
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E 	 July/August 2013 | IEEE Software � 57

Searching under
the Streetlight for
Useful Software
Analytics
Philip M. Johnson, University of Hawaii at Manoa

// Developers and researchers must weigh the trade-

off between easily obtained analytics and richer

analytics with privacy and overhead concerns. //

The streetlight effect is a com-
mon form of observational bias, named
in honor of the following joke:

A drunk has lost his keys and is look-
ing for them under a streetlight. A po-
lice officer comes over and asks what
he’s doing. “I’m looking for my keys,”
he says. “I lost them over there.” The
policeman looks puzzled. “Then why
are you looking for them all the way
over here?” “Because the lighting here
is so much better.”

For more than 15 years, researchers at
the Collaborative Software Develop-
ment Laboratory (CSDL) at the Univer-
sity of Hawaii at Manoa have looked
for analytics that help developers

understand and improve development
processes and products. Through this
research, we’ve come to believe that the
“searching under the streetlight” meta-
phor is useful for understanding both
our research and that of others in this
area.

In this context, searching under the
streetlight involves collecting and ana-
lyzing metrics that are easily obtained
with little social, political, or devel-
opmental impact. Unfortunately, the
easier an analytic is to collect and the
less controversial it is to use, the more
limited its usefulness and generality.
For example, collecting the data in a
configuration management repository
is easy, and the repository’s public na-
ture means that developers generally

don’t object to analysis of this data.
However, the resulting analytics are
constrained by the very narrow slice
of development activity captured. Con-
versely, the original version of the Per-
sonal Software Process (PSP) can yield
rich, high-impact analytics. However, it
incurs significant overhead cost for de-
velopers, and the analytics have social
and political implications.

Here, I provide a perspective on the
CSDL’s research in this area to support
two claims. First, this trade-off appears
to be an essential design characteristic.
Second, future research is unlikely to
yield a technological silver bullet that
provides rich analytics without social
and political implications.

It’s Better to Light a
Candle: The PSP
CSDL research on analytics began in
1996, when it started using and eval-
uating the PSP as described in Watts
Humphrey’s book A Discipline for
Software Engineering.1 This book was
innovative in three main ways. First, it
showed how to adapt organizational
software process analytics for individ-
ual developers. Second, it showed how
these analytics could drive improve-
ment. Finally, it presented the practices
in an incremental fashion amenable to
academic and professional adoption.

This book’s version of the PSP uses
simple spreadsheets, manual data col-
lection, and manual analysis. Collect-
ing and managing this data takes sub-
stantial effort. In one version of the
PSP, developers must fill out 12 forms,
including

•	 a project plan summary,
•	 a time-recording log,
•	 a defect-recording log (see Figure 1),
•	 a process improvement proposal,
•	 a size estimation template,
•	 a time estimation template,
•	 a design checklist, and
•	 a code checklist.

FOCUS: Software Analytics: So What?

58	 IEEE Software | www.computer.org/software

FOCUS: Software analytics: So What?

These forms typically yield more than
500 distinct values that developers
must manually calculate. Interestingly,
Humphrey actively embraced the man-
ual nature of the PSP: “It would be nice
to have a tool to automatically gather
the PSP data. Because judgement is in-
volved in most personal process data,
no such tool exists or is likely in the
near future.”1 More fundamentally,
Humphrey viewed his predefined PSP
processes as a bootstrapping method.
In the book, he exhorts developers to
modify the forms and procedures he
presents to address specific circum-
stances and needs.

In conjunction with our metaphor,
we view this original version of the
PSP as “lighting a candle” rather than
looking under a streetlight because the
approach promotes custom, situation-
specific analytics. The manual nature
of the PSP makes its analytics fragile,
in the same way a candle flame is eas-
ily extinguished. On the other hand,
the manual nature also makes the PSP’s
analytics flexible. Just as a candle en-
ables its holder to navigate in the dark-
ness, the PSP enables and encourages
its users to search for the analytics best
suited to their needs. Consider a de-
veloper who suspects that the number
of interruptions he or she experiences
each morning directly impacts produc-
tivity. The PSP provides explicit en-
couragement to explore this analytic;
the techniques with which to make a

sound, evidence-based conclusion; and
a relatively low-cost means of doing so
using just a simple spreadsheet to col-
lect and analyze the data.

