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Searching under 
the Streetlight for 
Useful Software 
Analytics
Philip M. Johnson, University of Hawaii at Manoa

// Developers and researchers must weigh the trade-

off between easily obtained analytics and richer 

analytics with privacy and overhead concerns. //

The streetlight effect is a com-
mon form of observational bias, named 
in honor of the following joke:

A drunk has lost his keys and is look-
ing for them under a streetlight. A po-
lice officer comes over and asks what 
he’s doing. “I’m looking for my keys,” 
he says. “I lost them over there.” The 
policeman looks puzzled. “Then why 
are you looking for them all the way 
over here?” “Because the lighting here 
is so much better.”

For more than 15 years, researchers at 
the Collaborative Software Develop-
ment Laboratory (CSDL) at the Univer-
sity of Hawaii at Manoa have looked 
for analytics that help developers 

understand and improve development 
processes and products. Through this 
research, we’ve come to believe that the 
“searching under the streetlight” meta-
phor is useful for understanding both 
our research and that of others in this 
area.

In this context, searching under the 
streetlight involves collecting and ana-
lyzing metrics that are easily obtained 
with little social, political, or devel-
opmental impact. Unfortunately, the 
easier an analytic is to collect and the 
less controversial it is to use, the more 
limited its usefulness and generality. 
For example, collecting the data in a 
configuration management repository 
is easy, and the repository’s public na-
ture means that developers generally 

don’t object to analysis of this data. 
However, the resulting analytics are 
constrained by the very narrow slice 
of development activity captured. Con-
versely, the original version of the Per-
sonal Software Process (PSP) can yield 
rich, high-impact analytics. However, it 
incurs significant overhead cost for de-
velopers, and the analytics have social 
and political implications.

Here, I provide a perspective on the 
CSDL’s research in this area to support 
two claims. First, this trade-off appears 
to be an essential design characteristic. 
Second, future research is unlikely to 
yield a technological silver bullet that 
provides rich analytics without social 
and political implications.

It’s Better to Light a 
Candle: The PSP
CSDL research on analytics began in 
1996, when it started using and eval-
uating the PSP as described in Watts 
Humphrey’s book A Discipline for 
Software Engineering.1 This book was 
innovative in three main ways. First, it 
showed how to adapt organizational 
software process analytics for individ-
ual developers. Second, it showed how 
these analytics could drive improve-
ment. Finally, it presented the practices 
in an incremental fashion amenable to 
academic and professional adoption.

This book’s version of the PSP uses 
simple spreadsheets, manual data col-
lection, and manual analysis. Collect-
ing and managing this data takes sub-
stantial effort. In one version of the 
PSP, developers must fill out 12 forms, 
including

•	 a project plan summary,
•	 a time-recording log,
•	 a defect-recording log (see Figure 1),
•	 a process improvement proposal,
•	 a size estimation template,
•	 a time estimation template,
•	 a design checklist, and
•	 a code checklist.
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These forms typically yield more than 
500 distinct values that developers 
must manually calculate. Interestingly, 
Humphrey actively embraced the man-
ual nature of the PSP: “It would be nice 
to have a tool to automatically gather 
the PSP data. Because judgement is in-
volved in most personal process data, 
no such tool exists or is likely in the 
near future.”1 More fundamentally, 
Humphrey viewed his predefined PSP 
processes as a bootstrapping method. 
In the book, he exhorts developers to 
modify the forms and procedures he 
presents to address specific circum-
stances and needs.

In conjunction with our metaphor, 
we view this original version of the 
PSP as “lighting a candle” rather than 
looking under a streetlight because the 
approach promotes custom, situation-
specific analytics. The manual nature 
of the PSP makes its analytics fragile, 
in the same way a candle flame is eas-
ily extinguished. On the other hand, 
the manual nature also makes the PSP’s 
analytics flexible. Just as a candle en-
ables its holder to navigate in the dark-
ness, the PSP enables and encourages 
its users to search for the analytics best 
suited to their needs. Consider a de-
veloper who suspects that the number 
of interruptions he or she experiences 
each morning directly impacts produc-
tivity. The PSP provides explicit en-
couragement to explore this analytic; 
the techniques with which to make a 

sound, evidence-based conclusion; and 
a relatively low-cost means of doing so 
using just a simple spreadsheet to col-
lect and analyze the data.

Unfortunately, after using and teach-
ing the predefined PSP processes for 
two years, we suspected that the man-
ual nature created the potential for sig-
nificant data quality problems. We con-
ducted an empirical study that checked 
more than 30,000 data values gener-
ated by classroom use of the PSP.2 The 
manual nature of the PSP sometimes 
led to incorrect process conclusions de-
spite a low overall error rate (less than 
5 percent). To address this problem, we 
developed the Leap (lightweight, em-
pirical, antimeasurement dysfunction, 
and portable software process mea-
surement) toolkit. However, as we see 
in retrospect, we unwittingly compro-
mised one of the PSP’s best features.

