mismatch for the Android 2.0 pre-release. Finally, the third component | have used - the relational

database - facilitates efficient data slicing, indexingd an

retrieval.

As an example of a possible data-mining workflow demon-

strating the resolving power and correctness of the approac
| presented a case study of building a classifier for pre-
and post-release recurrent behaviors. Whereas thisf@assi [3]
demonstrates a good performance within the project it was
trained on with less than 20% miss-classification, it has
less than 15% miss-classification rate in similar Android OS[4]

kernel sub-projects.

V. DISCUSSION

The presented approach and workflow employs two novel

techniques in order to discover and rank recurrent behswvior
from software process artifact trails. While the approach

demonstrates satisfactory performance, the interpostatf

(2]

[5]

the captured behaviors requires more work. The discoveredf!

behavioral patterns are organized in Table Il by their oc-

currence: the first three columns belong to the post-release
time-window, the four next columns belong to pre-release
time-window, while the rest are the behavioral patterns

observed in both. The bottom row of the table contains plots

visualizing examples of the raw-data streams correspgndin
to symbolic behavioral patterns. By the visual examination
of these examples, it appears that during pre-release most

of the added lines within a week fall on the Monday and

[7]

(8]

Tuesday, whereas during post-release time, most of the line(g
are added during the end of the week and the week-end.
While an explanation of these findings requires an additiona
study to be made, one of the interpretations of such behavior
could be based on the contributors employment profile. Foito0]

example, if the coding activity of developers paid to work
on Android (thus mostly commit during working days) has
fallen below the activity of developers working on their own

volition (who commit mostly off business hours); which, (1]
in turn, could be a consequence of removing of a pre-
release code-freeze, or that the paid developers switehed i
post release period to design, documentation, or bug-fixing

[12]

activities.

VI. ACKNOWLEDGMENT

I thank to Philip Johnson for his time, useful discussions

and comments.

REFERENCES

[1] A. Hindle, M. W. Godfrey, and R. C. Holt, “Mining recurrén
activities: Fourier analysis of change events,'Sioftware Engineering
- Companion Volume, 2009. ICSE-Companion 2009. 31st latemal

[13]

[14

Conference on IEEE, May 2009, pp. 295-298. [Online]. Available:
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.50050

J. Eyolfson, L. Tan, and P. Lam, “Do time of day and develop
experience affect commit bugginess?” Rroceedings of the 8th
Working Conference on Mining Software Repositqrieer. MSR '11.
New York, NY, USA: ACM, 2011, pp. 153-162. [Online]. Availh
http://dx.doi.org/10.1145/1985441.1985464

L. McLeod and S. G. MacDonell, “Factors that affect safte
systems development project outcomes: A survey of resfaf@M
Comput. Sury. vol. 43, no. 4, Oct. 2011. [Online]. Available:

http://dx.doi.org/10.1145/1978802.1978803
A. E. Hassan, “The road ahead for mining software reposis,”

in Frontiers of Software Maintenance, 2008. FoSM 2008EEE,
Sep. 2008, pp. 48-57. [Online]. Available: http://dx.doi/10.1109/
FOSM.2008.4659248

G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predigé coding
and cepstrum coefficients for mining time variant inforroatifrom
software repositories,” inProceedings of the 2005 international
workshop on Mining software repositorieser. MSR '05, vol. 30,
no. 4. New York, NY, USA: ACM, 2005, pp. 1-5. [Online].
Available: http://dx.doi.org/10.1145/1082983.1083156

A. Hindle, M. W. Godfrey, and R. C. Holt, “Release Patt&iscovery
via Partitioning: Methodology and Case Study,”Rnoceedings of the
29th International Conference on Software Engineering k&bops
Washington, DC, USA: IEEE Computer Society, 2007. [Online]
Available: http://dx.doi.org/10.1109/ICSEW.2007.181

J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing %Aa
novel symbolic representation of time serie§ata Mining and
Knowledge Discoveryvol. 15, no. 2, pp. 107-144, Oct. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s106087-0064-z

T. Roelleke and J. Wang, “TF-IDF uncovered: a study ofotfes
and probabilities,” inProceedings of the 31st annual international
ACM SIGIR conference on Research and development in infmma
retrieval, ser. SIGIR '08. New York, NY, USA: ACM, 2008, pp. 435—
442, [Online]. Available: http://dx.doi.org/10.11458(8334.1390409
B. K. Yiand C. Faloutsos, “Fast Time Sequence IndexingXibitrary
Lp Norms,” in VLDB '00: Proceedings of the 26th International
Conference on Very Large Data BasesSan Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, pp. 385-394. [@flin
Available: http://portal.acm.org/citation.cfm?id=6%%5.671689

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra,
“Dimensionality Reduction for Fast Similarity Search in rga
Time Series DatabasesKnowledge and Information Systems
vol. 3, no. 3, pp. 263-286, Aug. 2001. [Online]. Available:
http://dx.doi.org/10.1007/PL00011669

J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic
representation of time series, with implications for sinesy
algorithms,” in Proceedings of the 8th ACM SIGMOD workshop
on Research issues in data mining and knowledge discowsay
DMKD '03. New York, NY, USA: ACM, 2003, pp. 2-11. [Online].
Available: http://dx.doi.org/10.1145/882082.882086

R. J. Larsen and M. L. MarxAn Introduction to Mathematical
Statistics and Its Applications (3rd Editiqr§rd ed. Prentice Hall, Jan.
2000. [Online]. Available: http://www.worldcat.org/isl9139223037
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and Eodh,
“Querying and mining of time series data: experimental carigon
of representations and distance measuréafc. VLDB Endow.
vol. 1, no. 2, pp. 1542-1552, Aug. 2008. [Online]. Available
http://dx.doi.org/10.1145/1454159.1454226

Initialization of Iterative Refinement Clustering Algdwits 1998.
[Online]. Available: http:/citeseerx.ist.psu.edutvidoc/summary?
doi=10.1.1.54.3469