Unfortunately, after using and teach-
ing the predefined PSP processes for
two years, we suspected that the man-
ual nature created the potential for sig-
nificant data quality problems. We con-
ducted an empirical study that checked
more than 30,000 data values gener-
ated by classroom use of the PSP.2 The
manual nature of the PSP sometimes
led to incorrect process conclusions de-
spite a low overall error rate (less than
5 percent). To address this problem, we
developed the Leap (lightweight, em-
pirical, antimeasurement dysfunction,
and portable software process mea-
surement) toolkit. However, as we see
in retrospect, we unwittingly compro-
mised one of the PSP’s best features.

The Leap Toolkit: From
Candle to Campfire
The Leap toolkit attempts to address
the data quality problems we encoun-
tered with the PSP by automating and
normalizing data analysis.3 Although
the developer still manually enters most
data, the toolkit automates subsequent
PSP analyses and in some cases pro-
vides analyses (such as various forms
of regression) that the PSP doesn’t pro-
vide. The approach is lightweight be-
cause it doesn’t prescribe the sequence
of development activities (unlike the

PSP). It attempts to avoid measurement
dysfunction by enabling developers to
control their data files. It maintains
data about only the individual devel-
oper’s activities and doesn’t reference
developers’ names in the data files.
Leap data is also portable. It creates a
repository of personal process data that
developers can keep with them as they
move from project to project and orga-
nization to organization. Figure 2 illus-
trates a Leap component that supports
time estimation on the basis of personal
historical data and selection of a re-
gression analysis.

In our metaphor, the Leap toolkit
replaces the PSP candle with a camp-
fire. Introducing higher-level tool sup-
port metaphorically increases the light
by improving data quality and decreas-
ing the manual analysis required. On
the other hand, unlike a candle, whose
light can be moved around according
to the holder’s interests, a campfire is
stationary; participants must come
to it. By introducing automation, the
Leap toolkit makes certain analytics
easy to collect but others increasingly
difficult. Consider our hypothetical
developer who suspects that interrup-
tions are affecting productivity. He
or she would now be expected to de-
sign and implement a new Leap tool-
kit component rather than a simple
spreadsheet form.

After several years of using the Leap
toolkit, we came to agree with Hum-
phrey that the PSP approach could
never be fully automated and would in-
evitably require significant manual data
entry. We also came to agree with the
agile community that such development
overhead frequently doesn’t provide
enough return on investment. This is
particularly true when each project sig-
nificantly differs from the previous one,
so as to render historical data inappro-
priate for comparison.

Our next project, however, departed
from the conventional wisdom of both

Name: Jill Fonson Program: Analyze.java

Date

9/2

9/3

9/3

No.

1

2

3

Type

50

20

80

Inject

Code

Code

Code

Remove

Com

Com

Com

Fix time

1

1

1

Fix
defect no.

1

2

3

Description

Forgot import

Forgot ;

Void in constructor

Figure 1. A sample defect-recording log. In the Personal Software Process (PSP), even com-

piler (syntax) errors are recorded. Developers typically find this aspect of the PSP to be onerous.

	 July/August 2013 | IEEE Software � 59

camps. Unlike the PSP and TSP (Team
Software Process) community, we
abandoned any pretense of supporting
PSP analyses. Unlike the agile commu-
nity, we would continue to embrace ex-
tensive measurement and analysis. The
research question was simple: What
kinds of useful software analytics
could we obtain if both collection and
analysis were “free”? Answering it be-
came the mission of a decade-long re-
search project called Hackystat.