The Leap Toolkit: From 
Candle to Campfire
The Leap toolkit attempts to address 
the data quality problems we encoun-
tered with the PSP by automating and 
normalizing data analysis.3 Although 
the developer still manually enters most 
data, the toolkit automates subsequent 
PSP analyses and in some cases pro-
vides analyses (such as various forms 
of regression) that the PSP doesn’t pro-
vide. The approach is lightweight be-
cause it doesn’t prescribe the sequence 
of development activities (unlike the 

PSP). It attempts to avoid measurement 
dysfunction by enabling developers to 
control their data files. It maintains 
data about only the individual devel-
oper’s activities and doesn’t reference 
developers’ names in the data files. 
Leap data is also portable. It creates a 
repository of personal process data that 
developers can keep with them as they 
move from project to project and orga-
nization to organization. Figure 2 illus-
trates a Leap component that supports 
time estimation on the basis of personal 
historical data and selection of a re-
gression analysis.

In our metaphor, the Leap toolkit 
replaces the PSP candle with a camp-
fire. Introducing higher-level tool sup-
port metaphorically increases the light 
by improving data quality and decreas-
ing the manual analysis required. On 
the other hand, unlike a candle, whose 
light can be moved around according 
to the holder’s interests, a campfire is 
stationary; participants must come 
to it. By introducing automation, the 
Leap toolkit makes certain analytics 
easy to collect but others increasingly 
difficult. Consider our hypothetical 
developer who suspects that interrup-
tions are affecting productivity. He 
or she would now be expected to de-
sign and implement a new Leap tool-
kit component rather than a simple 
spreadsheet form.

After several years of using the Leap 
toolkit, we came to agree with Hum-
phrey that the PSP approach could 
never be fully automated and would in-
evitably require significant manual data 
entry. We also came to agree with the 
agile community that such development 
overhead frequently doesn’t provide 
enough return on investment. This is 
particularly true when each project sig-
nificantly differs from the previous one, 
so as to render historical data inappro-
priate for comparison.

Our next project, however, departed 
from the conventional wisdom of both 
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Figure 1. A sample defect-recording log. In the Personal Software Process (PSP), even com-

piler (syntax) errors are recorded. Developers typically find this aspect of the PSP to be onerous.
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camps. Unlike the PSP and TSP (Team 
Software Process) community, we 
abandoned any pretense of supporting 
PSP analyses. Unlike the agile commu-
nity, we would continue to embrace ex-
tensive measurement and analysis. The 
research question was simple: What 
kinds of useful software analytics 
could we obtain if both collection and 
analysis were “free”? Answering it be-
came the mission of a decade-long re-
search project called Hackystat.

Hackystat: The Harsh Glare 
of Operating-Room Lights
As users of both the PSP and the Leap 
toolkit, we were personally aware of 
the development overhead such data 
collection creates, notwithstanding 
downstream benefits in the form of 
better planning and reduced defects. 
Conventional wisdom says to define 
high-level goals first and then figure out 
the data collection and analysis neces-
sary to achieve them.4 The Hackystat 
project went in the opposite direction.5 
We first focused on developing ways 
to collect software process and prod-
uct data with little to no overhead for 
developers. We then determined what 
high-level software engineering goals 
could be supported by analyses on this 
data. Hackystat implements a service-
oriented architecture in which sensors 
attached to development tools gather 
process and product data and send it to 
a server, which other services can query 
to build higher-level analyses.

Hackystat includes four important 
design features. The first is both client- 
and server-side data collection. Modern 
software development typically includes 
individual developers’ activities on their 
local workstation as well as server- or 
cloud-based activities. From the start, 
we developed instrumentation for client-
side tools such as editors, build tools, 
and test tools, as well as server-side tools 
such as configuration management re-
positories, build servers, and so on.

The second feature is unobtrusive 
data collection. For developers, one of 
the most frustrating aspects of man-
ual data collection is the loop of doing 
some work and then interrupting it to 
record what they worked on. An im-
portant requirement for Hackystat was 
to make data collection as unobtrusive 
as possible. Users shouldn’t notice that 
data is being collected, and the system 
shouldn’t make assumptions about net-
work availability. For example, Hacky-
stat client-side instrumentation locally 
caches any data collected while a de-
veloper works offline. It then sends the 
data to the Hackystat data repository 
when the developer reconnects.

The third feature is fine-grained 
data collection. By instrumenting 
client-side tools, we can collect data on 
a minute-by-minute or even second-by-
second basis. For example, Hackystat 
supports a measurement called buffer 
transition—collecting a data instance 
each time the developer changes the 

active buffer from one file to another. 
Hackystat can also track a developer as 
he or she edits a method, constructs a 
test case for that method, and invokes 
the test, yielding insight into real-world 
test-driven development.

The fourth feature is both personal 
and group-based development. Besides 
collecting their personal development 
data, developers can define projects 
and shared artifacts to represent group 
work. Hackystat can track the inter-
play among developers when, for exam-
ple, they edit the same file.

Hackystat has led to a variety of 
technical innovations, including

•	 the development of a toolkit for 
defining and visualizing software 
project telemetry,6

•	 support for high-performance-com-
puting software development,7

•	 a method for prioritizing which 
software development artifacts to 
inspect,8

Figure 2. The time estimation component in the Leap (lightweight, empirical, 

antimeasurement dysfunction, and portable software process measurement) toolkit. Unlike the 

PSP, no Leap analytics are paper-based.
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•	 an operational definition for test-
driven development,9

•	 an approach to software process 
discovery,10 and

•	 the Software ICU (intensive care 
unit), which assesses a project’s 
health both alone and in relation to 
other projects (see Figure 3).11

These strengths have been noticed. 
Sixth Sense Analytics (a start-up com-
pany later acquired by Borland) incor-
porated Hackystat technology into a 
commercial offering in 2006. Also, 
University of Bolzano researchers de-
veloped a similar technology called 
PROM (PRO metrics).12

However, our research on Hackystat 
uncovered three significant social or 
political problems with this approach. 
First, although we viewed the unob-
trusive nature of data collection as a 
feature, some developers considered it 
a bug. They didn’t want to install in-
strumentation that would collect data 
regarding their activities without telling 
them about it.

Second, client-side, fine-grained 
data collection can create discord in 
a development group. One user called 
the Software ICU “hacky-stalk,” com-
plaining about the transparency it pro-
vided regarding each member’s work-
ing style.

Third, the client-side, fine-grained 
data that provides the most compelling 
analytics about development is also the 
largest obstacle to industrial adoption 

of Hackystat technologies. Develop-
ers repeatedly informed us that they 
weren’t comfortable with management 
access to such data, despite manage-
ment promises to use it appropriately. 
(Robert Austin has provided more de-
tails on this problem.13)

A closer look at the Software ICU 
helps explain these problems. As the 
left side of Figure 3 shows, the Software 
ICU collects and displays software arti-
facts’ structural metrics such as cover-
age, complexity, coupling, and churn. It 
colors the most recently observed values 
and trends red, yellow, or green to indi-
cate health. Another structural metric 
is size, which the Software ICU displays 
for informational purposes but colors 
white (because size trends don’t indi-
cate health). The Software ICU displays 
these values for a portfolio of projects, 
allowing project data comparison. In 
general, collection, analysis, and public 
presentation of the values to the left of 
the size data aren’t controversial.

Things get interesting on the Soft-
ware ICU interface’s right side, which 
presents four health indicators based 
on aggregations of individual developer 
behavior:

•	 DevTime estimates how much time 
each developer spends in his or her 
IDE (integrated development envi-
ronment) working on each file asso-
ciated with the project.

•	 Commit measures how often each 
developer commits to the repository 

and how many lines of code he or 
she commits each time.

•	 Build measures how many times 
each developer builds the sys-
tem and whether each build is 
successful.

•	 Test measures how often each de-
veloper invokes the test suite on the 
system and whether the tests ran 
successfully.

For a more detailed perspective, users 
can click on any sparkline. For exam-
ple, clicking on the DevTime sparkline 
generates a visualization showing each 
developer’s DevTime trend.

CSDL research suggests that such a 
representation of individual developer 
behavior makes some developers un-
comfortable; however, it’s necessary 
to provide certain kinds of insight. For 
example, a principle of agile software 
development is “build early and often.” 
The Software ICU can measure the ex-
tent to which developers adhere to this.

The Hackystat-based Zorro system 
provides an even more sophisticated 
application of developer behavior data. 
It can automatically determine the ex-
tent to which developers use test-first 
design methods. Such an analysis re-
quires a fine-grained, second-by-sec-
ond analysis of developer behavior (see 
Figure 4). Once again, some develop-
ers were uncomfortable with this fine-
grained data collection.

Returning to our metaphor, 
Hackystat provides the equivalent of 

Figure 3. A Software ICU (intensive care unit) display based on Hackystat. The Software ICU assesses a project’s health both alone and in 

relation to other projects.
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high-intensity operating-room lights. It 
offers the potential for abundant illumi-
nation and deep insight, but these ben-
efits are often out of reach without pro-
cedures some might view as invasive. 
Furthermore, the Hackystat philosophy 
of automated collection would make it 
exceedingly difficult for our hypotheti-
cal developer who suspects that inter-
ruptions are impacting productivity. To 
fit the philosophy, he or she would need 
to design and implement some combi-
nation of hardware and software to au-
tomatically and unobtrusively detect a 
workflow interruption (for example, a 

coworker knocking on the developer’s 
office door). The technology would 
then need to send data about the in-
terruption’s start and end times to a 
Hackystat server for further analysis.