Hackystat: The Harsh Glare
of Operating-Room Lights
As users of both the PSP and the Leap
toolkit, we were personally aware of
the development overhead such data
collection creates, notwithstanding
downstream benefits in the form of
better planning and reduced defects.
Conventional wisdom says to define
high-level goals first and then figure out
the data collection and analysis neces-
sary to achieve them.4 The Hackystat
project went in the opposite direction.5
We first focused on developing ways
to collect software process and prod-
uct data with little to no overhead for
developers. We then determined what
high-level software engineering goals
could be supported by analyses on this
data. Hackystat implements a service-
oriented architecture in which sensors
attached to development tools gather
process and product data and send it to
a server, which other services can query
to build higher-level analyses.

Hackystat includes four important
design features. The first is both client-
and server-side data collection. Modern
software development typically includes
individual developers’ activities on their
local workstation as well as server- or
cloud-based activities. From the start,
we developed instrumentation for client-
side tools such as editors, build tools,
and test tools, as well as server-side tools
such as configuration management re-
positories, build servers, and so on.

The second feature is unobtrusive
data collection. For developers, one of
the most frustrating aspects of man-
ual data collection is the loop of doing
some work and then interrupting it to
record what they worked on. An im-
portant requirement for Hackystat was
to make data collection as unobtrusive
as possible. Users shouldn’t notice that
data is being collected, and the system
shouldn’t make assumptions about net-
work availability. For example, Hacky-
stat client-side instrumentation locally
caches any data collected while a de-
veloper works offline. It then sends the
data to the Hackystat data repository
when the developer reconnects.

The third feature is fine-grained
data collection. By instrumenting
client-side tools, we can collect data on
a minute-by-minute or even second-by-
second basis. For example, Hackystat
supports a measurement called buffer
transition—collecting a data instance
each time the developer changes the

active buffer from one file to another.
Hackystat can also track a developer as
he or she edits a method, constructs a
test case for that method, and invokes
the test, yielding insight into real-world
test-driven development.

The fourth feature is both personal
and group-based development. Besides
collecting their personal development
data, developers can define projects
and shared artifacts to represent group
work. Hackystat can track the inter-
play among developers when, for exam-
ple, they edit the same file.

Hackystat has led to a variety of
technical innovations, including

•	 the development of a toolkit for
defining and visualizing software
project telemetry,6

•	 support for high-performance-com-
puting software development,7

•	 a method for prioritizing which
software development artifacts to
inspect,8

Figure 2. The time estimation component in the Leap (lightweight, empirical,

antimeasurement dysfunction, and portable software process measurement) toolkit. Unlike the

PSP, no Leap analytics are paper-based.

60	 IEEE Software | www.computer.org/software

FOCUS: Software analytics: So What?

•	 an operational definition for test-
driven development,9

•	 an approach to software process
discovery,10 and

•	 the Software ICU (intensive care
unit), which assesses a project’s
health both alone and in relation to
other projects (see Figure 3).11

These strengths have been noticed.
Sixth Sense Analytics (a start-up com-
pany later acquired by Borland) incor-
porated Hackystat technology into a
commercial offering in 2006. Also,
University of Bolzano researchers de-
veloped a similar technology called
PROM (PRO metrics).12

However, our research on Hackystat
uncovered three significant social or
political problems with this approach.
First, although we viewed the unob-
trusive nature of data collection as a
feature, some developers considered it
a bug. They didn’t want to install in-
strumentation that would collect data
regarding their activities without telling
them about it.

Second, client-side, fine-grained
data collection can create discord in
a development group. One user called
the Software ICU “hacky-stalk,” com-
plaining about the transparency it pro-
vided regarding each member’s work-
ing style.

Third, the client-side, fine-grained
data that provides the most compelling
analytics about development is also the
largest obstacle to industrial adoption

of Hackystat technologies. Develop-
ers repeatedly informed us that they
weren’t comfortable with management
access to such data, despite manage-
ment promises to use it appropriately.
(Robert Austin has provided more de-
tails on this problem.13)

A closer look at the Software ICU
helps explain these problems. As the
left side of Figure 3 shows, the Software
ICU collects and displays software arti-
facts’ structural metrics such as cover-
age, complexity, coupling, and churn. It
colors the most recently observed values
and trends red, yellow, or green to indi-
cate health. Another structural metric
is size, which the Software ICU displays
for informational purposes but colors
white (because size trends don’t indi-
cate health). The Software ICU displays
these values for a portfolio of projects,
allowing project data comparison. In
general, collection, analysis, and public
presentation of the values to the left of
the size data aren’t controversial.

Things get interesting on the Soft-
ware ICU interface’s right side, which
presents four health indicators based
on aggregations of individual developer
behavior:

•	 DevTime estimates how much time
each developer spends in his or her
IDE (integrated development envi-
ronment) working on each file asso-
ciated with the project.

•	 Commit measures how often each
developer commits to the repository

and how many lines of code he or
she commits each time.

•	 Build measures how many times
each developer builds the sys-
tem and whether each build is
successful.

•	 Test measures how often each de-
veloper invokes the test suite on the
system and whether the tests ran
successfully.

For a more detailed perspective, users
can click on any sparkline. For exam-
ple, clicking on the DevTime sparkline
generates a visualization showing each
developer’s DevTime trend.

CSDL research suggests that such a
representation of individual developer
behavior makes some developers un-
comfortable; however, it’s necessary
to provide certain kinds of insight. For
example, a principle of agile software
development is “build early and often.”
The Software ICU can measure the ex-
tent to which developers adhere to this.

The Hackystat-based Zorro system
provides an even more sophisticated
application of developer behavior data.
It can automatically determine the ex-
tent to which developers use test-first
design methods. Such an analysis re-
quires a fine-grained, second-by-sec-
ond analysis of developer behavior (see
Figure 4). Once again, some develop-
ers were uncomfortable with this fine-
grained data collection.

Returning to our metaphor,
Hackystat provides the equivalent of

Figure 3. A Software ICU (intensive care unit) display based on Hackystat. The Software ICU assesses a project’s health both alone and in

relation to other projects.

	 July/August 2013 | IEEE Software � 61

high-intensity operating-room lights. It
offers the potential for abundant illumi-
nation and deep insight, but these ben-
efits are often out of reach without pro-
cedures some might view as invasive.
Furthermore, the Hackystat philosophy
of automated collection would make it
exceedingly difficult for our hypotheti-
cal developer who suspects that inter-
ruptions are impacting productivity. To
fit the philosophy, he or she would need
to design and implement some combi-
nation of hardware and software to au-
tomatically and unobtrusively detect a
workflow interruption (for example, a

coworker knocking on the developer’s
office door). The technology would
then need to send data about the in-
terruption’s start and end times to a
Hackystat server for further analysis.

The State of the Practice:
Back under the Streetlight
Over the past few years, services for
software product analytics have be-
come popular, with offerings from
DevCreek, Ohloh, Atlassian, CAST,
Parasoft, McCabe, Coverity, Sonar,
and others. These services’ analytics
are typically built from one or more

of three basic sources: a configuration
management system, a build system,
and a defect-tracking system. Figure 5
shows a display from Sonar for the
SpringSource project, which is repre-
sentative of this type of service.

These systems have two significant
strengths. First, data collection is en-
tirely automated, and the data is al-
ready available. The service simply
applies analytic techniques (coverage,
complexity, security, and so on) to the
data and displays results in a friendly
user interface. Because the data is au-
tomatically gathered from a repository,

Figure 4. The Hackystat-based Zorro system can automatically determine the extent to which developers use test-first design methods.

Some developers were uncomfortable with this fine-grained data collection.

62	 IEEE Software | www.computer.org/software

FOCUS: Software analytics: So What?

overhead for developers and manag-
ers is low. Second, the data is generally
uncontroversial; it focuses on product
characteristics, not the developer be-
haviors that produced them.