The State of the Practice: 
Back under the Streetlight
Over the past few years, services for 
software product analytics have be-
come popular, with offerings from 
DevCreek, Ohloh, Atlassian, CAST, 
Parasoft, McCabe, Coverity, Sonar, 
and others. These services’ analytics 
are typically built from one or more 

of three basic sources: a configuration 
management system, a build system, 
and a defect-tracking system. Figure 5  
shows a display from Sonar for the 
SpringSource project, which is repre-
sentative of this type of service.

These systems have two significant 
strengths. First, data collection is en-
tirely automated, and the data is al-
ready available. The service simply 
applies analytic techniques (coverage, 
complexity, security, and so on) to the 
data and displays results in a friendly 
user interface. Because the data is au-
tomatically gathered from a repository, 

Figure 4. The Hackystat-based Zorro system can automatically determine the extent to which developers use test-first design methods. 

Some developers were uncomfortable with this fine-grained data collection.
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overhead for developers and manag-
ers is low. Second, the data is generally 
uncontroversial; it focuses on product 
characteristics, not the developer be-
haviors that produced them.

These systems correspond best to the 
metaphor of searching under the street-
light because that’s where the light is. 
They’re optimized for easy installation 
and integration, but the result is rather 
limited illumination of software pro-
cesses and products. For example, our 
hypothetical developer who suspects 
that interruptions are affecting produc-
tivity is entirely out of luck. The ap-
proach simply doesn’t support such be-
havioral, client-side data collection and 
analysis. In addition, none of these sys-
tems can offer insight into the use of 
developer practices such as test-driven 
development.

A Matter of Trade-offs
Figure 6 summarizes our experiences; 
it illustrates the trade-offs in design-
ing analytics for software processes 

and products, which involve three 
dimensions:

•	 The degree of automation and the 
level of overhead developers and 
management incur to obtain the 
analytics.

•	 The barrier to adoption incurred by 
the technique or technology, which 
could be social or political. At its 
worst, this barrier could lead to 
measurement dysfunction, entirely 
undermining the analytic.

•	 The technique or technology’s 
level of generality (represented by 
the size of the circles in Figure 6). 
That is, how broad or narrow is 
the range of analytics that can be 
developed while adhering to the 
technique or technology’s essential 
characteristics?

As you can see, the PSP, Hackystat, 
and modern product analytic tech-
nologies such as Sonar occupy three 
separate quadrants in Figure 6. Agile 

measurements (such as velocity, burn-
down, and burn-up) fit in the fourth 
quadrant. In the parentheses are ana-
lytics that would be difficult to imple-
ment with techniques or technologies 
in the other quadrants.

After many years of exploring dif-
ferent approaches to analytics, we con-
clude that the field isn’t converging on 
a single best approach, nor are the lat-
est approaches intrinsically better than 
earlier ones. Rather, the community 
has been exploring the space of trade-
offs among expressiveness, simplicity, 
and social acceptability.

C onsideration of the various 
approaches suggests three 
fruitful directions for future 

research and practice. First, current ap-
proaches such as Sonar aren’t necessar-
ily advancements over older approaches 
such as the PSP, nor is the PSP obsolete. 
They simply make different trade-offs. 
Developers who suspect that interrup-
tions are impacting productivity won’t 
find Sonar data helpful. That said, cer-
tain aspects of the original PSP (such as 
recording syntax errors) are probably 
no longer useful in the age of IDEs such 
as Eclipse.

Second, a hybrid approach that 
mixes the best of automated collection 
and analysis with carefully chosen, 
high-impact manual data entry by de-
velopers could substantially increase 
the analytics’ impact, with acceptable 
overhead for developers.

Finally, modern approaches to pri-
vacy could assuage some developers’ 
fears regarding behavioral data collec-
tion and analysis. Consider a cloud-
based, independent, privacy-oriented 
analytics repository in which develop-
ers could maintain complete control 
over data and choose whether to pro-
vide management access. Just as com-
panies establish privacy mechanisms 
to encourage whistleblowers to come 

Figure 5. The Sonar dashboard display, showing a collection of product metrics. Sonar is 

representative of the current crop of popular services for software product analytics.
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forward, companies could decide that 
the benefits of insightful software an-
alytics warrant giving developers in-
creased control over their own data.
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Figure 6. A classification for software analytics approaches, including automation, 

adoption barriers, and the breadth of possible analytics the approach supports (indicated 

by the circles’ size). In the parentheses are analytics that would be difficult to implement with 

techniques or technologies in the other quadrants.