These systems correspond best to the
metaphor of searching under the street-
light because that’s where the light is.
They’re optimized for easy installation
and integration, but the result is rather
limited illumination of software pro-
cesses and products. For example, our
hypothetical developer who suspects
that interruptions are affecting produc-
tivity is entirely out of luck. The ap-
proach simply doesn’t support such be-
havioral, client-side data collection and
analysis. In addition, none of these sys-
tems can offer insight into the use of
developer practices such as test-driven
development.

A Matter of Trade-offs
Figure 6 summarizes our experiences;
it illustrates the trade-offs in design-
ing analytics for software processes

and products, which involve three
dimensions:

•	 The degree of automation and the
level of overhead developers and
management incur to obtain the
analytics.

•	 The barrier to adoption incurred by
the technique or technology, which
could be social or political. At its
worst, this barrier could lead to
measurement dysfunction, entirely
undermining the analytic.

•	 The technique or technology’s
level of generality (represented by
the size of the circles in Figure 6).
That is, how broad or narrow is
the range of analytics that can be
developed while adhering to the
technique or technology’s essential
characteristics?

As you can see, the PSP, Hackystat,
and modern product analytic tech-
nologies such as Sonar occupy three
separate quadrants in Figure 6. Agile

measurements (such as velocity, burn-
down, and burn-up) fit in the fourth
quadrant. In the parentheses are ana-
lytics that would be difficult to imple-
ment with techniques or technologies
in the other quadrants.

After many years of exploring dif-
ferent approaches to analytics, we con-
clude that the field isn’t converging on
a single best approach, nor are the lat-
est approaches intrinsically better than
earlier ones. Rather, the community
has been exploring the space of trade-
offs among expressiveness, simplicity,
and social acceptability.

C onsideration of the various
approaches suggests three
fruitful directions for future

research and practice. First, current ap-
proaches such as Sonar aren’t necessar-
ily advancements over older approaches
such as the PSP, nor is the PSP obsolete.
They simply make different trade-offs.
Developers who suspect that interrup-
tions are impacting productivity won’t
find Sonar data helpful. That said, cer-
tain aspects of the original PSP (such as
recording syntax errors) are probably
no longer useful in the age of IDEs such
as Eclipse.

Second, a hybrid approach that
mixes the best of automated collection
and analysis with carefully chosen,
high-impact manual data entry by de-
velopers could substantially increase
the analytics’ impact, with acceptable
overhead for developers.

Finally, modern approaches to pri-
vacy could assuage some developers’
fears regarding behavioral data collec-
tion and analysis. Consider a cloud-
based, independent, privacy-oriented
analytics repository in which develop-
ers could maintain complete control
over data and choose whether to pro-
vide management access. Just as com-
panies establish privacy mechanisms
to encourage whistleblowers to come

Figure 5. The Sonar dashboard display, showing a collection of product metrics. Sonar is

representative of the current crop of popular services for software product analytics.

	 July/August 2013 | IEEE Software � 63

forward, companies could decide that
the benefits of insightful software an-
alytics warrant giving developers in-
creased control over their own data.

Acknowledgments
These findings result from the hard work of
Collaborative Software Development Labo-
ratory (CSDL) researchers, including Joy
Agustin, Robert Brewer, Joe Dane, Anne
Disney, Jennifer Geis, Austin Ito, Aaron
Kagawa, Honging Kou, Christoph Lofi, Car-
leton Moore, Mike Paulding, Dan Port, Ju-
lie Sakuda, Pavel Senin, James Wang, Cedric
Zhang, and Shaoxuan Zhang. The US Na-
tional Science Foundation has been a prima-
ry sponsor of this research through grants
9403475, 9804010, and 0234568. All CSDL
software was developed using open source
licensing. For more details on the research
and access to the software, visit http://csdl.
ics.hawaii.edu.

References
	 1.	 W.S. Humphrey, A Discipline for Software

Engineering, Addison-Wesley, 1995.
	 2.	 P.M. Johnson and A.M. Disney, “The Personal

Software Process: A Cautionary Case Study,”
IEEE Software, vol. 15, no. 6, 1998, pp. 85–88.

	 3.	 P.M. Johnson, “Leap: A ‘Personal Information
Environment’ for Software Engineers,” Proc.
21st Int’l Conf. Software Eng. (ICSE 99),
IEEE CS, 1999, pp. 654–657.

	 4.	 V. Basili, G. Caldiera, and H.D. Rombach,
“The Goal Question Metric Approach,” Ency-
clopedia of Software Eng., J.J. Marciniak, ed.,
John Wiley & Sons, 1994.

	 5.	 P.M. Johnson et al., “Beyond the Personal
Software Process: Metrics Collection and
Analysis for the Differently Disciplined,”
Proc. 25th Int’l Conf. Software Eng. (ICSE
03), IEEE CS, 2003, pp. 641–646.

	 6.	 P.M. Johnson et al., “Improving Software
Development Management through Software
Project Telemetry,” IEEE Software, vol. 22,
no. 4, 2005, pp. 76–85.

	 7.	 P.M. Johnson and M.G. Paulding, “Under-
standing HPCS Development through Auto-
mated Process and Product Measurement with
Hackystat,” Proc. 2nd Workshop Productivity
and Performance in High-End Computing
(P-PHEC 05), IEEE CS, 2005; https://csdl-
techreports.googlecode.com/svn/trunk/
techreports/2004/04-22/04-22.pdf.

	 8.	 A. Kagawa, Priority Ranked Inspection:
Supporting Effective Inspection in Resource-
Limited Organizations, tech. report 2005-08-
02, Information and Computer Science Dept.,
Univ. Hawaii at Manoa, 2005.

	 9.	 H. Kou, P.M. Johnson, and H. Erdogmus,
“Operational Definition and Automated Infer-
ence of Test-Driven Development with Zorro,”

J. Automated Software Eng., vol. 17, no. 1,
2009, pp. 57–85.

	10.	 P. Senin, Software Trajectory Analysis: An
Empirically Based Method for Automated
Software Process Discovery, tech. report
09-09, Collaborative Software Development
Lab, Univ. Hawaii at Manoa, 2009; https://
csdl-techreports.googlecode.com/svn/trunk/
techreports/2009/09-09/09-09.pdf.

	11.	 P.M. Johnson and S. Zhang, “We Need More
Coverage, Stat! Experience with the Software
ICU,” Proc. 3rd Int’l Symp. Empirical
Software Eng. and Measurement (ESEM 09),
IEEE CS, 2009, pp. 168–178.

	12.	 I.D. Coman, A. Sillitti, and G. Succi, “A Case-

Study on Using an Automated In-Process Soft-
ware Engineering Measurement and Analysis
System in an Industrial Environment,” Proc.
31st Int’l Conf. Software Eng. (ICSE 09),
IEEE CS, 2009, pp. 89–99.

	13.	 R.D. Austin, Measuring and Managing
Performance in Organizations, Dorset House,
1996.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

About the Author

Philip M. Johnson is a professor and the associate chair of the Depart-
ment of Information and Computer Sciences and the director of the Collabora-
tive Software Development Laboratory at the University of Hawaii at Manoa.
His research interests include software metrics, software engineering, smart
grids, gamification, and human-computer interaction. Johnson received a PhD
in computer science from the University of Massachusetts. Contact him at
johnson@hawaii.edu.

Completely automated

Completely manual

Sonar, Ohloh, and so on
Hackystat, Prom, and so on

(test-driven development recognition)

Low
adoption
barriers

High
adoption
barriers

Agile
velocity, burn-down,

and burn-up

PSP, Jasmine, and so on
(interruption impact)

Figure 6. A classification for software analytics approaches, including automation,

adoption barriers, and the breadth of possible analytics the approach supports (indicated

by the circles’ size). In the parentheses are analytics that would be difficult to implement with

techniques or technologies in the other quadrants.

